Sharding the State Machine:
Automated Modular Reasoning for Complex Concurrent Systems

Travis Hance, Yi Zhou', Andrea Lattuada®, Reto Achermann*, Alex Conwayi,
Ryan Stutsmani@, Gerd Zellwegeri, Chris Hawblitzel®, Jon Howell*, Bryan Parno’
T Carnegie Mellon University; ® ETH Zurich; * University of British Columbia;
¥ VMware Research; © University of Utah; © Microsoft Research

Abstract

We present IronSync, an automated verification framework
for concurrent code with shared memory. IronSync scales
to complex systems by splitting system-wide proofs into iso-
lated concerns such that each can be substantially automated.
As a starting point, IronSync’s ownership type system allows
a developer to straightforwardly prove both data safety and
the logical correctness of thread-local operations. IronSync
then introduces the concept of a Localized Transition Sys-
tem, which connects the correctness of local actions to the
correctness of the entire system. We demonstrate IronSync
by verifying two state-of-the-art concurrent systems compris-
ing thousands of lines: a library for black-box replication on
NUMA architectures, and a highly concurrent page cache.

1 Introduction

Despite the importance of concurrent software, it is famously
difficult to write correctly. The correctness of any one thread
can, in principle, depend on changes from any other thread;
developers often struggle to consider all possible thread in-
terleavings. This reasoning becomes more difficult in aggres-
sively optimized systems that use custom synchronization
tools beyond standard abstractions like locks. Such systems
often appear anti-modular in that they entangle synchroniza-
tion logic with application logic. For example, a concurrent
page cache (§5.2) might use a bit both for the synchroniza-
tion purpose of read-locking a section of memory and for the
logical purpose of indicating that an IO write is in progress.
In theory, formal software verification can produce prov-
ably correct code, but existing techniques have struggled to
reach production-scale shared-memory systems (§9). Some
work [18, 19] on verifying concurrent systems carefully fo-
cuses on networking and asynchronous disk 10, but avoids
shared-memory concurrency. Other work [10, 11, 16, 34, 43]
does tackle shared memory, but it relies on techniques which
require considerable sophistication and manual effort from
the developer. Still other work [36] offers simpler tools and
greater automation, but the automation does not yet scale,
requiring hours of CPU time for tens of lines of code (§7.1).
In contrast, [ronSync enables verification of production-
scale shared-memory concurrent systems, including those
with custom synchronization protocols. Such verification
comes with many reasoning challenges, and IronSync suc-
ceeds by carefully partitioning the system-level proof so that

a developer can ergonomically tackle each challenge by for-
malizing her existing intuitions, supported at each stage by
powerful automation.

At the lowest level, an IronSync developer uses an owner-
ship type system to prove the data safety of her implementa-
tion. Oversimplifying, in an ownership type system, an owned
value must be held (or referenced) by exactly one variable. A
fast, deterministic type checker enforces this property, which
IronSync, like Rust [27, 37] and other languages, in turn uses
to enforce data safety, i.e., basic memory safety plus freedom
from conflicting reads and writes. Our experience, and that
of the Rust community, suggests using an ownership type
system for such reasoning is relatively intuitive.

Going further, IronSync shows how the developer can ad-
ditionally use ownership types to reason about the logical
correctness of a thread’s local actions on data it owns. Intu-
itively, in any segment of code where a thread operates only
on owned data, that data cannot affect or be affected by other
threads. Hence, IronSync can reason about such code using
sequential reasoning techniques and tools honed over decades
of research and development. Reasoning sequentially is more
intuitive for the developer as well.

Finally, the [ronSync developer must connect the locally
correct thread actions to global, system-wide correctness. To
support this step, IronSync introduces the Localized Transi-
tion System (LTS), which abstracts each thread’s actions and
the state they act upon, formalizing the intuition that in effi-
cient concurrent programs, each thread acts only on a small
fragment of the program’s global state. Using the techniques
above, the developer locally proves that the LTS is a sound ab-
straction of their implementation. Finally, IronSync soundly
abstracts the LTS into a simplified program representing the
whole system. This new program (with threads, locks, and
other implementation details abstracted away) is far simpler to
reason about, and it connects naturally to previous automated
techniques for, e.g., reasoning about asynchronous IO or dis-
tributed nodes [18, 19]. Since each step on this path is proven
sound, proofs at this level also apply to the implementation.

To support the advanced read-sharing patterns found in pro-
duction systems, IronSync also reuses the machinery above
(with a small twist) to factor out reasoning about complex
synchronization primitives, so that the developer can think
about them separately from the core application logic, even if
the implementation deeply entangles the two concerns.

The developer writes their implementation and performs
all of the reasoning above in an extended version of the Dafny
language [31] augmented with the trusted axioms and memory
primitives in IronSync’s framework.

Evaluation. We introduce IronSync via a series of increas-
ingly complex examples, culminating in two production-level
case studies (§5). To illustrate IronSync at scale, we verify
a Node Replication (NR) library that creates a linearizable
NUMA-aware concurrent data structure from a black-box
sequential one [8]. To show IronSync working both at scale
and with prior work on crash safety [18], we verify Splinter-
Cache [13], a production-scale disk-backed in-memory page
cache created for use in commercial products [46].

Each case study’s performance matches its unverified
production-level counterpart (§7.2), driving workloads of 5M
updates/sec. with 192 threads (NR) or 3M ops/sec. (Splin-
terDB with verified SplinterCache), demonstrating IronSync
has not impeded optimization through limited expressiveness
or excessive proof burden. We also uncovered severe bugs
(§7.3) in the unverified implementations.

Limitations. As in any verification system, the correctness
of a verified IronSync program depends on the correctness of
its spec, and the verification tool (Dafny [31]). Our encoding
of the IronSync framework in Dafny is also trusted (although
application-specific definitions are not). IronSync does not
verify liveness, termination, or deadlock-freedom. We focus
on data safety and functional correctness; i.e., if an operation
returns a result, it is correct according to its spec. IronSync
verifies programs against a high-level memory consistency
model that distinguishes data-race-free memory from racy,
sequentially consistent atomic memory. This compiles to
efficient assembly on modern hardware, but it cannot exploit
every optimization afforded by relaxed memory (§4.2).

Contributions. In summary, this paper:

1. Factors the proof of a production-scale concurrent sys-
tem into intuitive reasoning steps that can each be sup-
ported with powerful automation.

2. Tllustrates how the application of an ownership type sys-
tem enables scalable, automated concurrent reasoning
about both data safety and logical correctness.

3. Introduces Localized Transition Systems, which soundly
connect local reasoning about a thread’s actions to global
reasoning about the correctness of the full system.

4. Enables developers to verify complex, application-
specific read-sharing synchronization tools in isolation
from the program’s main application logic.

5. Demonstrates, via case studies, that [ronSync effectively
reasons about practical, complex, high-performance con-
current systems.

2 The Potential Pitfalls of Parallelism

To highlight the challenges of writing and reasoning about
concurrent code, we begin with a simple bank application.
This multi-threaded application maintains a list of accounts,

if accounts[A] > amt {
accounts[A] = accounts[A] - amt
accounts[B] = accounts[B] + amt

3
Figure 1: Buggy code violating data safety

lock(accounts[A]);
sufficient_balance : = accounts[A] > amt;
unlock(accounts[A]);

if sufficient_balance {
lock(accounts[Bl);
accounts[B] = accounts[B] + amt
unlock(accounts[B]);

lock(accounts[Al);
accounts[A] = accounts[A] - amt
unlock(accounts[A]);

3
Figure 2: Buggy code violating logical correctness

lock(accounts[A]);
lock(accounts[B]);
if accounts[A] > amt {
accounts[A] = accounts[A] - amt
accounts[B] = accounts[B] + amt

3}
unlock(accounts[Al);
unlock(accounts[B]);

Figure 3: Correct code (assuming that A < B, which is necessary to
avoid deadlock, although proving deadlock-freedom is out-of-scope
for IronSync)

each with an account ID and a balance, supporting one opera-
tion, transfer(A,B,d), which moves d dollars from account
A to account B.

Here, there are a handful of mistakes an inexperienced
developer might make. First, they might write code as in
Figure 1, which would be correct in a sequential program but
critically flawed in a concurrent one, where, e.g., two different
threads might both write to accounts[A], one overwriting the
other. In fact, it might be difficult to even fully characterize
the buggy behavior on realistic hardware with weaker memory
models [1, 2, 42], and in some programming languages, data
races may even be undefined behavior [4, 49].

A naive fix would be to protect the code in Figure 1 with a
global lock. Such a fix would be correct but embarrassingly
inefficient. For efficiency, the developer might employ a
finer-grained concurrency strategy by creating a lock for each
account, reasoning that most transfers affect disjoint accounts.

Figure 2 uses a discipline of locking an account before read-
ing/writing it, eliminating the data-safety problems above,
since no other thread can simultaneously read/write the ac-
count information. Even with this fix, however, the program
is still not logically correct: two different transfer operations
might each check that account A has sufficient funds and then
move forward even when A lacks the funds to complete both,
leaving A with a negative balance.

Given enough debugging (or prior experience), the devel-
oper might eventually produce the code in Figure 3, which
holds locks on both accounts as it makes the transfer. How

would the developer convince herself that she has finally pro-
duced a correct implementation?

She might first reason that the program is data safe because
it holds the corresponding account lock whenever it accesses
shared memory. Data safety rules out blatant data corruptions,
making it feasible to reason about logical correctness.

Given data safety, she might then informally reason that
holding both locks simultaneously gives the thread exclusive
access to the portion of the state (accounts A and B) needed
to correctly perform the transfer. Although other concurrent
threads might simultaneously modify other program state, all
such modifications are irrelevant to the transfer. Conversely,
any changes the thread makes to accounts A and B must be
irrelevant to any concurrent transfers, since those transfers
must involve other accounts. Hence, she can reason locally
about the correctness of the transfer implementation. Further-
more, from the perspective of the other threads, the transfer
appears to occur atomically.

With IronSync, the developer formalizes her intuitions
about data safety and logical correctness in a machine-
checked way.

3 The Core IronSync Methodology

IronSync utilizes a variety of techniques, with the philosophy
of using the right tool for each job. We introduce the tech-
niques through a series of increasingly complex examples. !
Here we focus on the toy banking application from §2 to illus-
trate IronSync’s core ideas: (1) the use of an ownership-based
type system, (2) the abstraction of threads via a localized
transition system, and (3) the way we soundly compose a lo-
calized transition system into a global state machine that can
soundly reason about global properties of the full concurrent
program.

In §4, we introduce increasingly sophisticated features and
examples, building up to our production-level case studies in
§5. We defer the formalism underpinning IronSync to §6.

3.1 Achieving Data Safety in IronSync

IronSync mechanically enforces data-safety via an owner-
ship type system. Such type systems are effective at en-
forcing data-safety both in unverified programming (e.g., in
Rust [28]) and in verified sequential programming; e.g., in
Linear Dafny [33], a version of the Dafny verification lan-
guage [31] augmented with an ownership (or linear [48]) type
system inspired by Rust’s. In IronSync, we extend Linear
Dafny with tools for logical correctness in concurrent settings
(3.2). First, though, we overview ownership types, explain
how they enforce data safety, and how this aids in verification.

In Linear Dafny, an owned value must be held (or refer-
enced) by exactly one variable. Any attempts to duplicate
or drop the value are rejected by the type checker. In Iron-
Sync, this ensures that data is uniquely owned, and hence a
thread can read or write to data it owns without interference

! All examples are fully verified and available in our open-source release.

from other threads. Owned values can, however, be stored in
shared (read-only) variables; Dafny’s type checker ensures
that the scope of such shared variables is contained within the
scope of the originating owned variable, and that the owned
variable is not modified until the shared variables expire.

method M(owned w: int, b: bool) returns (owned z: int)
owned var x : = w; // okay: consumes w
owned var y : = w; // error: w was already consumed

if b {

shared var s : = x; // okay: shares x read-only

x :=x + 1; // error: borrowed value still live in s
3
X :=x + 1; // okay: shared variable s has expired

z := x; // okay: consumes x

Figure 4: Ownership in action

IronSync uses the ownership type system to ensure that
code cannot read or write shared memory after it gives
up permission to access it. Figure 5 shows an example
of this approach in a portion of the API for an exclusive
lock (which in turn is implemented and proven correct us-
ing lower-level IronSync primitives — see §4.2). The API
uses owned and shared variables, as introduced above, and
generic types (indicated by the type parameter <T>) as in Java
or C#. Notice that the Lock itself is passed shared; hence,
it can be referenced simultaneously from multiple threads,
as expected of a lock. The caller obtains an owned guard
value when it acquires the lock (AcquireExcl). The guard
object, named after objects like C++’s std: :lock_guard
or Rust’s RwLockWriteGuard, is an object that exists for
the duration the lock is held. Furthermore—and similarly
to RwLockWriteGuard—the guard object provides a type-
safe means to access the data being protected by the lock.
That is, after the user relinquishes the guard on release
(ReleaseExcl), the type system will reject any further at-
tempts to use the guard to access the lock’s data.

method AcquireExcl<T>(shared m: Lock<T>)
returns (owned guard: ExclGuard<T>)
method ReleaseExcl<T>(owned guard: ExclGuard<T>)

Figure 5: Example lock specification.

With these tools, an IronSync developer can rule out
data-safety issues, because shared memory can only be ac-
cessed while holding the corresponding permission (e.g., the
ExclGuard) from a lock (or a fancier primitive — see §4.2).
Correct management of the permission is enforced by the
ownership type system.

Using an ownership type system to enforce data safety is
not unique to verification; e.g., this is a crucial feature of Rust.
Novel to IronSync, however, is its further use of its ownership
system to help the developer verify logical correctness.

3.2 Local Logical Correctness

IronSync uses ownership to simplify and automate reasoning
about the correctness of a thread’s actions on data it owns.

3.2.1 Ownership Simplifies Concurrent Correctness

With IronSync, we observe that a type-enforced ownership
discipline dramatically simplifies reasoning about correct-
ness in concurrent settings. To illustrate, consider this short
Dafny program, using its traditional heap model (i.e., without
ownership types):

method M(data: Data)
modifies data

requires data.x == 2
ensures data.x == 3
{
data.x : = data.x + 1;

}

The Dafny verifier can easily prove that if the precondition
in the requires clause holds, then the postcondition in the
ensures clause will always hold. However, if this method
were part of a concurrent program, Dafny’s standard sequen-
tial reasoning would not be sound, since another thread could
change the heap-allocated data at any time.

With ownership types, however, we can rewrite it as:

method M(owned data: Data)

requires data.x == 2
ensures data.x == 3
{
data.x := data.x + 1;

3

Because the type system ensures that the data value is
uniquely owned, the verifier can once again make the as-
sumption that no other thread is concurrently modifying data.
Hence, the verifier can soundly use the same algorithms as
before to easily verify this method.

In short, because IronSync mediates all access to shared
resources via Linear Dafny’s ownership type system, we can
verify the logical correctness of concurrent code operating
locally on owned values by using algorithms and tools that
have been honed for decades on sequential verification. In
our experience, this brings a substantial boost in proof au-
tomation.

3.2.2 Maintaining Local Correctness with Invariants

However, even in a program that obeys an ownership disci-
pline, one thread seldom owns a piece of data indefinitely;
instead, threads hand off ownership of shared data via syn-
chronization primitives like locks. Hence, the developer needs
a mechanism to reason about what value(s) shared data may
hold when a thread acquires ownership of that data.

In one such mechanism, IronSync allows the developer to
reason about locked data by associating each lock with a lock
invariant, i.e., a property of the data protected by the lock
(Figure 6). The thread can assume the property holds when it
acquires the lock, and in exchange, it must prove the property
holds when it releases the lock. This in turn means that the
next thread to take the lock may also “take” the assumption.

Again, we see the utility of ownership types: the verifier
can soundly assume that the value of guard.v is not being
modified by other threads while the lock is held, since the

function is_even(x: int) { x % 2 ==0 }

// Create a new lock with an invariant that its value

// is always even. Supply a compliant initial value (2).
shared var m : = NewLock(2, is_even);

owned var guard : = AcquireExcl(m);

assert guard.v % 2 == 0; // Passes

guard.v : = guard.v + 1;

// ReleaseExcl(guard); // error: violates invariant “is_even”
guard.v : = guard.v + 1;

ReleaseExcl(guard); // okay: satisfies invariant ~is_even”
// guard.v := guard.v + 1; // error: guard already consumed
// ReleaseExcl(guard); // error: guard already consumed

Figure 6: Example of a lock invariant. Any commented line, if un-
commented, would give the resulting error. Note that ReleaseExcl
consumes the owned guard object, so it cannot be used later.

thread holding the lock uniquely owns the guard. Hence,
we can continue to use the efficient sequential verification
techniques from §3.2.1 to prove the correctness of a thread’s
actions on data it obtains from other threads.

3.3 From Local to Global Logical Correctness

We have shown IronSync’s use of ownership to establish data
safety and the logical correctness of a thread’s local actions
on data it owns. The final step is to explain how threads
cooperate to achieve a global (program-wide) logical goal.

This final step would be trivial in a program that protects
all of its state with a global lock. In that case, proofs of local
correctness would suffice for global correctness, since we
would simply specify the program’s expected behavior via
an invariant on the global lock. Such an approach would be
correct but embarrassingly inefficient.

For better efficiency, the developer might employ a finer-
grained concurrency strategy using many local locks. At this
point, proving a global property directly becomes difficult
since no thread has a global view of the system.

For such systems, IronSync provides the developer with
tools to build up to global logical correctness in stages.
First, the developer creates a simplified abstract model of the
threads’ local actions (§3.3.1). Second, the developer uses the
techniques from §3.2 to locally prove that each thread’s im-
plementation can be soundly abstracted by the model (§3.3.2).
Finally, IronSync reassembles the model’s local actions into
a single global abstraction of the program (§3.3.3). At this
level, the developer can reason about global properties of
the system, without the complexity of low-level details like
thread interleaving, memory management, or even locking
strategy. Because each step above is proven sound, the global
correctness properties hold for the implementation as well.

3.3.1 Abstracting Local Actions

As a first step towards proving global correctness, an Iron-
Sync developer proves that their implementation corresponds
to a simpler program, where threads, locks, and other imple-
mentation details are entirely abstracted away. Reasoning
about the correctness of the new program is much simpler.

Returning to our bank, we would like the abstract program
to operate over a simple state representing all of the accounts:

State: {accounts: map<AccountId, Balance>}

The challenge is to connect the application’s concrete state
(e.g., as stored in array) to the abstract state above.

As discussed earlier, once the implementation commits to
a fine-grained, per-account locking strategy (as in Figure 3),
it becomes difficult for an individual thread to reason about
the global concrete state. After all, any given thread holds at
most two locks at a time, and hence it cannot authoritatively
reason about the state of the rest of the accounts.

Hence, IronSync introduces the concept of a Localized
Transition System (LTS) (formally defined in §6.1), which
breaks the abstract program’s state into shards that match the
“granularity” of the concrete implementation. The LTS then
defines transitions that apply locally to only a subset of the
shards. These transitions capture the work a thread performs
on its local view of the state. We can later (§3.3.3) reassemble
these local views into a global view.

Figure 7 shows the LTS definition for our bank example.
The LTS defines a shard to be the information for a single
account, matching the granularity of the locking scheme in
Figure 3. The localized transition function transfer says
that a thread that holds two shards (the “pre-state shards™),
one for A and one for B, where A’s shard holds at least amt
dollars, can exchange those shards for a new pair of shards
(the “post-state shards”) with updated balances. This defini-
tion directly captures the intuition that a transfer only affects
(and is affected by) the state of the two accounts involved. All
other accounts (shards) are irrelevant.

Notice the abstraction the LTS provides: the update to the
shards occurs atomically without any explicit mention of par-
ticular synchronization primitives. For complex systems, this
simplification makes the application vastly easier to analyze.

In designing their LTS, a developer will typically choose
a “granularity” for their shards and actions that matches the
granularity of the implementation’s concurrency strategy. As
we discuss below, this makes it feasible to use the local cor-
rectness techniques from §3.2 to tie the implementation to the
LTS. Choosing a coarser granularity would complicate the
proof of this connection, while choosing a finer granularity
would introduce unnecessary complexity into proofs about
the global system (§3.3.3).

In practice, this means that different programs will use
different LTS designs. A program with a modest concurrency
strategy can afford to use coarse-grained shards, doing most
of the proof work “locally” using techniques from §3.2. A
program with an aggressive fine-grained concurrency strategy
will use finer-grained shards, and thus put more work into
spanning the gap from the LTS to the global system.

3.3.2 Tying the Concrete Implementation to the LTS

To make use of the abstraction provided by the LTS, we
must soundly (i.e., in a machine-checked way) establish that

Shard: {id: AccountId, balance: Balance}

localized transition transfer(A, B, amt):
for some (bal_1, bal_2) where bal_1 > amt,
pre-state shards:
{id: A, balance: bal_1}
{id: B, balance: bal_2}
post-state shards:
{id: A, balance: bal_1 - amt},
{id: B, balance: bal_2 + amt}

Figure 7: Bank LTS

the implementation’s behavior matches that of the LTS; thus
properties proved about the LTS will meaningfully apply to
the real implementation.

A key idea in IronSync is that we tie the implementation to
the LTS by explicitly manifesting and manipulating the state
shards of the LTS abstraction in the implementation code.
The code then uses the local correctness techniques from §3.2
to prove that its manipulation of its concrete state correctly
reflects LTS-defined actions on the corresponding shards.

In more detail, the implementation holds LTS shards in
owned ghost variables. Ghost variables act like normal vari-
ables, but they serve only as “proof constructs” and are absent
from the compiled executable. Making the shards owned
ensures that they cannot be duplicated, preventing the imple-
mentation from holding on to two potentially contradictory
shards (e.g., one that claims account A holds v dollars and
another that claims it holds v + x dollars). Indeed, unique
ownership prevents those shards from existing anywhere in
the system, even spread across different threads.

In practice, an IronSync developer will typically embed the
ghost shards into their implementation and tie the ghost state
to physical state via invariants. The top of Figure 8 illustrates
this idea for our bank example. The implementation stores
each account’s concrete balance in an Entry datatype (similar
to a struct) that also holds a ghost owned shard defined by
the LTS. The account entries live in a sequence, each protected
with a lock with an invariant that the ghost state in the shard
matches the physical state of the implementation.

Looking at this program, a reader might understandably
wonder what is accomplished by redundantly “doubling up”
the state into a physical account balance and a ghost account
balance. The key is that by doing so, we establish the formal
correspondence between the concrete implementation state
and the abstract state of the LTS.

The final step is to connect the implementation’s actions
to the transitions in the LTS. To do so, IronSync provides a
trusted, axiomatic API for the ghost shards, with API calls
that update the shards by performing valid transitions of the
verified LTS. Each call consumes the old owned shards, and
produces new owned shards. As shown in Figure 8, this
means that during a transfer, the developer can update the
physical state of the account balances and then atomically
exchange (via LTS_transition) the old shards for a new
pair representing the LTS state after performing the abstract
transfer transition. These new shards match the concrete

datatype Entry = Entry(bal: int, ghost owned shard: Shard)

shared var accts : seg<Lock<Entry>> where
Vi, accts[i] has lock invariant: (entry: Entry)
= entry.shard == Shard({id: i, balance: entry.bal})

method DoTransfer(A: AccountId, B: AccountId, amt: Dollars)
// Acquire locks on both accounts.
owned var guardA : = AcquireExcl(accts[Al);
owned var guardB : = AcquireExcl(accts[B]);

// These follow from the lock invariant.
assert guardA.v.shard.bal == guardA.v.bal;
assert guardB.v.shard.bal == guardB.v.bal;

// Physically move “amt® from one account to the other.
guardA.v.bal -= amt;
guardB.v.bal += amt;

// Invariant is temporarily broken.
assert guardA.v.shard.bal != guardA.v.bal;

// Perform the transfer transition of the LTS

// as a ghost operation.

guardA.v.shard, guardB.v.shard : =
LTS_transition("transfer”, guardA.v.shard, guardB.v.shard, amt);

// Lock invariants have been restored.
assert guardA.v.shard.bal == guardA.v.bal;
assert guardB.v.shard.bal == guardB.v.bal;

// We can now release the locks.
ReleaseExcl(guardA);
ReleaseExcl(guardB);

Figure 8: An implementation of our bank example. Figure 9 illus-
trates one possible execution.

state, satisfying the corresponding lock invariants and hence
allowing the locks to be released.

Hence, we can soundly reason about the implementation’s
concrete actions on concrete state using the LTS’s abstract
transitions on its abstract shards. IronSync’s trusted API
allows the programmer to make this connection locally in the
implementation code by showing that a sequence of physical
steps are consistent with the “large” atomic steps of the LTS.

We illustrate this process in Figure 9a, which shows one
invocation of the DoTransfer method from Figure 8. The il-
lustration depicts the relationship between the ghost shards of
the LTS (dashed blue boxes) and the physical values stored in
memory. Time runs along the x-axis; each vertical gradation
represents a fine-grained period, such as a single instruction.

Initially, Thread 2 holds no locks. It receives a client
request to transfer $7 from A to B. The developer knows that
the relevant LTS transition requires atomically interacting
with the A and B shards, so the thread’s first step is to acquire
lock A. Lock acquisition brings into Thread 2’s scope both
permission to observe the physical value of A (via a pointer;
the physical value does not move from the heap, of course)
as well as the ghost shard for A.

Later, Thread 2 likewise acquires the physical B state and
its ghost shard. The ghost LTS transition requires that shard A
has a value greater than the $7 transfer. Thread 2 confirms this
by checking the physical value of A, which it knows (from
the lock invariant) matches the ghost shard for A.

Then Thread 2 debits $7 from the physical value of A. Note
that the ghost shard has not changed; no LTS transition allows
debiting A all by itself. The lock invariant is temporarily false,
which is fine, since Thread 2 still holds the lock. Next, Thread
2 credits $7 to the physical value of B.

Thread 2 cannot release the locks until it restores their
invariants. Hence, it invokes transfer(A,B,7), the ghost
LTS transition from Figure 7, which consumes the shards
A:9, B: 1. As a ghost transition, this happens instantaneously.
The transition yields (by postcondition) the new shards A :
2, B : 8, which the thread proves match the corresponding
physical values. Having restored the lock invariants, the
thread completes its work by releasing its locks, one at a time.

For simplicity, we do not illustrate any activity on Thread 1.
However, observe that it could, with any interleaving, acquire
noncontending locks and interact with their associated state.

3.3.3 Global Logical Correctness With the GSM

To reason about the logical correctness of the entire multi-
threaded program, we reassemble the shards of the LTS into a
representation of the program’s global state, and similarly, we
translate the local transitions of the LTS into global transitions
over the global state. We call the result (formally defined in
§6.1) a Global State Machine (GSM).

Figure 10 shows the developer’s definition of the GSM
for the bank example. The State now holds all of the ac-
counts. The transfer transition is an atomic step that reads
and writes the global state. As in Figure 9b, the GSM’s
state only changes—atomically—at the moment Thread 2 in-
vokes the ghost LTS transition. Hence, regardless of low-level
thread interleaving, from GSM’s global perspective, the state
advances through a sequence of atomic global transitions,
even as the physical values are updated asynchronously. This
greatly simplifies reasoning about global correctness.

Indeed, since the GSM is a standard state machine, we
can employ standard reasoning techniques honed by decades
worth of research [30], including prior work automating such
reasoning [18, 19]. For example, we can easily prove that
account balances never go negative, or that the total amount
of money across all accounts is always preserved. In both
cases, the proof proceeds by showing that the property holds
in an initial state, and then showing that if it holds before an
atomic transition, then it also holds afterwards. For the bank
example, these proofs are produced fully automatically.

In contrast, it would be impossible to talk about such global
properties from within the implementation, where a given
thread only ever holds at most two locks.

Soundly Assembling the GSM. To compose the LTS
shards into the GSM’s state, the IronSync developer must
declare a datatype that can hold one or more shards. §6.1 dis-
cusses the formal rules the datatype must obey, but a common
pattern is to use a (partial) dictionary from an application-
specific identifier (e.g., an account ID) to the corresponding
shard. The developer then proves the soundness of each LTS

Unlocked Heap Thread 1

(a)
o~
k] ~
o |Z
c o
I S
E
= kol
2 o
(s} g
2
2
>
(b) ®
Qo
K=]
o

Figure 9: (a) Ghost values (dashed cyan boxes) travel alongside physical values (solid yellow). Ghost values are atomically updated according
to the LTS rules (see §3.3.2 for details). (b) LTS transitions, in turn, are abstracted into the GSM (§3.3.3).

State: {accounts: map<AccountId, Balance>}

atomic transition transfer(A, B, x):
if state.accounts[A] > x {
state.accounts[A] -= x;
state.accounts[B] += x;

Figure 10: Bank GSM

transition, with respect to this dictionary. Oversimplifying,
this proof proceeds as follows. We imagine starting with a dic-
tionary that contains at least the transition’s incoming shards
(in Figure 7, the initial account information for A and B), and
possibly some others as well. We remove the incoming shards
from the dictionary and hand them to the localized transition.
We then try to combine the outgoing shards with the dictio-
nary. If this results in a well-formed dictionary (i.e., no keys
are duplicated), the transition is valid and can be lifted to an
atomic transition of the GSM (as shown in Figure 10).

4 Advanced IronSync Techniques

Verification of real concurrent programs often has additional
challenges beyond those of our “toy” banking example. This
section illustrates, via examples, IronSync’s solutions to two
situations that arise in a real concurrent system:
* An abstraction of the program state (like the GSM) might
still not be abstract enough to be a useful specification.
* Developers employ custom synchronization tools (be-
yond simple locks), plus optimizations like read-sharing.

We apply these solutions to the complex case studies in §5.
4.1 Specification via Refinement

For trivial programs like our bank, one might accept an invari-
ant as the definition of correctness. For substantial programs,
we prefer to express correctness via a trusted specification that
precisely defines the program’s expected behavior, and then
prove that the implementation refines it; i.e., every execution

Shard: {idx: nat, entry: (Key, Value)?}

localized transition insert(key, value):
for some (i, j, K, V)
where i = hash(key) and key ¢ {k_i, ..., k_j}
pre-state shards:
{ form=1 .. j | {idx: m, entry: (k_m, v_m)} }
{idx: j+1, entry: null} // First empty slot
post-state shards:
{ form=1 .. j | {idx: m, entry: (k_m, v_m)} }
{idx: j+1, entry: (key, value)} // Holds (key, value)
Figure 11: A Hash Table LTS Transition that inserts a new
(key,value) pair at index j+1; the other shards are unmodified,

but serve to justify that j+1 is the correct index.

of the implementation is an execution of the spec.

A hash table’s spec, for example, is a simple dictionary, suc-
cinctly expressible in 10-20 lines. Its implementation obeys
the spec while providing good performance. For instance, a
Robin Hood Hash Table (RHHT) [9] stores key-value pairs
in an array and locates keys via linear-probing [29]: given a
key, probing starts with the key’s hash index and continues
sequentially until the key or an empty slot is found.

To exploit concurrency, a developer might add multiple
threads and create a lock for each slot in the array. A straight-
forward concurrency strategy would have a thread lock the
entire range of slots needed for each linear probe, complete its
operation, and then release the locks. To express this strategy
in IronSync, per §3, the developer defines an LTS (Figure 11)
with shards at the granularity of the locking scheme: each
shard of the LTS represents a single array slot.

Once the LTS is proven sound, the developer uses IronSync
to reassemble the LTS into the GSM comprising the full
sequence of optionally-occupied slots. They then prove that
the GSM refines the spec by establishing invariants. One
RHHT invariant is that each key in the table can be found
in a contiguous range of non-empty slots starting from the
key’s hash index. Proving refinement via such invariants is

straightforward using standard techniques [30] previously
encoded in Dafny [18, 19].

4.2 Lower-Level Memory Primitives

The previous examples are built from locks, which help main-
tain data safety. In practice, many advanced concurrent sys-
tems do not use locks, but rather custom synchronization
tools built from lower-level primitives. Supporting such ad-
vanced systems is a core IronSync goal, and hence IronSync
makes these lower-level primitives its base and then verifiably
constructs locks and other synchronization tools from them.
In this section, we introduce IronSync’s primitives and, as a
warm-up, see how they let us verify a basic mutual-exclusion
lock.

Consider a lock implemented with two fields: a boolean
flag indicating whether the lock is taken, and a slot for the
data being protected by the lock. Defining operations on
these fields must be done in terms of a memory-ordering
model, which dictates when different threads may disagree
on the ordering of reads and writes. Developers must take
care to use special, slower instructions to synchronize threads
when necessary, and such subtleties are notoriously difficult
to handle correctly, especially since the details depend on the
hardware platform (e.g., x86-TSO [42] or ARM [1]).

IronSync’s memory model is based on the C++11 memory
model [4, 6], which abstracts over these hardware differences
by providing a distinction between non-atomic memory (the
most common, “normal” memory) and afomic memory. Non-
atomic memory access compiles to fast instructions, while
atomic memory (depending on how it is used) may compile
to slower instructions, possibly involving memory fences. To
make this dichotomy sound, the C++ model requires all non-
atomic accesses be data-race-free (a burden placed on the
programmer); however, the atomic memory allows contended
access. In the lock example, multiple threads might contend
to access the flag, but the thread that wins will have exclusive
access to the data field, making its accesses data-race-free.

IronSync supports data-race-free non-atomic memory and
sequentially-consistent atomic memory. Specifically, it takes
advantage of the C++11 memory model’s DRF-SC property,
which states that if all non-SC memory accesses are data-
race-free, then the entire execution is sequentially-consistent.
By allowing data-race-free memory for the common cases,
IronSync takes advantage of much of the speed afforded by
modern hardware, although it does not take advantage of
the weaker atomic memory orderings (e.g., release-acquire
ordering or relaxed).

In particular, IronSync supports these two modes of shared-
memory-access through two of its trusted primitives, Atomic
for word-sized atomic memory and Cel1<T> for non-atomic
memory storing arbitrary types T. To ensure that access to a
shared Cell<T> is data-race-free, [IronSync requires a thread
to own a special ghost object of type Permission<T> for read-
ing and writing. Meanwhile, IronSync treats the sequentially-

consistent atomics as if they were “virtual locks” that can be
unlocked for a single atomic operation; they can then use lock
invariants, as before, to verify code that manipulates ghost
objects in the virtual lock. Atomic supports common atomic
operations, like compare-and-swap and atomic addition.

With these tools, the developer can verify a lock as follows:
they declare the flag field as an Atomic and the data field
as a Cell. They store the ghost Permission object for the
Cell in flag’s virtual lock. By reading and writing to flag
(e.g., with an atomic compare-and-swap), threads can transfer
ownership of the Permission, allowing them to access the
data field in a data-race-free manner. This process is verified
by IronSync, which checks that the invariant on the virtual
lock is maintained.

4.3 Read Sharing

Crucially, data-race-freedom does not preclude all simulta-
neous access. While it prohibits a write from occurring si-
multaneously with a read or another write, it does permit
multiple simultaneous readers. This read-sharing is crucial
for performance in many applications; however, to make use
of it, the developer must still ensure that threads obey some
single-writer, multiple-reader protocol. In such a protocol, the
developer ensures that there can be a single writer or multiple
readers at any given time, but never both at the same time
(and of course never more than one writer).

The challenge with read-sharing protocols is that there is no
optimal way of accounting for the shared state. For example,
a particularly common protocol uses reference-counting, e.g.,
in a reader-writer lock, but even here, there is no universal
way to implement a reader-writer lock. Our case studies (§5),
for example, employ two different custom-built reference-
counting-based locks, and locks aren’t even the end of the
story. Our NR case study (§5.1) uses a lock-free cyclic buffer,
where multiple threads share read-access to entries, and where
the safety is guaranteed by a protocol of head and tail pointers.

In IronSync, the developer can implement and verify a read-
sharing protocol, including any of the above, by designing a
particular kind of LTS, which we call a guard protocol, and
proving that it enforces safe access to shared state. A guard
protocol is an LTS whose state has an explicit notion of a
stored (ghost) object, along with a notion of depositing and
withdrawing that object. Intuitively, the program begins with
a unique reference to an object (e.g., the ghost Permission
for a Cell — see §4.2). To create read-shared references that
it can give to other threads, the program “deposits” the object
into the guard protocol, and in exchange it can obtain one or
more guards. A guard is simply an LTS state shard that acts
as a “witness” that the object has been deposited (and not yet
withdrawn). Once all the guards (i.e., read-shared references)
are returned, IronSync allows the program to “withdraw” the
reference from the LTS and use it once again for mutation.

To demonstrate the soundness of their guard protocol, the
library developer must show that it satisfies two obligations.

First, they show that guard shards only exist when an object
has been deposited (and not yet withdrawn). This prevents
the library from synthesizing bogus read-shared references.
Second, they show that the LTS’ withdrawal transition only
occurs when an object is in fact deposited and there are no
outstanding guards.

Once the guard protocol is proven sound, IronSync pro-
vides the library developer with an extended version of the
trusted shard API from §3.3.2. Recall that the standard API
consumes and produces owned shards. The API for guard
protocols, however, allows a thread holding a read guard to
acquire a shared version of the protected data; e.g., a shared
Permission for a Cell, which the Cell API requires for read
access to its concrete memory, but which doesn’t suffice to
use the API for writing. Hence, the developer can ergonomi-
cally manipulate shared data using Dafny’s shared variables,
with the assurance that all accesses are data-race free.

Crucially, IronSync’s general approach to read sharing
enables a developer to devise protocols that are drastically
different from a read/write lock. For example, in the cyclic
buffer (§5.1), threads read entries (via ghost guard objects)
and use a head pointer to indicate when they are done; other
threads look at these head pointers to determine when it is safe
to garbage collect the entries and overwrite them (requiring a
withdraw).

5 Case Studies

IronSync, we have seen, comprises a collection of tools:
(ghost) ownership types, LTS abstraction, state-machine re-
finement, and automated verification. To test that this collec-
tion suffices to verify modern production-scale systems (i.e.,
systems notable for their performance, which they achieve
through non-trivial concurrency patterns), we select two such
systems and produce verified implementations within Iron-
Sync. These particular systems were chosen, in part, because
there was independent interest in verifying their correctness
from the systems’ designers. We compare our case studies to
those in prior work in §9.

By producing implementations that match the originals in
design and performance (§7), we show that writing a system
in IronSync does not sacrifice performance-critical concur-
rency patterns. Of course, our implementations are not identi-
cal to the originals: ours are written in Dafny (and compiled
to machine-generated C++ code), and they make a few minor
deviations from the originals (§7.2). Nonetheless, the exer-
cise does, as a bonus, yield some insight into the originals
(8§7.3).

Overview. Both case studies are complex; for each, cor-
rectness depends on myriad interlocking moving parts. Hence,
we show how an IronSync developer divides the proof work
into manageable subtasks, and chooses the right IronSync
tool for each.

Specifically, NR (§5.1) shows how to pull together all
the IronSync features discussed earlier. With SplinterCache

Trusted Spec

Trusted Spec

D Primary GSM
h
Refinementon 1o cax . \ [PageMap ||
[" ! !

Atomic State Machine| execution traces

[
[| PrimaryLTS Sislilen ﬁ ﬁ

Guard Protocol LTS

Z‘ ’l Refinement
@ LTS/GSM
relationship

777 Trusted component

Replication

Ok ol
CyclicBuffer || Replication |}
FlatCombine '-B-Ia-cl:»k;o;aa-ta-'i ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
'

DistRwLock | ! structure X CacheRwLock Cache]

(b) SplinterCache

Impl + Ghost

(a) Node Replication

Figure 12: Proof architecture of our case studies.

(§5.2), we also verify the program’s use of an external disk.

Common Architecture. Each case study follows a similar
high-level structure. Each has a primary LTS (and a corre-
sponding GSM), which is used, via state-machine refinement
(§4.1), to establish that the program meets its specification. In
addition, each program uses complex synchronization logic
that makes data safety challenging, so each case study also
uses several secondary LTSes as guard protocols (§4.3). Fig-
ure 12 summarizes the architectures for the case studies in
terms of these components.

5.1 Node Replication NR

NR [8] is a concurrency library that transforms a black-box,
sequential data structure into a linearizable, NUMA-aware
concurrent version. NR works by replicating the sequential
data structure on each NUMA node, using an operation log
to maintain consistency. Replicas benefit from read concur-
rency using a reader-writer lock designed to minimize reader
contention [47] and from write concurrency using flat combin-
ing [21], which batches operations from multiple threads to be
executed by a single combiner thread. The combiner appends
the batched operations to the log; other nodes read the log and
update their local replica copies. The original, unverified NR
implementation is ~1000 lines of Rust. NR has recently been
adopted by NrOS [5], which uses it to implement scalable
versions of a wide range of OS subsystems.

Verification Objective. Our verified implementation also
takes a user-provided black-box data structure, this time one
with a functional spec. Verified NR produces the replicated
data structure and a proof that this replicated system meets
the same functional spec linearizably.

Proof Overview. As in our earlier examples, we can
coarsely divide our tasks into data safety and logical cor-
rectness. In some places, the reference implementation uses
Rust’s unsafe code, so these parts pose challenges for our
verified implementation. In Rust, unsafe means that the
code foregoes Rust’s usual safe aliasing checks and places
the burden of correctness on the programmer. In IronSync,
this means that we cannot (solely) rely on the ownership type
system to ensure data safety. Luckily, IronSync has a verified
alternative: the guard protocol.

As an example, consider the cyclic buffer at the center of
NR’s coordination, used to broadcast messages from one node

to all other nodes. Using a stringent protocol of head and tail
pointers, NR ensures that each node reads each message after
it is written but before it is garbage collected, and further,
that these reads and writes are properly synchronized. Notice
how this custom protocol of head and tail pointers is used
in place of a general utility for safe data access (like a mu-
tex). Figure 13 shows pseudocode for parts of this protocol,
delineating the read sections and write sections for buffer
messages. Data safety, here, approximately amounts to say-
ing that the write section never overlaps any another section.
This read-sharing pattern is exactly what guard protocols are
designed to support. We can construct such a protocol by
identifying the instructions relevant to data safety (marked %
in Figure 13) and abstracting them into an LTS.

NR has two more places where we need to do something
similar. One is a specialized lock that protects the per-node
replicas. These locks are designed with multiple reference
counters to reduce thread contention; using a guard protocol,
we can verify the lock and provide an API similar to the lock
API discussed in §4.3. Finally, NR uses a flat-combining
algorithm, and so we must reason about the synchronization
of data between a client thread and a combiner thread.

With the three guard protocols, DISTRWLOCK,
CYCLICBUFFER, and FLATCOMBINE to “patch up”
holes in the ownership type system, the only remaining
task is to prove a linearizable specification. We use an LTS,
REPLICATION, to track (i) all in-progress updates and reads,
(ii) the states of node-local replicas, (iii) the full history of
event messages, and (iv) version numbers for the replicas.
Since so much of the synchronization logic is already handled
by the guard protocols, the LTS abstraction is dramatically
simpler than the NR system as a whole: we have relegated
entire subsystems to being “mere implementation details.”

Now, from REPLICATION, we can construct the GSM as
an abstraction of the global system behavior. Next, we need
to establish a state machine refinement to a linearizable spec-
ification. This is challenging because REPLICATION has
future-dependent linearization points; hence, we cannot prove
that REPLICATION refines a linearized state machine with a
single-state abstraction function. Instead, we have to prove a
theorem operating over arbitrary execution traces. To simplify
this task, we split it into two steps: first we prove, via a single-
state abstraction function, that REPLICATION’s GSM refines a
simpler state machine, SIMPLELOG, which only tracks a log
and the index of the latest linearized operation. Abstracting
out replicas makes SIMPLELOG much easier to analyze, and
the theorem over execution traces becomes tractable.

Notice that in Figure 13, the CYCLICBUFFER and REPLI-
CATION subsystems are heavily interleaved, with some in-
structions even being part of both. We discuss this in §8.

5.2 SplinterCache

SplinterCache is a production-grade in-memory page cache
used by the key-value store SplinterDB [13], which was cre-

fn append(ops):
tail := globalTail;
if tail + ops.length > globalHead + SIZE:
wait and retry;
compare_and_swap(globalTail, tail, tail + ops.length); * .

for i in 0 .. ops.length:
j := (tail + i) % SIZE;
live bit := ((tail + i) / SIZE) % 2;

Write section

log[jl.op = ops[i]; // Non-atomic write
log[jl.alive = live bit; // Synchronizing write

fn dispatch():
head := nodeLocalVars.localHead;
tail := globalTail;
for i in head .. tail:
j := 1 % SIZE;
live bit := (i / SIZE) % 2;
wait until:

log[j].alive == live bit; // Synchronizing read *
op := log[j].op; // Non-atomic read
a

*t %
T

applyUpdateToReplica(op); .

Read section

tomic _max(maxReplicaVersion, tail); .
nodeLocalVars.localHead := tail; * .

Figure 13: Pseudocode of key NR algorithms, omitting ghost shards.
Shared variables are bold for atomics and ifalics for non-atomics. %
is code relevant to CycLICBUFFER; ll to REPLICATION. Ranges
show where it is safe to read and write log[j].op; CYCLICBUFFER
proves disjointness.

ated for use in VMware’s vSAN [46]. SplinterCache is built
for loads where it may have 100GiB of RAM available and for
use with low-latency IO devices. Clients can acquire a lock
(reader or writer) on a disk page by its address, and the cache
abstracts the details from the client. Internally, it loads that
page into memory if necessary, and it handles writeback and
eviction. Its optimizations include prefetching and batched
10s. It attempts to flush pages to disk before they need to be
evicted. The reference code is ~ 2000 lines of C.

Verification Objective. We characterize the behavior of
the cache operating together with an external disk, using a
trusted model of the disk. Our high-level spec, PAGEMAP,
maps each block address to two 4KiB pages, an on-disk and
an in-memory version. The system may nondeterministically
overwrite the on-disk version with the in-memory one.

A cache makes weaker promises than a key-value store or
file system, which might offer snapshot consistency. However,
this doubled-up mapping spec still constrains behavior in the
event of a crash, demonstrating how IronSync programs can
integrate with prior approaches to verifying crash safety [18].

Proof Overview. Once again, we divide our proof into
data safety and logical correctness.

The SplinterCache uses a complex locking scheme to pro-
tect the in-memory cached pages. The cache implementation
needs to acquire a write lock to write to a page or a read lock
to read from a page, but there are some subtleties: even if the
client intends to only read a page, the cache may still need
to load it from disk, which means writing the contents into
memory, which requires a write lock on the memory page.

For efficiency’s sake, the locking protocol has a variety of
special states for handling situations like the above. More
specifically, the lock has bit flags for states (not all mutually
exclusive): (i) WriteBack: the page is being written to disk,

command
- Disk read
response

- . ~
~\— 7 WriteBack/ \/ Disk write

/ ~ _Claimed _ -5 Claimed_ - response
t y===24

Ptttk ¢” WriteBack/

WriteLocked '« _Pending_ NN pending ./

Application

Disk write
-ommand,

Figure 14: (a) Left, transitions for the lock status of a single cache
entry in CACHERWLOCK. Dashed ovals represent read-locked
states; double ovals represent write-locked states. (b) Right, transi-
tions for the status of a single cache entry in CACHE. Both figures
are simplified abstractions.

effectively an extra read-lock; (ii) Loading: the page is being
loaded from disk; (iii) Free: this entry is not assigned to
a disk page; and (iv) Claimed: the claiming thread has the
exclusive right to upgrade a read lock to a write lock. These
states allow optimizations; e.g., an entry marked Free cannot
be locked, so a thread that loads a page into a free entry can
skip the usual check that there are no readers. Even beyond
these states, the lock has the same multiple-reference-counters
optimization as NR’s DISTRWLOCK described earlier. Fig-
ure 14a summarizes all the states.

As usual, we handle the reader-writer lock with a guard
protocol. This leaves logical correctness, which we prove
with the CACHE LTS. It tracks the information needed to
prove consistency properties between cache and disk; e.g., it
maintains a two-way mapping between cache entries (indexed
by entry numbers) and disk pages (indexed by page numbers).
It tracks the status of each entry, which may be either empty
(i.e., not corresponding to any page), loading, clean, dirty, or
writeback-in-progress. This is summarized in Figure 14b.

Next, we can construct the CACHE GSM as a sound ab-
straction of our implementation. We then apply previous tech-
niques [18] to integrate CACHE with a (trusted) model of the
asynchronous disk. This yields a state machine CACHE+DISK
which abstracts the behavior of the entire system. Here, we
prove relevant invariants: the bidirectional mapping is self-
consistent; outstanding 10 requests agree with the loading
and writeback statuses; an in-memory clean page matches the
on-disk page. We finally prove that CACHE+DISK refines
PAGEMAP as the high-level specification.

6 Formalism and Implementation

IronSync’s Trusted Computing Base comprises the following:
¢ A trusted programming language and verifier.
* A trusted library of shared-memory primitives (§4.2).
¢ A trusted library of formal definitions and axioms for
LTSes, guard protocols, and state machine refinement.
The Language. IronSync is built on Linear Dafny [33];
we added ghost ownership types to its existing (non-ghost)
ownership types, and we also supply Atomic and Cell types
(§4.2) for shared memory. To prevent unsoundness with
concurrent threads, IronSync disallows Dafny’s traditional

support for aliasable mutable objects.

IronSync code compiles via Dafny’s C++ backend, and
uses std: :atomic to implement IronSync’s Atomic. There-
fore, the C++ compiler is also part of the trusted toolchain,
notably including its mapping from C++’s memory ordering
model to the hardware’s. Specifically, we rely on the compiler
to insert memory fences appropriately for any Atomic mem-
ory locations, thereby providing the sequential consistency
guarantees for the language runtime.

6.1 Formal Definitions

We briefly summarize the mathematical formalism underpin-
ning IronSync’s LTS (§3.3.1) and the guard protocol (§4.3).
These definitions are exposed to the IronSync developer via
an axiomatically trusted library in Dafny.

IronSync introduces LTSes to formalize the idea that a
transition updates and depends on only a portion of the state,
while the rest of the state is irrelevant. This formalization
encodes shards as elements of a monoid, an established tool
from concurrency reasoning from separation logic [25].

Definition 1 (LTS: Localized Transition System) A Local-
ized Transition System is a triple (M, Init, Tjpcq). Here, M
is a commutative monoid, that is, a set with a composition
operator (+) : M x M — M which is associative and commuta-
tive, and with a unit element € € M (i.e., Vim € M.m-€ = m).
Meanwhile, Init : M — bool represents valid initial states,
and Tjeqr : M X M — bool is a “local transition function.”

This essentially says that an element m € M represents
partial information about a state of the system, while the
composition of two elements gives us a way to combine
the partial information about different components. Thus a
transition T makes sense even on pieces of partial information.
In the bank example discussed at the end of §3.3.3, each m is
a (partial) dictionary from account IDs to account info.

The IronSync framework then defines the global state ma-
chine (GSM) in terms of the LTS by taking elements of m that
represent a complete view of the system (e.g., a dictionary
containing all of the bank’s accounts). Specifically, we define
a transition on a complete state by splitting it in two: one
part to be operated on, and one part that is irrelevant to the
transition, and then performing the transition on the first part:

Definition 2 (GSM: Global State Machine) Given an LTS
(M, Init, Tpeqr), we define a global transition function,

Totobal (5,5") £ 3d,d’ e Toea(d, d YN (s =d-e) A (s =d'-e).

We call (M, Init, Tgjopa) the Global State Machine.

In the bank example, d would be a dictionary holding keys
for the two accounts involved in a transfer, and e would be a
dictionary holding all of the other accounts.

6.2 Guard Protocols

A Guard Protocol consists of (i) an LTS with a notion of ghost
objects that may be deposited or withdrawn, and (ii) a notion

of a guard, a state shard that locally guarantees a particular
ghost object is deposited. Concretely, a Guard Protocol is
defined by its relation to the following state machine that
formalizes “deposited state.”

Definition 3 (Safety-Deposit State Machine) Given a set
T, a Safety-Deposit State Machine is a state machine defined
over the state T U {empty}, with transitions, for allt € T:

deposit(z) withdraw(r)
empty — 't t — " empty
internal internal
empty — empty t —

Here, T is the set of ghost objects that can be deposited.

A developer defines an LTS for their Guard Protocol and
proves it sound based on the definition below, and in ex-
change, IronSync gives them access to a set of ghost shards
representing their protocol: a thread can deposit ghost objects
from the set T into the protocol and withdraw them later. Cru-
cially, the trusted IronSync API from §4.3 allows code that
holds a guard shard to obtain a shared copy of the deposited
value ¢, which allows the code to ergonomically and soundly
manipulate read-shared data.

Formally, we define a Guard Protocol as follows.

Definition 4 (Guard Protocol) Given a set T, a Guard
Protocol is an LTS that has three transition types,

. | deposit(r) _withdraw()y . . , .
(M, Init, T2l g, = T), an invariant ITnv :

M — bool; and an abstraction function Abs : M — T U

internal deposit(r) _withdraw(r)
{empty}. We define T, Ciobar + Cetobal of the GSM
as in Def. 2.
We say the Guard Protocol is sound if Inv is an inductive
invariant on the GSM, i.e., ¥V transition labels {:

Vm € M. Init(m) = Inv(m)

Vm,m' € M. Inv(m) /\Ti,labal(m,m') = Inv(m')
and if the GSM, as interpreted by Abs, refines the Safety-
Deposit State Machine. Given a sound Guard Protocol, we

say that g € M is a read-guard of t € T if,
Vbe M. Inv(g-b) = Abs(g-b) =1t.

Here, Abs gives the GSM a notion of a “deposited object.”
The read-guard condition says that in any valid global state
(as given by Inv) with g as a sub-shard, ¢ is guaranteed to
be the deposited object (as given by Abs). This means that a
thread holding the guard shard g can soundly read the shared
value 7, and that all such readers will read the same value.
When the IronSync user defines a new guard protocol and
proves it sound, IronSync gives them access to an API to ma-
nipulate ghost shards according to the transitions, as with any
other LTS. In this case, the functions that perform exchanges
can also perform deposits and withdraws; furthermore, there
are new functions for the read-guard objects: if g is a read-
guard of ¢, then the user can use a shared ghost shard g to

Major component trusted impl proof verif
LOC LOC LOC time
Common Framework
LTS def. & ghost axioms 487 15s
Memory Primitives 310 6s
Libraries 316 3825 75 s
Bank §3
Spec 17 0.7s
LTS 262 9s
Impl 21 16 2s
RHHT Hash Table §4.1
Spec 57 2s
LTS 687 54s
Refinement Proofs 168 8s
Impl 417 1390 68 s
Node Replication §5.1
Spec 104 4s
REPLICATION LTS 2329 384 s
FLATCOMBINE LTS 649 97 s
CYCLICBUFFER LTS 1756 182's
DisTRwLoOCK LTS 633 17s
Refinement Proofs 1291 132s
Impl 730 1170 80s
SplinterCache §5.2
Spec 185 4s
Disk Model and API 586 14s
CACHE LTS 1036 159 s
CACHERWLOCK LTS 2015 86s
Refinement Proofs 2456 372's
Impl 1579 3163 297 s
Total 1746 3063 22846 34.7 min

Figure 15: Across all case studies the proof:code ratio is 7.5.

obtain a shared ghost shard 7. Linear Dafny’s type system
ensures that the guard reference outlives 7.

In addition to the formulation above, IronSync provides
a more advanced version that allows multiple objects to be
stored at once. This is useful for NR’s cyclic buffer §5.1,
for example. Both of these formulations are proved correct,
based on a set of low-level axioms for manipulating monoid-
based ghost state with shared variables in Linear Dafny;
those axioms in turn are based on a concurrent separation
logic for temporary read-sharing called Burrow [17].

7 Evaluation

In our evaluation, we aim to answer the following questions:

* What is the verification effort for IronSync development,
both by the developer and the computer verifier (§7.1)?

¢ Is IronSync suitable for verifying state-of-the-art sys-
tems without compromises (§7.2)?

* What does verification tell us about the original reference
implementations (§7.3)?
7.1 Verification Effort

Verifying all four concurrent examples consumes under an
hour of CPU (5 minutes real time) on an 8-core 64 GiB cloud

machine. 88% of files verify in under a minute; the slow-
est takes less than five. The four examples comprise 2747
lines of non-ghost implementation, plus 316 of shared library.
Figure 15 shows detailed information for each case study.
Within implementation files, the proof-to-code ratio is about
4:1, where the proof code includes both the manipulation
of ghost shards and standard Dafny proof annotations, like
preconditions and postconditions. The full system proofs aug-
ment the implementation files with LTS code and refinement
proofs, raising the overall proof:code ratio to 7.5.

As two points of comparison, we consider GoJournal [11]
and Armada [36] (see §9 for details). GoJournal [11] reports
a 19:1 proof-to-code ratio for its shared-memory code, while
Armada’s largest example takes 4.9 hours of CPU time (about
40 min. of real time) to verify 70 lines of code. These are not
direct apples-to-apples comparisons: Armada and GoJournal
arguably prove more substantial theorems about machine
semantics. Still, verification time and developer effort have
historically limited the use of verification tools, and thus
IronSync constitutes a major practical improvement.

7.2 Case Study Fidelity

We evaluate IronSync’s expressiveness by porting our two
production-level case studies, NR (§5.1) and SplinterCache
(§5.2), to IronSync to confirm that IronSync does not require
sacrificing performance-critical concurrency patterns. We
refer to the case studies’ existing publications [8, 13] (both
within the last 5 years) to justify that they can reasonably be
called “state-of-the-art.” We evaluate how faithful our Iron-
Sync implementations are to the reference implementations
both qualitatively and by comparing performance.

First, we report on intentional compromises we made while
mimicking the reference code of NR and SplinterCache, from
most significant to least. First, in some cases, Reference NR
uses release-acquire atomics. IronSync does not support these,
so we use sequentially-consistent atomics instead. Second,
IronSync does not support callbacks, so we refactored code
to avoid them, and we could not implement the secondary,
callback-based APIs in SplinterCache or NR. Third, Iron-
Sync’s SplinterCache adds a runtime check in one method
whose correctness was otherwise dependent on properties of
SplinterDB’s allocator, which was out-of-scope.

As evidence that these artifacts otherwise meet a high de-
gree of fidelity, we benchmark against their references, using
methodology similar to the reference publications [8, 13].
Each case study has different hardware requirements.

NR. We evaluate NR’s performance against other locks and
to its reference Rust implementation from NrOS [5]. We wrap
a single-threaded radix tree with IronSync-NR, Reference-
NR, or a lock, including a verified DISTRWLOCK (§5.1), an
MCS lock [38], a shuffle lock [26], and the standard C++
shared mutex. The benchmark pre-populates the tree with
128M entries (using 8B keys and values) and executes get and
update requests with a uniform key distribution while varying

—=— IronSync-NR —4— DistRwLock MCS

—e— Reference-NR —a— Shuffle Lock libstdc++ shared -mutex

0% Updates

10% Updates

100% Updates

30M
8
Z 20M
Z

10M

47379671 102y a8 06 144 1924 a8 96 144 192
threads

Figure 16: Comparing throughput scalability of IronSync-NR,

Reference-NR, and locks. Higher is better.

the update ratio and the number of threads.

Figure 16 shows the performance measured on a machine
with 4 Xeon Gold 6252 CPUs with 24 cores per NUMA node,
totaling 96 cores and 192 hardware threads. The threads are
pinned to fill up cores on a NUMA node first before moving
to the next. NR adds one replica for each NUMA node, so
at x=96 threads, NR uses 4 replicas. Beyond 96 threads, no
more replicas are added, and we begin hyperthread-sharing.
IronSync-NR and Reference-NR perform similarly and gener-
ally outperform the rest, especially for read-heavy workloads.

For 0% updates, IronSync-NR, Reference-NR and the
DISTRWLOCK scale linearly, but the other mechanisms
suffer under lock contention. NR performs better than
Di1STRWLOCK due to perfect NUMA locality. With 10%
updates, DISTRWLOCK’s performance drops to match the
other locks, while IronSync-NR and Reference-NR benefit
from flat combining. IronSync-NR outperforms Reference-
NR slightly, though we do not yet know the cause.

Only at very high update rates (e.g., 100%) do MCS and
shuffle locks outperform NR at low scale on one NUMA node;
otherwise both NR implementations dominate. Hence, we
conclude that IronSync-NR provides performance parity with
Reference-NR and that it preserves NR’s replication and flat
combining benefits at all scales.

SplinterCache. We evaluate the performance of IronSync-
SplinterCache against the reference implementation both with
macrobenchmarks as part of SplinterDB using the YCSB
benchmark [14], and with cache-specific microbenchmarks.

Results are from a Dell PowerEdge R630 with a 28-core
2.00 GHz Intel Xeon E5-2660 CPU, 192 GiB RAM and a
960GiB Intel Optane 905p PCI Express 3.0 NVMe device.

Macrobenchmarks. Our YCSB configuration largely fol-
lows prior work [13]. We perform the Load, and A-F standard
workloads on SplinterDB using either IronSync- or Reference-
SplinterCache. Each workload uses 24B keys, 100B values
and 14 threads. Run E performs 14M operations and the
others each perform 69M operations, so that each workload
logically reads/writes roughly 80GiB of data.

We use three target memory sizes: 4 GiB to stress eviction
and 10; 20 GiB to reflect a common system configuration;
and 100 GiB to stress in-memory and concurrency. Figure 17

B IronSync-SplinterCache Il Reference-SplinterCache

ops/sec

IM 2M 3M 4M

ops/sec

IM 2M 3M 4M

LoadA B C D
(a) 4GiB

o]
o]

LoadA B C D E F

(b) 20GiB
Figure 17: YCSB Benchmark. 69M ops/workload (E is 14M) with
14 threads. Y-axis is mean of 3 runs. Higher is better.

LoadA B C D E F
(c) 100GiB

—m— IronSync-SplinterCache Random —e— Reference-SplinterCache Random

- IronSync-SplinterCache Sequential - - ®-- Reference-SplinterCache Sequential

z Z s
35 35 e
= fea, = =
== R \s. £X
§S ég g 3 §2 RN T i
% 1*Sssssasnnens 2
2. &, 2
= o= S
S 2 4 6 8101214 < e

2 4 6 8101214
threads

2 4 6 8101214

threads threads

(a) Uncontended Reads (b) Contended Reads (c) 10 Bound Reads
& z s
9 k=] 93
S58ig, 53 N
=1 R R TV B £x
iz iz i,
gs gs 8- S
S 24 6 8101214 =22 4 6 8101214 22 4 6 8 1012 14
threads threads threads
(d) Uncontended Writes (e) Contended Writes (f) 10 Bound Writes

Figure 18: SplinterCache microbenchmark with a 4 GiB cache. Y-
axis is mean throughput of 5 runs. Higher is better.

shows that SplinterDB with IronSync-SplinterCache is always
within 9% of the reference performance.

Microbenchmarks. We first allocate pages and flush them
without evicting them. Then each thread performs a fixed
number of operations, choosing pages either randomly or se-
quentially, then either acquiring a read lock or a write lock.
We use three configurations in a 4 GiB cache: general “un-
contended” in-memory, with 2 GiB of data, (Figures 18a
and 18d), “contended” in-memory, with 128 KiB (32 pages)
of data (Figures 18b and 18e), and “IO bound”, with 8 GiB of
data (Figures 18c and 18f). IronSync-SplinterCache is within
11% of the performance of reference on all microbenchmarks.

7.3 Bugs and Insights

We confirmed the 3 bugs below with the original developers.

NR. In the reference code, we identified a bug which could
cause a read-read linearizability violation between two dif-
ferent nodes if they took place concurrently with an update.
This bug could only occur if a thread dispatched log entries
during garbage collection.

This bug surfaced when we realized our first attempt at
defining REPLICATION would not be linearizable. We fixed
the bug by always holding the lock appropriately, and the
verified implementation now puts an extra ghost shard behind
the lock to represents the lock’s role in REPLICATION.

SplinterCache. We identified two bugs in the reference
code. First was a data race on disk_addr, which maps cache
entries to disk addresses. This race could occur when a read
lock races with both eviction and a subsequent load.

Second, the code for batching write 1O did not check that
disk_addr was the expected value after locking a page for
writeback. This could result in data written to the wrong loca-
tion, among other corruptions. We identified these while port-
ing the implementation, as we realized certain ghost shards
would not be available following the reference logic.

8 Discussion on Modularity

Concurrent systems can seem dauntingly anti-modular when
they entangle low-level synchronization with high-level ap-
plication logic, making the tasks of ensuring data safety and
logical correctness seem inseparably intertwined. By veri-
fying two such case studies, IronSync shows how these two
levels of concern can be disentangled within the proof.

In NR (§5.1), for example, the localHead variables
play two distinct roles: (i) buffer entries cannot be
garbage-collected past any node’s localHead (relevant to
CYCLICBUFFER), ensuring data safety, and (ii) LocalHead
matches the version of the local replica state (relevant to
REPLICATION), ensuring logical correctness. Figure 13 il-
lustrates the overlap of these roles in two methods where the
overlap is notably dense. Note that some operations might
advance both state machines at the same time; however, this
fact is not relevant to proofs associated with either either half.

Likewise in SplinterCache (§5.2), the WriteBack flag plays
arole in both logical correctness (CACHE) and low-level data
safety (CACHERWLOCK). The code ties these two distinct
roles together by using the same flag bit: when a thread
modifies the physical WriteBack flag, it advances both state
machines (Figure 14), but again, this is an implementation
detail to which both abstractions are agnostic.

In short, we modularize proofs of a sophisticated system by
abstracting it in multiple ways. Difficult concurrent reasoning
takes place on simplified abstractions, but IronSync ensures
the abstractions compose soundly; thus proofs about the in-
dividual components say something meaningful about the
whole. The implementation still ties the abstractions together
with physical state, but this step is straightforward from a
verification standpoint, thanks to the ownership type system
and Dafny’s automation. Ultimately, this method decouples
the modularity structure of the proof from that of the code.

9 Related Work

Logics for concurrent programs reflect different trade-offs
between generality, expressiveness, modularity, and usabil-
ity. IronSync strikes a balance between very general state
machines at high levels of abstraction, while at lower levels
leaning on language features like Hoare logic and ownership
types for usability. IronSync trusts these language features
instead of proving theorems directly against operational se-

mantics, unlike work like Armada [36] or Iris [23].

Concurrent separation logic (CSL) [41] lets threads take
temporary ownership of state to perform isolated reasoning.
However, CSL requires solving separation logic formulas and
framing, which in general is undecidable [7]. Thus, CSL
tools often require user assistance or incomplete SMT-based
heuristics, as in Viper [40] and Steel [15]. IronSync encodes
CSL propositions using explicit ownership, which avoids the
need to solve separation logic and allows programmers to
take direct advantage of standard sequential reasoning tools
such as SMT solvers (built on decidable SAT solving) and
ownership types (with decidable type checking algorithms).

Recent CSLs are extremely sophisticated. Iris [23] and
Steel [15] employ monoids to extend CSL with flexible own-
ership protocols, used in recent systems like Perennial [10]
and GoJournal [11], and Iris can handle future-dependent
linearization points with prophecy variables [24]. However,
the proof rules in these systems are intricate and may be in-
timidating to non-experts (e.g. Iris needs the “later modality”
to allow impredicative invariants, which allow Iris to express
some invariants beyond what IronSync can handle directly).
In contrast, IronSync aims to make these concepts approach-
able by integrating invariants and monoids into its ownership
type system, and connecting them with state-machine refine-
ment. As a rough comparison, [ronSync’s case studies achieve
a 7.7:1 proof-to-code ratio, while GoJournal [11] reports a
19:1 ratio for a comparably sized case study.

Like IronSync, Armada [36], IronFleet [19], and Veri-
BetrKV [18] all employ state-machine refinement. The latter
two use Dafny’s Hoare reasoning for the implementation of se-
quential code, whereas IronSync uses it for concurrent shared-
memory code. In contrast, Armada verifies concurrent code
using state machine refinement throughout the entire proof
stack, foregoing Hoare-style reasoning in favor of detailed,
low-level state machines. This provides more expressiveness;
for example, two of Armada’s case studies rely on racy mem-
ory accesses using memory ordering weaker than SC, which
IronSync does not currently support. However, Armada’s
expressiveness also imposes costs; e.g., Armada’s Pointers
case study is 13 LoC and generates 6,997 lines of proof, while
in IronSync the proof is trivial, since the correct usage of the
owned pointers is automatically determined by type checking.
Similarly, Armada’s Owicki-Gries counter requires 130 lines
of manual proof and generates 169,270 lines of Dafny proof
to verify, while in IronSync it requires 230 lines of manual
proof that verify directly in 8 seconds. We studied Armada’s
largest case study, a lock-free queue with 70 lines of code,
and implemented an analogous queue in IronSync. Theirs
requires 601 lines of proof (compared to 580 for IronSync)
and 8 proof layers (~ 700 LoC), and takes 4.9 hours of CPU
time to verify almost 200K lines of generated proof, versus
100 seconds of CPU time for IronSync.

Many other systems utilize ownership types. Cogent [3]
and VeriBetrKV [18] use ownership types for systems ver-

ification, albeit with no shared-memory concurrency, and
with the latter introducing Linear Dafny. CIVL [20] (based
mainly on reduction [35]) uses ownership types, but pri-
marily to handle thread identifiers, not general ghost state.
Rust [27, 37] uses ownership types to enforce memory safety
between threads [22] but lacks verification of deeper correct-
ness properties. GhostCell [51] (an inspiration for our Cell)
proposes owned “ghost tokens” in Rust to express owner-
ship of groups of objects, though only for memory safety.
Tools like Prusti [50] verify single-threaded Rust programs;
IronSync can help extend them to multi-threaded Rust code.

Several approaches use Dafny-style automation for concur-
rent reasoning. Chalice [32] is a Dafny-like language with
lock invariants but no tools for global reasoning. GoJour-
nal [11] does integrate Dafny’s sequential reasoning into a
verified concurrent system, but it performs its shared-memory
concurrency reasoning in Iris, so it does not leverage Dafny’s
automation for concurrency reasoning the way IronSync does.

CertiKOS [16] and SeKVM [34, 43] encapsulate concur-
rent operations inside modular interfaces, where programmers
write proofs about the operations directly in Coq. We expect
that IronSync-style ownership could simplify these proofs.

Prior work has verified concurrent hash tables, both bucket-
ing [12] and linear-probing [17]. Prior work has also verified
flat-combining [44] and producer-consumer queues [39, 45],
but we are not aware of a verified cyclic buffer like NR’s,
which requires multiple consumers to read each entry.

10 Conclusion

IronSync offers scalable verification of concurrent shared-
memory systems by factoring their complex proofs into sep-
arate concerns. It automates proofs of data safety and local
logical correctness via a fast, deterministic ownership type
system combined with powerful tools for sequential correct-
ness. IronSync’s LTS connects these local techniques to a
simplified view of the entire system, where a developer can
more easily reason about global properties. Our case studies
demonstrate the success of this approach and show that we
can tease apart application and synchronization logic for proof
purposes, even when the implementation entangles them.

11 Acknowledgments

Work at CMU was supported, in part, by the Alfred P.
Sloan Foundation, a Google Faculty Fellowship, a gift from
VMware, a grant from the Intel Corporation, and the NS-
F/VMware Partnership on Software Defined Infrastructure
as a Foundation for Clean-Slate Computing Security (SDI-
CSCS) program under Award No. CNS-1700521. We also
acknowledge the support of the Natural Sciences and En-
gineering Research Council of Canada (NSERC). Andrea
Lattuada is supported by a Google PhD Fellowship.

We thank Mihai Budiu, Manos Kapritsos, Jay Lorch, and
Oded Padon, along with the anonymous reviewers and our
shepherd, Eddie Kohler, for helpful feedback. We also thank

Rob Johnson for discussions on SplinterCache.

References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

[10]

ALGLAVE, J., FOX, A., ISHTIAQ, S., MYREEN, M. O.,
SARKAR, S., SEWELL, P., AND NARDELLI, F. Z. The
semantics of Power and ARM multiprocessor machine
code. In Proceedings of the Workshop on Declarative
Aspects of Multicore Programming (DAMP) (2009).

ALGLAVE, J., MARANGET, L., SARKAR, S., AND
SEWELL, P. Fences in weak memory models. In Pro-
ceedings of Computer Aided Verification (CAV) (2010).

AMANI, S., HIXON, A., CHEN, Z., RIZKALLAH,
C., CHUBB, P., O’CONNOR, L., BEEREN, J., NA-
GASHIMA, Y., LM, J., SEWELL, T., TUONG, J.,
KELLER, G., MURRAY, T., KLEIN, G., AND HEISER,
G. Cogent: Verifying high-assurance file system imple-
mentations. In Proceedings of the ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (2016).

BATTY, M., OWENS, S., SARKAR, S., SEWELL, P.,
AND WEBER, T. Mathematizing C++ concurrency. In
Proceedings of the ACM Symposium on Principles of
Programming Languages (POPL) (2011).

BHARDWAJ, A., KULKARNI, C., ACHERMANN, R.,
CALCIU, I., KASHYAP, S., STUTSMAN, R., TAL A.,
AND ZELLWEGER, G. NrOS: Effective replication and
sharing in an operating system. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21) (July 2021).

BOEHM, H.-J., AND ADVE, S. V. Foundations of the
C++ concurrency memory model. In Proceedings of the
ACM Conference on Programming Language Design
and Implementation (PLDI) (2008).

BROTHERSTON, J., AND KANOVICH, M. Undecidabil-
ity of propositional separation logic and its neighbours.
J.ACM 61,2 (Apr. 2014).

CaLclu, I., SEN, S., BALAKRISHNAN, M., AND
AGUILERA, M. K. Black-box Concurrent Data Struc-
tures for NUMA Architectures. In Proceedings of
the ACM Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS)
(2017).

CELIS, P. Robin Hood Hashing. PhD thesis, University
of Waterloo, CAN, 1986.

CHAIJED, T., TASSAROTTI, J., KAASHOEK, M. F.,
AND ZELDOVICH, N. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP)
(Oct. 2019).

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

CHAIJED, T., TASSAROTTI, J., THENG, M., JUNG, R.,
KAASHOEK, M. F., AND ZELDOVICH, N. GoJournal:
A verified, concurrent, crash-safe journaling system. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2021).

CLAUSEN, E. Verifying hash tables in Iris. Master’s
thesis, Aarhus University, 2017.

CoNWwAY, A., GUPTA, A. K., CHIDAMBARAM, V.,
FARACH-COLTON, M., SPILLANE, R. P., TAL, A.,
AND JOHNSON, R. SplinterDB: Closing the bandwidth
gap for NVMe key-value stores. In Proceedings of the
USENIX Annual Technical Conference (ATC) (2020).

COOPER, B. F., SILBERSTEIN, A., TaAM, E., RA-
MAKRISHNAN, R., AND SEARS, R. Benchmarking
cloud serving systems with YCSB. In Proceedings of
the ACM Symposium on Cloud Computing (2010).

FROMHERZ, A., RASTOGI, A., SWAMY, N., GIB-
SON, S., MARTINEZ, G., MERIGOUX, D., AND RA-
MANANANDRO, T. Steel: Proof-oriented programming
in a dependently typed concurrent separation logic. Pro-
ceedings of the ACM on Programming Languages 5,
ICFP (August 2021).

Gu, R., SHAO, Z., CHEN, H., WU, X., KM, J.,
SJOBERG, V., AND COSTANZO, D. CertiKOS: An
extensible architecture for building certified concurrent
OS kernels. In Proceedings of the USENIX Confer-
ence on Operating Systems Design and Implementation

(2016).

HANCE, T., HOWELL, J., PADON, O., AND PARNO,
B. Burrow: Custom read/write permissions for cus-
tom ghost state in concurrent separation logic. Tech.
Rep. CMU-CyLab-21-002, Carnegie Mellon University,
Cylab, Nov. 2021.

HANCE, T., LATTUADA, A., HAWBLITZEL, C., HOW-
ELL, J., JOHNSON, R., AND PARNO, B. Storage sys-
tems are distributed systems (so verify them that way!).
In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2020).

HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M.,
LORCH, J. R., PARNO, B., ROBERTS, M. L., SETTY,
S., AND ZILL, B. IronFleet: Proving practical dis-
tributed systems correct. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP)
(Oct. 2015).

HAWBLITZEL, C., PETRANK, E., QADEER, S., AND
TASIRAN, S. Automated and modular refinement rea-

soning for concurrent programs. In Proceedings of Com-
puter Aided Verification (CAV) (2015).

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

HENDLER, D., INCZE, 1., SHAVIT, N., AND TZAFRIR,
M. Flat Combining and the synchronization-parallelism
tradeoff. In Proceedings of the ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA) (2010).

JUNG, R., JOURDAN, J.-H., KREBBERS, R., AND
DREYER, D. RustBelt: Securing the foundations of the
Rust programming language. Proceedings of the ACM
on Programming Languages 2, POPL (Jan. 2018).

JUNG, R., KREBBERS, R., JOURDAN, J.-H., BIZJAK,
A., BIRKEDAL, L., AND DREYER, D. Iris from the
ground up: A modular foundation for higher-order con-
current separation logic. Journal of Functional Pro-
gramming 28 (2018).

JUNG, R., LEPIGRE, R., PARTHASARATHY, G.,
RAPOPORT, M., TIMANY, A., DREYER, D., AND JA-
COBS, B. The future is ours: Prophecy variables in
separation logic. Proceedings of the ACM Programming
Languages 4, POPL (Jan. 2020).

JUNG, R., SWASEY, D., SIECZKOWSKI, F., SVEND-
SEN, K., TURON, A., BIRKEDAL, L., AND DREYER,
D. Iris: Monoids and invariants as an orthogonal basis
for concurrent reasoning. In Proceedings of the ACM
Symposium on Principles of Programming Languages
(POPL) (2015).

KASHYAP, S., CALCIU, I., CHENG, X., MIN, C., AND
KiMm, T. Scalable and practical locking with shuffling.
In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP) (2019).

KLABNIK, S., AND NICHOLS, C. The Rust Program-
ming Language. No Starch Press, USA, 2018.

KLABNIK, S., NIcHOLS, C., AND RUST COMMU-
NITY. The Rust Programming Language. https:
//doc.rust-1lang.org/book/.

KNUTH, D. E. The Art of Computer Programming,
Volume 3: (2nd Ed.) Sorting and Searching. Addison
Wesley Longman Publishing Co., Inc., USA, 1998.

LAMPORT, L. Specifying Systems: The TLA+ Lan-
guange and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

LEINO, K. R. M. Dafny: An automatic program verifier
for functional correctness. In Proceedings of the Confer-
ence on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR) (2010).

LEINO, K. R. M., MULLER, P., AND SMANS, J. Verifi-
cation of concurrent programs with Chalice. In Proceed-
ings of Foundations of Security Analysis and Design
(FOSAD) (2009).

(33]

[34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

L1, J., LATTUADA, A., ZHOU, Y., CAMERON, J.,
HOWELL, J., PARNO, B., AND HAWBLITZEL, C. Lin-
ear types for large-scale systems verification. In Pro-
ceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA) (November 2022).

L1, S.-W., L1, X., Gu, R, NIEH, J., AND HUL, J. Z.
A secure and formally verified Linux KVM hypervisor.
In Proceedings of the IEEE Symposium on Security and
Privacy (2021).

LIPTON, R. J. Reduction: A method of proving proper-
ties of parallel programs. Communications of the ACM,
18, 12 (1975).

LORCH, J. R., CHEN, Y., KAPRITSOS, M., MA, H.,
PARNO, B., QADEER, S., SHARMA, U., WILCOX,
J. R., AND ZHAO, X. Armada: Automated verification
of concurrent code with sound semantic extensibility.
ACM Transactions on Programming Languages and
Systems 44, 2 (June 2022).

MATSAKIS, N. D., AND KLOCK, F. S. The Rust lan-
guage. Ada Lett. 34, 3 (Oct. 2014), 103-104.

MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. Algo-
rithms for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer Sys-
tems 9, 1 (Feb. 1991).

MEVEL, G., AND JOURDAN, J.-H. Formal verification
of a concurrent bounded queue in a weak memory model.
Proceedings of the ACM on Programming Languages 5,
ICFP (Aug. 2021).

MULLER, P., SCHWERHOFF, M., AND SUMMERS,
A.J. Viper: A verification infrastructure for permission-
based reasoning. In Proceedings of the Conference on
Verification, Model Checking, and Abstract Interpreta-
tion (VM CAI) (Berlin, Heidelberg, 2016).

O’HEARN, P. W. Resources, concurrency, and local
reasoning. Theoretical Computer Science 375, 1-3 (Apr.
2007).

OWENS, S., SARKAR, S., AND SEWELL, P. A better
x86 memory model: x86-TSO. In Proceedings of the
Conference on Theorem Proving in Higher Order Logics
(TPHOLs) (Aug. 2009).

TAo, R., YA0, J., L1, X., L1, S.-W., NIEH, J., AND
GU, R. Formal verification of a multiprocessor hypervi-
sor on Arm relaxed memory hardware. In Symposium
on Operating Systems Principles (SOSP) (2021).

TURON, A., DREYER, D., AND BIRKEDAL, L. Unify-
ing refinement and hoare-style reasoning in a logic for

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

[45]

[46]

[47]

[48]

[49]

[50]

[51]

higher-order concurrency. In Proceedings of the ACM
International Conference on Functional Programming
(ICFP) (2013).

TURON, A., VAFEIADIS, V., AND DREYER, D. GPS:
Navigating weak memory with ghosts, protocols, and
separation. In Proceedings of the ACM Conference on
Object Oriented Programming Systems Languages &
Applications (OOPSLA) (2014).

VMWARE. What is VMware vSAN? https://www.
vmware.com/products/vsan.html, 2021.

VYukov, D. Distributed reader-writer mu-
tex. http://www.1024cores.net/home/
lock-free-algorithms/reader-writer-problem/
distributed-reader-writer-mutex, 2011.

WADLER, P. Linear types can change the world! In
Proceedings of the IFIP TC 2 Working Conference on
Programming Concepts and Methods (1990).

WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND
SOLAR-LEZAMA., A. Towards optimization-safe sys-
tems: Analyzing the impact of undefined behavior. In
Proceedings of the ACM Symposium on Operating Sys-
tems Principles (SOSP) (Nov. 2013).

WOLFF, F., BiLY, A., MATHEJA, C., MULLER, P.,
AND SUMMERS, A. J. Modular specification and verifi-
cation of closures in Rust. Proceedings of the ACM on
Programming Languages 5, OOPSLA (Oct. 2021).

YANOVSKI, J., DANG, H.-H., JUNG, R., AND
DREYER, D. GhostCell: Separating permissions from
data in Rust. Proceedings of the ACM on Programming
Languages 5, ICFP (Aug. 2021).

https://www.vmware.com/products/vsan.html
https://www.vmware.com/products/vsan.html
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/distributed-reader-writer-mutex

	1 Introduction
	2 The Potential Pitfalls of Parallelism
	3 The Core IronSync Methodology
	3.1 Achieving Data Safety in IronSync
	3.2 Local Logical Correctness
	3.2.1 Ownership Simplifies Concurrent Correctness
	3.2.2 Maintaining Local Correctness with Invariants

	3.3 From Local to Global Logical Correctness
	3.3.1 Abstracting Local Actions
	3.3.2 Tying the Concrete Implementation to the LTS
	3.3.3 Global Logical Correctness With the GSM

	4 Advanced IronSync Techniques
	4.1 Specification via Refinement
	4.2 Lower-Level Memory Primitives
	4.3 Read Sharing

	5 Case Studies
	5.1 Node Replication NR
	5.2 SplinterCache

	6 Formalism and Implementation
	6.1 Formal Definitions
	6.2 Guard Protocols

	7 Evaluation
	7.1 Verification Effort
	7.2 Case Study Fidelity
	7.3 Bugs and Insights

	8 Discussion on Modularity
	9 Related Work
	10 Conclusion
	11 Acknowledgments

