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Abstract

We study federated contextual linear bandits, where M agents cooperate with each
other to solve a global contextual linear bandit problem with the help of a central
server. We consider the asynchronous setting, where all agents work independently
and the communication between one agent and the server will not trigger other
agents’ communication. We propose a simple algorithm named FedLinUCB based
on the principle of optimism. We prove that the regret of FedLinUCB is bounded

by Õ(d
√∑M

m=1 Tm) and the communication complexity is Õ(dM2), where d is
the dimension of the contextual vector and Tm is the total number of interactions
with the environment by m-th agent. To the best of our knowledge, this is the first
provably efficient algorithm that allows fully asynchronous communication for
federated contextual linear bandits, while achieving the same regret guarantee as in
the single-agent setting.

1 Introduction

Contextual linear bandit is a canonical model in sequential decision making with partial information
feedback that has found vast applications in real-world domains such as recommendation systems (Li
et al., 2010a,b; Gentile et al., 2014; Li et al., 2020), clinical trials (Wang, 1991; Durand et al., 2018)
and economics (Jagadeesan et al., 2021; Li et al., 2022). Most existing works on contextual linear
bandits focus on either the single-agent setting (Auer, 2002; Abe et al., 2003; Dani et al., 2008;
Li et al., 2010a; Rusmevichientong and Tsitsiklis, 2010; Chu et al., 2011; Abbasi-Yadkori et al.,
2011; Agrawal and Goyal, 2013) or multi-agent settings where communications between agents
are instant and unrestricted (Cesa-Bianchi et al., 2013; Li et al., 2016; Wu et al., 2016; Li et al.,
2021). Due to the increasing amount of data being distributed across a large number of local agents
(e.g., clients, users, edge devices), federated learning (McMahan et al., 2017; Karimireddy et al.,
2020) has become an emerging paradigm for distributed machine learning, where agents can jointly
learn a global model without sharing their own localized data. This motivates the development of
distributed/federated linear bandits (Wang et al., 2019; Huang et al., 2021; Li and Wang, 2022a),
which enables a collection of agents to cooperate with each other to solve a global linear bandit
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problem while enjoying performance guarantees comparable to those in the classical single-agent
centralized setting.

However, most existing federated linear bandits algorithms are limited to the synchronous set-
ting (Wang et al., 2019; Dubey and Pentland, 2020; Huang et al., 2021), where all the agents have to
first upload their local data to the server upon the request of the server, and the agents will download
the latest data from the server after all uploads are complete. This requires full participation of the
agents and global synchronization mandated by the server, which is impractical in many real-world
application scenarios. The only notable exception is Li and Wang (2022a), where an asynchronous
federated linear bandit algorithm is proposed. Nevertheless, in their algorithm, the upload by one
agent may trigger the download from the server to all other agents. Therefore, the communications
between different agents and the server are not totally independent. Moreover, they make a stringent
regularity assumption on the contexts, which basically requires the contexts to be stochastic rather
than adversarial as in standard contextual linear bandits. That said, their theoretical proof is actu-
ally flawed as they ignored some unique challenges caused by asynchronous communication (see
Appendix A.1 for details). Therefore, how to design a truly asynchronous contextual linear bandit
algorithm remains an open problem.

In this work, we resolve the above open problem by proposing a simple algorithm for asynchronous
federated contextual linear bandits over a star-shaped communication network. Our algorithm is
based on the principle of optimism (Abbasi-Yadkori et al., 2011) and enjoys the following advantages:
(i) Each agent can decide whether or not to participate in each round. Full participation is not required,
thus it allows temporarily offline agents. This is much more flexible than existing algorithms for
federated linear bandits in Wang et al. (2019); Dubey and Pentland (2020); Huang et al. (2021) where
all agents are required to participate in each round; and (ii) the communication between each agent
and the server is asynchronous and totally independent of other agents. There is no need of global
synchronization or mandatory coordination by the server, in contrast to Li and Wang (2022a) where
each agent might be asked by the server to download data. In particular, the communication between
the agent and the server is triggered by a matrix determinant-based criterion that can be computed
independently by each agent. Our algorithm design not only allows the agents to independently
operate and synchronize with the server, but also ensures low communication complexity (i.e., total
number of rounds of communication between agents and the server) and low switching cost (i.e.,
total number of local model updates for all agents) (Abbasi-Yadkori et al., 2011).

While being simple, our algorithm design introduces a challenge in the regret analysis. Since the
order of the interaction between the agent and the environment is not fixed, standard martingale-based
concentration inequality cannot be directly applied. Specifically, this challenge arises due to the
mismatch between the partial data information collected by the central server and the true order of the
data generated from the interaction with the environment, as is explained in detail in Section 5 and
illustrated by Figure 1. We address this challenge by a novel proof technique, which first establishes
the local concentration of each agent’s data and then relates it to the “virtual” global concentration of
all data via the determinant-based criterion. Based on this proof technique, we are able to obtain tight
enough confidence bounds that lead to a nearly optimal regret. Moreover, our theoretical analysis
relies only on minimal assumptions that are standard for contextual linear bandits, relaxing the strong
assumptions made in Li and Wang (2022a).

Main contributions. Our contributions are highlighted as follows:

• We devise a simple algorithm named FedLinUCB that achieves near-optimal regret, low communica-
tion complexity and low switching cost simultaneously for asynchronous federated contextual linear
bandits. In detail, we prove that our algorithms achieves a near-optimal Õ(d

√
T ) regret with merely

Õ(dM2) total communication complexity and Õ(dM2) total switching cost. HereM is the number
of agents, d is the dimension of the context and T =

∑M
m=1 Tm is the total number of rounds with

Tm being the number of rounds that agent m participates in. When degenerated to single-agent
bandits, the regret of our algorithm matches the optimal regret Õ(d

√
T ) (Abbasi-Yadkori et al.,

2011).

• We also prove an Ω(M/ log(T/M)) lower bound for the communication complexity. Together
with the O(dM2) upper bound of our algorithm, it suggests that there is only an Õ(dM) gap
between the upper and lower bounds of the communication complexity.
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• We identify the issue of ill-defined filtration caused by the unfixed order of interactions between
agents and the environment, which is absent in previous synchronous or single-agent settings. We
tackle this unique challenge by connecting the local concentration of each local agent’s data and
the global concentration of the aggregated data from all agents. We believe this proof technique is
of independent interest for the analysis of other asynchronous bandit problems.

Notation. For any positive integer n, we denote the set {1, 2, . . . , n} by [n]. We use I to denote the
d× d identity matrix. We use O to hide universal constants and Õ to further hide poly-logarithmic
terms. For any vector x ∈ Rd and positive semi-definite Σ ∈ Rd×d, we denote ‖x‖Σ =

√
x>Σx.

2 Related Work

We review related work on distributed/federated bandit algorithms stratified by the type of bandits:
(1) multi-armed bandits, (2) stochastic linear bandits and (3) contextual linear bandits.

Distributed/federated multi-armed bandits. There is a vast literature on distributed/federated
multi-armed bandits (MABs) (Liu and Zhao, 2010; Szorenyi et al., 2013; Landgren et al., 2016;
Chakraborty et al., 2017; Landgren et al., 2018; Martínez-Rubio et al., 2019; Sankararaman et al.,
2019; Wang et al., 2019, 2020; Zhu et al., 2021), to mention a few. However, none of these algorithms
can be directly applied to linear bandits, needless to say contextual linear bandits with infinite decision
sets.

Distributed/federated stochastic linear bandits. In distributed/federated stochastic linear bandits,
the decision set is fixed across all the rounds t ∈ [T ] and all the agents m ∈ [M ]. Wang et al. (2019)
proposed the DELD algorithm for distributed stochastic linear bandits on both star-shaped network and
P2P network. Huang et al. (2021) proposed an arm elimination-based algorithm called Fed-PE for
federated stochastic linear bandits on the star-shaped network. Both algorithms are in the synchronous
setting and require full participation of the agents upon the server’s request.

Distributed/federated contextual linear bandits. The contextual linear bandit is more general and
challenging than stochastic linear bandits, because the decision sets can vary for each t and m. In
this setting, Korda et al. (2016) considered a P2P network and proposed the DCB algorithm based on
the OFUL algorithm in Abbasi-Yadkori et al. (2011). Wang et al. (2019) considered both star-shaped
and P2P communication networks and achieved the near-optimal Õ(d

√
T ) regret in the synchronous

setting.2 Dubey and Pentland (2020) further introduced the differential privacy guarantee into the
setting of Wang et al. (2019). Li and Wang (2022b) extended distributed contextual linear bandits to
generalized linear bandits (Filippi et al., 2010; Jun et al., 2017) in the synchronous setting. Li and
Wang (2022a) proposed the first asynchronous algorithm for federated contextual linear bandits with
the star-shaped graph and achieved a near-optimal Õ(d

√
T ) regret. However, their setting is different

from ours in two aspects: (1) the upload triggered by an agent will lead the server to trigger download
possibly for all the agents in their setting. In contrast, the upload triggered by an agent will only lead
to download to the same agent in our setting; (2) their regret guarantee relies on a stringent regularity
assumption on the contexts, which basically requires the contexts to be stochastic. As a comparison,
the contexts in our setting can be even adversarial, which is exactly the standard setting of contextual
linear bandits (Abbasi-Yadkori et al., 2011; Li et al., 2019). This difference in the setting makes our
algorithm a truly asynchronous contextual linear bandit algorithm but also makes our regret analysis
more challenging.

For better comparison, we compare our work with the most related contextual linear bandit algorithms
in Table 1.

3 Preliminaries

Federated contextual linear bandits. We consider the federated contextual linear bandits as follows:
At each round t ∈ [T ], an arbitrary agent mt ∈ [M ] is active for participation. This agent receives a
decision set Dt ⊂ Rd, picks an action xt ∈ Dt, and receives a random reward rt. We assume that

2In the original paper of Wang et al. (2019), the regret bound is expressed as Õ(d
√
MT ). The T in their

paper is equivalent to the Tm in ours, so their d
√
MT should be understood as d

√
T under our notation.
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Setting Algorithm Regret Communication Low-switching No extra assump.
on contexts

Allow free
participation

Single-agent
OFUL

d
√
T log T N/A 3 3 8

(Abbasi-Yadkori et al., 2011)

Federated DisLinUCB
d
√
T log2 T dM3/2 8 3 8(Sync.) (Wang et al., 2019)

Federated Async-LinUCB
d
√
T log T dM2 log T 8 8 8(Async.) (Li and Wang, 2022a)

Federated FedLinUCB
d
√
T log T dM2 log T 3 3 3(Async.) (Our Algorithm 1)

Table 1: Comparison of our result with baseline approaches for contextual linear bandits. Our result
achieves near-optimal regret under low communication complexity. Here d is the dimension of the
context, M is the number of agents, and T =

∑M
m=1 Tm with each Tm being the number of rounds

that agent m participates in.

the reward rt satisfies rt = 〈xt,θ∗〉+ ηt for all t ∈ [T ], where ηt is conditionally independent of xt
given x1:t−1,m1:t, r1:t−1. More specifically, we make the following assumption on ηt, θ∗ and Dt,
which is a standard assumption in the contextual linear bandit literature (Abbasi-Yadkori et al., 2011;
Wang et al., 2019; Dubey and Pentland, 2020).
Assumption 3.1. The noise ηt is R-sub-Gaussian conditioning on x1:t, m1:t and r1:t−1, i.e.,

E
[
eληt | x1:t,m1:t, r1:t−1

]
≤ exp(R2λ2/2), for any λ ∈ R.

We also assume that ‖θ∗‖2 ≤ S and ‖x‖2 ≤ L for all action x ∈ Dt, for all t ∈ [T ].

Notably, we assume mt can be arbitrary for all t, which basically says that each agent can decide
whether and when to participate or not.3 Our setting is more general than the synchronous setting in
Wang et al. (2019); Dubey and Pentland (2020), which requires a round-robin participation of all
agents.

Learning objective. The goal of the agents is to collaboratively minimize the cumulative regret
defined as

Regret(T ) :=

T∑
t=1

(
max
x∈Dt

〈x,θ∗〉 − 〈xt,θ∗〉
)

=
T∑
t=1

〈x∗t − xt,θ
∗〉. (3.1)

To achieve such a goal, we allow the agents to collaborate via communication through the central
server. Below we will explain the details of the communication model.

Communication model. We consider a star-shaped communication network (Wang et al., 2019;
Dubey and Pentland, 2020) consisting of a central server and M agents, where each agent can
communicate with the server by uploading and downloading data. However, any pair of agents
cannot directly communicate with each other. We define the communication complexity as the total
number of communication rounds between agents and the server (counting both the uploads and
downloads) (Wang et al., 2019; Dubey and Pentland, 2020; Li and Wang, 2022a). For simplicity, we
assume that there is no latency in the communication channel.

We consider the asynchronous setting, where the communication protocol satisfies: (1) each agent
can decide whether or not to participate in each round. Full participation is not required, which
allows temporarily offline agents; and (2) the communication between each agent and the server is
asynchronous and independent of other agents without mandatory download required by the server.

Switching cost. The notion of switching cost in online learning and bandits refers to the number of
times the agent switches its policy (i.e., decision rule) (Kalai and Vempala, 2005; Abbasi-Yadkori
et al., 2011; Dekel et al., 2014; Ruan et al., 2021). In the context of linear bandits, it corresponds
to the number of times the agent updates its policy of selecting an action from the decision set
(Abbasi-Yadkori et al., 2011). Algorithms with low switching cost are preferred in practice since
each policy switching might cause additional computational overhead.

3Without loss of generality, we can assume that it cannot happen that more than one agent participate at the
same time. Therefore, there is always a valid order of participation indexed by t ∈ [T ].
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Algorithm 1 Federated linear UCB (FedlinUCB)

1: Initialize Σm,1 = Σser
1 = λI, θ̂m,1 = 0, bloc

m,0 = 0 and Σloc
m,0 = 0 for all m ∈ [M ]

2: for round t = 1, 2, . . . , T do
3: Agent mt is active
4: Receive Dt from the environment
5: Select xt ← argmaxx∈Dt

〈θ̂mt,t,x〉+ β‖x‖Σ−1
mt,t

/* Optimistic decision */
6: Receive rt from environment
7: Σloc

mt,t ← Σloc
mt,t−1 + xtx

>
t , bloc

mt,t ← bloc
mt,t−1 + rtxt /* Local update */

8: if det(Σmt,t + Σloc
mt,t) > (1 + α) det(Σmt,t) then

9: Agent mt sends Σloc
mt,t and bloc

mt,t to server /* Upload */
10: Σser

t ← Σser
t + Σloc

mt,t, bser
t ← bser

t + bloc
mt,t /* Global update */

11: Σloc
mt,t ← 0, bloc

mt,t ← 0
12: Server sends Σser

t and bser
t back to agent mt /* Download */

13: Σmt,t+1 ← Σser
t , bmt,t+1 ← bser

t

14: θ̂mt,t+1 ← Σ−1mt,t+1bmt,t+1 /* Compute estimate */
15: else
16: Σmt,t+1 ← Σm,t, bmt,t+1 ← bm,t, θ̂mt,t+1 ← θ̂mt,t

17: end if
18: for other inactive agent m ∈ [M ] \ {mt} do
19: Σm,t+1 ← Σm,t, bm,t+1 ← bm,t, θ̂m,t+1 ← θ̂m,t
20: end for
21: end for

4 The Proposed Algorithm

We propose a simple algorithm based on the principle of optimism that enables collaboration among
agents through asynchronous communications with the central server. The main algorithm is displayed
in Algorithm 1. For clarity, we first summarize the related notations in Table 2.

Notation Meaning
θ̂m,t estimate of θ∗

Σm,t,bm,t data used to compute θ̂m,t
Σloc
m,t,b

loc
m,t local data for agent m

Σser
m,t,b

ser
m,t data stored at the server

Table 2: Notations used in Algorithm 1.

Specifically, in each round t ∈ [T ], agent
mt participates and interacts with the environ-
ment (Line 3). The environment specifies the
decision set Dt (Line 4), and the agent mt se-
lects the action based on its current optimisitic
estimate of the reward (Line 5). Here the bonus
term β‖x‖Σ−1

mt,t
reflects the uncertainty of the

estimated reward 〈θ̂mt,t,x〉 and encourages ex-
ploration. After receiving the true reward rt
from the environment, agent mt then updates its
local data (Line 7).

The key component of the algorithm is the matrix determinant-based criterion (Line 8), which
evaluates the information accumulated in current local data. If the criterion is satisfied, it suggests that
the local data would help significantly reduce the uncertainty of estimating the model θ∗. Therefore,
agent mt will share its progress by uploading the local data to the server (Line 9) so that it can
benefit other agents. Then the server updates the global data accordingly (Line 10). Afterwards,
agent mt downloads the latest global data from the server (Line 12) and updates its local data and
model (Line 13-14). If the criterion in Line 8 is not met, then the communication between the
agent and the server will not be triggered, and the local data remains local and unshared for agent
mt (Line 16). Finally, all the other inactive agents remain unchanged (Line 19).

Note that in Algorithm 1, the communication between the agent and the server (Line 9 and 12)
involves only the active agent in that round, which is completely independent of other agents. This is
in sharp contrast to existing algorithms. For example, in the main algorithm in Li and Wang (2022a),
upload by any agent may trigger other agents to download the latest data, while our algorithm does
not mandate this. On the other hand, many existing algorithms for multi-agent settings (e.g., Wang
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et al. (2019)) require all agents to interact with the environment in each round, which essentially
require full participation of all the agents.

The determinant-based criterion in Line 8 has been a long-standing design trick in contextual linear
bandits that can help address the issue of unknown time horizon and reduce the switching cost
(Abbasi-Yadkori et al., 2011; Ruan et al., 2021). For multi-agent bandits, such a criterion has also
been used to control the communications complexity (Wang et al., 2019; Dubey and Pentland, 2020;
Li and Wang, 2022a). This is because the need for policy switching or communication essentially
reflects the same fact: enough information has been collected and it is time to update the (local)
model. Indeed, achieving low communication complexity and low switching cost are unified in our
FedlinUCB algorithm in the sense that the communication complexity is exactly twice the switching
cost. Furthermore, using lazy update makes our algorithm amenable for analysis, which will be clear
later in Section 6. In addition, we leave α > 0 as a tuning parameter as it controls the trade-off
between the regret and the communication complexity.

5 Theoretical Results

We now present our main result on the theoretical guarantee of Algorithm 1.

Theorem 5.1. Under Assumption 3.1 for Algorithm 1, if we set the confidence radius β =
√
λS +

(
√

1 +Mα+M
√

2α)
(
R

√
d log

((
1 + TL2/(min(α, 1)λ)

)
/δ
)

+
√
λS
)

, then with probability at

least 1− δ, the regret in the first T rounds can be upper bounded by

Regret(T ) ≤ 2dSLM log(1 + TL2/λ) + 2
√

2(1 +Mα)β
√

2dT log(1 + TL2/λ).

Moreover, the communication complexity and switching cost are both bounded by 2 log 2 · d(M +
1/α) log(1 + TL2/(λd)).
Remark 5.2. Theorem 5.1 suggests that if we set the parameters α = 1/M2 and λ = 1/S2

in Algorithm 1, then its regret is bounded by Õ(Rd
√
T ) and the corresponding communication

complexity and switching cost are both bounded by Õ(dM2). This choice of parameters yields the
regret bound and the communication complexity presented in Table 1.

As a complement, we also provide a lower bound for the communication complexity as stated in the
following theorem. See Appendix D for the proof.
Theorem 5.3. For any algorithm Alg with expected communication complexity less than
O(M/ log(T/M)), there exist a linear bandit instance with R = L = S = 1 such that for T ≥Md,
the expected regret for algorithm Alg is at least Ω(d

√
MT ).

Remark 5.4. Suppose each agent runs the OFUL algorithm (Abbasi-Yadkori et al., 2011) separately,
then each agent m ∈ [M ] admits an Õ(d

√
Tm) regret, where Tm is the number of rounds that

agent m participates in. Thus the total regret of M agents is upper bounded by
∑M
m=1 Õ(

√
Tm) =

Õ(d
√
MT ). Theorem 5.3 implies that for any algorithm Alg, if its communication complexity is less

than O(M/ log(T/M)), then its regret cannot be better than naively running M independent OFUL
algorithms. In other words, Theorem 5.3 suggests that in order to improve the performance through
collaboration, an Ω(M) communication complexity is necessary.

6 Overview of the Proof

When analyzing the performance of FedLinUCB, we face a unique challenge caused by the asyn-
chronous communication, as illustrated in Figure 1. Here (xm,t, ηm,t) denotes the decision and the
noise for agent m in its own t-th round. Specifically, in the synchronous setting, the filtration is
generated by all the data collected by all agents, i.e., F5 = σ{xm,t, ηm,t}5,5t=1,m=1, as marked by
the green dashed rectangle. This kind of filtration is well-defined since all agents share their data
with each other at the end of each round. In sharp contrast, in our asynchronous setting, the data
at the server can be generated by an irregular set of data from the agents, as marked by the blue
rectangles. Such data pattern can be arbitrary and depends on the data collected in all previous rounds,
which prevents us from defining a fixed filtration as we can do in the synchronous setting. Since the
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application of standard martingale concentration inequalities relies on the well-defined filtration, they
cannot be directly applied to our asynchronous setting.

Figure 1: Illustration of ill-defined filtration.

To circumvent the above issue, we need to ana-
lyze the concentration property of the local data
for each agent and then relate it to the concentra-
tion of the global data, so that we can control the
sum of the bonuses and hence the regret. This
requires a careful quantitative comparison of the
local and global data covariance matrices, which
is enabled by our design of determinant-based
criterion. The details will be further explained in
Section 6.2. In the next subsection, we present
the key ingredients of the proof of Theorem 5.1.

Remark 6.1. Recall the notations in Table 2, where the values of those matrices and vectors might
change within each round. To eliminate the possible confusion, from now on we follow the convention
that all matrices and vectors in the analysis correspond to their values at the end of each round in
Algorithm 1.

6.1 Analysis for communication complexity and switching cost

We first analyze the communication complexity and switching cost of Algorithm 1. For each i ≥ 0,
we define

τi = min{t ∈ [T ] | det(Σser
t ) ≥ 2iλd}. (6.1)

We divide the set of all rounds into epochs {τi, τi + 1, . . . , τi+1 − 1} for each i ≥ 0. Then the
communication complexity within each epoch can be bounded using the following lemma.
Lemma 6.2. Under the setting of Theorem 5.1, for each epoch from round τi to round τi+1 − 1, the
number of communications in this epoch is upper bounded by 2(M + 1/α).

Proof of Theorem 5.1: communication complexity and switching cost. It suffices to bound the num-
ber of epochs. By Assumption 3.1, we have ‖xt‖2 ≤ L for all t ∈ [T ]. Since Σser

T is positive definite,
by the inequality of arithmetic and geometric means, we have

det(Σser
T ) ≤

(
tr(Σser

T )

d

)d
≤
(

1

d
tr

(
λI +

T∑
t=1

xtx
>
t

))d

=

(
λ+

1

d

T∑
t=1

‖xt‖22
)d
≤ λd

(
1 +

TL2

λd

)d
.

Then recalling the definition of epochs based on (6.1), we have

max{i ≥ 0 | τi 6= ∅} = log2

det(Σser
T )

λd
≤ log 2 · d log

(
1 +

TL2

λd

)
.

Therefore, the total number of epochs is bounded by log 2 · d log(1 + TL2/(λd)). Now applying
Lemma 6.2, the total communication complexity is bounded by 2 log 2 · d(M + 1/α) log(1 +
TL2/(λd)). Note that in Algorithm 1, each agent only switch its policy after communicating with the
server, so the switching cost is exactly equal to half of the communication complexity. This finishes
the proof for the claim on communication complexity and switching cost in Theorem 5.1.

6.2 Analysis for regret upper bound

The regret analysis for Theorem 5.1 is much more involved, and it relies on a series of intermediate
lemmas establishing the concentration.

Total information. We define the following auxiliary matrices and vectors that contain all the
information up to round t:

Σall
t = λI +

t∑
i=1

xix
>
i , ball

t =
t∑
i=1

rixi, uall
t =

t∑
i=1

ηixi, (6.2)
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where ηi := ri− 〈xi,θ∗〉 is a R-sub-Gaussian noise by Assumption 3.1. In our setting, Σall
t ,b

all
t ,u

all
t

are not accessible by the agents due to asynchronous communication, and we only use them to
facilitate the analysis. With this notation, we can further define the following omnipotent estimate:

θ̂all
t = (Σall

t )−1ball
t . (6.3)

As a direct application of the self-normalized martingale concentration inequality (Abbasi-Yadkori
et al., 2011), we have the following global confidence bound due to the concentration of Σall

t and ball
t .

Lemma 6.3 (Global confidence bound; Theorem 2, Abbasi-Yadkori et al. 2011). With probability at
least 1− δ, for each round t ∈ [T ], the estimate θ̂all

t in (6.3) satisfies

‖θ̂all
t − θ∗‖Σall

t
≤ R

√
d log

(
(1 + TL2/λ)/δ

)
+
√
λS.

Per-agent information. Next, for each agent m ∈ [M ], we denote the rounds when agent m
communicate with the server (i.e., upload and download data) as {tm,1, tm,2, ...}. For simplicity, at
the end of round t, we denote by Nm(t) the last round when agent m communicated with the server
(so if agent m communicated with the server in round t, then Nm(t) = t). With this notation, for
each round t and agent m ∈ [M ], the data that has been uploaded by agent m is then4

Σup
m,t =

Nm(t)∑
j=1,mj=m

xjx
>
j , uup

m,t =

Nm(t)∑
j=1,mj=m

xjηj .

Correspondingly, the local data that has not been uploaded to the server is

Σloc
m,t =

t∑
j=Nm(t)+1,mj=m

xjx
>
j , uloc

m,t =
t∑

j=Nm(t)+1,mj=m

xjηj .

Again, applying the self-normalized martingale concentration (Abbasi-Yadkori et al., 2011) together
with a union bound, we can get the per-agent local concentration.
Lemma 6.4 (Local concentration). Under the setting of Theorem 5.1, with probability at least 1− δ,
for each round t ∈ [T ] and each agent m ∈ [M ], it holds that∥∥∥ (αλI + Σloc

m,t+1

)−1
uloc
m,t

∥∥∥
αλI+Σloc

m,t

≤ R
√
d log

((
1 + TL2/(αλ)

)
/δ
)

+
√
λS.

Moreover, based on our determinant-based communication criterion, we have the following lemma
describing the quantitative relationship among the local data, uploaded data and global data.
Lemma 6.5 (Covariance comparison). Under the setting of Theorem 5.1, it holds that

λI +
M∑

m′=1

Σup
m′,t �

1

α
Σloc
m,t (6.4)

for each agent m ∈ [M ]. Moreover, for any 1 ≤ t1 < t2 ≤ T , if agent m is the only active agent
from round t1 to t2 − 1 and agent m only communicates with the server at round t1, then for all
t1 + 1 ≤ t ≤ t2, it further holds that

Σm,t �
1

1 +Mα
Σall
t . (6.5)

Combining the above results, we obtain the local confidence bound, which then leads to the per-round
regret in each round, as summarized in the following lemma.
Lemma 6.6 (Local confidence bound and per-round regret). Under the setting of Theorem 5.1, with
probability at least 1−δ, for each t ∈ [T ], the estimate θ̂m,t+1 satisfies that ‖θ∗−θ̂m,t+1‖Σm,t+1

≤ β
for all m ∈ [M ]. Consequently, for each round t ∈ [T ], the regret in round t satisfies

∆t = max
x∈Dt

〈θ∗,x〉 − 〈θ∗,xt〉 ≤ 2β
√

x>t Σ−1mt,txt.

4Strictly speaking, the uploaded data only consists of Σup
m,t and bup

m,t, and here we introduce uup
m,t and uloc

m,t

solely for the purpose of analysis.
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Now, we are ready to prove the regret bound in Theorem 5.1.

Proof of Theorem 5.1: regret. First, according to Lemma 6.6, the regret in first T round can be
decomposed and upper bounded by

Regret(T ) =
T∑
t=1

〈θ∗,x∗t − xt〉 ≤
T∑
t=1

2β‖xt‖Σ−1
mt,t

.

Now, we only need to control the summation of the upper confidence bonus term 2β‖xt‖Σ−1
mt,t

and

we focus on the agent-action sequence {(mt,xt)}Tt=1. Notice that if an agent m communicate with
the server at time t1 and t2, then the order of actions between round t1 and t2 will not effect the
covariance matrix for agent m. In addition, since agent m does not upload new data between round t1
and t2, the order of actions from agent m will also not affect other agents’ covariance matrix. Thus,
without effect the covariance matrix and the corresponding upper confidence bonus, we can always
reorder the sequence of active agents such that each agent communicates with the server and stays
active until the next agent kicks in to communicate with the server. Such reordering is valid according
to the communication protocol as each agent has only local updates between communications with
the server.

More specifically, we assume that the sequence of round that the active agent communicates with
server is 0 = t0 < t1 < t2 < · · · < tN = T + 15, and from round ti + 1 to ti+1 − 1 there is only
one agent active, that is, mti = mti+1 = · · · = mti+1−1. Then we apply Lemma 6.5 and get that the
bonus term for each round ti < t < ti+1 can be controlled by

2β‖xt‖(Σmt,t)
−1 ≤ 2β

√
1 +Mα‖xt‖(Σall

t )−1 . (6.6)

In addition, to control the bonus term for rounds {ti}Ni=1, we define Ti = min{t ∈ [T ] | det(Σall
t ) ≥

2iλd}. For each time interval from Ti to Ti+1, if an agent m communicate with the server more than
once, e.g., agent m communicates with the server at round Ti,1 and Ti,2 such that Ti ≤ Ti,1 < Ti,2 <
Ti+1, then for the latter round Ti,2, the bonus term can be controlled by

2β‖xTi,2‖(Σm,Ti,2
)−1 ≤ 2β

√
1 +Mα‖xTi,2‖(Σall

Ti,1
)−1

≤ 2β
√

2(1 +Mα)‖xTi,2
‖(Σall

Ti+1−1)
−1

≤ 2β
√

2(1 +Mα)‖xTi,2
‖(Σall

Ti,2
)−1 , (6.7)

where the first inequality holds due Lemma 6.5 and agent m communicate with the server
at the previous round Ti,1, the second inequality holds due to Lemma E.4 with the fact that
det Σall

Ti+1−1/ det(Σall
Ti,1

) ≤ 2i+1λd/(2iλd) = 2, and the last inequality holds due to the fact
that Σall

Ti+1−1 � Σall
Ti,2

. On the other hand, for each time interval from Ti to Ti+1, the bonus term
for the first communication can always be trivially bounded by 1 for all agent m. Therefore, the
summation of the regret over first communication can be upper bounded by 1. In addition, since the
norm of each action ‖x‖2 ≤ L and it implies that we have

det(Σall
T ) ≤ (λ+ TL2)d, (6.8)

which implies that the number of different intervals is at most d log(1 + TL2/λ). Combining the
upper bound of regret in (6.6), (6.7) and (6.8), we have

Regret(T ) ≤ dM log(1 + TL2/λ) +
T∑
t=1

2
√

2(1 +Mα)β‖xTi,2
‖(Σall

Ti,2
)−1

≤ d log(1 + TL2/λ) + 2
√

2(1 +Mα)β
√

2dT log(1 + TL2/λ),

where the last inequality follows from a standard elliptic potential argument (Abbasi-Yadkori et al.,
2011). This completes the proof.

5There is no comminucation happening at t0 or tN , but we include them for notational convenience.
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7 Experiments

In this section, we report numerical simulation results on the comparison between our algorithm
with other baselines. Specifically, we construct a contextual linear bandit instance with feature
dimension d = 25. In each round t, the active agent mt is uniformly sampled from all M agents.
We set the total number of rounds T = 30, 000 and test for M = 15 and 30. We compare our
FedLinUCB with Async-LinUCB (Li and Wang, 2022a) and OFUL Abbasi-Yadkori et al. (2011) with
full communication (i.e., the active agent communicates with the server in each round). Due to space
limit, further details and more simulation results are deferred to Appendix B. The code and data for
our experiments can be found on Github 6.
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(b) M = 30. Cumulative regret versus Round

Figure 2: Plots of cumulative regret versus round for M = 15 (Fig. 2(a)) and M = 30 (Fig. 2(b)),
comparing FedLinUCB (ours) with Async-LinUCB (Li and Wang, 2022a) and OFUL (Abbasi-Yadkori
et al., 2011) with full communication. The results are averaged over 20 runs with the error bars
chosen as the empirical one standard deviation.

It is clear from Figure 2 that FedLinUCB outperforms Async-LinUCB (Li and Wang, 2022a) in terms
of regret. Although OFUL with full communication has the smallest regret, its communication cost
(2MT ) is much higher than ours. Furthermore, we plot the log-scaled regret in Figure 3(c) and 3(d)
in Appendix B, which show that the average regret of our algorithm actually has a rate very close to
the optimal rate of OFUL. Overall, the numerical simulation corroborates our theoretical results.

8 Conclusion and Future Work

In this work, we study federated contextual linear bandit problem with fully asynchronous com-
munication. We propose a simple and provably efficient algorithm named FedLinUCB. We prove
that FedLinUCB obtains a near-optimal regret of order Õ(d

√
T ) with Õ(dM2) communication

complexity. We also prove a lower bound on the communication complexity, which suggests that
an Ω(M) communication complexity is necessary for achieving a near-optimal regret. There still
exists an O(dM) gap between the upper and lower bounds for the communication complexity and
we leave it as a future work to close this gap. Another important direction for future work is to
study federated linear bandits with a decentralized communication network without a central server
(i.e., P2P networks). In addition, there are potential privacy concerns when the agents upload and
download data from the server, and it remains an open problem to devise provably efficient algorithm
for asynchronous federated linear bandits with privacy guarantees.
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A Further Discussions

Here we provide further discussions on our results. We present a detailed comparison with Li and
Wang (2022a) in Appendix A.1, where we first discuss the difference in the algorithmic design, and
then elaborate on the concentration issue under the asynchronous setting with a simple example. In
Appendix A.2, we give an alternative form of our algorithm, where we rewrite Algorithm 1 in an
‘episodic’ fashion. The purpose is to make it easier for readers to compare our algorithm with existing
algorithms for federated linear bandits that are usually expressed in the ‘episodic’ form.

A.1 Comparison with Li and Wang (2022a)

Difference in algorithmic design. The Async-LinUCB algorithm proposed by Li and Wang
(2022a) is not fully asynchronous since in their algorithm, if some agent uploads data to the server,
the server will decide if each of the M agents needs to download the data. If the server decides that
an agent needs to download the data, this agent has to first download the data from the server and then
update its local policy before further interaction with the environment (i.e., taking the next action). In
other words, if an agent is offline when the server requests a download, the agent cannot take any
further action until it goes online and completes the required download and local model update. In
contrast, under the communication protocol in our Algorithm 1, any offline agent can still take action
until the trigger of the upload protocol. It is evident that their asynchronous communication protocol
is very restricted.

Concentration issue. Next, we discuss the concentration issue, and we first illustrate the problem
using a multi-arm bandit instance. Unlike the synchronous case, the reward estimator based on the
server-end data can be biased in asynchronous federated linear bandits. To see so, let us consider the
following simple example: The decision set contains two arms, A and B, and suppose for pulling
arm A, the agent receives a reward equal to either 1 or −1 with equal probability. We assume that
there are M agents, and each agent is active for two consecutive rounds. For each agent m ∈ [M ],
if the agent has selected the arm A in the first round, then the agent will select again the arm A in
the second round only if the agent receives a reward of 1 when pulling arm A in the first round. In
this case, it is easy to show that with probability 0.5, an agent selects arm A one time with reward
−1, and with probability 0.25, an agent selects arm A twice with total reward 2. Similarly, with
probability 0.25, an agent selects arm A twice with a total reward of 0.

In the synchronous setting, all agent will upload their local data to the server at the end of each
round. Thus, taking an average for all data at the server, the expected reward of arm A is 0, which
equals the actual expected reward of arm A. However, in the asynchronous setting, things become
more complicated. Suppose that for each agent, only selecting arm A twice will trigger the upload
protocal. Then after two active rounds, an agent will upload its data to the server if and only if the
agent receives reward 1 in the first round. Thus among the agents that upload the data, half of them
receive a total reward of 2 and the other half receive a total reward of 0. In this case, taking an average
for all data at the server, the expected reward of arm A is 0.5, which is a biased estimator compared
with the actual expected reward.

Indeed, the above issue could happen in federated linear bandits with the Async-LinUCB algorithm (Li
and Wang, 2022a). Specifically, let us consider a linear bandit instance with dimension d = 2, and we
assume that arm A has context vector xA = (3, 0)>, arm B has context vector xB = (0, 1/

√
10)>,

the true model is θ∗ = 0, the noise η is a Rademacher random variable, and the parameter λ is set
to be 1. Therefore, the rewards for both arm A and B equal to 1 or −1 with 0.5 probability. In this
case, based on the principle of optimism in the face of uncertainty, at the beginning, the optimistic
estimators for the two arms A,B are 3β and β/

√
10 respectively. Thus, all agents will always choose

armA in the first round, so x1 = xA. After choosing armA at the first round, the optimistic estimator
for the two armsA,B in each agent’s second round will be 9r/10+3β/

√
10 and β/

√
10 respectively,

where r is the reward received in the first round. Therefore, with confidence radius β < 1, each agent
will select the arm A (i.e., x2 = xA) in the second round only if the agent receives a reward of r = 1
in the first round. Finally, only choosing arm A twice will increase the determinant of the covariance
matrix enough to trigger the upload protocol (e.g., det(λI + x1x

>
1 + x2x

>
2 )/ det(λI) ≥ 19).

As demonstrated above, in the asynchronous setting, the reward estimator based on the server-end
data can be biased, which leads to the issue that previous concentration results (e.g., Abbasi-Yadkori
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Algorithm 2 Federated linear UCB (Alternative)

1: Initialize Σm,1 = Σser
1 = λI, θ̂m,1 = 0, bloc

m,0 = 0 and Σloc
m,0 = 0 for all m ∈ [M ]

2: for k = 1, 2, . . . ,K do
3: Participation set Pk ⊆ [M ] of arbitrary order
4: for each active agent m ∈ Pk do
5: Receive Dm,k from the environment
6: Select xm,k ← argmaxx∈Dm,k

〈θ̂m,k,xk〉+ β‖x‖Σ−1
m,k

/* Optimistic decision */
7: Receive rm,k from environment
8: Σloc

m,k ← Σloc
m,k−1 + xm,kx

>
m,k, bloc

m,k ← bloc
m,k−1 + rm,kxm,k /*Local update*/

9: if det(Σm,k + Σloc
m,k) > (1 + α) det(Σm,k) then

10: Agent m sends Σloc
m,k and bloc

m,k to server /* Upload */
11: Σser

k ← Σser
k + Σloc

m,k, bser
k ← bser

k + bloc
m,k /* Global update */

12: Σloc
m,k ← 0, bloc

m,k ← 0
13: Server sends Σser

k and bser
k back to agent m /* Download */

14: Σm,k+1 ← Σser
k , bm,k ← bser

k

15: θ̂m,k+1 ← Σ−1m,k+1bm,k+1 /* Compute estimate */
16: else
17: Σm,k+1 ← Σm,k, bm,k+1 ← bm,k, θ̂m,k+1 ← θ̂m,k
18: end if
19: end for
20: for other inactive agents m ∈ [M ] \ Pk do
21: Σm,k+1 ← Σm,k, bm,k+1 ← bm,k, θ̂m,k+1 ← θ̂m,k
22: end for
23: end for

et al. (2011)) cannot be directly used for the server’s data. This is why we need a more dedicated
analysis to control this biased error (see Lemma 6.6 for more details).

A.2 An Alternative Form of Algorithm 1

We introduce an alternative form of Algorithm 1, which is displayed in Algorithm 2. Algorithm 2
can be viewed as the episodic7 version of Algorithm 1, and its form aligns with those of the existing
algorithms for federated linear bandits (Wang et al., 2019; Dubey and Pentland, 2020; Huang et al.,
2021; Li and Wang, 2022a).

Specifically, in Algorithm 2, for each round (episode) k ∈ [K], the set of active agents is given
by Pk, where the order of agents in Pk can be arbitrary (Line 3). Then the agents in the set Pk
participate according to the prefixed order (Line 4). The operations in the inner loop of Algorithm 2
(i.e., decision rule, upload/download, local/global update, and model estimates) are all identical to
those in Algorithm 1. Therefore, Algorithm 2 is indeed equivalent to Algorithm 1 up to relabeling
of the participation of the agents, and hence all the theoretical results for Algorithm 1 also hold for
Algorithm 2.

B Experiments

In this section, we provide the remaining details on numerical simulations.

Experiment setup. We construct two linear bandit instances with dimension d = 25. In the first
instance, the true model parameter θ∗ is [1/

√
d, .., 1/

√
d] ∈ Rd. In the second instance, the true

model parameter θ∗ is generated by uniform random sampling over the space [−1/
√
d, 1/
√
d]d with

normalization. For each round t ∈ [T ], the active agent mt is uniform sampled from all M agents

7Here ‘episode’ means a collection of every agent’s interaction with the environment for one round, which is
different from the usual term in online learning that refers to a sequential interaction lasting for a certain time
horizon. We only use this term to differentiate Algorithm 2 from Algorithm 1.
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(a) M = 15. Cumulative regret versus Round
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(b) M = 30. Cumulative regret versus Round
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(c) M = 15. Log-average regret versus Round
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(d) M = 30. Log-average regret versus Round
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(e) M = 15. Communication cost versus Round
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(f) M = 30. Communication cost versus Round

Figure 3: Comparison of FedlinUCB (ours), Async-LinUCB (Li and Wang, 2022a) and OFUL
(full communication) (Abbasi-Yadkori et al., 2011) with parameter θ∗ = [1/

√
d, .., 1/

√
d] ∈ Rd.

Experiments are run for M = 15 and M = 30, and results are averaged over 20 runs. Figures 3(a)
and 3(b) present the cumulative regret; Figures 3(c) and 3(d) show the averaged regret (in log scale);
Figures 3(e) and 3(f) compare the communication cost versus number of rounds. Note that the
communication cost of OFUL with full communication is linear with the number of rounds T and is
far greater than those of both FedLinUCB and Async-LinUCB. Therefore, in order to make a clearer
comparison between the communication cost of FedLinUCB and Async-LinUCB, OFUL is omitted
in Figure 3(e) and 3(f).

and the decision set Dt consists of 25 different actions uniformly randomly sampled from the space
[−1/

√
d, 1/
√
d]d. After the active agent mt chooses an action xt, the agent mt receives a reward

given by rt = 〈xt,θ∗〉 + ηt, where ηt is a 0.3-Gaussian noise. We run simulation on the above
linear bandit instance with the total number of rounds T = 30000 (repeating 20 times and taking the
average) and the number of agents is set to be 15 or 30. We implement our FedLinUCB algorithm
and compare its performance with Async-LinUCB (Li and Wang, 2022a) and OFUL Abbasi-Yadkori
et al. (2011) with full communication (i.e., the active agent communicates with the server in each
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(c) M = 15. Log-average regret versus Round
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(e) M = 15. Communication cost versus Round
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(f) M = 30. Communication cost versus Round

Figure 4: Comparison of FedlinUCB (ours), Async-LinUCB (Li and Wang, 2022a) and OFUL (full
communication) (Abbasi-Yadkori et al., 2011) with random select θ∗. Experiments are run for
M = 15 and M = 30, and results are averaged over 20 runs. Figures 4(a) and 4(b) present the
cumulative regret; Figures 4(c) and 4(d) show the averaged regret (in log scale); Figures 4(e) and
4(f) compare the communication cost versus number of rounds. Note that the communication cost of
OFUL with full communication is linear with the number of rounds T and is far greater than those of
both FedLinUCB and Async-LinUCB. Therefore, in order to make a clearer comparison between the
communication cost of FedLinUCB and Async-LinUCB, OFUL is omitted in Figure 4(e) and 4(f).

round). We set the parameter α = 1 for FedLinUCB and γU = γD = 5 for Async-LinUCB to ensure
that the communication costs of FedLinUCB and Async-LinUCB have similar magnitudes.

Results. The results are presented in Figure 3 and 4, suggesting that our algorithm significantly out-
performs Async-LinUCB as our algorithm achieves smaller regret while spending less communication
cost.

Specifically, Figure 3(a) and 3(b) displays the cumulative regret of our FedLinUCB algorithm, Async-
LinUCB (Li and Wang, 2022a) and OFUL (Abbasi-Yadkori et al., 2011) with full communication.
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It can be apparently seen that FedLinUCB outperforms Async-LinUCB in terms of regret. Next,
Figure 3(c) and 3(d) show the average regret in log scale. These two plots show that the average regret
of our algorithm has a rate very close to the optimal rate of OFUL. Finally, we plot communication
cost versus number of rounds in Figure 3(e) and 3(f), which indicates that the communication cost
of FedLinUCB is significantly lower than that of Async-LinUCB. Together with Figure 3(a) and
3(b), we see that our algorithm achieves lower regret with lower communication cost, compared to
Async-LinUCB.

The experiment for Figure 4 adopts a different θ∗ (which is randomly selected sampled the space
[−1/

√
d, 1/
√
d]d with normalization) from that of Figure 3. Figure 4 shows almost the same results

as Figure 3, indicating our algorithms works in general.

Overall, the simulation corroborates our theoretical results. It also shows that our algorithm indeed
outperforms Async-LinUCB (Li and Wang, 2022a).

For all the experiments, the results are averaged over 20 runs with the error bars chosen as the
empirical one standard deviation. All experiments are conducted on a Macbook with 8-core CPU and
16 GB of memory.

C Missing Proofs in Section 6

Here we present the proof of the results in Section 6.

C.1 Communication complexity within each epoch

We first present the proof for the bound on the communication complexity within each epoch given in
Lemma 6.2.

Proof of Lemma 6.2. For each agent m ∈ [M ], let nm be the number of communications agent m
has made during this epoch, and we denote the communication rounds as t1, . . . , tnm

for simplicity.
Now we consider the data uploaded to the server, and it can be denoted by the value of covariance
matrix Σloc

m,tj before communicating with the server. For each j = 2, . . . , nm, according to the
determinant-based criterion (Line 9) in Algorithm 1, we have

det(Σm,tj + Σloc
m,tj )− det(Σm,tj ) > α · det(Σm,tj ),

which further implies that

α · det(Σser
Ti

) < det(Σser
Ti

+ Σloc
m,tj )− det(Σser

Ti
), (C.1)

where the inequality holds due to Lemma E.2 together with the fact that the communication in round
t1 updates the covariance matrix so that Σm,tj � Σser

Ti
. In addition, we define the sequence of all

communications from Ti to Ti+1 − 1 as t′1, . . . , t
′
L. For each round t′j , if the agent mt′j

have already
communicated with the server earlier in this epoch, we have

det(Σser
t′j

)− det(Σser
t′j−1

) = det(Σser
t′j−1

+ Σloc
mt′

j
,t′j

)− det(Σser
t′j−1

)

≥ det(Σser
Ti

+ Σloc
m,tj )− det(Σser

Ti
)

> α · det(Σser
Ti

), (C.2)
where the first inequality holds due to Lemma E.1 together with the fact that Σser

t′j−1
� Σser

Ti
, and the

second inequality follows from (C.1). Now, taking the sum of (C.2) over all round t′j , we obtain

det(Σser
Ti+1−1)− det(Σser

Ti
) =

∑
1≤j≤L

det(Σser
t′j

)− det(Σser
t′j−1

) ≥
M∑
m=1

(nm − 1)α · det(Σser
Ti

).

Since det(Σser,Ti+1−1) ≤ 2 det(Σser,Ti
), we further have∑
j∈M

nj ≤M + 1/α.

Each communication between one agent and the server includes one upload and one download, so
the communication complexity within one epoch is bounded by 2(M + 1/α). This finishes the
proof.
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C.2 Proof for the covariance comparison

Next, we prove the comparison between the covariance matrices given in Lemma 6.5.

Proof of Lemma 6.5. Fix any round t ∈ [T ]. Let t1 ≤ t be the last round such that agent m is active
at round t1. If agent m communicated with the server at this round, then we have

λI +
M∑

m′=1

Σup
m′,t � 0 =

1

α
Σloc
m,t.

Otherwise, according to determinant-based criterion (Line 9) in Algorithm 1, at the end of each round
t1, we have

det
(
Σm,t1 + Σloc

m,t1

)
≤ (1 + α) det(Σm,t1).

By Lemma E.4, for any non-zero vector x ∈ Rd, we have

x>(Σm,t1 + Σloc
m,t1)x

x>Σm,t1x
≤

det(Σm,t1 + Σloc
m,t1)

det(Σm,t1)
≤ 1 + α.

Rearranging the above yields x>Σloc
m,t1x ≤ αx>Σm,t1x, which then implies that

Σm,t1 �
1

α
Σloc
m,t1

Note that Σm,t1 is the downloaded covariance matrix from last communication before round t1, so it
must satisfy Σm,t1 � Σser

t1 . Therefore, we have

λI +
M∑

m′=1

Σup
m′,t1

= Σser
t1 � Σm,t1 �

1

α
Σloc
m,t1 .

Now, for round t, since agent m is inactive from round t1 to t, then we have

λI +
M∑

m′=1

Σup
m′,t � λI +

M∑
m′=1

Σup
m′,t1

� 1

α
Σloc
m,t1 =

1

α
Σloc
m,t,

which yields the first claim in Lemma 6.5.

Next, suppose agentm is the only active agent from round t1 to t2−1 and agentm only communicates
with the server at round t1. Further average the above inequality over all agents m ∈ [M ], and we get

λI +
M∑

m′=1

Σup
m′,t �

1

Mα

M∑
m′=1

Σloc
m′,t, (C.3)

which implies that for t1 + 1 ≤ t ≤ t2 − 1, we have

Σm,t = λI +
M∑

m′=1

Σup
m′,t1

= λI +
M∑

m′=1

Σup
m′,t

� 1

1 +Mα

(
λI +

M∑
m′=1

Σup
m′,t +

M∑
m′=1

Σloc
m′,t

)
=

1

1 +Mα
Σall
t ,

where the second equation holds due to the fact that no agent communicate with server from round
t1 + 1 to t2 − 1, and the inequality follows from (C.3). This yields the second claim in Lemma 6.5
and finishes the proof.

C.3 Proof of the local concentration for agents

Recall that the global concentration and corresponding global confidence bound have been shown in
Lemma 6.3. Next, we establish the concentration properties of the local data on the agents’ side.
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Proof of Lemma 6.4. For each agent m ∈ [M ] and any rounds 1 ≤ t1 ≤ t2 ≤ T , consider

Σm,t1,t2 = αλI +

t2∑
i=t1+1,mi=m

xix
>
i and um,t1,t2 =

t2∑
i=t1+1,mi=m

xiηi.

By Theorem 2 in Abbasi-Yadkori et al. (2011), with probability at least 1− δ/(T 2M), we have

‖Σ−1m,t1,t2um,t1,t2‖Σm,t1,t2
≤ R

√
d log

((
1 + TL2/(αλ)

)
/δ
)

+
√
λS.

Then taking an union bound over all agent m ∈ [M ] and rounds 1 ≤ t1 ≤ t2 ≤ T and applying
to t1 = Nm(t) and t2 = t for each t ∈ [T ], we obtain the desired concentration. This finishes the
proof.

For clarity, we break Lemma 6.6 into two lemmas, Lemma C.1 for local confidence bound and
Lemma C.2 for per-round regret, and prove them separately.
Lemma C.1 (Local confidence bound). Under the setting of Theorem 5.1, with probability at least
1− δ, for each t ∈ [T ], the estimate θ̂m,t+1 satisfies that ‖θ∗ − θ̂m,t+1‖Σm,t+1

≤ β.

Proof of Lemma C.1. Since the estimated vector θ̂m,t+1 and covariance matrix Σm,t+1 will keep the
same value as in the previous round if the agent m do not communicate with the server, we only need
to consider for those round t where agent m communicates with the server. By the determinant-based
criterion (Line 9) in Algorithm 1, if the agent m communicates with the server in round t, then at the
end of this round, the covariance matrix Σm,t+1 and vector bm,t+1 are given by

Σm,t+1 = λI +
M∑

m′=1

Σup
m′,Nm′ (t)

= λI +
M∑

m′=1

Σup
m′,t, bm,t+1 =

M∑
m′=1

bup
m′,t. (C.4)

Therefore, the estimated vector θ̂m,t+1 is

θ̂m,t+1 =

(
λI +

M∑
m′=1

Σup
m′,t

)−1 M∑
m′=1

bup
m′,t

=

(
λI +

M∑
m′=1

Σup
m′,t

)−1 M∑
m′=1

(Σup
m′,tθ

∗ + uup
m′,t)

= θ∗ − λ
(
λI +

M∑
m′=1

Σup
m′,t

)−1
θ∗ +

(
λI +

M∑
m′=1

Σup
m′,k

)−1 M∑
m′=1

uup
m′,t

= θ∗ − λ(Σm,t+1)−1θ∗ +
M∑

m′=1

(Σm,t+1)−1uup
m′,t.

Thus, the difference between θ̂m,t+1 and the underlying truth θ∗ can be decomposed as∥∥θ∗ − θ̂m,t+1

∥∥
Σm,t+1

≤
∥∥λ(Σm,t+1)−1θ∗

∥∥
Σm,t+1

+

∥∥∥∥ M∑
m′=1

(Σm,t+1)−1uup
m′,t

∥∥∥∥
Σm,t+1

≤
√
λ‖θ∗‖2 +

∥∥∥∥ M∑
m′=1

(Σm,t+1)−1uup
m′,t

∥∥∥∥
Σm,t+1

, (C.5)

where the first inequality holds due to that fact that ‖a + b‖Σ ≤ ‖a‖Σ + ‖b‖Σ and the second
inequality follows from Σm,t+1 ≥ λI. By the assumption that ‖θ∗‖2 ≤ S, the first term can be
controlled by

√
λS. For the second term in (C.5), consider the following decomposition:

M∑
m′=1

(Σm,t+1)−1uup
m′,t =

M∑
m′=1

(Σm,t+1)−1
(
uup
m′,t + uloc

m′,t

)
−

M∑
m′=1

(Σm,t+1)−1uloc
m′,t

= (Σm,t+1)−1uall
t︸ ︷︷ ︸

A

−
M∑

m′=1

(Σm,t+1)−1uloc
m′,t︸ ︷︷ ︸

Bm′

. (C.6)
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For the term A, it follows from (6.5) in Lemma 6.5 that∥∥(Σm,t+1)−1uall
t

∥∥
Σm,t+1

=
∥∥(Σm,t+1)−1/2uall

t

∥∥
2

≤
√

1 +Mα ·
∥∥(Σall

t )−1/2uall
t

∥∥
2

≤
√

1 +Mα ·
(
R
√
d log

(
(1 + TL2/λ)/δ

)
+
√
λS
)
, (C.7)

where the second inequality holds due to Lemma 6.3. Next, for each term Bm′ in (C.6), by (6.4) in
Lemma 6.5, we have

λI +
M∑
j=1

Σup
j,t �

1

α
Σloc
m′,t,

which further implies that

λI +
M∑
j=1

Σup
j,t �

1

2α
(αλI + Σloc

m′,t). (C.8)

Thus, the norm of each term Bm′ can be bounded as∥∥(Σm,t+1)−1uloc
m′,t

∥∥
Σm,t+1

=
∥∥(Σm,t+1)−1/2uloc

m′,t

∥∥
2

≤
√

2α ·
∥∥∥(αλI + Σloc

m′,t

)−1/2
uloc
m′,t

∥∥∥
2

≤
√

2α ·
(
R

√
d log

αλ+ TL2

αλδ
+
√
λS

)
, (C.9)

where the first inequality holds due to (C.8) and the second inequality follows from Lemma 6.4.

Finally, combining (C.5), (C.6), (C.7) and (C.9), we obtain

∥∥θ∗ − θ̂m,t+1

∥∥
Σm,t+1

≤
√
λS +

(√
1 +Mα+M

√
2α
)(
R

√
d log

min(α, 1) · λ+ TL2

min(α, 1) · λδ
+
√
λS

)
.

Thus we finish the proof of Lemma C.1.

Lemma C.2 (Per-round regret). Under the setting of Theorem 5.1, with probability at least 1− δ,
for each t ∈ [T ], the regret in round t satisfies

∆t = max
x∈Dt

〈θ∗,x〉 − 〈θ∗,xt〉 ≤ 2β
√

x>t Σ−1mt,txt.

Proof of Lemma C.2. First, by Lemma C.1, with probability at least 1− δ, for each round t ∈ [T ]
and each action x ∈ Dt, we have

θ̂>m,tx + β
√

x>Σ−1mt,tx− (θ∗)>x = (θ̂m,t − θ∗)>x + β
√

x>Σ−1mt,tx

≥ −‖θ̂m,t − θ∗‖Σmt,t
· ‖x‖Σ−1

mt,t
+ β

√
x>Σ−1mt,tx

≥ −β‖x‖Σ−1
mt,t

+ β
√

x>Σ−1mt,tx

= 0, (C.10)

where the first inequality holds due to the Cauchy-Schwarz inequality and the last inequality follows
from Lemma C.1. (C.10) shows that the estimator for agent mt is always optimistic. For simplicity,
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we denote the optimal action at round t as x∗ = arg maxx∈Dt(θ
∗)>x, and (C.10) further implies

∆t = (θ∗)>x∗ − (θ∗)>xt

≤ θ̂>m,tx
∗ + β

√
(x∗)>Σ−1mt,tx

∗ − (θ∗)>xt

≤ θ̂>m,txt + β
√

x>t Σ−1mt,txt − (θ∗)>xt

= (θ̂m,t − θ∗)>xt + β
√

x>t Σ−1mt,txt

≤ ‖θ̂m,t − θ∗‖Σmt,t
· ‖xk‖Σ−1

mt,t
+ β

√
x>t Σ−1mt,txt

≤ 2β
√

x>t Σ−1mt,txt,

where the first inequality holds due to (C.10), the second inequality follows from the definition of
action xt in Algorithm 1, the third inequality applies the Cauchy-Schwarz inequality, and the last
inequality is by Lemma C.1. Thus, we finish the proof of Lemma C.2.

Combining Lemmas C.1 and C.2 yields Lemma 6.6

D Proof for Lower Bound

Lemma D.1 (Theorem 3 in Abbasi-Yadkori et al. 2011). There exists a constant C > 0, such that for
any normalized linear bandit instance with R = L = S = 1, the expectation of the regret for OFUL
algorithm is upper bounded by E[Regret(T )] ≤ Cd

√
T log T .

Lemma D.2 (Theorem 24.1 in Lattimore and Szepesvári 2020). There exists a set of hard-to-learn
normalized linear bandit instances with R = L = S = 1, such that for any algorithm Alg and T ≥ d,
for a uniformly random instance in the set, the regret is lower bounded by E[Regret(T )] ≥ cd

√
T for

some constant c > 0.

Theorem 5.3 is an extension of the lower bound result in Wang et al. (2019, Theorem 2) from
multi-arm bandits to linear bandits.

Proof of Theorem 5.3. For any algorithm Alg for federated bandits, we construct the auxiliary Alg1
as follows: For each agent m ∈ [M ], it performs Alg until there is a communication between the
agent m and the server (upload or download data). After the communication, the agent m remove all
previous information and perform the OFUL Algorithm in Abbasi-Yadkori et al. (2011). In this case,
for each agent m ∈ [M ], Alg1 do not utilize any information from other agents and it will reduce to
a single agent bandit algorithm.

Now, we uniformly randomly select a hard-to-learn instance from the set given in Lemma D.2, and
let each agent m ∈ [M ] be active for T/M different rounds (where we assume T/M is an integer
for simplicity). Since Alg1 reduces to a single agent bandit algorithm, Lemma D.2 implies that the
expected regret for agent m with Alg1 is lower bounded by

E[Regretm,Alg1] ≥ cd
√
T/M. (D.1)

Taking the sum of (D.1) over all agents m ∈ [M ], we obtain

E[RegretAlg1] =

M∑
m=1

E[Regretm,Alg1] ≥ cd
√
MT. (D.2)

For each agent m ∈ [M ], let δm denote the probability that agent m will communicate with the
server. Notice that before the communication, Alg1 has the same performance as Alg, while for the
rounds after the communication, Alg1 executes the OFUL algorithm and Lemma D.1 suggests an
O(d

√
T/M log(T/M)) upper bounded for the expected regret. Therefore, the expected regret for

agent m with Alg1 is upper bounded by

E[Regretm,Alg1] ≤ E[Regretm,Alg] + δmCd
√
T/M log(T/M). (D.3)
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Taking the sum of (D.3) over all agents m ∈ [M ], we obtain

E[RegretAlg(T )] =
M∑
m=1

E[Regretm,Alg1]

≤
M∑
m=1

E[Regretm,Alg] +

( M∑
m=1

δm

)
Cd
√
T/M log(T/M)

= E[RegretAlg] + δCd
√
T/M log(T/M), (D.4)

where δ =
∑M
m=1 δm is the expected communication complexity. Combining (D.2) and (D.4), for any

algorithm Alg with communication complexity δ ≤ c/(2C) ·M/ log(T/M) = O(M/ log(T/M)),
we have

E[RegretAlg] ≥ cd
√
MT − δCd

√
T/M log(T/M) ≥ cd

√
MT/2 = Ω(d

√
MT ).

This finishes the proof of Theorem 5.3.

E Auxiliary Lemmas

To make the analysis self-contained in this paper, here we include the auxiliary lemmas that have
been previously used.
Lemma E.1 (Lemma 2.2 in Tie et al. 2011). For any positive semi-definite matrices A, B and C, it
holds that det(A + B + C) + det(A) ≥ det(A + B) + det(A + C).
Lemma E.2 (Lemma 2.3 in Tie et al. 2011). For any positive semi-definite matrices A, B and C, it
holds that det(A + B + C) det(A) ≤ det(A + B) det(A + C).
Theorem E.3 (Theorem 2 in Abbasi-Yadkori et al. 2011). Suppose {Ft}∞t=0 is a filtration. Let
{ηt}Rt=1 be a stochastic process in R such that ηt is Ft-measurable and R-sub-Gaussian conditioning
on Ft−1, i.e, for any c > 0,

E [exp (cηt)|Ft−1] ≤ exp

(
c2R2

2

)
.

Let {xt}∞t=1 be a stochastic process in Rd such that xt is Ft−1-measurable and ‖xt‖2 ≤ L. Let
yt = 〈xt,θ∗〉+ ηt for some θ∗ ∈ Rd s.t. ‖θ∗‖2 ≤ S. For any t ≥ 1, define

Σt = λI +

t∑
i=1

xtx
>
t , and θ̂t = Σ−1t

t∑
i=1

xiyi,

for some λ > 0. Then for any δ > 0, with probability at least 1− δ, for all t, we have

‖θ̂t − θ∗‖Σt
≤ R

√
d log

(
1 + tL2/λ

δ

)
+
√
λS.

Lemma E.4 (Lemma 12 in Abbasi-Yadkori et al. (2011)). Suppose A,B ∈ Rd×d are two positive
definite matrices satisfying that A � B, then for any x ∈ Rd, ‖x‖A ≤ ‖x‖B ·

√
det(A)/ det(B).
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