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Many biological tissues feature a heterogeneous network of fibers whose tensile and bending
rigidity contribute substantially to these tissues’ elastic properties. Rigidity percolation has emerged
as a important paradigm for relating these filamentous tissues’ mechanics to the concentrations
of their constituents. Past studies have generally considered tuning of networks by spatially
homogeneous variation in concentration, while ignoring structural correlation. We here introduce
a model in which dilute fiber networks are built in a correlated manner that produces alternating
sparse and dense regions. Our simulations indicate that structural correlation consistently allows
tissues to attain rigidity with less material. We further find that the percolation threshold varies
non-monotonically with the degree of correlation, such that it decreases with moderate correlation
and once more increases for high correlation. We explain the eventual reentrance in the dependence
of the rigidity percolation threshold on correlation as the consequence of large, stiff clusters that are
too poorly coupled to transmit forces across the network. Our study offers deeper understanding of
how spatial heterogeneity may enable tissues to robustly adapt to different mechanical contexts.

I. INTRODUCTION

Networks and network-like structures are ubiquitous
in biological cells and tissues, and provide the basis for
their mechanical properties and functions. Biopolymer
networks are largely responsible for the mechanical
response of the cytoskeleton of cells [1–6] and the
extracellular matrix of tissues [7–11]; more recently,
rigidly percolating connected networks of cells have been
shown to account for the viscoelasticity of developing
embryos [12]. These networks are generally highly
disordered and spatially inhomogeneous as a result of
how they are assembled and disassembled. For example,
cytoskeletal networks are highly dynamic and have a
complex and heterogeneous spatial organization allowing
for context-dependent cell remodeling and response [1].
As a second example, the collagen II scaffold in articular
cartilage is densest in the vicinity of chondrocytes,
cells which secrete extracellular matrix material to
construct and sustain collagen networks [13]. In fact,
previous work has established spatial heterogeneity as
a crucial consideration in developing faithful cartilage
replacements and scaffolds for tissue regeneration [14,
15].

In the last two decades, there has been extensive
study of disordered biopolymer networks through in-
vitro experiments and simulations, which have provided
a wealth of information about these networks’ responses
to mechanical stimuli [16–24]. To date, however, almost
all computational studies of biopolymer networks have
focused on spatially homogeneous systems and ignored
the presence of structural correlations, which can have
significant consequences for the collective properties of
the network.

The effects of heterogeneity and correlations have
been investigated in other percolation phenomena, such
as colloidal gelation [25] and connectivity percolation
arising from the union of random walks [26].
Heterogeneity has also been found to be consequential
in determining the mechanics of glassy solids [27], and
to cause a shift in the critical temperature at which
various critical phenomena occur [28]. Nonetheless, to
our knowledge, the role of spatial heterogeneity in the
mechanics of fibrous tissues has yet to be systematically
explored. Here, we address this gap and present a novel
investigation of the percolation of rigidity in structurally
correlated fiber networks, which are found in many cells
and tissues, using a lattice-based framework.

Lattice-based fiber networks are a prominent paradigm
for modeling biopolymer scaffolds [19, 21, 22, 24, 29].
These networks are constructed by laying down infinitely
long fibers in a regular pattern, such that whenever two
fibers cross, there is a crosslink which allows free rotation
of the fibers but does not allow them to slide. The fibers
can stretch and bend, but pay energy penalties for these
deformations. Each fiber can further be thought of as a
collinear series of connected bonds, such that random
removal of bonds yields a broad distribution of fiber
lengths.

The mechanical response of such a disordered fiber
network can be mapped to the fraction of bonds present.
Starting with a network in which all the bonds are
present, one can progressively decrease network rigidity
by removing bonds. Once the network reaches a certain
threshold of bond occupation, its elastic moduli undergo
a dramatic, many-decade decrease, dropping to negligibly
small values. This mechanical phase transition is known
as rigidity percolation[19, 29]. This phenomenon is
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distinct from connectivity percolation, which requires
only the existence of a path from one edge of the network
to another. In general, a network with a system-spanning
connected component may not be able to transmit force
from one boundary to another. Dilute fiber networks
have shown great promise as micromechanical models for
in-vitro cytoskeletal networks [16–19], and more recently
for extracellular matrix networks in tissues [8, 11, 30].

Previous computational studies of fiber networks have
examined spatially homogeneous disordered networks, in
which bonds are excluded or retained purely at random,
and have not considered the possibility of correlations
in the inclusion of bonds [16, 17, 19–21]. In this
paper we introduce a model in which bonds are added
in a structurally correlated manner to account for the
pronounced heterogeneity in the distribution of material
observed in cells and tissues. In this model, the likelihood
of adding a bond is contingent upon the number of
adjacent bonds already present. This protocol gives
rise to networks in which already dense regions become
further enriched with material, while sparse regions
remain comparatively dilute.

II. MODEL

A. Network Construction

As we are interested in biopolymer networks in which
vertices correspond to crossings of adjacent filaments, we
choose as our model network the kagome lattice [8], with
a maximum coordination number of 4. We adjust the
elastic moduli of networks by randomly retaining a subset
of the bonds, such that some portion, p, is included. In
the absence of structural correlation, p corresponds the
probability that each bond is retained, such that there is
an independently and identically distributed probability
of keeping each bond. We instead use the term bond
portion to reflect the fact that, for correlated dilute
networks, once the network is seeded with an initial set
of bonds, other bonds do not have an identical likelihood
of inclusion.

We employ an iterative process, introduced in [25],
in which, at each step, a candidate bond is chosen
at random from those bonds that have not yet been
included in the network. We then count the number
of bonds adjacent to the candidate bond, na that have
already been retained, where adjacency is defined by
the condition that two bonds share a common vertex.
For the kagome lattice, the maximum possible number
of adjacent bonds, na,max, is 6. Given a correlation
strength, c, where 0 ≤ c < 1, the candidate bond is
added with a probability

P = (1− c)na,max−na , (1)

where c = 0 corresponds a purely random dilution, and
c ≈ 1 corresponds to maximally correlated dilution, in

which a bond is rejected unless all adjacent bonds have
been retained. This process is repeated until the desired
portion of bonds has been retained.
In figure 1, we show representative samples of

networks with varying degrees of dilution and correlation,
including no correlation. Increasing the correlation
strength for a given bond portion yields a network with
dense clusters, interspersed with sparse regions. As
further bonds are added, relatively dense regions become
more enriched with material, while voids between these
regions persist until the bond portion approaches 1.
Notably, our procedure for adding structural correlation
is isotropic, so that it that does not confer long-range
orientational order, apart from that arising due to the
discrete rotational symmetry of the Kagome lattice.
The data presented in the main text were computed

using networks occupying an approximately square
region with a side length of about 330 bond lengths.
Such networks contain approximately 200,000 bonds
when all bonds are present. We have also considered
two other cases in which networks have approximately
800,000 and 2,000,000 bonds, respectively, in the fully
connected state, to check for finite size effects, and found
substantially similar results. Details of the finite size
effect study may be found in Appendix C.

B. Mechanical Model

The bonds of the network resist stretch and
compression with a Hookean spring stiffness, α, and resist
bending with a bending rigidity, κ. Bending resistance
is implemented by regarding adjacent, collinear bonds as
consecutive segments of a fiber. If the bond connecting
vertices i and j is collinear with and adjacent to the bond
joining vertices j and k, then we penalize a change in the
angle ∠ijk by an amount proportional to the square of
the angular deflection.
We focus on the mechanical response in the linear

response regime, so that the deformation energy consists
of terms quadratic in the strain. Following [8], we
truncate the deformation energy to leading order in the
displacement of vertices from the reference configuration
of the network, and model the energy as

Estrain =
α

2

∑
<ij>

pij(uij · r̂ij)2

+
κ

2

∑
<ijk>

pijpjk[(uji + ujk)× r̂ji]
2

(2)

Here, < ij > denotes a sum over pairs of vertices
sharing a bond, < ijk > denotes a sum over vertices
of adjacent, colinear bonds, and pij is defined to be 1
if the bond between bonds i and j is retained, and 0
otherwise. Further, uij denotes the difference between
the displacement vectors for vertices i and j, and r̂ij
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FIG. 1. Sample networks are shown in which correlation strength is varied from 0 to .8, and the bond portion is varied from .4
to .8. We show a magnified inset at the left of the figure to illustrate the correlated construction process. A candidate,marked
in magenta, is considered for inclusion, and has five neighbors, marked in orange. As the correlation strength is increased,
networks transition from arrangements of homogeneously dispersed bonds to networks with dense clusters interspersed with
sparse voids. Our procedure for adding structural correlation thus adds strong density fluctuations, without introducing long-
range orientational order.

denotes the direction vector of the bond between vertices
i and j in the reference state.

Note that, while we penalize filament stretching and
filament bending, there is no energy cost of changing
the angle between crossing filaments at a crosslink. In
such fiber networks, in which bending forces couple
only collinear, adjacent bonds, the rigidity percolation
threshold has been found to be higher than the
connectivity percolation threshold. The rigidity and
connectivity percolation thresholds were found to be
equal if every pair of adjacent bonds is coupled by
bending forces [22].

C. Structural Relaxation Procedure

We simulate the shear mechanics of our model
networks by imposing a series of small, simple shear
displacements of the vertices at the top. The
displacements of the vertices at the bottom of the
network are constrained to be zero, while along the sides
we impose periodic boundary conditions. Given these
constraints, we minimize the energy given in (2) for a
small strain, ϵs = .001, and compute the shear modulus
according to the relation

E =
1

2
AGϵ2s, (3)
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where E is the minimized energy, A is the area of the
network, and G is the shear modulus. In seeking a
mechanical ground state, we choose as our starting guess
an affine displacement field, in which the displacement of
each vertex is given by a global linear transformation. For
the simple shear we apply to our networks, this amounts
to displacing a point (x, y) by

u⃗(x, y) = (ϵs(y − ymin), 0) , (4)

where u⃗ is the displacement field, ϵs is the shear strain,
and ymin is the minimum y coordinate of any vertex in
the network. Full details of this calculation may be found
in Appendix A.

III. RESULTS AND DISCUSSION

A. Shear Mechanics

We first examined how the rigidity percolation
threshold can be tuned by varying the degree of
correlation. We considered nine distinct values of c,
ranging from 0 to 0.8, in steps of .1, and 61 distinct
values of p, ranging from 0.4 to 1, in steps of 0.05. We
carried out structural relaxation for 10 realizations for
each combination of c and p, and identified G for each
combination as the geometric mean of the 10 values. The
shear modulus G, normalized by its universal maximum,
G0, is shown vs. p for several values of c in Figure 2a,
accompanied by a full phase diagram in Fig. 2b.

Figures 2a and 2b provide the first indications of an
intriguing variation in the rigidity percolation threshold
with the degree of correlation c of the disordered
network. For each value of c, we find a qualitatively
similar scaling of the shear modulus with the bond
fraction. Interestingly, however, the rigidity percolation
threshold i.e., the critical bond fraction, pc, at which the
shear modulus first differs appreciably from zero, shifts
markedly and non-monotonically as c is varied: while
introducing a moderate correlation strength initially
diminishes pc, this effect saturates at about c = .6, and
pc increases for still larger values of c.
To quantitatively identify the rigidity percolation

threshold for each value of c, we considered pairs of bond
fraction and shear modulus for which the shear modulus
ranged from 10−9 to ∼ 10−2. This ensured that the shear
modulus was greater than machine or algorithmic error,
but still small in comparison with its maximal value, G0,
at p = 1. We used the method of least squares to fit each
set of bond fraction-shear modulus pairs to a power law
of the form

G = k (p− pc)
β
. (5)

For each value of c, we found a good fit to equation 5
over over at least seven decades of dynamic range in the

b.

a.

FIG. 2. In panel a, we show the scaling of shear modulus
with bond portion for several structural correlation strengths.
While the dependence of the shear modulus on the bond
portion is qualitatively similar in each case, the point of
rigidity percolation shifts initially to the left, then back to
the right with increasing structural correlation. In panel
b, we show the dependence of G on c and p for the full
range of parameter space considered. The reentrance of the
dependence of pc on structural correlation strength is clearly
discernible in a contour of marginal stiffness on the left side of
the heat map. We attribute this reentrance to two competing
effects: the need for rigid clusters, and the need for strong
coupling between adjacent clusters.

shear modulus. In each case, the correlation coefficient,
R2, between log10(G) and log10[k(p− pc)

β ] is ≥ .96. For
the homogeneous case c = 0, we recover the previously
established result of pc ≈ .6 [31].
As shown in Fig. 3a, in which pc is plotted vs.

c, our power law fits affirm the trend in pc previously
identified by inspection in Fig 2. Surprisingly, the
scaling exponent, β, on the other hand, exhibits the
opposite trend, increasing with c until about c = .6,
and decreasing thereafter. This dependence of β on c
indicates that an earlier onset of rigidity percolation is
accompanied a more abrupt rise in the shear modulus at
the point of percolation.
As shown in figure 3c, we find β to decrease linearly

with pc (R2 = .92). We attribute the decrease in β with
pc to two competing factors determining percolation: the
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presence of large, rigid clusters, and sound mechanical
coupling of adjacent clusters. As the correlation strength
is increased beyond its optimum value, the network
segregates into large, dense regions that are too poorly
connected to enable optimal transmission of stress. The
optimal correlation strength of .6 strikes an ideal balance,
enabling the greatest gain in stiffness per unit material.
To substantiate this conjecture, we turn to detailed
analysis of network displacement fields.

B. Analysis of Non-affine Deformation

To gain further insight into the micromechanical
mechanisms underlying the reentrance in the rigidity
percolation threshold, we quantified the degree of
non-affinity in each network. Non-affinity quantifies
the departure of a displacement field of a strained
material from the displacement expected in a simple,
homogeneous elastic continuum. In an affinely deforming
network subjected to simple shear, a vertex with an
initial location r⃗0 = (x0, y0) will be mapped to the
final location r⃗ ′

A = (x0 + ϵsy0, y0), where ϵs is the shear
strain. The non-affine displacement field, u⃗NA is defined
as r⃗ ′− r⃗ ′

NA, where r⃗
′ is the true displacement field. The

non-affine parameter, Γ, is then defined as

Γ =
1

N ϵ2s l
2
0

N∑
i=1

|u⃗NA|2 , (6)

where l0 is the length of an undeformed bond, and N
is the number of vertices in the network [32]. Non-
affinity is a well established means of characterizing the
difference in behavior of a purely entropic rubber and
a gel of semiflexible polymers [24], and has been found
more broadly to be important in accounting for the shear
mechanics of disordered solids [33]. We computed Γ for
all ten network realizations for each combination of p
and c, and calculated the final non-affine parameter as
the arithmetic mean over all realizations.

We note that, owing to zero frequency modes in
the stiffness matrices of under-constrained networks for
which p < pc, there will be some ambiguity in the
solution for the displacement field. This ambiguity is
not entirely lifted by the constraints we impose at the
boundaries. While the non-affine parameter for p < pc
is therefore protocol-dependent, we argue that it is is
still illuminating in this regime. Our trial solution of
affine displacement would be exact if our networks had
completely homogeneous mechanical response, but this
guess fails for the heterogeneous networks we consider
here. Non-affine deformations generically result from
an imbalance of forces in the affinely deformed state
[32, 34]. A large departure of the displacement field
from our starting affine guess thus reveals a high degree
of mechanical heterogeneity. In a similar vein, previous
work has found non-affine rearrangements to be useful in

identifying “soft spots” in which the onset of plasticity is
most likely in disordered granular media [35, 36].
As reported in previous studies [24, 37], we find a

pronounced peak in the non-affine parameter near the
rigidity percolation threshold, as shown in Figure 4a.
The relatively small values of the non-affine parameter
for p≪ pc and p≫ pc are reasonable, as, in these limits,
all parts of the network as either equally soft or equally
stiff, respectively. While the same general trend holds
for all correlation strengths, the peak in the non-affine
parameter becomes lower and broader as the structural
correlation strength is increased. We posit that this peak
broadening is associated with the formation of local rigid
regions, joined by weakly connected interstitial regions,
such that stress is distributed in a non-uniform manner
over a larger range of bond fractions for networks with
high structural correlation. We investigate this idea
further by considering the spatial correlations in the non-
affine displacement field.
We first consider a radial non-affine correlation

function, g(r). We take the inner product of non-affine
displacements for all pairs of points within some cutoff
distance, rcut, of one another, and bin displacement
vectors between pairs of points into annular sectors of
thickness ∆r. We then define g(r) as

g(r) =
1〈

|u⃗NA|2
〉 ×

〈
u⃗NA(r⃗i) · u⃗NA(r⃗j)

〉
r≤|r⃗j−r⃗i|<r+∆r

,

(7)
where the first average runs over all points, and the
second average runs over all distinct pairs of points
i, j such that the positions of vertices i and j in the
undeformed lattice are separated by a distance in the
range [r, r +∆r). This normalizes g(r) to be equal to 1
when r = 0.
For each combination of p and c, we find g(r) to be

well fit (for all cases, R2 ≥ .98) by the form

g(r) = 1 + a
(
e−r/λ − 1

)
. (8)

We show a representative set of curves in Fig. 4b, for
c = .6 and varying bond fractions. Symbols indicate
data points, while lines are fits to Eq. 8. Initially, the
floor of g(r) decreases, reaching its lowest point near the
rigidity percolation threshold, then steadily increases for
larger values of p. We attribute the early decrease in the
floor to incipient rigid clusters that deform differently
from the surrounding soft regions, such that there is
no coordinated, long-range force transmission. The
subsequent rise in the minimum of g(r) is associated
with the emergence of system-wide spanning force chains
beyond the rigidity percolation threshold.
From the decay distance, λ, in equation (8), we infer

an effective mechanical length scale. Different correlation
strengths yield qualitatively similar dependence of λ
upon bond portion, but λ at a fixed bond portion steadily
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FIG. 3. Scaling behavior near the rigidity threshold: In a, we show the results of fitting shear modulus - bond portion
pairs to Eq. 5. In each case, we find a sound fit spanning 6 to 7 decades in the shear modulus. In b, we show fitting results
for the critical bond portion, pc, and the scaling exponent, β, of the shear modulus with the excess bond portion. The scaling
exponent exhibits the opposite trend from the critical bond portion, indicating that a low percolation threshold is accompanied
by a more abrupt increase in the shear modulus. In c, we demonstrate that the critical bond portion is a reliable predictor of
the critical exponent relating growth in the shear modulus to the excess bond portion. We find that the value c = .6 yields
an optimal trade-off between a need for large, rigid clusters, and a need for sound mechanical coupling of adjacent clusters to
enable coordinated, system-spanning force propagation. For excessive correlation, dense clusters amount to stiff inclusions in
an otherwise under-coordinated network.

increases with increasing correlation. This further affirms
the idea that the size of a coherently deforming cluster
becomes progressively larger with growing correlation.
Results are shown in Figure 4, panel c, with trend lines
computed from cubic basis splines.

We finally seek to account for the reentrant scaling
of pc with structural correlation strength by identifying
the critical mechanical length scale, λc, at the onset
of rigidity percolation for each structural correlation
strength, c. We estimate λc by interpolation using the
previously mentioned cubic basis splines. As shown in
Fig. 4d, we find that pc varies non-monotonically with
λc, with an initial decrease until λc exceeds about 5 bond
lengths, after which pc once more increases. The optimal
value of λc is that obtained for a structural correlation
strength of .6, in concert with our previous findings. We
further observe that λc appears to diverge according to a
power law as c approaches 1. In the limit c = 1, either all
bonds can be present or no bonds can be present, so that
the only percolating network would be a fully connected
network, in which vertex displacements are correlated
over arbitrarily large distances. We thus find that, while
small, rigid islands must nucleate to enable the most
efficient percolation, excessively large rigid clusters leave
too little material elsewhere to enable the formation of
system-wide force chains.

IV. CONCLUSION

We have introduced and investigated a model of
rigidity percolation in spatially correlated networks.
Our study of the scaling of the shear modulus near
percolation, coupled with our analysis of networks’
strain fields, offers a straightforward physical picture

accounting for the reentrant scaling of pc with c. While
the length scale over which a network’s displacement field
is well coordinated grows monotonically with correlation
strength, eventually neighboring rigid clusters become
poorly coupled. Weak tethers between dense islands of
bonds lead to strain being highly concentrated, rather
than the load being distributed evenly throughout the
network.

This work broadens the already successful rigidity
percolation framework to better account for the
mechanical response of structurally correlated,
heterogeneous networks found in cells and tissues.
We anticipate this work will usher in further studies
exploring the role of anisotropy [38] observed in many
extracelluler matrices. Our findings indicate that, rather
using just an averaged, system-wide characterization
of network topology, local spatial patterns should be
considered to fully understand tissues’ responses to
applied stress.

Appendix A: Finding Mechanical Ground States of
Elastic Networks

We seek a zero-force configuration of the network,
subject to the constraint that the the nodes along the
bottom of the network are fixed, and the nodes along the
top of the network do not translate in the y direction, and
are displaced by a uniform amount to the right. Periodic
boundary conditions are imposed at the left and right
boundaries of the network. We note that, due to the

quadratic energy given by Eq. 2, the restoring force, F⃗ ,
resulting from a displacement field u⃗ may be computed
as
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c = .6

FIG. 4. a. We show the non-affine parameter, as defined in Eq. 6, vs bond portion for a number of correlation strengths.
In each case, the non-affine parameter exhibits a pronounced peak at the rigidity percolation transition. Larger correlation
strengths correspond to non-affine re-arrangements occurring over a wider range of bond-fractions and are reflected in the
peaks becoming progressively broader with increasing c. b We display azimuthally averaged non-affine correlations gNA(r) as
a function of distance r between vertices. In each case, we find the decay to be exponential, allowing us to extract an emergent
mechanical length scale, λ. This length scale monotonically increases with bond portion p, suggesting longer range correlations
for networks with more fiber content. The non-affine correlations in the large r limit decrease with increasing bond portion
below the rigidity percolation threshold; however, above this threshold they increase with increasing bond portion. While we
choose a correlation strength of .6 here, networks with differing correlation strength exhibited qualitatively similar behavior.
Data are shown in symbols, while lines show the best fit to equation (8). In c, we show emergent mechanical length scales λ
for different combinations of p and c. At low bond portions, the length scale λ steadily increases with correlation strength for
a given p, whereas at high bond portions, values of λ for different values of c converge and approach the system size. In d, we
identify a critical mechanical length scale, λc, as the decay length of non-affine correlations at the onset of rigidity percolation,
which exhibits a power law divergence as the structural correlation strength nears 1 (see inset). We show that the critical
bond portion pc varies non-monotonically with λc in a manner reminiscent of the scaling of pc with with structural correlation
strength c in Fig. 3(b).

F⃗ = −Ku⃗, (A1)

where, for a network with N vertices, K is a 2N × 2N
matrix, and u⃗ is a 2N × 1-dimensional column vector
with the displacement field components of node i given
in indices 2i − 1 and 2i of u⃗. For a total energy E, the
matrix element Kαβ is given by

Kαβ =
∂2E

∂uα∂uβ
, (A2)

where 1 ≤ α, β ≤ 2N .

We then partition indices of the displacement field on
the interval [1, 2N ] into two subsets: the set R of indices
corresponding to relaxed coordinates, and the set B of
indices corresponding to constrained coordinates on the
boundary. Let u⃗R be an R× 1 column vector containing
just those coordinates permitted to relax, where R =
|R| is the number of relaxed coordinates. We further
define a projection operator from the full 2N -dimensional
displacement field u⃗ to u⃗R, denoted by PN→R, and a
projection operator PR→N from u⃗R back to R2N . The
product PR→NPN→R yields a 2N × 2N linear operator
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satisfying

(PR→NPN→R)αβ =

{
1, α = β and α ∈ R
0, otherwise

. (A3)

Finally, we define a 2N × 2N operator, IB , to select just
those elements of u⃗ corresponding to boundary nodes’
displacements:

Iαβ =

{
1, α = β and α ∈ B
0, otherwise

. (A4)

With the foregoing definitions in hand, we now return
to the physical situation. The net force on the relaxed
nodes due to interactions amongst relaxed nodes must
be the opposite of the net force on relaxed nodes due to
their interaction with boundary nodes. In terms of the
previously defined quantities, this implies:

PN→RKPR→N u⃗R = −PN→RKIBu⃗. (A5)

We choose as our starting guess the affine displacement
field, u⃗A, and decompose u⃗ as the sum of the affine
field and the non-affine field, u⃗NA. Defining KR ≡
PN→RKPR→N , we solve for the non-affine component
of u⃗R, u⃗NA,R as

u⃗NA,R = −K+
R (PN→RKIBu⃗A+

PN→RKPR→N u⃗A,R) . (A6)

K+
R denotes the Moore-Penrose inverse of KR [39–41],

which we compute using the package SuiteSparseQR [42].
We finally solve for the overall displacement field as

u⃗ = PR→N u⃗NA,R + u⃗A, (A7)

and the residual strain energy as

E =
1

2
u⃗TKu⃗. (A8)

Appendix B: Quantifying Anisotropy in Non-affine
Correlations

We further look for evidence of orientational order in
non-affine correlations by averaging not over an annular
sector, but rather over all pairs of points whose relative
displacement has magnitude r, and makes an angle
φ with the positive x axis. We define a measure of
correlation ψ(r, φ):

ψ(r, ϕ) =

∑
r⃗1,r⃗2

u⃗NA(r⃗1) · u⃗NA(r⃗2)δr,|r⃗1−r⃗2|δφ,θ1,2〈
|u⃗NA|2

〉∑
r⃗1,r⃗2

δr,|r⃗1−r⃗2|δφ,θ1,2

,

(B1)

where summations are over all vertices, δ is the Kronecker
delta, and θ1,2 is the angle between the displacement
r⃗2 − r⃗2 and the positive x axis. Results are shown
in Fig. 5. The color scale for each combination of
correlation strength and bond portion is mapped to the
range spanning the minimum and maximum values of ψ
for that combination.

While for low bond portions, the correlation between
non-affine displacement is highly isotropic, correlations
decay far more gradually along the direction of applied
strain at large bond portion. Well above the rigidity
percolation threshold, networks deform in a nearly affine
manner, as shown in Fig. 4 a. In this regime, the
discrete rotational symmetry of the Kagome network
introduces elastic anisotropy. This anisotropy is more
pronounced for networks with less structural correlation,
as highly correlated networks have greater fluctuation in
local stiffness, a trait known to increase non-affinity [32].
Our analysis to elucidate the reentrance in the rigidity
percolation threshold relies upon non-affine correlations
for .52 ≤ p ≤ .6, where the non-azimuthally averaged
non-affine parameter decays nearly isotropically.

Appendix C: Investigating Finite Size Effects

As mentioned in the main text, we also sought to
confirm that our findings remained valid for increasingly
large networks. We considered cases in which the
number of bonds in the fully connected state was ≈
800, 000 and ≈ 2, 000, 000. For each class, we varied the
correlation strength, c from 0 to .8, in steps of .1, and
the bond portion, p, from .4 to .75, in steps of .01. We
focused on the range from .45 to .7 for p as we were
primarily interested in determining whether the same
scaling behavior as reported in the main text occurred
in the vicinity of the rigidity percolation transition.

We found that the scaling of the shear moduli of
all larger networks was still well captured by eq. 5,
and further found the optimal correlation strength to
be approximately .6. Values of scaling exponents for
networks of different size but with the same correlation
strength also proved to be strikingly similar, suggesting
that our system size is indeed appropriate to reveal
general bulk properties of structurally correlated fiber
networks. A summary of our findings is provided in fig.
6.
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FIG. 5. We show the correlation in non-affine parameter, as a function of the magnitude and orientation of separation. The
color scale for each panel is normalized to the maximum value for a given combination of bond portion and correlation strength.
The decay in non-affine displacement coefficient becomes more gradual with growing bond portion for all correlation strength,
but growth in decay length becomes markedly more rapid for highly correlated networks. We also note that, with growing bond
portion, non-affine correlations exhibit increasing anisotropy, with decay in correlations becoming much more gradual along
the direction of applied shear.
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