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Abstract

Modern neural networks often have great expressive power and can be trained
to overfit the training data, while still achieving a good test performance. This
phenomenon is referred to as “benign overfitting”. Recently, there emerges a line
of works studying “benign overfitting” from the theoretical perspective. However,
they are limited to linear models or kernel/random feature models, and there is still
a lack of theoretical understanding about when and how benign overfitting occurs
in neural networks. In this paper, we study the benign overfitting phenomenon
in training a two-layer convolutional neural network (CNN). We show that when
the signal-to-noise ratio satisfies a certain condition, a two-layer CNN trained by
gradient descent can achieve arbitrarily small training and test loss. On the other
hand, when this condition does not hold, overfitting becomes harmful and the ob-
tained CNN can only achieve constant level test loss. These together demonstrate
a sharp phase transition between benign overfitting and harmful overfitting, driven
by the signal-to-noise ratio. To the best of our knowledge, this is the first work that
precisely characterizes the conditions under which benign overfitting can occur in
training convolutional neural networks.

1 Introduction

Modern deep learning models often consist of a huge number of model parameters, which is more
than the number of training data points and therefore over-parameterized. These over-parameterized
models can be trained to overfit the training data (achieving a close to 100% training accuracy),
while still making accurate prediction on the unseen test data. This phenomenon has been observed
in a number of prior works (Zhang et al., 2017; Neyshabur et al., 2019), and is often referred to as
benign overfitting (Bartlett et al., 2020). It revolutionizes the classical understanding about the bias-
variance trade-off in statistical learning theory, and has drawn great attention from the community
(Belkin et al., 2018, 2019a,b; Hastie et al., 2019).

There exist a number of works towards understanding the benign overfitting phenomenon. While
they offered important insights into the benign overfitting phenomenon, most of them are limited
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to the settings of linear models (Belkin et al., 2019b; Bartlett et al., 2020; Hastie et al., 2019; Wu
and Xu, 2020; Chatterji and Long, 2020; Zou et al., 2021b; Cao et al., 2021) and kernel/random
features models (Belkin et al., 2018; Liang and Rakhlin, 2020; Montanari and Zhong, 2020), and
cannot be applied to neural network models that are of greater interest. The only notable exceptions
are (Adlam and Pennington, 2020; Li et al., 2021), which attempted to understand benign overfitting
in neural network models. However, they are still limited to the “neural tagent kernel regime” (Jacot
et al., 2018) where the neural network learning problem is essentially equivalent to kernel regression.
Thus, it remains a largely open problem to show how and when benign overfitting can occur in neural
networks.

Clearly, understanding benign overfitting in neural networks is much more challenging than that
in linear models, kernel methods or random feature models. The foremost challenge stems from
nonconvexity: previous works on linear models and kernel methods/random features are all in the
convex setting, while neural network training is a highly nonconvex optimization problem. There-
fore, while most of the previous works can study the minimum norm interpolators/maximum margin
classifiers according to the implicit bias (Soudry et al., 2018) results for the corresponding models,
existing implicit bias results for neural networks (e.g., Lyu and Li (2019)) are not sufficient and a
new analysis of the neural network learning process is in demand.

In this work, we provide one such algorithmic analysis for learning two-layer convolutional neural
networks (CNNs) with the second layer parameters being fixed as +1’s and −1’s and polynomial
ReLU activation function: σ(z) = max{0, z}q , where q > 2 is a hyperparameter. We consider a
setting where the input data consist of label dependent signals and label independent noises, and uti-
lize a signal-noise decomposition of the CNN filters to precisely characterize the signal learning and
noise memorization processes during neural network training. Our result not only demonstrates that
benign overfitting can occur in learning two-layer neural networks, but also gives precise conditions
under which the overfitted CNN trained by gradient descent can achieve small population loss. Our
paper makes the following major contributions:

• We establish population loss bounds of overfitted CNN models trained by gradient descent, and
theoretically demonstrate that benign overfitting can occur in learning over-parameterized neural
networks. We show that under certain conditions on the signal-to-noise ratio, CNN models trained
by gradient descent will prioritize learning the signal over memorizing the noise, and thus achiev-
ing both small training and test losses. To the best of our knowledge, this is the first result on the
benign overfitting of neural networks that is beyond the neural tangent kernel regime.

• We also establish a negative result showing that when the conditions on the signal-to-noise ratio
do not hold, then the overfitted CNN model will achieve at least a constant population loss. This
result, together with our upper bound result, reveals an interesting phase transition between benign
overfitting and harmful overfitting.

• Our analysis is based on a new proof technique namely signal-noise decomposition, which decom-
poses the convolutional filters into a linear combination of initial filters, the signal vectors and the
noise vectors. We convert the neural network learning into a discrete dynamical system of the
coefficients from the decomposition, and perform a two-stage analysis that decouples the com-
plicated relation among the coefficients. This enables us to analyze the non-convex optimization
problem, and bound the population loss of the CNN trained by gradient descent. We believe our
proof technique is of independent interest and can potentially be applied to deep neural networks.

We note that a concurrent work (Frei et al., 2022) studies learning log-Concave mixture data with
label flip noise using fully-connected two-layer neural networks with smoothed leaky ReLU activa-
tion. Notably, their risk bound matches the risk bound for linear models given in Cao et al. (2021)
when the label flip noise is zero. However, their analysis only focuses on upper bounding the risk,
and cannot demonstrate the phase transition between benign and harmful overfitting. Compared
with (Frei et al., 2022), we focus on CNNs, and consider a different data model to better capture
the nature of image classification problems. Moreover, we present both positive and negative results
under different SNR regimes, and demonstrate a sharp phase transition between benign and harmful
overfitting.

Notation. Given two sequences {xn} and {yn}, we denote xn = O(yn) if there exist some ab-
solute constant C1 > 0 and N > 0 such that |xn| ≤ C1|yn| for all n ≥ N . Similarly, we denote
xn = Ω(yn) if there exist C2 > 0 and N > 0 such that |xn| ≥ C2|yn| for all n > N . We say
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xn = Θ(yn) if xn = O(yn) and xn = Ω(yn) both holds. We use Õ(·), Ω̃(·), and Θ̃(·) to hide loga-
rithmic factors in these notations respectively. Moreover, we denote xn = poly(yn) if xn = O(yDn )
for some positive constant D, and xn = polylog(yn) if xn = poly(log(yn)). Finally, for two
scalars a and b, we denote a ∨ b = max{a, b}.

2 Related Work

A line of recent works have attempted to understand why overfitted predictors can still achieve a
good test performance. Belkin et al. (2019a) first empirically demonstrated that in many machine
learning models such as random Fourier features, decision trees and ensemble methods , the popula-
tion risk curve has a double descent shape with respect to the number of model parameters. Belkin
et al. (2019b) further studied two specific data models, namely the Gaussian model and Fourier series
model, and theoretically demonstrated the double descent risk curve in linear regression. Bartlett
et al. (2020) studied over-parameterized linear regression to fit data produced by a linear model
with additive noises, and established matching upper and lower bounds of the risk achieved by the
minimum norm interpolator on the training dataset. It is shown that under certain conditions on the
spectrum of the data covariance matrix, the population risk of the interpolator can be asymptotically
optimal. Hastie et al. (2019); Wu and Xu (2020) studied linear regression in the setting where both
the dimension and sample size grow together with a fixed ratio, and showed double descent of the
risk with respect to this ratio. Chatterji and Long (2020) studied the population risk bounds of over-
parameterized linear logistic regression on sub-Gaussian mixture models with label flipping noises,
and showed how gradient descent can train over-parameterized linear models to achieve nearly opti-
mal population risk. Cao et al. (2021) tightened the upper bound given by Chatterji and Long (2020)
in the case without the label flipping noises, and established a matching lower bound of the risk
achieved by over-parameterized maximum margin interpolators. Shamir (2022) proposed a generic
data model for benign overfitting of linear predictors, and studied different problem settings under
which benign overfitting can or cannot occur.

Besides the studies on linear models, several recent works also studied the benign overfitting and
double descent phenomena in kernel methods or random feature models. Zhang et al. (2017) first
pointed out that overfitting kernel predictors can sometimes still achieve good population risk. Liang
and Rakhlin (2020) studied how interpolating kernel regression with radial basis function (RBF) ker-
nels (and variants) can generalize and how the spectrum of the data covariance matrix affects the
population risk of the interpolating kernel predictor. Li et al. (2021) studied the benign overfitting
phenomenon of random feature models defined as two-layer neural networks whose first layer param-
eters are fixed at random initialization. Mei and Montanari (2019); Liao et al. (2020) demonstrated
the double descent phenomenon for the population risk of interpolating random feature predictors
with respect to the ratio between the dimensions of the random feature and the data input. Adlam and
Pennington (2020) shows that neural tangent kernel (Jacot et al., 2018) based kernel regression has
a triple descent risk curve with respect to the total number of trainable parameters. Montanari and
Zhong (2020) further pointed out an interesting phase transition of the generalization error achieved
by neural networks trained in the neural tangent kernel regime.

3 Problem Setup

In this section, we introduce the data generation model and the convolutional neural network we
consider in this paper. We focus on binary classification, and present our data distribution D in the
following definition.

Definition 3.1. Let µ ∈ Rd be a fixed vector representing the signal contained in each data point.
Then each data point (x, y) with x = [x(1)⊤,x(2)⊤]⊤ ∈ R2d and y ∈ {−1, 1} is generated from the
following distribution D:

1. The label y is generated as a Rademacher random variable.
2. A noise vector ξ is generated from the Gaussian distribution N(0, σ2

p · (I− µµ⊤ · ∥µ∥−2
2 )).

3. One of x(1),x(2) is randomly selected and then assigned as y · µ, which represents the signal;
the other is then given by ξ, which represents noises.
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Our data generation model is inspired by image data, where the inputs consist of different patches,
and only some of the patches are related to the class label of the image. In detail, the patch assigned
as y ·µ is the signal patch that is correlated to the label of the data, and the patch assigned as ξ is the
noise patch that is independent of the label of the data and therefore is irrelevant for prediction. We
assume that the noise patch is generated from the Gaussian distributionN(0, σ2

p ·(I−µµ⊤ ·∥µ∥−2
2 ))

to ensure that the noise vector is orthogonal to the signal vector µ for simplicity. Note that when
the dimension d is large, ∥ξ∥2 ≈ σp

√
d by standard concentration bounds. Therefore, we can treat

∥µ∥2/(σp

√
d) ≈ ∥µ∥2/∥ξ∥2 as the signal-to-noise ratio (SNR). For the ease of discussion, we

denote SNR = ∥µ∥2/(σp

√
d). Note that the Bayes risk for learning our model is zero. We can also

add label flip noise similar to Chatterji and Long (2020); Frei et al. (2022) to make the Bayes risk
equal to the label flip noise and therefore nonzero, but this will not change the key message of our
paper.

Intuitively, if a classifier learns the signal µ and utilizes the signal patch of the data to make predic-
tion, it can perfectly fit a given training data set {(xi, yi) : i ∈ [n]} and at the same time have a good
performance on the test data. However, when the dimension d is large (d > n), a classifier that is a
function of the noises ξi, i ∈ [n] can also perfectly fit the training data set, while the prediction will
be totally random on the new test data. Therefore, the data generation model given in Definition 3.1
is a useful model to study the population loss of overfitted classifiers. Similar models have been
studied in some recent works by Li et al. (2019); Allen-Zhu and Li (2020a,b); Zou et al. (2021a).

Two-layer CNNs. We consider a two-layer convolutional neural network whose filters are applied
to the two patches x(1) and x(2) separately, and the second layer parameters of the network are fixed
as +1/m and −1/m respectively. Then the network can be written as f(W,x) = F+1(W+1,x)−
F−1(W−1,x), where F+1(W+1,x), F−1(W−1,x) are defined as:

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(⟨wj,r,x

(1)⟩) + σ(⟨wj,r,x
(2)⟩)

]
=

1

m

m∑
r=1

[
σ(⟨wj,r, y · µ⟩) + σ(⟨wj,rξ⟩)

]
for j ∈ {+1,−1}. Here, m is the number of convolutional filters in F+1 and F−1, σ(z) =
(max{0, z})q is the ReLUq activation function where q > 2, wj,r ∈ Rd denotes the weight for
the r-th filter (i.e., neuron), and Wj is the collection of model weights associated with Fj . We also
use W to denote the collection of all model weights. We note that our CNN model can also be
viewed as a CNN with average global pooling (Lin et al., 2013). We train the above CNN model by
minimizing the empirical cross-entropy loss function

LS(W ) =
1

n

n∑
i=1

ℓ[yi · f(W,xi)],

where ℓ(z) = log(1 + exp(−z)), and S = {(xi, yi)}ni=1 is the training data set. We further define
the true loss (test loss) LD(W) := E(x,y)∼Dℓ[y · f(W,x)].

We consider gradient descent starting from Gaussian initialization, where each entry of W+1 and
W−1 is sampled from a Gaussian distributionN(0, σ2

0), and σ
2
0 is the variance. The gradient descent

update of the filters in the CNN can be written as

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rLS(W

(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, ξi⟩) · jyiξi −
η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yiµ⟩) · jµ (3.1)

for j ∈ {±1} and r ∈ [m], where we introduce a shorthand notation ℓ
′(t)
i = ℓ′[yi · f(W(t),xi)].

4 Main Results

In this section, we present our main theoretical results. At the core of our analyses and results is a
signal-noise decomposition of the filters in the CNN trained by gradient descent. By the gradient
descent update rule (3.1), it is clear that the gradient descent iterate w

(t)
j,r is a linear combination

of its random initialization w
(0)
j,r , the signal vector µ and the noise vectors in the training data ξi,

i ∈ [n]. Motivated by this observation, we introduce the following definition.
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Definition 4.1. Let w(t)
j,r for j ∈ {±1}, r ∈ [m] be the convolution filters of the CNN at the t-th

iteration of gradient descent. Then there exist unique coefficients γ(t)
j,r ≥ 0 and ρ(t)j,r,i such that

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi.

We further denote ρ(t)j,r,i := ρ
(t)
j,r,i 1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t)
j,r,i 1(ρ

(t)
j,r,i ≤ 0). Then we have that

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi +

n∑
i=1

ρ(t)
j,r,i

· ∥ξi∥−2
2 · ξi. (4.1)

We refer to (4.1) as the signal-noise decomposition of w
(t)
j,r. We add normalization factors

∥µ∥−2
2 , ∥ξi∥−2

2 in the definition so that γ(t)
j,r ≈ ⟨w(t)

j,r,µ⟩, ρ
(t)
j,r,i ≈ ⟨w(t)

j,r, ξi⟩. In this decomposition,

γ
(t)
j,r characterizes the progress of learning the signal vector µ, and ρ

(t)
j,r,i characterizes the degree of

noise memorization by the filter. Evidently, based on this decomposition, for some iteration t, (i)
If some of γ(t)

j,r’s are large enough while |ρ(t)j,r,i| are relatively small, then the CNN will have small

training and test losses; (ii) If some ρ
(t)
j,r,i’s are large and all γ(t)

j,r’s are small, then the CNN will
achieve a small training loss, but a large test loss. Thus, Definition 4.1 provides a handle for us to
study the convergence of the training loss as well as the the population loss of the CNN trained by
gradient descent.

Our results are based on the following conditions on the dimension d, sample size n, neural network
widthm, learning rate η, initialization scale σ0.

Condition 4.2. Suppose that

1. Dimension d is sufficiently large: d = Ω̃(m2∨[4/(q−2)]n4∨[(2q−2)/(q−2)]).
2. Training sample size n and neural network widthm satisfy n,m = Ω(polylog(d)).

3. The learning rate η satisfies η ≤ Õ(min{∥µ∥−2
2 , σ−2

p d−1}).
4. The standard deviation of Gaussian initialization σ0 is appropriately chosen such

that Õ(nd−1/2) · min{(σp

√
d)−1, ∥µ∥−1

2 } ≤ σ0 ≤ Õ(m−2/(q−2)n−[1/(q−2)]∨1) ·
min{(σp

√
d)−1, ∥µ∥−1

2 }.

A few remarks on Condition 4.2 are in order. The condition on d is to ensure that the learning
is in a sufficiently over-parameterized setting, and similar conditions have been made in the study
of learning over-parameterized linear models (Chatterji and Long, 2020; Cao et al., 2021). For
example, if we choose q = 3, then the condition on d becomes d = Ω̃(m4n4). Furthermore, we
require the sample size and neural network width to be at least polylogarithmic in the dimension
d to ensure some statistical properties of the training data and weight initialization to hold with
probability at least 1 − d−1, which is a mild condition. Finally, the conditions on σ0 and η are to
ensure that gradient descent can effectively minimize the training loss, and they depend on the scale
of the training data points. When σp = O(d−1/2) and ∥µ∥2 = O(1), the step size η can be chosen
as large as Õ(1) and the initialization σ0 can be as large as Õ(m−2/(q−2)n−[1/(q−2)]∨1). In our
paper, we only require m,n = Ω(polylog(d)), so our initialization and step-size can be chosen as
an almost constant order. Based on these conditions, we give our main result on signal learning in
the following theorem.

Theorem 4.3. For any ϵ > 0, let T = Θ̃(η−1mσ
−(q−2)
0 ∥µ∥−q

2 + η−1ϵ−1m3∥µ∥−2
2 ). Under

Condition 4.2, if n · SNRq = Ω̃(1)*, then with probability at least 1− d−1, there exists 0 ≤ t ≤ T
such that:

1. The CNN learns the signal: maxr γ
(t)
j,r = Ω(1) for j ∈ {±1}.

2. The CNN does not memorize the noises in the training data: maxj,r,i |ρ(T )
j,r,i| = Õ(σ0σp

√
d).

*Here the Ω̃(·) hides an polylog(ϵ−1) factor. This applies to Theorem 4.4 as well.
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3. The training loss converges to ϵ, i.e., LS(W
(t)) ≤ ϵ.

4. The trained CNN achieves a small test loss: LD(W
(t)) ≤ 6ϵ+ exp(−n2).

Theorem 4.3 characterizes the case of signal learning. It shows that, if n·SNRq = Ω̃(1), then at least
one CNN filter can learn the signal by achieving γ

(t)
j,r∗j

≥ Ω(1), and as a result, the learned neural
network can achieve small training and test losses. To demonstrate the sharpness of this condition,
we also present the following theorem for the noise memorization by the CNN.

Theorem 4.4. For any ϵ > 0, let T = Θ̃(η−1m · n(σp

√
d)−q · σ−(q−2)

0 + η−1ϵ−1nm3d−1σ−2
p ).

Under Condition 4.2, if n−1 · SNR−q = Ω̃(1), then with probability at least 1 − d−1, there exists
0 ≤ t ≤ T such that:

1. The CNN memorizes noises in the training data: maxr ρ
(t)
yi,r,i

= Ω(1).

2. The CNN does not sufficiently learn the signal: maxj,r γ
(t)
j,r ≤ Õ(σ0∥µ∥2).

3. The training loss converges to ϵ, i.e., LS(W
(t)) ≤ ϵ.

4. The trained CNN has a constant order test loss: LD(W
(t)) = Θ(1).

Figure 1: Illustration of the phase transi-
tion between benign and harmful overfitting.
The blue region represents the setting under
which the overfitted CNN trained by gradi-
ent descent is guaranteed to have small popu-
lation loss, and the yellow region represents
the setting under which the population loss is
guaranteed to be of constant order. The slim
gray band region is the setting where the pop-
ulation loss is not well characterized.

Theorem 4.4 holds under the condition that n−1 ·
SNR−q = Ω̃(1). Clearly, this is the opposite regime
(up to some logarithmic factors) compared with The-
orem 4.3. In this case, the CNN trained by gradi-
ent descent mainly memorizes noises in the training
data and does not learn enough signal. This, together
with the results in Theorem 4.3, reveals a clear phase
transition between signal learning and noise memo-
rization in CNN training:

• If n·SNRq = Ω̃(1), then the CNN learns the signal
and achieves a O(ϵ+ exp(−n2)) test loss. This is
the regime of benign overfitting.

• If n−1 · SNR−q = Ω̃(1) then the CNN can only
memorize noises and will have a Θ(1) test loss.
This is the regime of harmful overfitting.

The phase transition is illustrated in Figure 1.
Clearly, n · SNRq = Ω̃(1) is the precise condition
under which benign overfitting occurs. Remarkably,
in this case the population loss decreases exponen-
tially with the sample size n. Under our condition
that n = Ω(polylog(d)), this term can also be upper
bounded by 1/poly(d), which is small in the high-
dimensional setting. Note that when ∥µ∥2 = Θ(1)
and σp = Θ(d−1/2), applying standard uniform con-
vergence based bounds (Bartlett et al., 2017; Neyshabur et al., 2018) or stability based bounds (Hardt
et al., 2016; Mou et al., 2017; Chen et al., 2018) typically give Õ(n−1/2) bounds on the general-
ization gap, which are vacuous when n = O(polylog(d)). Our bound under the same setting is
O(1/poly(d)), which is non-vacuous. This is attributed to our precise analysis of signal learning
and noise memorization in Theorems 4.3 and 4.4.

Comparison with neural tangent kernel (NTK) results. We want to emphasize that our analysis
is beyond the so-called neural tangent kernel regime. In the NTK regime, it has been shown that
gradient descent can train an over-parameterized neural network to achieve good training and test
accuracies (Jacot et al., 2018; Du et al., 2019b,a; Allen-Zhu et al., 2019b; Zou et al., 2019; Arora
et al., 2019a; Cao and Gu, 2019a; Chen et al., 2019). However, it is widely believed in literature
that the NTK analyses cannot fully explain the success of deep learning, as the neural networks
in the NTK regime are almost “linearized” (Lee et al., 2019; Cao and Gu, 2019a). Our analysis
and results are not in the NTK regime: In the NTK regime, the network parameters stay close
to their initialization throughout training, i.e., ∥W(t) − W(0)∥F = O(1), so that the NN model
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can be approximated by its linearization (Allen-Zhu et al., 2019b; Cao and Gu, 2019a; Chen et al.,
2019). In comparison, our analysis does not rely on linearizing the neural network function, and
∥W(t) −W(0)∥F can be as large as O(poly(m)).

5 Overview of Proof Technique

In this section, we discuss the main challenges in the study of CNN training under our setting,
and explain some key techniques we implement in our proofs to overcome these challenges. The
complete proofs of all the results are given in the appendix.

Main challenges. Studying benign overfitting under our setting is a challenging task. The first chal-
lenge is the nonconvexity of the training objective function LS(W). Nonconvexity has introduced
new challenges in the study of benign overfitting particularly because our goal is not only to show
the convergence of the training loss, but also to study the population loss in the over-parameterized
setting, which requires a precise algorithmic analysis of the learning problem.

5.1 Iterative Analysis of the Signal-Noise Decomposition

In order to study the learning process based on the nonconvex optimization problem, we propose a
key technique which enables the iterative analysis of the coefficients in the signal-noise decomposi-
tion in Definition 4.1. This technique is given in the following lemma.

Lemma 5.1. The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

in Definition 4.1 satisfy the following equations:

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0, (5.1)

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · µ⟩) · ∥µ∥
2
2, (5.2)

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = j), (5.3)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j). (5.4)

Remark 5.2. With the decomposition (4.1), the signal learning and noise memorization processes
of a CNN can be formally studied by analyzing the dynamics of γ(t)

j,r , ρ
(t)
j,r,i, ρ

(t)
j,r,i

based on the dynam-
ical system (5.2)-(5.4). Note that prior to our work, several existing results have utilized the inner
products ⟨w(t)

j,r,µ⟩ during the neural network training process in order to establish generalization
bounds (Brutzkus et al., 2018; Chatterji and Long, 2020; Frei et al., 2021). Similar inner product
based arguments are also implemented in Allen-Zhu and Li (2020a,b); Zou et al. (2021a), which
study different topics related to learning neural networks. Compared with the inner product based
argument, our method has two major advantages: (i) Based on the definition (5.2)-(5.4) and the fact
that ℓ′(t)i < 0, it is clear that γ(t)

j,r , ρ
(t)
j,r,i are monotonically increasing, while ρ

(t)
j,r,i

is monotonically
decreasing throughout the whole training process. In comparison, monotonicity does not hold in the
inner product based argument, especially for ⟨w(t)

j,r, ξi⟩. (ii) Our signal-noise decomposition also
enables a clean homogeneity-based proof for the convergence of the training loss to an arbitrarily
small error rate ϵ > 0, which will be presented in Subsection 5.2.

With Lemma 5.1, we can reduce the study of the CNN learning process to the analysis of the discrete
dynamical system given by (5.1)-(5.4). Our proof then focuses on a careful assessment of the values
of the coefficients γ(t)

j,r , ρ
(t)
j,r,i, ρ

(t)
j,r,i

throughout training. To prepare for more detailed analyses, we
first present the following bounds of the coefficients, which hold throughout training.
Proposition 5.3. Under Condition 4.2, for any T ∗ = η−1poly(ϵ−1, ∥µ∥−1

2 , d−1σ−2
p , σ−1

0 , n,m, d),
the following bounds hold for t ∈ [0, T ∗]:

1. 0 ≤ γ
(t)
j,r , ρ

(t)
j,r,i ≤ 4 log(T ∗) for all j ∈ {±1}, r ∈ [m] and i ∈ [n].

2. 0 ≥ ρ(t)
j,r,i

≥ −2maxi,j,r{|⟨w(0)
j,r ,µ⟩|, |⟨w

(0)
j,r , ξi⟩|} − 16n

√
log(4n2/δ)

d · 4 log(T ∗) for all j ∈
{±1}, r ∈ [m] and i ∈ [n].
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We can then prove the following lemma, which demonstrates that the training objective function
LS(W) can dominate the gradient norm ∥∇LS(W

(t))∥F along the gradient descent path.

Lemma 5.4. Under Condition 4.2, for any T ∗ = η−1poly(ϵ−1, ∥µ∥−1
2 , d−1σ−2

p , σ−1
0 , n,m, d), the

following result holds for t ∈ [0, T ∗]:

∥∇LS(W
(t))∥2F = O

(
max{∥µ∥22, σ2

pd}
)
· LS(W

(t)).

Lemma 5.4 plays a key role in the convergence proof of training loss function. However, note
that our study of benign overfitting requires carefully monitoring the changes of the coefficients
in the signal-noise decomposition, which cannot be directly done by Lemma 5.4. This is quite a
challenging task, due to the complicated interactions among γ

(t)
j,r , ρ

(t)
j,r,i and ρ(t)

j,r,i
. Note that even

γ
(t)
j,r , which has the simplest formula (5.2), depends on all the quantities γ(t)

j′,r′ , ρ
(t)
j′,r′,i and ρ

(t)
j′,r′,i

for j′ ∈ {±1}, r′ ∈ [m] and i ∈ [n]. This is because the cross-entropy loss derivative term
ℓ
′(t)
i = ℓ′[yi · f(W(t),xi)] depends on all the neurons of the network. To overcome this challenge,
we introduce in the next subsection a decoupling technique based on a two-stage analysis.

5.2 Decoupling with a Two-Stage Analysis.

We utilize a two-stage analysis to decouple the complicated relation among the coefficients γ(t)
j,r ,

ρ
(t)
j,r,i and ρ(t)

j,r,i
. Intuitively, the initial neural network weights are small enough so that the neural

network at initialization has constant level cross-entropy loss derivatives on all the training data:
ℓ
′(0)
i = ℓ′[yi · f(W(0),xi)] = Θ(1) for all i ∈ [n]. This is guaranteed under Condition 4.2 and
matches neural network training in practice. Motivated by this, we can consider the first stage of the
training process where ℓ′(t)i = Θ(1), in which case we can show significant scale differences among
γ
(t)
j,r , ρ

(t)
j,r,i and ρ(t)

j,r,i
. Based on the result in the first stage, we then proceed to the second stage of

the training process where the loss derivatives are no longer at a constant level and show that the
training loss can be optimized to be arbitrarily small and meanwhile, the scale differences shown in
the first learning stage remain the same throughout the training process. In the following, we focus
on explaining the key proof steps for Theorem 4.3. The proof idea for Theorem 4.4 is similar, so we
defer the details to the appendix.

Stage 1. It can be shown that, until some of the coefficients γ(t)
j,r , ρ

(t)
j,r,i reach Θ(1), we have ℓ′(t)i =

ℓ′[yi · f(W(t),xi)] = Θ(1) for all i ∈ [n]. Therefore, we first focus on this first stage of the training
process, where the dynamics of the coefficients in (5.2) - (5.4) can be greatly simplified by replacing
the ℓ

′(t)
i factors by their constant upper and lower bounds. The following lemma summarizes our

main conclusion at stage 1 for signal learning:

Lemma 5.5. Under the same conditions as Theorem 4.3, there exists T1 = Õ(η−1mσ2−q
0 ∥µ∥−q

2 )
such that

1. maxr γ
(T1)
j,r = Ω(1) for j ∈ {±1}.

2. |ρ(t)j,r,i| = O(σ0σp

√
d) for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.

Lemmas 5.5 takes advantage of the training period when the loss function derivatives remain a
constant order to show that the CNN can capture the signal. At the end of stage 1 in signal learning,
maxr γj,r reaches Θ(1), and is significantly larger than ρ

(t)
j,r,i. After this, it is no longer guaranteed

that the loss derivatives ℓ′(t)i will remain constant order, and thus starts the training stage 2.

Stage 2. In this stage, we take into full consideration the exact definition ℓ′(t)i = ℓ′[yi · f(W(t),xi)]

and show that the training loss function will converge to LS(W
(t)) < ϵ. Thanks to the analysis in

stage 1, we know that some γ(t)
j,r is significantly larger than all ρ

(t)
j,r,i’s at the end of stage 1. This scale

difference is the key to our analysis in stage 2. Based on this scale difference and the monotonicity
of γ(t)

j,r , ρ
(t)
j,r,i, ρ

(t)
j,r,i

in the signal-noise decomposition, it can be shown that there exists W∗ such

that yi ·⟨∇f(W(t),xi),W
∗⟩ ≥ q log(2q/ϵ) throughout stage 2. Moreover, since the neural network
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f(W,x) is q-homogeneous in W, we have ⟨∇f(W(t),x),W(t)⟩ = q · f(W(t),x). Therefore,

⟨∇LS(W
(t)),W(t) −W∗⟩ = 1

n

n∑
i=1

ℓ
′(t)
i · yi · ⟨∇f(W(t),xi),W

(t) −W∗⟩

=
1

n

n∑
i=1

ℓ
′(t)
i · [yi · q · f(W(t),xi)− yi · ⟨∇f(W(t),xi),W

∗⟩]

≥ 1

n

n∑
i=1

ℓ′[yi · f(W(t),xi)] · [yi · q · f(W(t),xi)− q log(2q/ϵ)]

≥ q · 1
n

n∑
i=1

[ℓ(f(W(t),xi))− ℓ(log(2q/ϵ))]

≥ q · LS(W
(t))− ϵ/2,

where the second inequality follows by the convexity of the cross-entropy loss function. With the
above key technique, we can prove the following lemma.
Lemma 5.6. Let T, T1 be defined in Theorem 4.3 and Lemma 5.5 respectively. Then under the same
conditions as Theorem 4.3, for any t ∈ [T1, T ], it holds that |ρ(t)j,r,i| ≤ σ0σp

√
d for all j ∈ {±1},

r ∈ [m] and i ∈ [n]. Moreover, letW∗ be the collection of CNN parameters with convolution filters
w∗

j,r = w
(0)
j,r + 2qm log(2q/ϵ) · j · ∥µ∥−2

2 · µ. Then the following bound holds

1

t− T1 + 1

t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(t− T1 + 1)
+

ϵ

(2q − 1)

for all t ∈ [T1, T ], where we denote ∥W∥F =
√

∥W+1∥2F + ∥W−1∥2F .

Lemma 5.6 states two main results on signal learning. First of all, during this training period, it
is guaranteed that the coefficients of noise vectors ρ(t)j,r,i in the signal-noise decomposition remain
sufficiently small. Moreover, it also gives an optimization type result that the best iterate in [T1, T ]
is small as long as T is large enough. Clearly, the convergence of the training loss stated in Theo-
rems 4.3 directly follows by choosing T to be sufficiently large in Lemmas 5.6. The lemma below
further gives an upper bound on the test loss.
Lemma 5.7. Let T be defined in Theorem 4.3. Under the same conditions as Theorem 4.3, for any
t ≤ T with LS(W

(t)) ≤ 1, it holds that LD(W
(t)) ≤ 6 · LS(W

(t)) + exp(−n2).

Below we finalize the proof of Theorem 4.3. The proofs of other results are in the appendix.

Proof of Theorem 4.3. The first part of Theorem 4.3 follows by Lemma 5.5 and the monotonicity of
γ
(t)
j,r . The second part of Theorem 4.3 follows by Lemma 5.6. For the third part, let W∗ be defined

in Lemma 5.6. Then by the definition of W∗, we have

∥W(T1) −W∗∥F ≤ ∥W(T1) −W(0)∥F + ∥W(0) −W∗∥F

≤
∑
j,r

γ
(T1)
j,r ∥µ∥−1

2 +
∑
j,r,i

ρ
(T1)
j,r,i

∥ξi∥2
+
∑
j,r,i

ρ(T1)
j,r,i

∥ξi∥2
+Θ(m3/2 log(1/ϵ))∥µ∥−1

2

= Õ(m3/2∥µ∥−1
2 ),

where the first inequality is by triangle inequality, the second inequality is by the signal-noise de-
composition of W(T1) and the definition of W∗, and the last equality is by Proposition 5.3 and
Lemma 5.5. Therefore, choosing T = Θ̃(η−1T1 + η−1ϵ−1m3∥µ∥−2

2 ) = Θ̃(η−1σ
−(q−2)
0 ∥µ∥−q

2 +
η−1ϵ−1m3∥µ∥−2

2 ) in Lemma 5.6 ensures that

1

T − T1 + 1

T∑
t=T1

LS(W
(t)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(T − T1 + 1)
+

ϵ

2q − 1
≤ Õ(m3∥µ∥−2

2 )

(2q − 1)η(T − T1 + 1)
+

ϵ

2q − 1
≤ ϵ,
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and there exists t ∈ [T1, T ] such that LS(W
(t)) ≤ ϵ. This completes the proof of the third part of

Theorem 4.3. Finally, combining this bound with Lemma 5.7 gives

LD(W
(t)) ≤ 6 · LS(W

(t)) + exp(−n2) ≤ 6ϵ+ exp(−n2),

which proves the last part of Theorem 4.3.

6 Conclusion and Future Work

This paper utilizes a signal-noise decomposition to study the signal learning and noise memorization
process in the training of a two-layer CNN. We precisely give the conditions under which the CNN
will mainly focus on learning signals or memorizing noises, and reveals a phase transition of the
population loss with respect to the sample size, signal strength, noise level, and dimension. Our
result theoretically demonstrates that benign overfitting can happen in neural network training. An
important future work direction is to study the benign overfitting phenomenon of neural networks
in learning other data models. Moreover, it is also important to generalize our analysis to deep
convolutional neural networks.
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A Additional Related Work

There has also been a large number of works studying the optimization and generalization of neural
networks. A series of work (Li and Yuan, 2017; Soltanolkotabi, 2017; Du et al., 2018a,b; Zhong
et al., 2017; Zhang et al., 2019; Cao and Gu, 2019b) studied the parameter recovery problem in
two-layer neural networks, where the data are given by a teacher network and the task is to recover
the parameters in the teacher network. These works either focus on the noiseless setting, or requires
the number of training data points to be larger than the number of parameters in the network, and
therefore does not cover the setting where the neural network can overfit the training data. An-
other line of works (Neyshabur et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2018; Golowich
et al., 2018; Arora et al., 2018) have studied the generalization gap between the training and test
losses of neural networks with uniform convergence based arguments. However, these results are
not algorithm-dependent and cannot explain benign overfitting. Some recent works studied the gen-
eralization gap based on stability based arguments (Bousquet and Elisseeff, 2002; Hardt et al., 2016;
Mou et al., 2017; Chen et al., 2018). A more recent line of works studied the convergence (Jacot
et al., 2018; Li and Liang, 2018; Du et al., 2019b; Allen-Zhu et al., 2019b; Du et al., 2019a; Zou
et al., 2019) and test error bounds (Allen-Zhu et al., 2019a; Arora et al., 2019a,b; Cao and Gu, 2019a;
Ji and Telgarsky, 2020; Chen et al., 2019) of over-parameterized networks in the neural tangent ker-
nel regime. However, these works depend on the equivalence between neural network training and
kernel methods, which cannot fully explain the success of deep learning. Compared with the works
mentioned above, our work has a different focus which is to study the conditions for benign and
harmful overfitting.

B Preliminary Lemmas

In this section, we present some pivotal lemmas that give some important properties of the data and
the neural network parameters at their random initialization.

Lemma B.1. Suppose that δ > 0 and n ≥ 8 log(4/δ). Then with probability at least 1− δ,

|{i ∈ [n] : yi = 1}|, |{i ∈ [n] : yi = −1}| ≥ n/4.

Proof of Lemma B.1. By Hoeffding’s inequality, with probability at least 1− δ/2, we have∣∣∣∣∣ 1n
n∑

i=1

1{yi = 1} − 1

2

∣∣∣∣∣ ≤
√

log(4/δ)

2n
.

Therefore, as long as n ≥ 8 log(4/δ), we have

|{i ∈ [n] : yi = 1}| =
n∑

i=1

1{yi = 1} ≥ n

2
− n ·

√
log(4/δ)

2n
≥ n

4
.

This proves the result for |{i ∈ [n] : yi = 1}|. The proof for |{i ∈ [n] : yi = −1}| is exactly the
same, and we can conclude the proof by applying a union bound.

The following lemma estimates the norms of the noise vectors ξi, i ∈ [n], and gives an upper bound
of their inner products with each other.

Lemma B.2. Suppose that δ > 0 and d = Ω(log(4n/δ)). Then with probability at least 1− δ,

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√
d log(4n2/δ)

for all i, i′ ∈ [n].

Proof of Lemma B.2. By Bernstein’s inequality, with probability at least 1− δ/(2n) we have∣∣∥ξi∥22 − σ2
pd
∣∣ = O(σ2

p ·
√
d log(4n/δ)).
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Therefore, as long as d = Ω(log(4n/δ)), we have

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2.

Moreover, clearly ⟨ξi, ξi′⟩ has mean zero. For any i, i′ with i ̸= i′, by Bernstein’s inequality, with
probability at least 1− δ/(2n2) we have

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ).

Applying a union bound completes the proof.

The following lemma studies the inner product between a randomly initialized CNN convolutional
filter w(0)

j,r , j ∈ {+1,−1} and r ∈ [m] and the signal/noise vectors in the training data. The
calculations characterize how the neural network at initialization randomly captures signal and noise
information.
Lemma B.3. Suppose that d ≥ Ω(log(mn/δ)), m = Ω(log(1/δ)). Then with probability at least
1− δ,

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(8m/δ) · σ0∥µ∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ) · σ0σp

√
d

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,

σ0∥µ∥2/2 ≤ max
r∈[m]

j · ⟨w(0)
j,r ,µ⟩ ≤

√
2 log(8m/δ) · σ0∥µ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξi⟩ ≤ 2
√

log(8mn/δ) · σ0σp

√
d

for all j ∈ {±1} and i ∈ [n].

Proof of Lemma B.3. It is clear that for each r ∈ [m], j · ⟨w(0)
j,r ,µ⟩ is a Gaussian random variable

with mean zero and variance σ2
0∥µ∥22. Therefore, by Gaussian tail bound and union bound, with

probability at least 1− δ/4,

j · ⟨w(0)
j,r ,µ⟩ ≤ |⟨w(0)

j,r ,µ⟩| ≤
√
2 log(8m/δ) · σ0∥µ∥2.

Moreover, P(σ0∥µ∥2/2 > j · ⟨w(0)
j,r ,µ⟩) is an absolute constant, and therefore by the condition on

m, we have

P
(
σ0∥µ∥2/2 ≤ max

r∈[m]
j · ⟨w(0)

j,r ,µ⟩) = 1− P(σ0∥µ∥2/2 > max
r∈[m]

j · ⟨w(0)
j,r ,µ⟩

)
= 1− P

(
σ0∥µ∥2/2 > j · ⟨w(0)

j,r ,µ⟩
)2m

≥ 1− δ/4.

By Lemma B.2, with probability at least 1−δ/4, σp

√
d/

√
2 ≤ ∥ξi∥2 ≤

√
3/2 ·σp

√
d for all i ∈ [n].

Therefore, the result for ⟨w(0)
j,r , ξi⟩ follows the same proof as j · ⟨w(0)

j,r ,µ⟩.

C Signal-noise Decomposition Analysis

In this section, we establish a series of results on the signal-noise decomposition. These results are
based on the conclusions in Section B, which hold with high probability. Denote by Eprelim the event
that all the results in Section B hold. Then for simplicity and clarity, we state all the results in this
and the following sections conditional on Eprelim.

LemmaC.1 (Restatement of Lemma 5.1). The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

defined in Definition 4.1
satisfy the following iterative equations:

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0,
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γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · µ⟩) · ∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j)

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Proof of Lemma C.1. By our data model in Definition 3.1 and Gaussian initialization of the CNN
weights, it is clear that with probability 1, the vectors are linearly independent. Therefore, the
decomposition (4.1) is unique. Now consider γ̃(0)

j,r , ρ̃
(0)
j,r,i = 0 and

γ̃
(t+1)
j,r = γ̃

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · µ⟩) · ∥µ∥
2
2,

ρ̃
(t+1)
j,r,i = ρ̃

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · ∥ξi∥
2
2 · jyi,

It is then easy to check by (3.1) that

w
(t)
j,r = w

(0)
j,r + j · γ̃(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ̃
(t)
j,r,i∥ξi∥

−2
2 · ξi.

Hence by the uniqueness of the decomposition we have γ
(t)
j,r = γ̃

(t)
j,r and ρ

(t)
j,r,i = ρ̃

(t)
j,r,i. Then we

have that

ρ
(t)
j,r,i = −

t−1∑
s=0

η

nm
· ℓ′(s)i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · jyi

Moreover, note that ℓ′(t)i < 0 by the definition of the cross-entropy loss. Therefore,

ρ
(t)
j,r,i = −

t−1∑
s=0

η

nm
· ℓ′(s)i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · 1(yi = j), (C.1)

ρ(t)
j,r,i

= −
t−1∑
s=0

η

nm
· ℓ′(s)i · σ′(⟨w(s)

j,r , ξi⟩) · ∥ξi∥
2
2 · 1(yi = −j). (C.2)

Writing out the iterative versions of (C.1) and (C.2) completes the proof.

We can futher plug the signal-noise decomposition (4.1) into the iterative formulas in Lemma C.1.
By the second equation in Lemma C.1, we have

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(yi · ⟨w(0)

j,r ,µ⟩+ yi · j · γ(t)
j,r) · ∥µ∥

2
2, (C.3)

Moreover, by the third equation in Lemma C.1, we have

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i σ′

(
⟨w(0)

j,r , ξi⟩+
n∑

i′=1

ρ
(t)
j,r,i′

⟨ξi′ , ξi⟩
∥ξi′∥22

+
n∑

i′=1

ρ(t)
j,r,i′

⟨ξi′ , ξi⟩
∥ξi′∥22

)
· ∥ξi∥22

(C.4)

if j = yi, and ρ
(t)
j,r,i = 0 for all t ≥ 0 if j = −yi. Similarly, by the last equation in Lemma C.1, we

have

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
· ℓ′(t)i σ′

(
⟨w(0)

j,r , ξi⟩+
n∑

i′=1

ρ
(t)
j,r,i′

⟨ξi′ , ξi⟩
∥ξi′∥22

+
n∑

i′=1

ρ(t)
j,r,i′

⟨ξi′ , ξi⟩
∥ξi′∥22

)
· ∥ξi∥22

(C.5)
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if j = −yi, and ρ(t)j,r,i
= 0 for all t ≥ 0 if j = yi.

We will now show that the parameter of the signal-noise decomposition will stay a reasonable scale
during a long time of training. Let us consider the learning period 0 ≤ t ≤ T ∗, where T ∗ =
η−1poly(ϵ−1, ∥µ∥−1

2 , d−1σ−2
p , σ−1

0 , n,m, d) is the maximum admissible iterations. Note that we
can consider any polynomial training time T ∗. Denote α = 4 log(T ∗). Here we list the exact
conditions for η, σ0, d required by the proofs in this section, which are part of Condition 4.2:

η = O
(
min{nm/(qσ2

pd), nm/(q2q+2αq−2σ2
pd), nm/(q2q+2αq−2∥µ∥22)}

)
, (C.6)

σ0 ≤ [16
√

log(8mn/δ)]−1 min{∥µ∥−1
2 , (σp

√
d)−1}, (C.7)

d ≥ 1024 log(4n2/δ)α2n2. (C.8)

Denote β = 2maxi,j,r{|⟨w(0)
j,r ,µ⟩|, |⟨w

(0)
j,r , ξi⟩|}. By Lemma B.3, with probability at least 1 − δ,

we can upper bound β by 4
√

log(8mn/δ) · σ0 ·max{∥µ∥2, σp

√
d}. Then, by (C.7) and (C.8), it is

straightforward to verify the following inequality:

4max

{
β, 8n

√
log(4n2/δ)

d
α

}
≤ 1. (C.9)

Suppose the conditions listed in (C.6), (C.7) and (C.8) hold, we claim that for 0 ≤ t ≤ T ∗ the
following property holds.

Proposition C.2 (Restatement of Proposition 5.3). Under Condition 4.2, for 0 ≤ t ≤ T ∗, we have
that

0 ≤ γ
(t)
j,r , ρ

(t)
j,r,i ≤ α, (C.10)

0 ≥ ρ(t)
j,r,i

≥ −β − 16n

√
log(4n2/δ)

d
α ≥ −α. (C.11)

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

We will use induction to prove Proposition C.2. We first introduce several technical lemmas that
will be used for the proof of Proposition C.2.

Lemma C.3. For any t ≥ 0, it holds that ⟨w(t)
j,r −w

(0)
j,r ,µ⟩ = j · γ(t)

j,r for all r ∈ [m], j ∈ {±1}.

Proof of Lemma C.3. For any time t ≥ 0, we have that

⟨w(t)
j,r −w

(0)
j,r ,µ⟩ = j · γ(t)

j,r +

n∑
i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ ,µ⟩+

n∑
i′=1

ρ(t)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ ,µ⟩

= j · γ(t)
j,r ,

where the equation is by our orthogonal assumption.

Lemma C.4. Under Condition 4.2, suppose (C.10) and (C.11) hold at iteration t. Then

ρ(t)
j,r,i

− 8n

√
log(4n2/δ)

d
α ≤ ⟨w(t)

j,r −w
(0)
j,r , ξi⟩ ≤ ρ(t)

j,r,i
+ 8n

√
log(4n2/δ)

d
α, j ̸= yi,

ρ
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α ≤ ⟨w(t)

j,r −w
(0)
j,r , ξi⟩ ≤ ρ

(t)
j,r,i + 8n

√
log(4n2/δ)

d
α, j = yi

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Proof of Lemma C.4. For j ̸= yi, we have that ρ
(t)
j,r,i = 0 and

⟨w(t)
j,r −w

(0)
j,r , ξi⟩ =

n∑
i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩+

n∑
i′=1

ρ(t)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξi⟩
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≤ 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|ρ(t)j,r,i′ |+ 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|ρ(t)
j,r,i′

|+ ρ(t)
j,r,i

≤ ρ(t)
j,r,i

+ 8n

√
log(4n2/δ)

d
α,

where the second inequality is by Lemma B.2 and the last inequality is by |ρ(t)j,r,i′ |, |ρ
(t)
j,r,i′ | ≤ α in

(C.10) Similarly, for yi = j, we have that ρ(t)
j,r,i

= 0 and

⟨w(t)
j,r −w

(0)
j,r , ξi⟩ =

n∑
i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩+

n∑
i′=1

ρ(t)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξi⟩

≤ ρ
(t)
j,r,i + 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|ρ(t)j,r,i′ |+ 4

√
log(4n2/δ)

d

∑
i′ ̸=i

|ρ(t)
j,r,i′

|

≤ ρ
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α,

where the first inequality is by Lemma B.1 and the second inequality is by |ρ(t)j,r,i′ |, |ρ
(t)
j,r,i′ | ≤ α

in (C.10). Similarly, we can show that ⟨w(t)
j,r − w

(0)
j,r , ξi⟩ ≥ ρ(t)

j,r,i
− 8n

√
log(4n2/δ)/d · α and

⟨w(t)
j,r −w

(0)
j,r , ξi⟩ ≥ ρ

(t)
j,r,i − 8n

√
log(4n2/δ)/d · α, which completes the proof.

Lemma C.5. Under Condition 4.2, suppose (C.10) and (C.11) hold at iteration t. Then

⟨w(t)
j,r, yiµ⟩ ≤ ⟨w(0)

j,r , yiµ⟩,

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+ 8n

√
log(4n2/δ)

d
α,

Fj(W
(t)
j ,xi) ≤ 1

for all r ∈ [m] and j ̸= yi.

Proof of Lemma C.5. For j ̸= yi, we have that

⟨w(t)
j,r, yiµ⟩ = ⟨w(0)

j,r , yiµ⟩+ yi · j · γ(t)
j,r ≤ ⟨w(0)

j,r , yiµ⟩, (C.12)

where the inequality is by γ(t)
j,r ≥ 0. In addition, we have

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+ ρ(t)
j,r,i

+ 8n

√
log(4n2/δ)

d
α ≤ ⟨w(0)

j,r , ξi⟩+ 8n

√
log(4n2/δ)

d
α, (C.13)

where the first inequality is by Lemma C.4 and the second inequality is due to ρ(t)
j,r,i

≤ 0. Then we
can get that

Fj(W
(t)
j ,xi) =

1

m

m∑
r=1

[σ(⟨w(t)
j,r,−j · µ⟩) + σ(⟨w(t)

j,r, ξi⟩)]

≤ 2q+1 max
j,r,i

{
|⟨w(0)

j,r ,µ⟩|, |⟨w
(0)
j,r , ξi⟩|, 8n

√
log(4n2/δ)

d
α

}q

≤ 1,

where the first inequality is by (C.12), (C.13) and the second inequality is by (C.9).

Lemma C.6. Under Condition 4.2, suppose (C.10) and (C.11) hold at iteration t. Then

⟨w(t)
j,r, yiµ⟩ = ⟨w(0)

j,r , yiµ⟩+ γ
(t)
j,r ,

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+ ρ
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. If max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we further have that

Fj(W
(t)
j ,xi) = O(1).
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Proof of Lemma C.6. For j = yi, we have that

⟨w(t)
j,r, yiµ⟩ = ⟨w(0)

j,r , yiµ⟩+ γ
(t)
j,r , (C.14)

where the equation is by Lemma C.3. We also have that

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+ ρ
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α, (C.15)

where the inequality is by Lemma C.4. Ifmax{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we have following bound

Fj(W
(t)
j ,xi) =

1

m

m∑
r=1

[σ(⟨w(t)
j,r,−j · µ) + σ(⟨w(t)

j,r, ξi⟩)]

≤ 2 · 3q max
j,r,i

{
γ
(t)
j,r , ρ

(t)
j,r,i, |⟨w

(0)
j,r ,µ⟩|, |⟨w

(0)
j,r , ξi⟩|, 8n

√
log(4n2/δ)

d
α

}q

= O(1),

where the first inequality is by (C.14), (C.15) and the second inequality is by (C.9) where β =

2maxi,j,r{|⟨w(0)
j,r ,µ⟩|, |⟨w

(0)
j,r , ξi⟩|}.

Now we are ready to prove Proposition C.2.

Proof of Proposition C.2. Our proof is based on induction. The results are obvious at t = 0 as all
the coefficients are zero. Suppose that there exists T̃ ≤ T ∗ such that the results in Proposition C.2
hold for all time 0 ≤ t ≤ T̃ − 1. We aim to prove that they also hold for t = T̃ .

We first prove that (C.11) holds for t = T̃ , i.e., ρ(t)
j,r,i

≥ −β − 16n
√

log(4n2/δ)
d α for t = T̃ , r ∈ [m],

j ∈ {±1} and i ∈ [n]. Notice that ρ(t)
j,r,i

= 0, ∀j = yi. Therefore, we only need to consider the case

that j ̸= yi. When ρ(T̃−1)
j,r,i

≤ −0.5β − 8n
√

log(4n2/δ)
d α, by Lemma C.4 we have that

⟨w(T̃−1)
j,r , ξi⟩ ≤ ρ(T̃−1)

j,r,i
+ ⟨w(0)

j,r , ξi⟩+ 8n

√
log(4n2/δ)

d
α ≤ 0,

and thus

ρ(T̃ )
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
· ℓ′(T̃−1)

i · σ′(⟨w(T̃−1)
j,r , ξi⟩) · 1(yi = −j)∥ξi∥22

= ρ(T̃−1)
j,r,i

≥ −β − 16n

√
log(4n2/δ)

d
α,

where the last inequality is by induction hypothesis. When ρ(T̃−1)
j,r,i

≥ −0.5β−8n
√

log(4n2/δ)
d α, we

have that

ρ(T̃ )
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
· ℓ′(T̃−1)

i · σ′(⟨w(T−1)
j,r , ξi⟩) · 1(yi = −j)∥ξi∥22

≥ −0.5β − 8n

√
log(4n2/δ)

d
α−O

(
ησ2

pd

nm

)
σ′
(
0.5β + 8n

√
log(4n2/δ)

d
α

)
≥ −0.5β − 8n

√
log(4n2/δ)

d
α−O

(
ηqσ2

pd

nm

)(
0.5β + 8n

√
log(4n2/δ)

d
α

)
≥ −β − 16n

√
log(4n2/δ)

d
α,

where we use −ℓ
′(T̃−1)
i ≤ 1 and ∥ξi∥2 = O(σ2

pd) in the first inequality, the second inequality is by

0.5β + 8n
√

log(4n2/δ)
d α ≤ 1, and the last inequality is by η = O

(
nm/(qσ2

pd)
)
in (C.6).
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Next we prove (C.10) holds for t = T̃ . We have

|ℓ′(t)i | = 1

1 + exp{yi · [F+1(W
(t)
+1,xi)− F−1(W

(t)
−1,xi)]}

≤ exp{−yi · [F+1(W
(t)
+1,xi)− F−1(W

(t)
−1,xi)]}

≤ exp{−Fyi
(W(t)

yi
,xi) + 1}. (C.16)

where the last inequality is due to Lemma C.5. Moreover, recall the update rule of γ(t)
j,r and ρ(t)j,r,i,

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · µ⟩)∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · 1(yi = j)∥ξi∥22.

Let tj,r,i be the last time t < T ∗ that ρ(t)j,r,i ≤ 0.5α. Then we have that

ρ
(T̃ )
j,r,i = ρ

(tj,r,i)
j,r,i − η

nm
· ℓ′(tj,r,i)i · σ′(⟨w(tj,r,i)

j,r , ξi⟩) · 1(yi = j)∥ξi∥22︸ ︷︷ ︸
I1

−
∑

tj,r,i<t<T

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · 1(yi = j)∥ξi∥22︸ ︷︷ ︸
I2

. (C.17)

We first bound I1 as follows,

|I1| ≤ 2qn−1m−1η

(
ρ
(tj,r,i)
j,r,i + 0.5β + 8n

√
log(4n2/δ)

d
α

)q−1

σ2
pd ≤ q2qn−1m−1ηαq−1σ2

pd ≤ 0.25α,

where the first inequality is by Lemmas C.4 and B.2, the second inequality is by β ≤ 0.1α and

8n
√

log(4n2/δ)
d α ≤ 0.1α, the last inequality is by η ≤ nm/(q2q+2αq−2σ2

pd).

Second, we bound I2. For tj,r,i < t < T̃ and yi = j, we can lower bound ⟨w(t)
j,r, ξi⟩ as follows,

⟨w(t)
j,r, ξi⟩ ≥ ⟨w(0)

j,r , ξi⟩+ ρ
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α

≥ −0.5β + 0.5α− 8n

√
log(4n2/δ)

d
α

≥ 0.25α,

where the first inequality is by Lemma C.4, the second inequality is by ρ
(t)
j,r,i > 0.5α and

⟨w(0)
j,r , ξi⟩ ≥ −0.5β due to the definition of tj,r,i and β, the last inequality is by β ≤ 0.1α and

8n
√

log(4n2/δ)
d α ≤ 0.1α. Similarly, for tj,r,i < t < T̃ and yi = j, we can also upper bound

⟨w(t)
j,r, ξi⟩ as follows,

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+ ρ
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α

≤ 0.5β + α+ 8n

√
log(4n2/δ)

d
α

≤ 2α,

where the first inequality is by Lemma C.4, the second inequality is by induction hypothesis ρ(t)j,r,i ≤

α, the last inequality is by β ≤ 0.1α and 8n
√

log(4n2/δ)
d α ≤ 0.1α. Thus, plugging the upper and

lower bounds of ⟨w(t)
j,r, ξi⟩ into I2 gives

|I2| ≤
∑

tj,r,i<t<T̃

η

nm
· exp(−σ(⟨w(t)

j,r, ξi⟩) + 1) · σ′(⟨w(t)
j,r, ξi⟩) · 1(yi = j)∥ξi∥22
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≤ eq2qηT ∗

nm
exp(−αq/4q)αq−1σ2

pd

≤ 0.25T ∗ exp(−αq/4q)α

≤ 0.25T ∗ exp(− log(T ∗)q)α

≤ 0.25α,

where the first inequality is by (C.16), the second inequality is by Lemma B.2, the third in-
equality is by η = O

(
nm/(q2q+2αq−2σ2

pd)
)
in (C.6), the fourth inequality is by our choice of

α = 4 log(T ∗) and the last inequality is due to the fact that log(T ∗)q ≥ log(T ∗). Plugging the

bound of I1, I2 into (C.17) completes the proof for ρ. Similarly, we can prove that γ(T̃ )
j,r ≤ α us-

ing η = O
(
nm/(q2q+2αq−2∥µ∥22)

)
in (C.6). Therefore Proposition C.2 holds for t = T̃ , which

completes the induction.

Based on Proposition C.2, we introduce some important properties of the training loss function for
0 ≤ t ≤ T ∗.
Lemma C.7 (Restatement of Lemma 5.4). Under Condition 4.2, for 0 ≤ t ≤ T ∗, the following
result holds.

∥∇LS(W
(t))∥2F ≤ O(max{∥µ∥22, σ2

pd})LS(W
(t)).

Proof of Lemma C.7. We first prove that

−ℓ′
(
yif(W

(t),xi)) · ∥∇f(W(t),xi

)
∥2F = O(max{∥µ∥22, σ2

pd}). (C.18)

Without loss of generality, we suppose that yi = 1 and xi = [µ⊤, ξi]. Then we have that

∥∇f(W(t),xi)∥F ≤ 1

m

∑
j,r

∥∥∥∥[σ′(⟨w(t)
j,r,µ⟩)µ+ σ′(⟨w(t)

j,r, ξi⟩)ξi
]∥∥∥∥

2

≤ 1

m

∑
j,r

σ′(⟨w(t)
j,r,µ⟩)∥µ∥2 +

1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)∥ξi∥2

≤ 2q

[
F+1(W

(t)
+1,xi)

](q−1)/q

max{∥µ∥2, 2σp

√
d}

+ 2q

[
F−1(W

(t)
−1,xi)

](q−1)/q

max{∥µ∥2, 2σp

√
d}

≤ 2q

[
F+1(W

(t)
+1,xi)

](q−1)/q

max{∥µ∥2, 2σp

√
d}+ 2qmax{∥µ∥2, 2σp

√
d},

where the first and second inequalities are by triangle inequality, the third inequality is by Jensen’s in-
equality and Lemma B.2, and the last inequality is due to Lemma C.5. Denote A = F+1(W

(t)
+1,xi).

Then we have that A ≥ 0, and besides, F−1(W
(t)
−1,xi) ≤ 1 by Lemma C.5. Then we have that

− ℓ′
(
yif(W

(t),xi)
)
· ∥∇f(W(t),xi)∥2F

≤ −ℓ′(A− 1)

(
2q ·A(q−1)/q max{∥µ∥2, 2σp

√
d}+ 2q ·max{∥µ∥2, 2σp

√
d}
)2

= −4q2ℓ′(A− 1)(A(q−1)/q + 1)2 ·max{∥µ∥22, 4σ2
pd}

≤
(
max
z>0

−4q2ℓ′(z − 1)(z(q−1)/q + 1)2
)
max{∥µ∥22, 4σ2

pd}

(i)
= O(max{∥µ∥22, σ2

pd}),

where (i) is bymaxz≥0 −4q2ℓ′(z−1)(z(q−1)/q+1)2 < ∞ because ℓ′ has an exponentially decaying
tail. Now we can upper bound the gradient norm ∥∇LS(W

(t))∥F as follows,

∥∇LS(W
(t))∥2F ≤

[
1

n

n∑
i=1

ℓ′
(
yif(W

(t),xi)
)
∥∇f(W(t),xi)∥F

]2
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≤
[
1

n

n∑
i=1

√
−O(max{∥µ∥22, σ2

pd})ℓ′
(
yif(W(t),xi)

)]2
≤ O(max{∥µ∥22, σ2

pd}) ·
1

n

n∑
i=1

−ℓ′
(
yif(W

(t),xi)
)

≤ O(max{∥µ∥22, σ2
pd})LS(W

(t)),

where the first inequality is by triangle inequality, the second inequality is by (C.18), the third
inequality is by Cauchy-Schwartz inequality and the last inequality is due to the property of the
cross entropy loss −ℓ′ ≤ ℓ.

D Signal Learning

In this section, we consider the signal learning case under the condition that n∥µ∥q2 ≥ Ω̃(σq
p(
√
d)q).

We remind the readers that the proofs in this section are based on the results in Section B, which
hold with high probability.

D.1 First stage

Lemma D.1 (Restatement of Lemma 5.5). Under the same conditions as Theorem 4.3, in particular
if we choose

n · SNRq ≥ C log(6/σ0∥µ∥2)22q+6[4 log(8mn/δ)](q−1)/2, (D.1)

where C = O(1) is a positive constant, there exists time

T1 =
C log(6/σ0∥µ∥2)2q+1m

ησq−2
0 ∥µ∥q2

such that

• maxr γ
(T1)
j,r ≥ 2 for j ∈ {±1}.

• |ρ(t)j,r,i| ≤ σ0σp

√
d/2 for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.

Proof of Lemma D.1. Let

T+
1 =

nmη−1σ2−q
0 σ−q

p d−q/2

2q+4q[4 log(8mn/δ)](q−1)/2
. (D.2)

We first prove the second bullet. Define Ψ(t) = maxj,r,i |ρ(t)j,r,i| = maxj,r,i{ρ(t)j,r,i,−ρ(t)
j,r,i

}. We use
induction to show that

Ψ(t) ≤ σ0σp

√
d/2 (D.3)

for all 0 ≤ t ≤ T+
1 . By definition, clearly we have Ψ(0) = 0. Now suppose that there exists some

T̃ ≤ T+
1 such that (D.3) holds for 0 < t ≤ T̃ − 1. Then by (C.4) and (C.5) we have

Ψ(t+1) ≤ Ψ(t) +max
j,r,i

{
η

nm
· |ℓ′(t)i | · σ′

(
⟨w(0)

j,r , ξi⟩+
n∑

i′=1

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22
+

n∑
i′=1

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22

)
· ∥ξi∥22

}

≤ Ψ(t) +max
j,r,i

{
η

nm
· σ′

(
⟨w(0)

j,r , ξi⟩+ 2 ·
n∑

i′=1

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22

)
· ∥ξi∥22

}

= Ψ(t) +max
j,r,i

{
η

nm
· σ′

(
⟨w(0)

j,r , ξi⟩+ 2Ψ(t) + 2 ·
n∑

i′ ̸=i

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22

)
· ∥ξi∥22

}

≤ Ψ(t) +
ηq

nm
·

[
2 ·
√
log(8mn/δ) · σ0σp

√
d+

(
2 +

4nσ2
p ·
√

d log(4n2/δ)

σ2
pd/2

)
·Ψ(t)

]q−1

· 2σ2
pd
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≤ Ψ(t) +
ηq

nm
·
(
2 ·
√
log(8mn/δ) · σ0σp

√
d+ 4Ψ(t)

)q−1 · 2σ2
pd

≤ Ψ(t) +
ηq

nm
·
(
4 ·
√
log(8mn/δ) · σ0σp

√
d
)q−1 · 2σ2

pd,

where the second inequality is by |ℓ′(t)i | ≤ 1, the third inequality is due to Lemmas B.2 and B.3, the
fourth inequality follows by the condition that d ≥ 16n2 log(4n2/δ), and the last inequality follows
by the induction hypothesis (D.3). Taking a telescoping sum over t = 0, 1, . . . , T̃ − 1 then gives

Ψ(T̃ ) ≤ T̃ · ηq

nm
·
(
4 ·
√
log(8mn/δ) · σ0σp

√
d
)q−1 · 2σ2

pd

≤ T+
1 · ηq

nm
·
(
4 ·
√
log(8mn/δ) · σ0σp

√
d
)q−1 · 2σ2

pd

≤ σ0σp

√
d

2
,

where the second inequality follows by T̃ ≤ T+
1 in our induction hypothesis. Therefore, by induc-

tion, we have Ψ(t) ≤ σ0σp

√
d/2 for all t ≤ T+

1 .

Now, without loss of generality, let us consider j = 1 first. Denote by T1,1 the last time for t
in the period [0, T+

1 ] satisfying that maxr γ
(t)
1,r ≤ 2. Then for t ≤ T1,1, maxj,r,i{|ρ(t)j,r,i|} =

O(σ0σp

√
d) = O(1) and maxr γ

(t)
1,r ≤ 2. Therefore, by Lemmas C.5 and C.6, we know that

F−1(W
(t)
−1,xi), F+1(W

(t)
+1,xi) = O(1) for all i with yi = 1. Thus there exists a positive constant

C1 such that −ℓ
′(t)
i ≥ C1 for all i with yi = 1.

By (C.3), for t ≤ T1,1 we have

γ
(t+1)
1,r = γ

(t)
1,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(yi · ⟨w(0)

1,r,µ⟩+ yi · γ(t)
1,r) · ∥µ∥22

≥ γ
(t)
1,r +

C1η

nm
·
∑
yi=1

σ′(⟨w(0)
1,r,µ⟩+ γ

(t)
1,r) · ∥µ∥22.

Denote γ̂(t)
1,r = γ

(t)
1,r + ⟨w(0)

1,r,µ⟩ and let A(t) = maxr γ̂
(t)
1,r. Then we have

A(t+1) ≥ A(t) +
C1η

nm
·
∑
yi=1

σ′(A(t)) · ∥µ∥22

≥ A(t) +
C1ηq∥µ∥22

4m

[
A(t)

]q−1

≥
(
1 +

C1ηq∥µ∥22
4m

[
A(0)

]q−2
)
A(t)

≥
(
1 +

C1ηqσ
q−2
0 ∥µ∥q2
2qm

)
A(t),

where the second inequality is by the lower bound on the number of positive data in Lemma B.1, the
third inequality is due to the fact that A(t) is an increasing sequence, and the last inequality follows
by A(0) = maxr⟨w(0)

1,r,µ⟩ ≥ σ0∥µ∥2/2 proved in Lemma B.3. Therefore, the sequence A(t) will
exponentially grow and we have that

A(t) ≥
(
1 +

C1ηqσ
q−2
0 ∥µ∥q2
2qm

)t

A(0) ≥ exp

(
C1ηqσ

q−2
0 ∥µ∥q2

2q+1m
t

)
A(0) ≥ exp

(
C1ηqσ

q−2
0 ∥µ∥q2

2q+1m
t

)
σ0∥µ∥2

2
,

where the second inequality is due to the fact that 1 + z ≥ exp(z/2) for z ≤ 2 and our condition
of η and σ0 listed in Condition 4.2, and the last inequality follows by Lemma B.3 and A(0) =

maxr⟨w(0)
1,r,µ⟩. Therefore, A(t) will reach 3 within T1 = log(6/σ0∥µ∥2)2

q+1m

C1ηqσ
q−2
0 ∥µ∥q

2

iterations. Since

maxr γ
(t)
1,r ≥ A(t) −maxr |⟨w(0)

1,r,µ⟩| ≥ A(t) − 1, maxr γ
(t)
1,r will reach 2 within T1 iterations. We

can next verify that

T1 =
log(6/σ0∥µ∥2)2q+1m

C1ηqσ
q−2
0 ∥µ∥q2

≤
nmη−1σ2−q

0 σ−q
p d−q/2

2q+5q[4 log(8mn/δ)](q−1)/2
= T+

1 /2,
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where the inequality holds due to our SNR condition in (D.1). Therefore, by the definition of T1,1,
we have T1,1 ≤ T1 ≤ T+

1 /2, where we use the non-decreasing property of γ. The proof for j = −1

is similar, and we can prove that maxr γ
(T1,−1)
−1,r ≥ 2 while T1,−1 ≤ T1 ≤ T+

1 /2, which completes
the proof.

D.2 Second Stage

By the results we get in the first stage we know that

w
(T1)
j,r = w

(0)
j,r + j · γ(T1)

j,r · µ

∥µ∥22
+

n∑
i=1

ρ
(T1)
j,r,i ·

ξi
∥ξi∥22

+
n∑

i=1

ρ(T1)
j,r,i

· ξi
∥ξi∥22

.

And at the beginning of the second stage, we have following property holds:

• maxr γ
(T1)
j,r ≥ 2, ∀j ∈ {±1}.

• maxj,r,i |ρ(T1)
j,r,i | ≤ β̂ where β̂ = σ0σp

√
d/2.

Lemma 5.1 implies that the learned feature γ
(t)
j,r will not get worse, i.e., for t ≥ T1, we have that

γ
(t+1)
j,r ≥ γ

(t)
j,r , and thereforemaxr γ

(t)
j,r ≥ 2. Now we choose W∗ as follows:

w∗
j,r = w

(0)
j,r + 2qm log(2q/ϵ) · j · µ

∥µ∥22
.

Based on the above definition ofW∗, we have the following lemma.

Lemma D.2. Under the same conditions as Theorem 4.4, we have that ∥W(T1) − W∗∥F ≤
Õ(m3/2∥µ∥−1

2 ).

Proof of Lemma D.2. We have

∥W(T1) −W∗∥F ≤ ∥W(T1) −W(0)∥F + ∥W(0) −W∗∥F

≤
∑
j,r

γ
(T1)
j,r

∥µ∥2
+
∑
j,r,i

|ρ(T1)
j,r,i |

∥ξi∥2
+
∑
j,r,i

|ρ(T1)
j,r,i

|
∥ξi∥2

+O(m3/2 log(1/ϵ))∥µ∥−1
2

≤ Õ(m∥µ∥−1) +O(nmσ0) +O(m3/2 log(1/ϵ))∥µ∥−1
2

≤ Õ(m3/2∥µ∥−1
2 ),

where the first inequality is by triangle inequality, the second inequality is by our decomposition of
W(T1) and the definition ofW∗, the third inequality is by Proposition C.2 and Lemma D.1, and the
last inequality is by our condition of σ0 in Condition 4.2.

Lemma D.3. Under the same conditions as Theorem 4.3, we have that yi⟨∇f(W(t),xi),W
∗⟩ ≥

q log(2q/ϵ) for all i ∈ [n] and T1 ≤ t ≤ T ∗.

Proof of Lemma D.3. Recall that f(W(t),xi) = (1/m)
∑

j,rj ·
[
σ(⟨wj,r, yi ·µ⟩) + σ(⟨wj,r, ξi⟩)

]
,

so we have

yi⟨∇f(W(t),xi),W
∗⟩ = 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)⟨µ, jw

∗
j,r⟩+

1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yiξi, jw

∗
j,r⟩

=
1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)2qm log(2q/ϵ) +

1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)⟨µ, jw

(0)
j,r ⟩

+
1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)⟨yiξi, jw

(0)
j,r ⟩

≥ 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)2qm log(2q/ϵ)− 1

m

∑
j,r

σ′(⟨w(t)
j,r, yiµ⟩)Õ(σ0∥µ∥2)
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− 1

m

∑
j,r

σ′(⟨w(t)
j,r, ξi⟩)Õ(σ0σp

√
d), (D.4)

where the inequality is by Lemma B.3. Next we will bound the inner-product terms in (D.4) respec-
tively. By Lemma C.6, we have that for j = yi

max
r

{⟨w(t)
j,r, yiµ⟩} = max

r
{γ(t)

j,r + ⟨w(0)
j,r , yiµ⟩} ≥ 2− Õ(σ0∥µ∥2) ≥ 1. (D.5)

We can also get the upper bound of the inner products between the parameter and the signal (noise)
as follows,

|⟨w(t)
j,r,µ⟩|

(i)

≤ |⟨w(0)
j,r ,µ⟩|+ |γ(t)

j,r |
(ii)

≤ Õ(1)

|⟨w(t)
j,r, ξi⟩|

(iii)

≤ |⟨w(0)
j,r , ξi⟩|+ |ρ(t)

j,r,i
|+ |ρ(t)j,r,i|+ 8n

√
log(4n2/δ)

d
α

(iv)

≤ Õ(1), (D.6)

where (i) is by Lemma C.3, (iii) is by Lemma C.4, (ii) and (iv) are due to Proposition C.2. Plugging
(D.5) and (D.6) into (D.4) gives,

yi⟨∇f(W(t),xi),W
∗⟩ ≥ 2q log(2q/ϵ)− Õ(σ0∥µ∥2)− Õ(σ0σp

√
d) ≥ q log(2q/ϵ),

where the last inequality is by σ0 ≤ Õ(m−2/(q−2)n−1) ·min{(σp

√
d)−1, ∥µ∥−1

2 } in Condition 4.2.
This completes the proof.

Lemma D.4. Under the same conditions as Theorem 4.3, we have that

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(t))− ηϵ

for all T1 ≤ t ≤ T ∗.

Proof of Lemma D.4. We first apply a proof technique similar to Lemma 2.6 in Ji and Telgarsky
(2020). The difference between our analysis and Ji and Telgarsky (2020) is that here the neural
network is q homogeneous rather than 1 homogeneous.

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇LS(W

(t)),W(t) −W∗⟩ − η2∥∇LS(W
(t))∥2F

=
2η

n

n∑
i=1

ℓ
′(t)
i [qyif(W

(t),xi)− ⟨∇f(W(t),xi),W
∗⟩]− η2∥∇LS(W

(t))∥2F

≥ 2η

n

n∑
i=1

ℓ
′(t)
i [qyif(W

(t),xi)− q log(2q/ϵ)]− η2∥∇LS(W
(t))∥2F

≥ 2qη

n

n∑
i=1

[ℓ
(
yif(W

(t),xi)
)
− ϵ/(2q)]− η2∥∇LS(W

(t))∥2F

≥ (2q − 1)ηLS(W
(t))− ηϵ,

where the first inequality is by Lemma D.3, the second inequality is due to the convexity of the cross
entropy function, and the last inequality is due to Lemma C.7.

Lemma D.5 (Restatement of Lemma 5.6). Under the same conditions as Theorem 4.3, let T = T1+⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
= T1 + Õ(m3η−1ϵ−1∥µ∥−2

2 ). Then we have maxj,r,i |ρ(t)j,r,i| ≤ 2β̂ = σ0σp

√
d

for all T1 ≤ t ≤ T . Besides,

1

t− T1 + 1

t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(t− T1 + 1)
+

ϵ

2q − 1

for all T1 ≤ t ≤ T , and we can find an iterate with training loss smaller than ϵ within T iterations.
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Proof of Lemma D.5. By Lemma D.4, for any t ∈ [T1, T ], we have that

∥W(s) −W∗∥2F − ∥W(s+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(s))− ηϵ

holds for s ≤ t. Taking a summation, we obtain that
t∑

s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F + ηϵ(t− T1 + 1)

(2q − 1)η
(D.7)

for all T1 ≤ t ≤ T . Dividing (t− T1 + 1) on both side of (D.7) gives that

1

t− T1 + 1

t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(t− T1 + 1)
+

ϵ

2q − 1
.

Then we can take t = T and have that

1

T − T1 + 1

T∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(T − T1 + 1)
+

ϵ

2q − 1
≤ 3ϵ

2q − 1
< ϵ,

where we use the fact that q > 2 and our choice that T = T1+
⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
. Because the mean

is smaller than ϵ, we can conclude that there exist T1 ≤ t ≤ T such that LS(W
(t)) < ϵ.

Finally, we will prove that maxj,r,i |ρ(t)j,r,i| ≤ 2β̂ for all t ∈ [T1, T ]. Plugging T = T1 +⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
into (D.7) gives that

T∑
s=T1

LS(W
(s)) ≤ 2∥W(T1) −W∗∥2F

(2q − 1)η
= Õ(η−1m3∥µ∥22), (D.8)

where the inequality is due to ∥W(T1) −W∗∥F ≤ Õ(m3/2∥µ∥−1
2 ) in Lemma D.2. Define Ψ(t) =

maxj,r,i |ρ(t)j,r,i|. We will use induction to prove Ψ(t) ≤ 2β̂ for all t ∈ [T1, T ]. At t = T1, by the
definition of β̂, clearly we have Ψ(T1) ≤ β̂ ≤ 2β̂. Now suppose that there exists T̃ ∈ [T1, T ] such
that Ψ(t) ≤ 2β̂ for all t ∈ [T1, T̃ − 1]. Then for t ∈ [T1, T̃ − 1], by (C.4) and (C.5) we have

Ψ(t+1) ≤ Ψ(t) +max
j,r,i

{
η

nm
· |ℓ′(t)i | · σ′

(
⟨w(0)

j,r , ξi⟩+ 2
n∑

i′=1

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22

)
· ∥ξi′∥22

}

= Ψ(t) +max
j,r,i

{
η

nm
· |ℓ′(t)i | · σ′

(
⟨w(0)

j,r , ξi⟩+ 2Ψ(t) + 2

n∑
i′ ̸=i

Ψ(t) · |⟨ξi
′ , ξi⟩|

∥ξi′∥22

)
· ∥ξi′∥22

}

≤ Ψ(t) +
ηq

nm
·max

i
|ℓ′(t)i | ·

[
2 ·
√
log(8mn/δ) · σ0σp

√
d

+

(
2 +

4nσ2
p ·
√
d log(4n2/δ)

σ2
pd/2

)
·Ψ(t)

]q−1

· 2σ2
pd

≤ Ψ(t) +
ηq

nm
·max

i
|ℓ′(t)i | ·

(
2 ·
√
log(8mn/δ) · σ0σp

√
d+ 4 ·Ψ(t)

)q−1 · 2σ2
pd,

where the second inequality is due to Lemmas B.2 and B.3, and the last inequality follows by the
assumption that d ≥ 16n2 log(4n2/δ). Taking a telescoping sum over t = 0, 1, . . . , T̃ − 1, we have
that

Ψ(T )
(i)

≤ Ψ(T1) +
ηq

nm

T̃−1∑
s=T1

max
i

|ℓ′(s)i |Õ(σ2
pd)β̂

q−1

(ii)

≤ Ψ(T1) +
ηq

nm
Õ(σ2

pd)β̂
q−1

T̃−1∑
s=T1

max
i

ℓ
(s)
i
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(iii)

≤ Ψ(T1) + Õ(ηm−1σ2
pd)β̂

q−1
T̃−1∑
s=T1

LS(W
(s))

(iv)

≤ Ψ(T1) + Õ(m2SNR−2)β̂q−1

(v)

≤ β̂ + Õ(m2n2/qβ̂q−2)β̂

(vi)

≤ 2β̂,

where (i) is by out induction hypothesis that Ψ(t) ≤ 2β̂, (ii) is by |ℓ′| ≤ ℓ, (iii) is by maxi ℓ
(s)
i ≤∑

i ℓ
(s)
i = nLS(W

(s)), (iv) is due to
∑T̃−1

s=T1
LS(W

(s)) ≤
∑T

s=T1
LS(W

(s)) = Õ(η−1m3∥µ∥22)
in (D.8), (v) is by nSNRq ≥ Ω̃(1), and (vi) is by the definition that β̂ = σ0σp

√
d/2 and

Õ(m2n2/qβ̂q−2) = Õ(m2n2/q(σ0σp

√
d)q−2) ≤ 1 by Condition 4.2. Therefore, Ψ(T̃ ) ≤ 2β̂, which

completes the induction.

D.3 Population Loss

Consider a new data point (x, y) drawn from the distribution defined in Definition 3.1. Without loss
of generality, we suppose that the first patch is the signal patch and the second patch is the noise
patch, i.e., x = [yµ, ξ]. Moreover, by the signal-noise decomposition, the learned neural network
has parameter

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r ·
µ

∥µ∥22
+

n∑
i=1

ρ
(t)
j,r,i ·

ξi
∥ξi∥22

+
n∑

i=1

ρ(t)
j,r,i

· ξi
∥ξi∥22

for j ∈ {±1} and r ∈ [m].

Lemma D.6. Under the same conditions as Theorem 4.3, we have that maxj,r |⟨w(t)
j,r, ξi⟩| ≤ 1/2

for all 0 ≤ t ≤ T .

Proof. We can get the upper bound of the inner products between the parameter and the noise as
follows:

|⟨w(t)
j,r, ξi⟩|

(i)

≤ |⟨w(0)
j,r , ξi⟩|+ |ρ(t)

j,r,i
|+ |ρ(t)j,r,i|+ 8n

√
log(4n2/δ)

d
α

(ii)

≤ 2
√

log(8mn/δ) · σ0σp

√
d+ σ0σp

√
d+ 8n

√
log(4n2/δ)

d
α

(iii)

≤ 1/2

for all j ∈ {±1}, r ∈ [m] and i ∈ [n], where (i) is by Lemma C.3, (ii) is due to |⟨w(0)
j,r , ξi⟩| ≤

2
√
log(8mn/δ) · σ0σp

√
d in Lemma B.3 and maxj,r,i |ρ(t)j,r,i| ≤ σ0σp

√
d in Lemma D.5, and (iii)

is due to our condition of σ0 ≤ Õ(m−2/(q−2)n−1) · (σp

√
d)−1 and d ≥ Ω̃(m2n4) in Condition 4.2.

Lemma D.7. Under the same conditions as Theorem 4.3, with probability at least 1 − 4mT ·
exp(−C−1

2 σ−2
0 σ−2

p d−1), we have that maxj,r |⟨w(t)
j,r, ξ⟩| ≤ 1/2 for all 0 ≤ t ≤ T , where C2 =

Õ(1).

Proof of Lemma D.7. Let w̃(t)
j,r = w

(t)
j,r − j · γ(t)

j,r ·
µ

∥µ∥2
2
, then we have that ⟨w̃(t)

j,r, ξ⟩ = ⟨w(t)
j,r, ξ⟩ and

∥w̃(t)
j,r∥2 ≤ Õ(σ0

√
d+ nσ0) = Õ(σ0

√
d), (D.9)

where the equality is due to d ≥ Ω̃(m2n4) by Condition 4.2.
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By (D.9), maxj,r ∥w̃(t)
j,r∥2 ≤ C1σ0

√
d, where C1 = Õ(1). Clearly ⟨w̃(t)

j,r, ξ⟩ is a Gaussian distribu-
tion with mean zero and standard deviation smaller than C1σ0σp

√
d. Therefore, the probability is

bounded by

P
(
|⟨w̃(t)

j,r, ξ⟩| ≥ 1/2
)
≤ 2 exp

(
− 1

8C2
1σ

2
0σ

2
pd

)
.

Applying a union bound over j, r, t completes the proof.

Lemma D.8 (Restatement of Lemma 5.7). Let T be defined in Lemma 5.5 respectively. Under the
same conditions as Theorem 4.3, for any 0 ≤ t ≤ T with LS(W

(t)) ≤ 1, it holds that LD(W
(t)) ≤

6 · LS(W
(t)) + exp(−n2).

Proof of Lemma D.8. Let event E be the event that Lemma D.7 holds. Then we can divide
LD(W

(t)) into two parts:

E
[
ℓ
(
yf(W(t),x)

)]
= E[1(E)ℓ

(
yf(W(t),x)

)
]︸ ︷︷ ︸

I1

+E[1(Ec)ℓ
(
yf(W(t),x)

)
]︸ ︷︷ ︸

I2

. (D.10)

In the following, we bound I1 and I2 respectively.

Bounding I1: Since LS(W
(t)) ≤ 1, there must exist one (xi, yi) such that ℓ

(
yif(W

(t),xi)
)
≤

LS(W
(t)) ≤ 1, which implies that yif(W(t),xi) ≥ 0. Therefore, we have that

exp(−yif(W
(t),xi))

(i)

≤ 2 log
(
1 + exp(−yif(W

(t),xi))
)
= 2ℓ

(
yif(W

(t),xi)
)
≤ 2LS(W

(t)),
(D.11)

where (i) is by z ≤ 2 log(1 + z), ∀z ≤ 1. If event E holds, we have that

|yf(W(t),x)− yif(W
(t),xi)| ≤

1

m

∑
j,r

σ(⟨wj,r, ξi⟩) +
1

m

∑
j,r

σ(⟨wj,r, ξ⟩)

≤ 1

m

∑
j,r

σ(1/2) +
1

m

∑
j,r

σ(1/2)

≤ 1, (D.12)

where the second inequality is bymaxj,r |⟨w(t)
j,r, ξ⟩| ≤ 1/2 in Lemma D.7 andmaxj,r |⟨w(t)

j,r, ξi⟩| ≤
1/2 in Lemma D.6. Thus we have that

I1 ≤ E[1(E) exp(−yf(W(t),x))]

≤ e · E[1(E) exp(−yif(W
(t),xi))]

≤ 2e · E[1(E)LS(W
(t))],

where the first inequality is by the property of cross-entropy loss that ℓ(z) ≤ exp(−z) for all z,
the second inequality is by (D.12), and the third inequality is by (D.11). Dropping the event in the
expectation gives I1 ≤ 6LS(W

(t)).

Bounding I2: Next we bound the second term I2. We choose an arbitrary training data (xi′ , yi′)
such that yi′ = y. Then we have

ℓ
(
yf(W(t),x)

)
≤ log(1 + exp(F−y(W

(t),x)))

≤ 1 + F−y(W
(t),x)

= 1 +
1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, yµ⟩) +

1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ⟩)

≤ 1 + F−yi′ (W−yi′ ,xi′) +
1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ⟩)
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≤ 2 +
1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ⟩)

≤ 2 + Õ((σ0

√
d)q)∥ξ∥q, (D.13)

where the first inequality is due to Fy(W
(t),x) ≥ 0, the second inequality is by the property

of cross-entropy loss, i.e., log(1 + exp(z)) ≤ 1 + z for all z ≥ 0, the third inequality is by
1
m

∑
j=−y,r∈[m] σ(⟨w

(t)
j,r, yµ⟩) ≤ F−y(W−y,xi′) = F−yi′ (W−yi′ ,xi′), the fourth inequality is

by F−yi′ (W−yi′ ,xi′) ≤ 1 in Lemma C.5, and the last inequality is due to ⟨w̃(t)
j,r, ξ⟩ = ⟨w(t)

j,r, ξ⟩ ≤
∥w̃(t)

j,r∥2∥ξ∥2 ≤ Õ(σ0

√
d)∥ξ∥2 in (D.9). Then we further have that

I2 ≤
√
E[1(Ec)] ·

√
E
[
ℓ
(
yf(W(t),x)

)2]
≤
√
P(Ec) ·

√
4 + Õ((σ0

√
d)2q)E[∥ξ∥2q2 ]

≤ exp[−Ω̃(σ−2
0 σ−2

p d−1) + polylog(d)]

≤ exp(−n2),

where the first inequality is by Cauchy-Schwartz inequality, the second inequality is by (D.13), the

third inequality is by Lemma D.7 and the fact that
√

4 + Õ((σ0

√
d)2q)E[∥ξ∥2q2 ] = O(poly(d)),

and the last inequality is by our condition σ0 ≤ Õ(m−2/(q−2)n−1) · (σp

√
d)−1 in Condition 4.2.

Plugging the bounds of I1, I2 into (D.10) completes the proof.

E Noise Memorization

In this section, we will consider the noise memorization case under the condition that σq
p(
√
d)q ≥

Ω̃(n∥µ∥q2). We remind the readers that the proofs in this section are based on the results in Section B,
which hold with high probability.

We also remind readers that α = 4 log(T ∗) is defined in Appendix C. Denote β̄ =

mini maxr⟨w(0)
yi,r, ξi⟩. The following lemma provides a lower bound of β̄.

Lemma E.1. Under the same conditions as Theorem 4.4, if in particular

σ0 ≥ 80n

√
log(4n2/δ)

d
α ·min{(σp

√
d)−1, ∥µ∥−1

2 }, (E.1)

then we have that β̄ ≥ σ0σp

√
d/4 ≥ 20n

√
log(4n2/δ)

d α.

Proof of Lemma E.1. Because σq
p(
√
d)q ≥ Ω̃(n∥µ∥q2), we have that σp

√
d ≥ ∥µ∥2. Therefore we

have that

β̄ ≥ σ0σp

√
d/4

= σ0/4 ·max{σp

√
d, ∥µ∥2}

≥ 20n

√
log(4n2/δ)

d
α,

where the first inequality is by Lemma B.3 and the last inequality is by our lower bound condition
of σ0 in (E.1).

E.1 First Stage

Lemma E.2. Under the same conditions as Theorem 4.4, in particular if we choose

n−1SNR−q ≥
C2q+2 log

(
20/(σ0σp

√
d)
)
(
√
2 log(8m/δ))q−2

0.15q−2
, (E.2)

30



where C = O(1) is a positive constant, then there exist

T1 =
C log

(
20/(σ0σp

√
d)
)
4mn

0.15q−2ηqσq−2
0 (σ2

p

√
d)q

such that

• maxj,r ρ
(T1)
j,r,i ≥ 2 for all i ∈ [n].

• maxj,r γ
(t)
j,r = Õ(σ0∥µ∥2) for all 0 ≤ t ≤ T1.

• maxj,r,i |ρ(t)j,r,i
| = Õ(σ0σp

√
d) for all 0 ≤ t ≤ T1.

Proof of Lemma E.2. Let

T+
1 =

m

ηq2q−1(
√
2 log(8m/δ))q−2σq−2

0 ∥µ∥q2
. (E.3)

By Proposition C.2, we have that ρ(t)
j,r,i

≥ −β − 16n
√

log(4n2/δ)
d α ≥ −β − β̄ for all j ∈ {±1},

r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T ∗. Since ρ(t)
j,r,i

≤ 0 and β̄ ≤ β = Õ(σ0σp

√
d), we have that

maxj,r,i |ρ(t)j,r,i
| = Õ(σ0σp

√
d). Next, we will carefully compute the growth of the γ(t)

j,r .

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yi · µ⟩)∥µ∥
2
2

≤ γ
(t)
j,r +

η

nm
·

n∑
i=1

σ′(|⟨w(0)
j,r ,µ⟩|+ γ

(t)
j,r)∥µ∥

2
2,

where the inequality is by |ℓ′| ≤ 1. Let A(t) = maxj,r{γ(t)
j,r + |⟨w(0)

j,r ,µ⟩|}, then we have that

A(t+1) ≤ A(t) +
ηq∥µ∥22

m
[A(t)]q−1. (E.4)

We will use induction to prove that A(t) ≤ 2A(0) for t ≤ T+
1 . By definition, clearly we have that

A(0) ≤ 2A(0). Now suppose that there exists some T̃ ≤ T+
1 such that A(t) ≤ 2A(0) holds for

0 ≤ t ≤ T̃ − 1. Taking a telescoping sum of (E.4) gives that

A(T̃ ) ≤ A(0) +
T̃∑

s=0

ηq∥µ∥22
m

[A(s)]q−1

≤ A(0) +
ηq∥µ∥22T+

1 2q−1

m
[A(0)]q−1

≤ A(0) +
ηq∥µ∥22T+

1 2q−1

m
[
√
2 log(8m/δ) · σ0∥µ∥2]q−2A(0)

≤ 2A(0),

where the second inequality is by our induction hypothesis, the third inequality is by A0 ≤√
2 log(8m/δ) · σ0∥µ∥2 in Lemma B.3, and the last inequality is by (E.3). Thus we have that

A(t) ≤ 2A(0) for all t ≤ T+
1 . Therefore,maxj,r γ

(t)
j,r ≤ A(t) +maxj,r{|⟨w(0)

j,r ,µ⟩|} ≤ 3A(0) for all
0 ≤ t ≤ T+

1 . Recall that

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
· ℓ′(t)i · σ′(⟨w(t)

j,r, ξi⟩) · 1(yi = j)∥ξi∥22.

For yi = j, Lemma C.4 implies that

⟨w(t)
j,r, ξi⟩ ≥ ⟨w(0)

j,r , ξi⟩+ ρ
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α
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≥ ρ
(t)
j,r,i + ⟨w(0)

j,r , ξi⟩ − 0.4β̄,

where the last inequality is by β̄ ≥ 20n
√

log(4n2/δ)
d α. Now let B(t)

i = maxj=yi,r{ρ
(t)
j,r,i +

⟨w(0)
j,r , ξi⟩ − 0.4β̄}. For each i, denote by T

(i)
1 the last time in the period [0, T+

1 ] satisfying that

ρ
(t)
j,r,i ≤ 2. Then for t ≤ T

(i)
1 , maxj,r{|ρ(t)j,r,i|, |ρ(t)j,r,i

|} = O(1) and maxj,r γ
(t)
j,r ≤ 3A(0) = O(1).

Therefore, by Lemmas C.5 and C.6, we know that F−1(W
(t),xi), F+1(W

(t),xi) = O(1). Thus
there exists a positive constant C1 such that −ℓ

′(t)
i ≥ C1 for all 0 ≤ t ≤ T

(i)
1 . It is also easy to

check that B(0)
i ≥ 0.6β̄ ≥ 0.15σ0σp

√
d. Then we can carefully compute the growth of B(t)

i ,

B
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2
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i ]q−1
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(t)
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2nm
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i ,

where the second inequality is by the non-decreasing property of B(t)
i . Therefore, B(t)

i is an expo-
nentially increasing sequence and we have that
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√
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≥ exp
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p
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4nm
t

)
· 0.15σ0σp

√
d,

where the second inequality is due to the fact that 1 + z ≥ exp(z/2) for z ≤ 2 and our conditions
of η and σ0 listed in Condition 4.2, and the last inequality is due to B

(0)
i ≥ 0.15σ0σp

√
d. Therefore,

B
(t)
i will reach 3 within T1 =

log
(
20/(σ0σp

√
d)
)
4mn

C10.15q−2ηqσq−2
0 (σ2

p

√
d)q

iterations. Since maxj=yi,r ρ
(t)
j,r,i ≥ B

(t)
i −

maxj=yi,r |⟨w
(0)
j,r , ξi⟩|+0.4β̄ ≥ B

(t)
i −1,maxj=yi,r ρ

(t)
j,r,i will reach 2 within T1 iterations. We can

next verify that

T1 =
log
(
20/(σ0σp

√
d)
)
4mn

C10.15q−2ηqσq−2
0 (σ2

p

√
d)q

≤ m

ηq2q(
√

2 log(8m/δ))q−2σq−2
0 ∥µ∥q2

= T+
1 /2,

where the inequality holds due to our SNR condition in (E.2). Therefore, by the definition of T (i)
1 ,

we have T (i)
1 ≤ T1 ≤ T+

1 /2, where we use the non-decreasing property of ρj,r,i. This completes
the proof.

E.2 Second Stage

By the signal-noise decompositon, at the end of the first stage, we have

w
(T1)
j,r = w

(0)
j,r + j · γ(T1)

j,r · µ

∥µ∥22
+

n∑
i=1

ρ
(T1)
j,r,i ·

ξi
∥ξi∥22

+
n∑

i=1

ρ(T1)
j,r,i

· ξi
∥ξi∥22

for j ∈ {±1} and r ∈ [m]. By the results we get in the first stage, we know that at the beginning of
this stage, we have following property holds:

• maxr ρ
(T1)
yi,r,i

≥ 2 for all i ∈ [n].

• maxj,r,i |ρ(T1)
j,r,i

| = Õ(σ0σp

√
d).

• maxj,r γ
(T1)
j,r ≤ β̂′, where β̂′ = Õ(σ0∥µ∥2).
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Note that Lemma 5.1 implies that the learned noise ρ
(t)
j,r,i will not decrease, i.e., ρ

(t+1)
j,r,i ≥ ρ

(t)
j,r,i.

Therefore, for all data index i, we have maxr ρ
(t)
yi,r,i

≥ 2 for all t ≥ T1. Now we choose W∗ as
follows

w∗
j,r = w

(0)
j,r + 2qm log(2q/ϵ))

[ n∑
i=1

1(j = yi) ·
ξi

∥ξi∥2

]
.

Based on the definition ofW∗, we have the following lemma.

Lemma E.3. Under the same conditions as Theorem 4.4, we have that ∥W(T1) − W∗∥F ≤
Õ(m2n1/2σ−1

p d−1/2).

Proof of Lemma E.3. We have

∥W(T1) −W∗∥F ≤ ∥W(T1) −W(0)∥F + ∥W(0) −W∗∥F

≤
∑
j,r

γ
(T1)
j,r ∥µ∥−1

2 +O(
√
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j,r
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ρ
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∥∥∥∥
2

+O(m3/2n1/2 log(1/ϵ)σ−1
p d−1/2)

≤ Õ(m3/2n1/2σ−1
p d−1/2),

where the first inequality is by triangle inequality, the second inequality is by our decomposition
of W(T1),W∗ and Lemma B.2 (notice that different noises are almost orthogonal), and the last
inequality is by Proposition C.2 and Lemma E.2. This completes the proof.

Lemma E.4. Under the same conditions as Theorem 4.4, we have that

yi⟨∇f(W(t),xi),W
∗⟩ ≥ q log(2q/ϵ)

for all T1 ≤ t ≤ T ∗.

Proof of Lemma E.4. Recall that f(W(t),xi) = (1/m)
∑
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,
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where the first inequality is by Lemma B.3 and the last inequality is by Lemma B.2. Next we will
bound the inner-product terms in (D.4) respectively. By Lemma C.6, we have that

|⟨w(t)
j,r, yiµ⟩| ≤ |⟨w(0)

j,r , yiµ⟩|+ γ
(t)
j,r ≤ Õ(1), (E.6)
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where the last inequality is by Proposition C.2.

For j = yi, we can bound the inner product between the parameter and the noise as follows

max
j,r

⟨w(t)
j,r, ξi⟩ ≥ max

j,r

[
⟨w(0)

j,r , ξi⟩+ ρ
(t)
j,r,i

]
− 8n

√
log(4n2/δ)

d
α ≥ 1, (E.7)

where the first inequality is by Lemma C.4, the second inequality is by Lemma E.2.

For j = −yi, we can bound the inner product between the parameter and the noise as follows

⟨w(t)
j,r, ξi⟩ ≤ ⟨w(0)

j,r , ξi⟩+ 8n

√
log(4n2/δ)

d
α ≤ 1, (E.8)

where the first inequality is by Lemma C.5 and the last inequality is by Lemma B.3 and the condi-
tions of σ0 and d in Condition 4.2. Therefore, plugging (E.6), (E.7), (E.8) into (E.5) gives

yi⟨∇f(W(t),xi),W
∗⟩ ≥ 2q log(2q/ϵ))− Õ(mnd−1/2)− Õ(σ0∥µ∥2)− Õ(σ0σp

√
d)

≥ q log(2q/ϵ),

where the last inequality is by d ≥ Ω̃(m2n4) and σ0 ≤ Õ(m−2/(q−2)n−1) ·
min{(σp

√
d)−1, ∥µ∥−1

2 } in Condition 4.2.

Lemma E.5. Under the same conditions as Theorem 4.4, we have that

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(t))− ηϵ

for all T1 ≤ t ≤ T ∗.

Proof of Lemma E.5. The proof is exactly same as the proof of Lemma D.4.

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇LS(W

(t)),W(t) −W∗⟩ − η2∥∇LS(W
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≥ (2q − 1)ηLS(W
(t))− ηϵ,

where the first inequality is by Lemma E.4, the second inequality is due to the convexity of the cross
entropy function and the last inequality is due to Lemma C.7.

Lemma E.6. Under the same conditions as Theorem 4.4, let T = T1 +
⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
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Õ(η−1ϵ−1m3nd−1σ−2
p ). Then we have maxj,r γ

(t)
j,r ≤ 2β̂′, maxj,r,i |ρ(t)j,r,i

| = Õ(σ0σp
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+
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(2q − 1)

for all T1 ≤ t ≤ T , and we can find an iterate with training loss smaller than ϵ within T iterations.

Proof of Lemma E.6. By Lemma E.5, for any T1 ≤ t ≤ T , we obtain that

∥W(s) −W∗∥2F − ∥W(s+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(s))− ηϵ (E.9)
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holds for T1 ≤ s ≤ t. Taking a summation, we have that
t∑
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p ), (E.10)
where (i) is by t ≤ T2 and (ii) is by Lemma E.3 Then we can use induction to prove that
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for all j ∈ {±1} and r ∈ [m], where (i) is by induction hypothesis maxj,r γ
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j,r ≤ 2β̂′, (ii) is by

|ℓ′| ≤ ℓ, (iii) is by (E.10), (iv) is by n−1SNR−q ≥ Ω̃(1), and (v) is by β̂′ = Õ(σ0∥µ∥2) and
β̂′q−2Õ(m2n1−2/q) = Õ(m2n1−2/q(σ0∥µ∥2)q−2) ≤ 1 by Condition 4.2. Therefore, we have

maxj,r γ
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j,r ≤ 2β̂′, which completes the induction.

E.3 Population Loss

Lemma E.7 (4th statement of Theorem 4.4). Under the same conditions as Theorem 4.4,
within Õ(η−1nσ2−q

0 σ−q
p d−q/2 + η−1ϵ−1m3nσ−2

p d−1) iterations, we can find W(T ) such that
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(T )) ≤ ϵ. Besides, for any 0 ≤ t ≤ T we have that LD(W
(t)) ≥ 0.1.

Proof of Lemma E.7. Given a new example (x, y), we have that
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where (i) is by triangle inequality and (ii) is by maxj,r γ
(t)
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Since the signal vector µ is orthogonal to noises, by maxj,r γ
(t)
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Lemma E.6, we also have that |⟨w(t)
j,r,µ⟩| ≤ |⟨w(0)

j,r , yiµ⟩| + γ
(t)
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2 }) and d ≥ Ω̃(m2n4)
in Condition 4.2. Therefore, with probability at least 1− 1/2, we have that

ℓ
(
y · f(W(t),x)

)
≥ log(1 + e−1).

Thus LD(W
(t)) ≥ log(1 + e−1) · 0.5 ≥ 0.1. This completes the proof.

F Experiments

We present simulations on synthetic data and experiments on real-world data to back up our theoret-
ical analysis. The code and data for our experiments can be found on Github ‡.

Synthetic-data experiments. Here we generate synthetic data exactly following Definition 3.1.
Specifically, we set dimension d = 400. Since the learning problem is rotation-invariant, without
loss of generality, we set µ// [1, 0, . . . , 0]⊤. We then generate the noise vector ξ in Definition 3.1
so that its first entry is zero, while the rest of the entries are standard Gaussian random vectors. In
this way, to perform experiments under different SNRs, it suffices to change ∥µ∥2, or equivalently,
change the first entry of µ.

We train a two-layer CNN model defined in Section 3 with RELU3 activation function. The number
of filters is set as m = 10. We use the default initialization method in PyTorch to initialize the
CNN parameters, and train the CNN with full-batch gradient descent with a learning rate of 0.01 for
50 epochs. We consider different training data sizes n ranging from 1 to 100, and different SNRs
ranging from 0 to 1.0. Note that in all these training sample size and SNR settings, our training
setup can guarantee a training loss smaller than 0.05. After training, we also calculate the test losses
for each case using 100 test data points. The results are given in Figure 2.

It is clear that the results shown in Figure 2 match our theoretical results very well: the test loss
values depend on both sample size and SNR, and a larger sample size or a higher SNR can both
lead to smaller test losses. Moreover, Figure 2 shows a clear phase transition between benign and
harmful overfitting, and is consistent with our illustration in Figure 1.

Real-data experiments. We further conduct real-world experiments on theMNIST data set (Deng,
2012), which consists of gray-scale hand-written digits of size 28 × 28. Note that for a given data
set, we cannot accurately define the SNR, as it is not clear which part of the image is signal or noise.
Therefore, in order to verify our theory, for each image, we first multiply each pixel in the image
with a factor which we call “scaled SNR”, and then add standard Gaussian random noises to the
outer regions with a width of 5. In this way, we can roughly use the scaled SNR to represent the
signal-to-noise ratio in the data. Two examples of the modified images with scaled SNRs 1 and 0.2
are given in Figure 3.

We train a simple ReLU CNN model which has two convolutional layers each followed by a max-
pooling layer, and a fully-connected layer that gives the final output of the network. The first convo-
lutional layer has 32 output channels (i.e., 32 different filters), with filter size 5, stride 1 and padding
0. The second convolutional layer has 64 output channels, with filter size 3, stride 1 and padding 0.
Both max-pooling layers are of size 2 and stride 2.

‡https://github.com/uclaml/Benign-Overfitting-CNN
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Figure 2: Heatmap of test losses on synthetic data under different training data sizes and SNRs.
High test losses are marked in blue and low test losses are marked in yellow.

(a) Scaled SNR = 1 (b) Scaled SNR = 0.2

Figure 3: Illustration of modified MNIST images. (a) shows an example of a modified digit 7 with
Scaled SNR = 1, and (b) shows the same image with Scaled SNR = 0.2.

We train the network with mini-batch stochastic gradient descent. We set the mini-batch size to
be 128, and the learning rate to be 0.1. The network is trained for 2000 epochs in each setting.
We consider different training data sizes n ranging from 3000 to 7500, and different scaled SNRs
ranging from 0.01 to 0.2. Again, in all these training sample size and SNR settings, our training
setup can guarantee a training loss smaller than 0.05. After training, we calculate the test losses
for each case using the 10000 test data (modified in the same way as training data). The results are
given in Figure 4.

Clearly, the results in Figure 4 also match our theoretical results very well, and show a phase tran-
sition between benign and harmful overfitting. Note that for this set of experiments, the setup does
not satisfy our assumptions in many aspects:

• The CNN has two convolution layers and two max-pooling layers.

• The convolutions are with stride 1 and therefore the patches in the data have overlaps. This also
implies that the noise patches in an image are not independent.

• The activation function is ReLU instead of ReLUq with q > 2.

• The noise patches and signal patches are not orthogonal to each other, and are sometimes mixed
together, as is shown in Figure 3.
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Nevertheless, the experiment results still corroborate our theory to a certain extent. This demon-
strates that our study of benign and harmful overfitting in CNNs captures the nature of real-world
image classification problems.

Figure 4: Heatmap of test losses on modified MNIST images under different training data sizes and
scaled SNRs. High test losses are marked in blue and low test losses are marked in yellow.
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