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Abstract

We consider learning Nash equilibria in two-player zero-sum Markov Games with
nonlinear function approximation, where the action-value function is approximated
by a function in a Reproducing Kernel Hilbert Space (RKHS). The key challenge
is how to do exploration in the high-dimensional function space. We propose
a novel online learning algorithm to find a Nash equilibrium by minimizing the
duality gap. At the core of our algorithms are upper and lower confidence bounds
that are derived based on the principle of optimism in the face of uncertainty.
We prove that our algorithm is able to attain an O(

√
T ) regret with polynomial

computational complexity, under very mild assumptions on the reward function and
the underlying dynamic of the Markov Games. We also propose several extensions
of our algorithm, including an algorithm with a Bernstein-type bonus that can
achieve a tighter regret bound, and another algorithm for model misspecification
that can be applied to neural network function approximation.

1 Introduction

Multi-agent reinforcement learning (MARL) has been the focus of research across a range of research
communities [Shapley, 1953, Littman, 1994]. The case of two-player Markov Games (MG) has
been of particular interest. In this case, two players select their actions based on the current state
simultaneously and independently. One player (the max-player) aims to maximize the return based
on the reward provided by the environment, while the other (the min-player) aims to minimize it. A
series of recent results have established polynomial sample complexity/regret guarantees that depend
on the cardinality of state/action spaces for two-player zero-sum MGs [Wei et al., 2017, Bai and Jin,
2020, Bai et al., 2020, Liu et al., 2021, Jia et al., 2019, Sidford et al., 2020, Cui and Yang, 2021,
Lagoudakis and Parr, 2002, Perolat et al., 2015, Pérolat et al., 2016a,b, 2017, Jin et al., 2021b].

Meanwhile, most of the recent successful applications of MARL deal with large state/action
spaces that may be continuous or a fine-grained discretization of a continuous space. Examples
include GO [Silver et al., 2016], autonomous driving [Shalev-Shwartz et al., 2016], TexasHold’em
poker [Brown and Sandholm, 2019], and AlphaStar for the game Starcraft [Vinyals et al., 2019].
In order to tackle problems with large state/action spaces, researchers have designed MARL algo-
rithms based on function approximation which approximate the original high-dimensional value
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function/policy by a function approximator. For instance, Xie et al. [2020] and Chen et al. [2022]
studied RL for two-player zero-sum MGs with linear function approximation, where it is assumed that
there are a set of linear features that span the transition kernel and reward function spaces. In contrast
to RL with linear function approximation, RL with nonlinear function approximation (e.g., kernel
and neural network approximation) aims to take advantage of the superior representational power
of nonlinear function compared to linear parameterizations. For example, Jin et al. [2022] studied
neural-network-based RL in the setting of MGs with low multi-agent Bellman eluder dimension,
obtaining algorithms that have polynomial dependence on the complexity of the underlying function
class. Although this yields a strong theoretical guarantee, the algorithm that they propose is not
computationally efficient due to the constructed highly nonconvex confidence sets. The following
question is still open: Can we design a computationally and statistically efficient RL algorithm for
learning two-player Markov Games with nonlinear function approximation?

In this paper, we give an affirmative answer to this question for a class of episodic Markov Games,
dubbed mixture Markov Games, when using a nonlinear approximation function in a Reproducing
Kernel Hilbert Space (RKHS). We propose a novel kernel-based MARL algorithmic framework
for general episodic two-player zero-sum MGs which provides provable regret guarantees. We
summarize the contributions of our work as follows:

• We propose a KernelCCE-VTR algorithm for two-player zero-sum MGs. In particular, at each
episode, KernelCCE-VTR uses kernel function approximation to approximate the optimal value
function and constructs corresponding confidence sets, following the “Optimism-in-Face-of-
Uncertainty” principle [Abbasi-Yadkori et al., 2011] to select an action based on the current
state. In contrast to algorithms in Jin et al. [2022], which construct implicit confidence sets that are
in general computationally intractable, our algorithm KernelCCE-VTR crafts a computationally
efficient exploration bonus based on the gram matrix of the kernel function.

• Under the assumption that the transition dynamics belongs to some RKHS, we show that our algo-
rithm KernelCCE-VTR is able to find a Nash equilibrium of the game with a Õ(dFH

2
√
T ) regret

bound on the duality gap, whereH is the horizon, T is the number of the episodes, and dF represents
the complexity of the function class F . We also propose an extension of KernelCCE-VTR that uti-
lizes weighted kernel ridge regression and a Bernstein-type bonus to achieve Õ(dFH

3/2
√
T ) regret.

When F reduces to the d-dimensional linear function class, our regret reduces to Õ(dH3/2
√
T ),

which almost matches the lower bound in Chen et al. [2022].
• We also study the general case where the transition dynamics belongs to some RKHS up to a

misspecification error. We show that our KernelCCE-VTR can achieve a similar regret as in the
well-specified case. In particular, we study the neural network function approximation case which
can be regarded as a special instance of the misspecified RKHS case and derive the corresponding
regret bound.

Notation. We use lowercase letters to denote scalars, and lower and uppercase bold letters to denote
vectors and matrices. We use ‖ · ‖ to indicate Euclidean norm, and for a semi-positive definite matrix
Σ and any vector x, ‖x‖Σ := ‖Σ1/2x‖ =

√
x>Σx. For real t and interval [a, b], we use Π[a,b][t]

to indicate the projection of t onto [a, b], i.e. Π[a,b][t] = max (a,min(b, t)). For positive integer
N we sometimes define [N ] = {1, . . . , N} for compactness. We also adopt the standard big-O
and big-Ω notations: say an = O(bn) if and only if there exists C > 0, N > 0, for any n > N ,
an ≤ Cbn; an = Ω(bn) if an ≥ Cbn. The notations Õ and Ω̃ are adopted when the C above hides a
polylogarithmic factor.

2 Related Work

Online RL with function approximation. MARL with function approximation can be seen as an
extension of RL with function approximation on MDPs. There are several lines of work studying RL
with function approximation. The first line of work studies the so-called linear MDP which assumes
the reward function and transition dynamics are linear functions of a feature mapping defined on the
state and action spaces [Yang and Wang, 2020, Jin et al., 2020, Zanette et al., 2020]. These works
propose model-free algorithms with sublinear regret on the number of episodes K. The second line
of work studies the linear mixture MDP which assumes the transition kernel is a linear combination
of several base models [Modi et al., 2020, Jia et al., 2020, Zhou et al., 2021b,a]. These studies
proposed model-based RL algorithms that estimate the transition kernel with finite sample complexity
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or sublinear regret guarantees. The third line of work studies general function approximation which
assumes that either the value function or the transition kernel can be approximated by a general class
of functions [Osband and Van Roy, 2014, Jiang et al., 2017, Sun et al., 2019, Wang et al., 2020, Yang
et al., 2020, Du et al., 2021, Jin et al., 2021a]. Algorithms proposed in this line enjoy finite regret
or sample complexity bounds that depend on some general complexity measures such as Eluder
dimension [Russo and Van Roy, 2013, Osband and Van Roy, 2014], Bellman rank [Jiang et al., 2017],
witness rank [Sun et al., 2019], information gain [Yang et al., 2020], bilinear class [Du et al., 2021]
and Bellman eluder dimension [Jin et al., 2021a].

Learning two-player MGs with function approximation. There is a large body of literature on
MARL for two-player MGs with function approximation. These works can be generally categorized
into MARL with linear function approximation and MARL with general function approximation. For
example, for linear function approximation, Xie et al. [2020] studied zero-sum simultaneous-move
MGs where both the reward and transition kernel can be parameterized as linear functions of some
feature mappings. They proposed an OMVI-NI algorithm with an Õ(

√
d3H3T ) regret, where d is the

number of the feature dimension, H is the episode length and T is the total number of rounds. Chen
et al. [2022] studied the linear mixture MGs and proposed a nearly minimax optimal Nash-UCRL-
VTR algorithm with an Õ(dH

√
T ) regret and an Ω(dH

√
T ) matching lower bound. In contrast

to this work, our KernelCCE-VTR does not assume the underlying transition dynamic or reward
function has a linear structure. For MARL with general function approximation, Jin et al. [2022]
studied the two-player zero-sum MGs with low multi-agent Bellman Eluder dimension and proposed
a “Golf with Exploiter” algorithm using a general function class. They showed their algorithm enjoys
an Õ(H

√
dK logN) regret, where d is the multi-agent Bellman eluder dimension, K is the number

of episodes. Huang et al. [2022] studied two-player MGs with a finite minimax Eluder dimension and
proposed a method called ONEMG with an Õ(H

√
dK logN) regret, where d is the minimax Eluder

dimension. To obtain the desired function approximator, both Golf with Exploiter and ONEMG need
to solve a constrained optimization problem, which is computationally intractable even in the linear
function approximation setting. In contrast to Jin et al. [2022] and Huang et al. [2022], our proposed
algorithms are computationally efficient and nearly optimal by using the Bernstein-type bonus. Qiu
et al. [2021] also studied kernel function approximation for two-player MGs. However, there are
two key differences between our work and theirs. First, Qiu et al. [2021] studied MGs where the
expectation of the value function is in some RKHS; we, on the other hand, assume that the transition
dynamics of the MG lie in an RKHS. Second, while the regret result in Qiu et al. [2021] depends on
the covering number of the function space, our regret is independent of the covering number.

3 Preliminaries

In this section, we present the necessary definitions that will be adopted throughout the paper.
Section 3.1 describes simultaneous-move games in the setting of zero-sum two-player Markov Games
(MG) and recaps the concepts of equilibrium and duality gap that are employed in the game theory
literature. Section 3.2 provides necessary definitions and notation for approximating action value
function with functions belonging to a reproducing kernel Hilbert space (RKHS) via modeling the
transition probability.

3.1 Two-player Markov Games

A simpler instance of Markov Games, referred to as turn-based games, can be seen as a special case
of simultaneous-move games.2 In a zero-sum two-player simultaneous-move Markov Game, the
dynamical structure can be captured by an MG, denoted (S,A1,A2, r,P, H), where S is the space
of available states of the environment, A1 is the action space of the first player and A2 is the action
space of the second player. H is the time horizon representing the maximum step of each round of
play. The reward function r : {rh(x, a, b) : h ∈ [H]} is a sequence of mappings from S ×A1 ×A2

to [−1, 1]. The transition matrix P : {Ph(·|x, a, b) : h ∈ [H]} gives for each state actions triplet
(x, a, b) and at each time h the stochastic response of the environment to the next x′ ∈ S. Here by
“simultaneous move” we refer to the setting where at each round of game the two players P1 and P2

take actions a ∈ A1, b ∈ A2 simultaneously at a given state x ∈ S, in contrast with the turn-based
2We present a discussion of the implications of our results for turn-based games in the supplementary

materials.
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game where rh and Ph are defined for a state-action pair (x, a) where the action can be taken by
either players. In the context of this paper, for simplicity of notation we let A1 = A2 = A, while
the results can be easily generalized to the case when A1 6= A2. Similar definitions of a zero-sum
two-player simultaneous-move episodic Markov Games can be found in Wei et al. [2017], Perolat
et al. [2018], Xie et al. [2020].

In the above setting, two players P1 and P2 take actions according to their own strategies. We
use π := {πh}h∈[H] to denote the stochastic policy of P1 and use ν := {νh}h∈[H] to denote the
stochastic policy of P2. We note that at time h, πh : S 7→ ∆A maps the current state xh to a
probability distribution of the actions, and similarly for νh. Given two agents’ policies, π, ν, across h
steps, the state value function is defined as the expected total reward through H steps where at step
h ∈ [H] player P1 follows policy πh(·|xh) and player P2 follows policy νh(·|xh),

V π,νh (x) := Eπ,ν

[
H∑
t=h

rt(st, at, bt)

∣∣∣∣xh = x

]
, V π,νH+1(x) := 0,

and where V π,ν(x) := V π,ν1 (x). Note that the expectation is taken over all stochasticity in πh, νh
and Ph. The action value function is defined as

Qπ,νh (x, a, b) := Eπ,ν

[
H∑
t=h

rt(xt, at, bt)

∣∣∣∣xh = x, ah = a, bh = b

]
, Qπ,νH+1(x, a, b) := 0,

and Qπ,ν(x, a, b) := Qπ,ν1 . From the definition of two value functions, we observe that for any
x ∈ S , the state value function given policy pair (π, ν) is the expectation of the corresponding action
value function

V π,νh (x) := E(a,b)∼(π,ν)Q
π,ν
h (x, a, b),

where the expectation is taken over the action distribution induced by the policy pair. Throughout
this paper, we use superscripts do denote the number of episodes and subscripts to denote the number
of horizon steps.

Nash equilibrium and duality gap. In a zero-sum two-player Markov Game, P1 wants to maximize
the expected reward V π,ν(x) via the choice of the policy π. On the contrary, P2 wants to minimize
V π,ν(x) by properly choosing ν. For fixed ν, we define the best response policy with respect to
V and ν as br(ν) and define V ∗,νh := V

br(ν),ν
h and Q∗,νh := Q

br(ν),ν
h , We define V π,∗h := V

π,br(π)
h

and Qπ,∗h := Q
π,br(π)
h similarly. A Nash equilibrium is a pair of policies (π∗, ν∗) that are the best

response policy for each other, which we write as V π
∗,∗(x) = V π

∗,ν∗(x) = V ∗,ν
∗
(x). For notational

simplicity we write V ∗ := V π
∗,ν∗ , Q∗ := Qπ

∗,ν∗ . By definition of the best response policy, we
obtain weak duality:

V π,∗h (x) ≤ V ∗h (x) ≤ V ∗,νh (x).

For any policy pair (π, ν), we define the duality gap as V ∗,ν
t

1 (xt1) − V π
t,∗

1 (xt1). We call a pair an
ε-approximate Nash equilibrium (NE) if V ∗,ν

t

1 (xt1)− V π
t,∗

1 (xt1) ≤ ε. We also define the regret in the
MG setting as follows:

Regret(T ) :=
T∑
t=1

V ∗,ν
t

1 (xt1)− V π
t,∗

1 (xt1).

Coarse correlated equilibrium. We introduce the Coarse Correlated Equilibrium (CCE) notion
which will be used in our proposed algorithms. Given payoff matrices Q1, Q2 : S × A ×A 7→ R
and the state x, we define the CCE of the game as a joint distribution σ on A×A satisfying:

E(a,b)∼σ [Q1(x, a, b)] ≥ Eb∼P2σ [Q1(x, a′, b)] , ∀a′ ∈ A, (3.1)

E(a,b)∼σ [Q2(x, a, b)] ≤ Ea∼P1σ [Q2(x, a, b′)] , ∀b′ ∈ A, (3.2)

where P1σ denotes the marginal of σ on the first coordinate (min-player) and P2σ denotes the
marginal of σ on the second coordinate (max-player). We use FIND CCE(Q1, Q2, x) to denote σ.
When σ can be written as a product of two policies over action space A, it is a Nash equilibrium [Xie
et al., 2020]. To compute a CCE given Q1, Q2, x, please see Appendix I.
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3.2 Nonlinear Function Approximation by Reproducing Kernel Hilbert Spaces

For simplicity of notation, we use z = (x, a, b) to denote a state-action-action triplet (or state-action
tuple) in Z := S ×A×A. An RKHSH with kernel K(·, ·) : Z ×Z 7→ R is a general form of linear
function class. Every RKHSH consists of functions on Z , with a feature mapping φ : Z 7→ H, such
that ∀f ∈ H and ∀z ∈ Z , f(z) = 〈f ,φ(z)〉H. The kernel K is thus defined for every x, y ∈ Z ×Z
as K(x, y) = 〈φ(x),φ(y)〉H. We call φ the feature mapping induced by the RKHSH with kernel
K. In the following sections, we sometimes use f>g as a simplification of 〈f , g〉H when f , g ∈ H.
We make no distinction in notation between the vector inner product and the product 〈·, ·〉H; the
distinction can be read out from the nature of the two objects in the product. For every RKHS H,
there exists a natural eigenvalue decomposition in L2(Z). RKHS approximation is a generalization
of the linear function approximation of finite dimension d which can be infinite-dimensional. In the
following, we define the so-called kernel mixture MG, which can be regarded as an extension from
the linear mixture MDP [Jia et al., 2020, Ayoub et al., 2020, Zhou et al., 2021a] and linear mixture
MG [Chen et al., 2022] to their kernel counterpart.

Kernel mixture MG. In a kernel mixture MG model, we model the transition probability Ph(s′|z) :
Z 7→ ∆(S) as an element in an RKHS H with feature mapping φ(s′|z) : Z × S → H, such that
for an unknown true parameter θ∗h ∈ H, Ph(s′|z) = 〈φ(s′|z),θ∗h〉H for all s′ ∈ S and z ∈ Z .
A similar MG structure called kernel MG has been studied by Qiu et al. [2021], which assumes
that the transition probability satisfies Ph(s′|z) = 〈φ(z),µh(s′)〉 for some φ(·),µh(·) ∈ H. The
single-agent MDP counterparts of kernel MGs and kernel mixture MGs are linear MDPs and linear
mixture MDPs. Zhou et al. [2021b] have shown that linear MDPs and linear mixture MDPs are
different classes of MDPs and one cannot be covered by each other. Following a similar argument,
we can also show that kernel mixture MGs and kernel MGs are different classes of MGs and cannot
imply each other.

At time h, for any estimate of the value function Vh(·) : S 7→ R, we note that the expectation of
value function at time h+ 1, PhVh+1 is an element in the RKHS PhVh+1(z) =

〈
φVh+1

(z),θ∗h
〉
H,

where φVh+1
(z) :=

∑
s′∈S Vh+1(s′)φ(s′|z) integrates the product of the feature mapping with the

estimated value of s′ over S. It is worth noting that the quantity φV (·) plays an important role in
previous linear mixture model-based algorithms [Jia et al., 2020, Ayoub et al., 2020, Zhou et al.,
2021a, Chen et al., 2022]. We assume that for any bounded value function V (·) : S 7→ [−1, 1] and
any z ∈ Z , ‖φV (z)‖H ≤ 1. Given that the reward function rh(z) is known, we obtain through the
Bellman equation that

Q∗,νh (·) = rh(·) + (PhV ∗,νh+1)(·) = rh(·) +
〈
φV ∗,νh+1

(·),θ∗h
〉
H
, (3.3)

Qπ,∗h (·) = rh(·) + (PhV π,∗h+1)(·) = rh(·) +
〈
φV π,∗h+1

(·),θ∗h
〉
H
. (3.4)

Weighted kernel function. In this work, we consider a general RKHSH and do not assume that we
can access the feature mapping φ directly. Instead, we assume that we can access the weighted kernel
function kV1,V2

(·, ·), which is defined as follows:

Definition 1. For any function pairs V1, V2 : S → [0, 1] which map states to real numbers, the
weighted kernel function kV1,V2

(·, ·) is defined as follows: ∀z1, z2 ∈ Z ,

kV1,V2(z1, z2) :=
∑

s1,s2∈S
V1(s1)V2(s2) 〈φ(s1|z1),φ(s2|z2)〉H .

It is easy to see from Definition 1 that

kV1,V2
(z1, z2) =

〈 ∑
s1∈S

V1(s1)φ(s1|z1),
∑
s2∈S

V2(s2)φ(s2|z2)

〉
H

= 〈φV1
(z1),φV2

(z2)〉H,

which suggests that the weighted kernel function kV1,V2(·, ·) indeed captures the interaction (in inner
product relation) between φV1

(z1) and φV2
(z2). We assume that we can access an integration oracle

that computes kV1,V2
(z1, z2) for any function V1, V2 and state-action tuples z1, z2 efficiently.
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4 Algorithm

In this section, we introduce our value-targeted iteration algorithm for the zero-sum two-player
Markov Game setting with RKHS function approximation. We follow the value-targeted regression
framework and the confidence set design as in UCRL [Jia et al., 2020, Ayoub et al., 2020], and
combine the CCE technique [Xie et al., 2020] to deal with the zero-sum sub-game brought by upper
confidence bound (UCB) and lower confidence bound (LCB) value functions. These techniques
enable us to adapt the results from the linear setting to the nonlinear RKHS regime [Chowdhury and
Gopalan, 2017, Yang et al., 2020, Zhou et al., 2020] to get a structure-dependent regret bound that is
both computationally simple and statistically efficient.

Algorithm 1 KernelCCE-VTR

1: Input: bonus parameter β > 0.
2: for episode t = 1, 2, . . . , T do
3: for step h = H,H − 1, . . . , 1 do
4: Calculate Q

t

h(·, ·, ·), Qt
h
(·, ·, ·) as in (4.3)

5: Let σth(·) = FIND CCE(Q
t

h, Q
t

h
, ·)

6: Let V
t

h(·) = E(a,b)∼σth(·)Q
t

h(·, a, b) and
V th(·) = E(a,b)∼σth(·)Q

t

h
(·, a, b)

7: end for
8: Receive initial state xt1
9: for step h = 1, 2, . . . ,H do

10: Sample (ath, b
t
h) ∼ σth(xth)

11: P1 takes action ath, P2 takes action bth
12: Observe next state xth+1
13: end for
14: end for

To find an equilibrium (π∗, ν∗) of the value
function V π,ν1 (x1), we design an algorithm us-
ing value-targeted regression (VTR) and up-
per/lower confidence bound-based exploration.
As the min-player aims to minimize the value
function while the max-player targets to maxi-
mize the value function, we use the upper con-
fidence bound to encourage the exploration of
the max-player and use the lower confidence
bound to encourage the exploration of the min-
player. Thus we need to define two value func-
tions for the min/max-players respectively, i.e.,
Q
t

h, Q
t

h
, V

t

h, V
t
h, where we adopt the overline

notation for the over-estimation by the max-
player and the underline notation for the under-
estimation by the min-player. In the following,
we only describe how to estimate the value func-
tions for the max-player, while the value func-
tions for the min-player can be estimated analo-
gously. At each round of the game, we solve the

following ridge regression problem for minimizing the Bellman error:

θ
t

h = min
θ∈H

t−1∑
τ=1

[
V
τ

h+1(xτh+1)−
〈
φV τh+1

(zτh),θ
〉
H

]2
+ λ ‖θ‖2H . (4.1)

Note that in (4.1), V
τ

h+1 only depends on the previous trajectories
(
xji , a

j
i , b

j
i : j ∈ [τ − 1], i ∈ [H]

)
.

We denote the corresponding σ-algebra as Fτ−1, and thus we have V
τ

h+1 ∈ Fτ−1. As each
V
τ

h+1(xτh+1) can be seen as a stochastic sample of (PhV
τ

h+1)(zτh), the regularized regression problem
of the max-player in (4.1) can be seen as solving a linear bandit problem with context φV τh+1

(zτh),

reward function (PhV
τ

h+1)(zτh) and noise term V
τ

h+1(xτh+1) − (PhV
τ

h+1)(zτh). From the solution
to the ridge regression problem (4.1), we can define the upper/lower confidence bound of the
action-value functions Q∗,νh , Qπ,∗h respectively. For the simplicity of notation, we define the vectors

Ψ
t

h :=
(
φ
V

1
h+1

(z1h), . . .φ
V
t−1
h+1

(zt−1h )
)>
∈ Ht−1.

For a positive parameter βt > 0 that will be chosen in later analysis, the confidence region centered
at θ

t

h in the RKHSH is defined as

Cth =

{
θ :

√
λ
∥∥∥θ − θth∥∥∥2H +

∥∥∥〈Ψ
t

h,θ − θ
t

h

〉
H

∥∥∥2 ≤ βt}, (4.2)

We omit the definition of Cth which is an analogue of Eq. (4.2) by changing all overline symbols to
underline ones. Based on the confidence regions, we construct an optimistic/pessimistic estimate of
Q∗,νh as

Q
t

h := Π[−H,H]

[
rh + max

θ∈Cth

〈
φ
V
t
h+1

,θ
〉
H

]
, Qt

h
:= Π[−H,H]

[
rh + min

θ∈Cth

〈
φV th+1

,θ
〉
H

]
,

(4.3)

6



where Π[−H,H] is the projection operator onto [−H,H], which is by definition the range of value

functions. For the convenience of conducting an induction argument we define V
t

H+1 = V tH+1 = 0,

and also V π,νH+1(x) = 0 and V ∗,ν
t

H+1 = V π
t,∗

H+1 = 0, since there is no more future steps starting from

h = H + 1. Given the estimation of Q
t

h, Q
t

h
, the next step is to estimate the corresponding state

value functions V
t

h, V
t
h. We utilize the FIND CCE algorithm introduced recently in Xie et al. [2020]

to find a coarse-correlated equilibrium of the payoff pair (Q
t

h(z), Qt
h
(z)).

Computational efficiency. By substituting the closed-form solutions to the maximiza-
tion/minimization problems in (4.3), we can derive the analytic-form for Q

t

h and Qt
h

. Take Q
t

h

as an example, we have

Q
t

h(z) = Π[−H,H]

[
rh(z) + k

t

h(z)>(K
t

h + λI)−1yth + βt · wth(z)

]
, (4.4)

where the gram matrix K
t

h and vector-valued function k
t

h are defined as

K
t

h =
(
Ψ
t

h

)(
Ψ
t

h

)>
∈ R(t−1)×(t−1), k

t

h =
(
Ψ
t

h

)
φ
V
t
h+1

(z) =
(
k
V
i
h+1,V

t
h+1

(zih, z)
)
i
∈ Rt−1.

Also, we have yth :=
[
V

1

h+1(x1h), . . . , V
t−1
h+1(xt−1h )

]>
and wth(z) = λ−1/2

[
k
V
t
h+1,V

t
h+1

(z, z) −

k
t

h(z)>(K
t

h + λI)−1k
t

h(z)

]1/2
. Therefore, by the assumption that the weighted kernel function

kV1,V2
can be evaluated efficiently, and Q

t

h and Qt
h

can also be computed efficiently. Furthermore,

given Q
t

h and Qt
h

, FIND CCE can also be implemented efficiently [Xie et al., 2020]. Thus, Algorithm
1 is computationally efficient.

5 Main Results

In this section, we present the regret bound of our algorithm for the kernel mixture Markov Game.
Recall that for the linear function class, the regret upper bound is characterized by the dimension of
the linear function, the horizon of the game, and the number of episodes [Chen et al., 2022]. Our
analysis in the RKHS function approximation setting aligns with the linear function approximation
setting when K(z, z′) = φ(z)>φ(z′).

When considering the nonlinear function class as an approximator of the value function, we need to
develop a new concept analogous to the dimension d that characterizes the intrinsic complexity of
the function class F . We do so by making use of the maximal information gain, ΓK(T, λ) [Srinivas
et al., 2010], where T is the episode number and H is the time horizon. In particular, we define the
effective dimension of the RKHSH with respect to the mixture MG as follows:
Definition 2. We define the effective dimension ΓK(T, λ) as follows:

ΓK(T, λ) := sup
(Vi)i,(zi)i

1

2
log det (I + K({Vi}i, {zi}i)/λ) ,

for any 1 ≤ i ≤ T, Vi : S → [−H,H], zi ∈ Z , where Vi’s are functions mapping from S to
[−H,H] and zi’s are state-action tuples. Here, K({Vi}i, {zi}i) ∈ RT×T and its (p, q)-th entry for
any 1 ≤ p, q ≤ T is [K({Vi}i, {zi}i)](p,q) = kVp,Vq (zp, zq).

By the boundedness of φV as in Section 3.2, it is easy to verify that both the tabular MG and the
linear mixture MG enjoy a finite effective dimension. Specifically, for finite RKHSH with rank d,
ΓK(T, λ) = O(d · log T ) approximately depicts the rank of H. Via a concentration argument, we
first present our main lemma for bounding the estimation error when choosing βt = β for all t ≥ 1:
Lemma 3. Assuming that for any h ∈ [H], ‖θ∗h‖H ≤ B. Let λ = 1 + 1/T and β satisfies
(β/H)

2 ≥ 2ΓK(T, λ) + 2 + 4 · log (1/δ) + 2λ (B/H)
2. Then, for any δ > 0, with probability at

least 1− δ the following holds for any (t, h) ∈ [T ]× [H] and any (x, a, b) ∈ S ×A×A:∣∣∣〈φV th+1
(x, a, b),θ

t

h − θ∗h
〉
H

∣∣∣ ≤ β · wth(x, a, b),
∣∣∣〈φV th+1

(x, a, b),θth − θ∗h
〉
H

∣∣∣ ≤ β · wth(x, a, b).
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We are now ready to present our main theorem.
Theorem 4 (RKHS function approximation). Under the same conditions as Lemma 3, with probabil-
ity at least 1− δ, KernelCCE-VTR has the following regret

Regret(T ) = O
(
βH
√
T · ΓK(T, λ) + 1

)
.

Remark 5. Theorem 4 suggests that by treating the norm B as a constant, KernelCCE-VTR achieves
an Õ(ΓK(T, λ)H2

√
T ) regret bound. When the RKHS degenerates to the Euclidean space, the

regret bound reduces to Õ(dH2
√
T ), which matches the Õ(dH3/2

√
T ) regret for linear mixture

MGs presented by Chen et al. [2022] up to a
√
H factor.

Similar to Xie et al. [2020], by using a standard online-to-batch conversion technique, we can convert
the regret bound in Theorem 4 to a PAC bound. For simplicity, let the initial states of each episode be
the same, i.e., xt1 = x1. After T episodes, we select t0 ∈ [T ] such that

t0 = argmin
t∈[T ]

{
V
t

1(x1)− V t1(x1)
}
, (5.1)

which yields the following sample complexity guarantee for finding an ε-approximate NE policy pair
(πt0 , νt0).
Corollary 6 (Sample complexity). Under the same condition as Theorem 4, by setting T =

O
(
β2H2ΓK(T, λ)/ε2

)
= Õ

(
H4Γ2

K(T, λ)/ε2
)

and selecting t0 as in (5.1), the policy pair (πt0 , νt0)
is an ε-approximate NE.

6 Bernstein-type Bonus, Misspecification, and Neural Function
Approximation

In this section, we propose several extensions of KernelCCE-VTR. Section 6.1 introduces
KernelCCE-VTR with Bernstein-type bonus. Section 6.2 discusses kernel function approximation
with misspecification. We also specialize the kernel function approximation with misspecification to
the neural function approximation setting, which is deferred to Appendix C.

6.1 KernelCCE-VTR with Bernstein-type Bonus

Recall that in KernelCCE-VTR, we need to choose β in order to calculate the optimistic and pes-
simistic state-action value functions Q

t

h(·), Qt
h
(·) defined in (4.3). The theoretical value of β is

defined in Lemma 3, which controls the uncertainty of the action-value estimate. Such a choice of
β is due to a Hoeffding-type concentration used in the proof of Lemma 3. It has been shown in
Zhou et al. [2021a] that by using a Bernstein-type bonus and a sharp analysis based on the total
variance lemma, one can obtain an improved algorithm with a tighter regret bound. Following this
idea, we propose a KernelCCE-VTR+ algorithm, which replaces the Hoeffding-type bonus with a
Bernstein-type bonus. To demonstrate the construction of the Bernstein-type bonus, we take the max
player for example. In particular, we solve the following weighted kernel ridge regression problem:

θ
t

h,1 = min
θ∈H

t−1∑
τ=1

[
V
τ

h+1(xτh+1)−
〈
φV τh+1

(zτh),θ
〉
H

]2/(
R
τ

h

)2
+ λ1 ‖θ‖2H , (6.1)

where the input is the normalized feature mapping φV τh+1
(zτh)/R

τ

h, the output is the normalized value

function V
τ

h+1(xτh+1)/R
τ

h, and the normalization factor R
τ

h is an upper bound on the conditional
variance of V

τ

h+1(xτh+1). It is straightforward to verify that (6.1) admits a closed-form solution.
Given that solution, we can compute the upper confidence bound of the action-value functions Q∗,νh .

In detail, we define Ψ
t

h,1 :=
(
φ
V

1
h+1

(z1h)/R
1

h, . . . ,φV t−1
h+1

(zt−1h )/R
t−1
h

)>
∈ Ht−1. The gram

matrix K
t

h,1, vector-valued function k
t

h,1 and the confidence region centered at θ
t

h,1 in the RKHSH
can be calculated the same as in Algorithm 1, except that Ψ

t

h is replaced by Ψ
t

h,1. Then the optimistic
estimate of the action-value function Q∗,νh has the following form:

Q
t

h(z) = Π[−H,H]

[
rh(z) + k

t

h,1(z)>(K
t

h,1 + λI)−1yth,1 + βt · wth,1(z)
]
, (6.2)
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where yth,1 :=
[
V

1

h+1(x1h)/R
1

h, . . . V
t−1
h+1(xt−1h )/R

t−1
h

]>
and

wth,1(z) = λ
−1/2
1 ·

[
k
V
t
h+1,V

t
h+1

(z, z)− kth,1(z)>
(
K
t

h,1 + λ1 · I
)−1

k
t

h,1(z)

]1/2
.

Due to space limit, we defer the conditional variance estimator R
t

h to Appendix B. Similarly, we
can construct the pessimistic estimate of the action-value function Qπ,∗h for the min player. We have
the following informal result for KernelCCE-VTR+. The full algorithm and its formal result can be
found in Appendix B.

Theorem 7 (Informal). Let deff = ΓK(T, λ), with proper choice of R
t

h, R
t
h and βt, with probability

at least 1− δ, KernelCCE-VTR+ has the following regret

Regret(T ) = Õ

(
d2effH

3 +
√
deffH4 + d2effH

3
√
T +

(
d7effH

7 + d4effH
9
)1/4

T 1/4

)
.

Remark 8. When T is sufficiently large and ΓK(T, λ) is larger than H , the regret bound in Theorem
7 is dominated by Õ

(
ΓK(T, λ)H3/2

√
T
)

, which improves the Õ
(

ΓK(T, λ)H2
√
T
)

regret derived

in Theorem 4 by a factor of
√
H . Compared with the Ω̃

(
dH3/2

√
T
)

lower bound proposed in Chen
et al. [2022], our KernelCCE-VTR+ algorithm is almost optimal when it reduces to the linear mixture
MG.

6.2 Kernel Function Approximation with Misspecification

In this subsection, we consider the case where the function class may not be confined to an RKHS, but
instead the distance to it can be bounded. This can be formulated as kernel function approximation
with misspecification. We assume that there exists a misspecification error between the RKHSH and
the true transition probability Ph(s′|z).
Assumption 9. There exists an ιmis > 0, an RKHSH with feature mapping φ : Z 7→ S×H, and an
unknown true parameter θ∗h ∈ H satisfying ‖θ∗h‖H ≤ B such that for any h ∈ [H], the distance of the
transition probability Ph toH can be bounded by ιmis, which is

∥∥Ph(·|z)− 〈φ(·|z),θ∗h〉H
∥∥

TV ≤ ιmis.

In order to deal with model misspecification, the key idea is to enlarge βt in the definition of the
optimistic action-value function in (4.3). More specifically, we will add an extra O(Hιmis

√
t) term

brought by misspecification error to β specified in Lemma 3. We can show that KernelCCE-VTR
with such enlarged β will have a sublinear regret in the presence of misspecification.
Theorem 10 (RKHS function approximation with misspecification). Assuming that for any h ∈ [H],
‖θ∗h‖H ≤ B. Set λ = 1 + 1/T in the KernelCCE-VTR Algorithm. For any δ > 0 and any βt
satisfying (βt/H)

2 ≥ 2ΓK(T, λ) + 3 + 6 · log (1/δ) + 3λ (B/H)
2

+ 3ι2mist, there exists a global
constant c > 0 such that with probability at least 1− δ, we have

Regret(T ) ≤ c
(
βTH

√
T · ΓK(T, λ) + 1 +H2Tιmis

)
.

In words, Theorem 10 suggests that in the misspeficified case, KernelCCE-VTR can achieve the
same regret as that in the well-specified case up to an O

(√
ΓK(T, λ)H2Tιmis

)
error. Such a linear

dependence on ιmis matches the result of single agent RL for the finite dimensional case [Jin et al.,
2020, Zanette et al., 2020].

7 Conclusions

In this work, we studied learning for two-player mixture MGs using a kernel function approximation.
We introduced a new formulation of kernel mixture MGs and proposed an algorithm KernelCCE-VTR
that exploits the kernel function of the MG. We show that our KernelCCE-VTR is able to achieve a
sublinear Õ(dKH

2
√
T ) regret. We further improve our algorithm with a Bernstein-type bonus and

weighted kernel ridge regression, which enjoys a better Õ(dKH
3/2
√
T ) regret and nearly matches

9



the regret lower bound in Chen et al. [2022] when reducing to linear mixture MGs. Finally, we extend
our analysis of the basic RKHS setting to a more general nonlinear function approximation setting
with misspecification errors and demonstrate that neural networks can be treated as a special instance
of this misspecification framework. We believe our framework and analysis greatly broadens the
expressiveness of the function classes used for MGs. We leave the study of learning in general-sum
MGs by kernel function approximation as future work.
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Appendix

The appendix is organized as follows. In Appendix A we introduce basic properties of RKHS. In Ap-
pendix B we discuss the implementation details of KernelCCE-VTR+. In Appendix C we introduce
more details for applying our algorithm to the neural function approximation setting. In Appendix
D we prove results for KernelCCE-VTR. In Appendix E we prove results for KernelCCE-VTR+.
In Appendix F we prove results for KernelCCE-VTR with misspecification. In Appendix G we
prove results for KernelCCE-VTR with neural function approximation. In Appendix H we prove
the remaining auxiliary lemmas. Finally, in Appendix I we discuss the implementation details of
FIND CCE as an instance of linear programming.

A Properties of the Reproducing Kernel Hilbert Spaces

Recall that in Section 4, we define the update rule of Q
t

h, Q
t

h
in Eq. (4.3), where each term is defined

in the sense of computational accessibility. For convenience of theoretical analysis, in this section we
provide the equivalent forms of the Q-update on the RKHS. We have the following simple facts:

Lemma 11. Define covariance matrices Λ
t

h,Λ
t
h : H 7→ H as

Λ
t

h := λIH +
(
Ψ
t

h

)> (
Ψ
t

h

)
, Λt

h := λIH +
(
Ψt
h

)> (
Ψt
h

)
, (A.1)

where IH is the identity mapping onH. Then the following holds:

(a) θ
t

h :=
(
Ψ
t

h

)> [
K
t

h + λI
]−1

yth =
(
Λ
t

h

)−1 (
Ψ
t

h

)>
yth ∈ H and the same holds for θth;

(b) wth =
[
φ
V
t
h+1

(z)>Λ
t

hφV th+1
(z)
]1/2

and the same holds for wth;

(c) φ
V
t
h+1

(z) =
(
Ψ
t

h

)>
(K

t

h + λI)−1k
t

h(z) + λ · (Λt

h)−1φ
V
t
h+1

(z).

Proof. We prove the statements as follows.

(a) By definition of K
t

h in Section 4, we note that(
Ψ
t

h

)> [
K
t

h + λI
]

=
(
Ψ
t

h

)> [(
Ψ
t

h

)(
Ψ
t

h

)>
+ λI

]
=

[(
Ψ
t

h

)> (
Ψ
t

h

)
+ λIH

](
Ψ
t

h

)>
.

Taking the inverse operation on both sides of the second equality, we conclude[(
Ψ
t

h

)(
Ψ
t

h

)>
+ λI

]−1 (
Ψ
t

h

)−>
=
(
Ψ
t

h

)−> [(
Ψ
t

h

)> (
Ψ
t

h

)
+ λIH

]−1
,

and hence we arrive at an equality on spaceH× Rt that:(
Ψ
t

h

)> [
K
t

h + λI
]−1

=
(
Ψ
t

h

)> [(
Ψ
t

h

)(
Ψ
t

h

)>
+ λI

]−1
=

[(
Ψ
t

h

)> (
Ψ
t

h

)
+ λIH

]−1 (
Ψ
t

h

)>
=
(
Λ
t

h

)−1 (
Ψ
t

h

)>
.

Multiplying both sides by yth we have that the close form solution of Eq. (4.1) satisfies

θ
t

h :=
(
Ψ
t

h

)> [
K
t

h + λI
]−1

yth =
(
Λ
t

h

)−1 (
Ψ
t

h

)>
yth ∈ H,

which proves item (a) of our results. The same argument holds for θth.
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Algorithm 2 KernelCCE-VTR+

1: Input: bonus parameter λ1, λ2 > 0.
2: for episode t = 1, 2, . . . , T do
3: Receive initial state xt1
4: for step h = H,H − 1, . . . , 1 do
5: Estimate R

t

h, R
t
h as in Eq. (B.2)

6: Calculate Q
t

h(·), Qt
h
(·) as in Eq. (6.2)

7: For each x, let σth(x) = FIND CCE(Q
t

h, Q
t

h
, x)

8: Let V
t

h(x) = E(a,b)∼σth(x)Q
t

h(x, a, b) and V th(x) = E(a,b)∼σth(x)Q
t

h
(x, a, b)

9: end for
10: for step h = 1, 2, . . . , T do
11: Sample (ath, b

t
h) ∼ σth(xth)

12: P1 takes action ath, P2 takes action bth
13: Observe next state xth+1
14: end for
15: end for

(b) By definition of wth, k
t

h and K
t

h, we have

wth(z) = λ−1/2 ·
[
k
V
t
h+1,V

t
h+1

(z, z)− kth(z)>
(
K
t

h + λI
)−1

k
t

h(z)

]1/2
= λ−1/2 ·

[
k
V
t
h+1,V

t
h+1

(z, z)− φ>
V
t
h+1

(z)
(
Ψ
t

h

)> (
K
t

h + λI
)−1 (

Ψ
t

h

)
φ
V
t
h+1

(z)

]1/2
= λ−1/2 ·

[
k
V
t
h+1,V

t
h+1

(z, z)− φ>
V
t
h+1

(z)
(
Λ
t

h

)−1 (
Ψ
t

h

)> (
Ψ
t

h

)
φ
V
t
h+1

(z)

]1/2
= λ−1/2 ·

[
φ>
V
t
h+1

(
Λ
t

h

)−1 (
Λ
t

h

)
φ
V
t
h+1

(z)− φ>
V
t
h+1

(
Λ
t

h

)−1 (
Ψ
t

h

)> (
Ψ
t

h

)
φ
V
t
h+1

(z)

]1/2
=
[
φ
V
t
h+1

(z)(Λ
t

h)−1φ
V
t
h+1

(z)
]1/2

.

This concludes the proof of item (b) of our result. The same argument holds for wth(z).

(c) Noting that from the definition of Λ
t

h in Eq. (A.1),

φ
V
t
h+1

(z) =
(
Λ
t

h

)−1 (
Λ
t

h

)
φ
V
t
h+1

(z) =
(
Λ
t

h

)−1(
λIH +

(
Ψ
t

h

)> (
Ψ
t

h

))
φ
V
t
h+1

(z)

=
(
Λ
t

h

)−1 (
Ψ
t

h

)> (
Ψ
t

h

)
φ
V
t
h+1

(z) + λ ·
(
Λ
t

h

)−1
φ
V
t
h+1

(z).

Applying the results in the proof of item (a) on
(
Λ
t

h

)−1 (
Ψ
t

h

)>
, we have that

φ
V
t
h+1

(z) =
(
Ψ
t

h

)> [
K
t

h + λI
]−1 (

Ψ
t

h

)
φ
V
t
h+1

(z) + λ ·
(
Λ
t

h

)−1
φ
V
t
h+1

(z) (A.2)

=
(
Ψ
t

h

)> [
K
t

h + λI
]−1

k
t

h(z) + λ ·
(
Λ
t

h

)−1
φ
V
t
h+1

(z),

which concludes the proof of item (c).
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B Details of KernelCCE-VTR+

In this section, we propose more details for the algorithm KernelCCE-VTR+. We consider the
following ridge regression problem with each term weighed by its estimated variance:

θ
t

h,1 = min
θ∈H

t−1∑
τ=1

[
V
τ

h+1(xτh+1)−
〈
φV τh+1

(zτh),θ
〉
H

]2
/
(
R
τ

h

)2
+ λ1 ‖θ‖2H ,

θth,1 = min
θ∈H

t−1∑
τ=1

[
V τh+1(xτh+1)−

〈
φV τh+1

(zτh),θ
〉
H

]2
/ (Rτh)

2
+ λ1 ‖θ‖2H .

Here we use R
τ

h, R
τ
h to denote upper bounds on the conditional variance of V

τ

h+1(xτh+1) and
V τh+1(xτh+1) respectively, which we will specify in later subsections. Next we define the necessary
quantities in estimating the regret bound. Similarily as in previous sections, we define

Ψ
t

h,1 :=
(
φ
V

1
h+1

(z1h)/R
1

h, . . .φV t−1
h+1

(zt−1h )/R
t−1
h

)>
∈ Ht−1, and

Ψt
h,1 :=

(
φV 1

h+1
(z1h)/R1

h, . . .φV t−1
h+1

(zt−1h )/Rt−1h

)>
∈ Ht−1.

The gram matrix K
t

h,1, vector-valued function k
t

h,1 and the confidence region centered at θ
t

h,1 in the

RKHSH are defined accordingly by replacing Ψ
t

h,Ψ
t
h by Ψ

t

h,1,Ψ
t
h,1 respectively. The optimistic

(pessimistic version can be defined accordingly) estimates of the action value function have the
following closed form solution:

Q
t

h(z) = Π[−H,H][rh(z) + k
t

h,1(z)>(K
t

h,1 + λI)−1yth,1 + βt · wth,1(z)], (B.1)

where

yth,1 :=
[
V

1

h+1(x1h)/R
1

h, . . . V
t−1
h+1(xt−1h )/R

t−1
h

]>
,

and

wth,1(z) = λ
−1/2
1 ·

[
k
V
t
h+1,V

t
h+1

(z, z)− kth,1(z)>
(
K
t

h,1 + λ1 · I
)−1

k
t

h,1(z)

]1/2
.

The full version of the algorithm is presented formally in Algorithm 2.

B.1 Variance Estimator

In order to determine the values of R
τ

h, R
τ
h, we note that we can solve a ridge regression problem for

estimating the expected square of the value function:

θ
t

h,2 = min
θ∈H

t−1∑
τ=1

[(
V
τ

h+1(xτh+1)
)2
−
〈
φ(V τh+1)

2(zτh),θ
〉
H

]2
+ λ2 ‖θ‖2H ,

θth,2 = min
θ∈H

t−1∑
τ=1

[(
V τh+1(xτh+1)

)2 − 〈φ(V τh+1)
2(zτh),θ

〉
H

]2
+ λ2 ‖θ‖2H .

By defining

Ψ
t

h,2 :=

(
φ

(V 1
h+1)

2(z1h), . . .φ(
V
t−1
h+1

)2(zt−1h )

)>
∈ Ht−1,

Ψt
h,2 :=

(
φ(V 1

h+1)
2(z1h), . . .φ(V t−1

h+1)
2(zt−1h )

)>
∈ Ht−1,
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we can define the gram matrix K
t

h,2, vector-valued function k
t

h,2, and

wth,2(z) = λ
−1/2
2 ·

[
k
(V

t
h+1)

2,(V
t
h+1)

2(z, z)− kth,2(z)>
(
K
t

h,2 + λ2 · I
)−1

k
t

h,2(z)

]1/2
.

The variance estimator is thus defined as:

VestV
t

h+1(zth) :=

〈
φ

(V th+1)
2(zth),θ

t

h,2

〉
H
−
(〈
φ

(V th+1)
2(zth),θ

t

h,1

〉
H

)2

≈ Ph
(
V th+1(xth+1)

)2 − (PhV th+1(xth+1)
)2
,

and (
R
t

h

)2
:= max{VestV

t

h+1(zth) + E
t

h, (αt)
2},

E
t

h := min
{
H2, β

(2)
t wth,2

}
+ min

{
H2, 2Hβ

(1)
t wth,1

}
. (B.2)

Up till now, we have finished the definition of the variance estimator for the upper-value estimator.
The lower-value estimator can be defined in a similar fashion, and we omit the details.

B.2 Main Results

In this section, we provide theoretical results for the regret bound under the weighted setting described
above. First we propose a key lemma which suggests that our constructed θ

t

h,1 and θ
t

h,2 are good
estimates to θ∗h with high probability.

Lemma 12. Assuming that for any h ∈ [H], ‖θ∗h‖H ≤ B. Let αt, β
(1)
t , β(2)

t satisfy αt = α,

β
(1)
t = (16H/α)

√
ΓK(T, λ1α2)

√
log(4t2H/δ) + (8H/α) log(4t2H/δ) +

√
λ1 ·B, (B.3)

β
(2)
t = 16H2

√
ΓK(T, λ2/H2)

√
log(4t2H/δ) + 8H2 log(4t2H/δ) +

√
λ2 ·B, (B.4)

then for any δ > 0, there exists an event E satisfying P(E) ≥ 1 − 2δ such that on E the following
holds for any (t, h) ∈ [T ]× [H] and any (x, a, b) ∈ S ×A×A:∣∣∣〈φV th+1

(zth),θ∗h − θ
t

h,1

〉
H

∣∣∣ ≤ β(1)
t · wkh,1(zkh),

and ∣∣∣∣〈φ(V th+1)
2(zth),θ∗h − θ

t

h,2

〉
H

∣∣∣∣ ≤ β(2)
t · wkh,2(zkh).

We now propose our main theorem, which is the formal version of Theorem 7 and suggests that the
regret bound of Algorithm 2 is upper bounded by Õ

(
ΓK(T, λ)H2

√
T
)

.

Theorem 13. Assuming that for any h ∈ [H], ‖θ∗h‖H ≤ B. Let λ = 1/B2, deff = ΓK(T, λ),
λ1 = deff/(B

2H2), λ2 = H2/B2, and taking βt, β
(1)
t , β

(2)
t as in Eq. (E.5), (B.3) and (B.4), then

with probability at least 1− δ, the following holds that:

Regret(T ) :=
T∑
t=1

V ∗,ν
t

1 (xth)− V π
t,∗

1 (xth)

≤ Õ
(
d2effH

3 +
√
deffH4 + d2effH

3
√
T +

(
d7effH

8 + d4effH
9
)1/4

T 1/4

)
.

Proofs of Lemma 12 and Theorem 13 are deferred to Section E.
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Algorithm 3 NeuralCCE-VTR
1: Input: bonus parameter βt > 0.
2: for episode t = 1, 2, . . . , T do
3: Receive initial state xt1
4: for step h = H,H − 1, . . . , 1 do
5: Solve the optimization problem (C.1)
6: Calculate Q

t

h(·), Qt
h
(·) as in Eq. (C.4)

7: For each x, let σth(x) = FIND CCE(Q
t

h, Q
t

h
, x)

8: Let V
t

h(xth) = E(a,b)∼σth(x
t
h)
Q
t

h(xth, a, b) and V th(xth) = E(a,b)∼σth(x
t
h)
Qt
h
(xth, a, b)

9: end for
10: for step h = 1, 2, . . . , T do
11: Sample (ath, b

t
h) ∼ σth(xth)

12: P1 takes action ath, P2 takes action bth
13: Observe next state xth+1
14: end for
15: end for

C Neural Network (NN) Function Approximation

C.1 Neural Function Approximation

In this subsection, we show that neural network function approximation can be treated as a special
case of kernel function approximation with misspecification. We denote z := (x, a, b) as a vector in
Rd that satisfies ‖z‖ = 1 and represent the parameters of a L-Layer fully connected neural network
f by θ :=

[
vec(W1)>, vec(W2)>, . . . , vec(WL)>

]>
, where W1 ∈ Rm×d, Wl ∈ Rm×m for

2 ≤ l ≤ L− 1 and WL ∈ R1×m. The neural network f(z;θ) with parameter set θ can be defined
as:

f(z;θ) =
√
mWLG (· · ·G (W2G (W1z))) ,

where G(·) : R 7→ R is an activation function. For 1 ≤ l ≤ L − 1, Wl is initialized as
Wl = (W,0; 0,W), where each entry of W is generated independently from normal distribu-
tion N(0, 4/m); WL is initialized as WL = (w>,−w>), where each entry of w is generated
independently from N(0, 2/m). Given the initialized parameter θ(0), we choose the feature map as
the gradient of f at θ(0):

φ(z) = ∇θf(z;θ(0))/
√
m.

Then we define the weighted kernel function kV1,V2
(·, ·) in Definition 1 with φ(z). Similarly, we

define the effective dimension ΓK(T, λ) with respect to the kernel function kV1,V2
(·, ·), in the same

fashion of Definition 2. Our assumption is that for ∀h ∈ [H] our transition probability Ph can be
modeled by the neural network with parameter θ∗h satisfying

∥∥θ∗h − θ(0)∥∥2 ≤ B:

Ph(x′|z) = f(x′, z;θ∗h).

Now we show the details of our Algorithm 3. Similarily as in Eq. (4.1), we solve penalized ridge
regression problem for the min-player and the max-player respectively

θ
t

h = min
θ∈RP

t−1∑
τ=1

[
V
τ

h+1(xτh+1)− fV τh+1
(zτh;θ)

]2
+ λ ·

∥∥∥θ − θ(0)∥∥∥2 ,
θth = min

θ∈RP

t−1∑
τ=1

[
V τh+1(xτh+1)− fV τh+1

(zτh;θ)
]2

+ λ ·
∥∥∥θ − θ(0)∥∥∥2 , (C.1)

where p = md + m2(L − 2) + m is the dimension of the parameter space, and fV τh+1
, fV τh+1

are
defined similarily as φV τh+1

as follows:

fV τh+1
(z;θ) =

∑
s′∈S

V
τ

h+1(s′)f(s′, z;θ), fV τh+1
(z;θ) =

∑
s′∈S

V τh+1(s′)f(s′, z;θ).
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For given θ
t

h,θ
t
h, we define

Ψ
t

h :=
(
φ
V

1
h+1

(z1h;θ
2

h), . . .φ
V
t−1
h+1

(zt−1h ;θ
t

h)
)>

,

Ψt
h :=

(
φV 1

h+1
(z1h;θ2h), . . .φV t−1

h+1
(zt−1h ;θth)

)>
. (C.2)

Furthermore,

Λ
t

h := λI + (Ψ
t

h)>Ψ
t

h, Λt
h := λI + (Ψt

h)>Ψt
h,

and

wth(z) :=
[
φ
V
t
h+1

(z;θ
t

h)>(Λ
t

h)−1φ
V
t
h+1

(z;θ
t

h)
]1/2

,

wth(z) :=
[
φV th+1

(z;θth)>(Λt
h)−1φV th+1

(z;θth)
]1/2

. (C.3)

Using the Λ
t

h,Λ
t
h, w

t
h, w

t
h, we estimate the optimal value functions as

Q
t

h(z) = Π[−H,H]{rh(z) + f
V
t
h+1

(z;θ
t

h) + β · wth(z)},

Qt
h
(z) = Π[−H,H]{rh(z) + fV th+1

(z;θth)− β · wth(z)}. (C.4)

Combining with the procedures of finding a CCE, we present the full version of our algorithm as in
Algorithm 3.

We have the following result on the neural network at initialization.
Lemma 14. There exist constants Ci > 0 such that for any δ ∈ (0, 1), if B satisfies that

B ≥ C1m
−1L−3/2 max{log−3/2m, log3/2(|Z|HL2/δ)},

B ≤ C2L
−6(logm)−3/2,

then with probability at least 1− δ, we have for all z ∈ Z , h ∈ [H] and Vh : S → [−1, 1],

|PhVh(z)− 〈φVh(z),θ∗h − θ(0)〉| ≤ C3|S|B4/3m−1/6L3
√

logm,

and

‖φVh(z)‖2 ≤ C := C4|S|
√
L.

Lemma 14, whose proof is deferred to Appendix H, suggests that in the NN approximation set-
ting, Assumption 9 for the misspecified kernel approximation setting is satisfied with ιmis =
C3|S|B4/3m−1/6L3

√
logm and with probability at least 1 − δ. The misspecified error is suffi-

ciently small when m is large. We note that the definition of φ(z) in the NN setting does not match
the boundedness assumption in Section 3.2. We balance the scale of φ(z) by the constant C in
Lemma 14 which goes into the choice of λ = C2(1 + 1/T ). With these at hand, we are ready to
present our main result for NN approximation:
Theorem 15 (NN approximation). Let C be the constant in Lemma 14. Assuming that for any
h ∈ [H],

∥∥θ∗h − θ(0)∥∥2 ≤ B. Set λ = C2 (1 + 1/T ) in the KernelCCE-VTR Algorithm. For any
δ > 0 and any βt satisfying(

βt
H

)2

≥ 2ΓK(T, λ) + 3 + 6 · log

(
1

δ

)
+ 3λ

(
B

H

)2

+ 3 · C2 ·B8/3 ·m−1/12 · t · logm,

there exists a global constant c > 0 such that with probability at least 1− 2δ, we have

Regret(T ) ≤ c
(
βTH

√
T · ΓK(T, λ) + 1 +B4/3H2Tm−1/6

√
logm

)
.

Theorem 15 suggests that when we use an overparameterized deep neural network (m � 1) to
approximate the transition dynamic, KernelCCE-VTR achieves an Õ(ΓK(T, λ)H2

√
T ) regret, which

is of the same order as that in Theorem 4. We defer the proof of Theorem 15 to Appendix G.
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D Proof of Results for KernelCCE-VTR

In this subsection, we provide the proof of our main Theorem 4 on RKHS.

D.1 Proof of Theorem 4

We recall that the duality gap is defined as
∑T
t=1 V

∗,νt
1 (xt1) − V π

t,∗
1 (xt1). As can be seen in our

algorithm, we maintain an optimistic estimate of V ∗,v
t

h (·) as V
t

h+1(·) and a pessimistic estimate of

V π
t,∗

h (·) as V th+1(·). Hence the term V
t

h+1(xth)− V th+1(xth) is approximately the upper bound of
the duality gap. We write the decomposition formally as below:

V ∗,ν
t

h (xth)− V π
t,∗

h (xth) = V
t

h(xth)− V th(xth)︸ ︷︷ ︸
I

−
(
V π

t,∗
h (xth)− V th(xth)

)
︸ ︷︷ ︸

II

−
(
V
t

h(xth)− V ∗,ν
t

h (xth)
)

︸ ︷︷ ︸
III

.

(D.1)
We use δ

t

h to denote an important quantity
〈
φ
V
t
h+1

(zth),θ∗h − θ
t

h

〉
H

(and
〈
φV th+1

(zth),θ∗h − θ
t
h

〉
H

)
in estimating the duality gap. In the rest of the proof we aim to show that all of the above three
terms can be bounded by a quantity related to δ

t

h (δth) and a stochastic random variable that forms a
martingale difference sequence when considering for all h ∈ [H], t ∈ [T ].

For bounding term I, we first define two sequences of zero mean variables:

γth := Q
t

h(xth, a
t
h, b

t
h)−Qt

h
(xth, a

t
h, b

t
h)− E(a,b)

[
Q
t

h(x, a, b)−Qt
h
(x, a, b)

]
,

ξth :=
(
Ph(V

t

h+1 − V
t
h+1)

)
(xth, a

t
h, b

t
h)−

(
V
t

h+1(xth+1)− V th+1(xth+1)
)
,

(D.2)

where γth depicts the stochastic error with respect to the policy and ξth depicts the stochastic error
with respect to the transition. We refer the readers to the proof of Lemma 16 for detailed explanations
on these two error term. Given the above definition, we have the following Lemma 16.

Lemma 16. Under the settings of Lemma 3, we have the following recursive bound for ∀h ∈ [H]:

V
t

h(xth)− V th(xth)

≤ V th+1(xth+1)− V th+1(xth+1) + 2βt min{1, wth(xth)}+ 2βt min{1, wth(xth)}+ ξth + γth.

Proof of Lemma 16. By the update rule of Algorithm 3, we have the following relation:

V
t

h(xth)− V th(xth) = E(a,b)∼σth(x
t
h)

[
Q
t

h(xth, a, b)−Q
t

h
(xth, a, b)

]
. (D.3)

We note that the RHS of Eq. (D.3) is an expectation over the CCE distribution σth(xth), which can be
decomposed into one sample from the distribution plus a noise term as follows:

V
t

h(xth)− V th(xth) = Q
t

h(xth, a
t
h, b

t
h)−Qt

h
(xth, a

t
h, b

t
h) + γth, (D.4)

where

γth := Q
t

h(xth, a
t
h, b

t
h)−Qt

h
(xth, a

t
h, b

t
h)− E(a,b)

[
Q
t

h(x, a, b)−Qt
h
(x, a, b)

]
.

Furthermore, for bounding the difference between the upper confidence Q estimation and the lower
confidence Q estimation, we have

Q
t

h(zth)−Qt
h
(zth)

≤
〈
φ
V
t
h+1

(zth),θ
t

h

〉
H
−
〈
φV th+1

(zth),θth

〉
H

+ βtw
t
h(zth) + βtw

t
h(zth)

=
〈
φ
V
t
h+1

(zth),θ
t

h

〉
H
−
〈
φ
V
t
h+1

(zth),θ∗h

〉
H

+
〈
φ
V
t
h+1

(zth),θ∗h

〉
H
−
〈
φV th+1

(zth),θ∗h

〉
H

+
〈
φV th+1

(zth),θ∗h

〉
H
−
〈
φV th+1

(zth),θth

〉
H

+ βtw
t
h(zth) + βtw

t
h(zth)
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=
〈
φ
V
t
h+1

(zth),θ
t

h − θ∗h
〉
H

+
(
Ph(V

t

h+1 − V
t
h+1)

)
(zth) +

〈
φV th+1

(zth),θ∗h − θ
t
h

〉
H

+ βtw
t
h(zth) + βtw

t
h(zth).

By utilizing Lemma 3, we further arrive at:

Q
t

h(zth)−Qt
h
(zth) ≤

(
Ph(V

t

h+1 − V
t
h+1)

)
(zth) + 2βtw

t
h(zth) + 2βtw

t
h(zth),

where again by extracting the sequence

ξth :=
(
Ph(V

t

h+1 − V
t
h+1)

)
(xth, a

t
h, b

t
h)−

(
V
t

h+1(xth+1)− V th+1(xth+1)
)
,

we have

Q
t

h(zth)−Qt
h
(zth) ≤ V th+1(xth+1)− V th+1(xth+1) + 2βwth(zth) + 2βwth(zth) + ξth. (D.5)

Combining Eq. (D.4) and (D.5) concludes the following recursive bound:

V
t

h(xth)− V th(xth) ≤ V th+1(xth+1)− V th+1(xth+1) + 2βtw
t
h(zth) + 2βtw

t
h(zth) + ξth + γth

Moreover, due to the fact that V
t

h(xth)− V th(xth) ≤ 2H , we rewrite the above inequality into:

V
t

h(xth)− V th(xth)

≤ min
{

2H,V
t

h+1(xth+1)− V th+1(xth+1) + 2βtw
t
h(zth) + 2βtw

t
h(zth) + ξth + γth

}
≤ min

{
2H, 2βtw

t
h(zth) + 2βtw

t
h(zth)

}
+ V

t

h+1(xth+1)− V th+1(xth+1) + ξth + γth

≤ 2βt min{1, wth(zth)}+ 2βt min{1, wth(zth)}+ V
t

h+1(xth+1)− V th+1(xth+1) + ξth + γth,

where the last inequality is due to the choice of β satisfying β/H ≥ 1. This completes the proof of
Lemma 16.

For bounding II and III, we use induction to prove that III ≥ 0 for every h, that is,

V
t

h(xth)− V ∗,ν
t

h (xth) ≥ 0. (D.6)

Then the same statement will also hold for II due to the symmetric property. The statement holds for
h = H + 1, where III = 0 (since V

t

H+1 = V ∗,ν
t

H+1 = 0 by definition). Suppose the statement holds

for h + 1. Let (a, b) ∈ A1 × A2 and z := (xth, a, b). If Q
t

h(z) ≥ H , then by definition, III ≥ 0.
Suppose Q

t

h(z) < H , then by definition of Q
t

h(z), we have

Q
t

h(z)−Q∗,ν
t

h (z) =
〈
φ
V
t
h+1

(z),θ
t

h − θ∗h
〉
H

+
(
Ph(V

t

h+1 − V
∗,νt
h+1 )

)
(z) + βtw

t
h(z)

≥ −βtwth(z) + βtw
t
h(z) = 0, (D.7)

where the first inequality holds due to the statement holds for h+1, which leads to V
t

h+1−V
∗,νt
h+1 ≥ 0,

and Lemma 3 that gives a bound for
〈
φ
V
t
h+1

(z),θ
t

h − θ∗h
〉
H

. Next, we have

V
t

h(xth)− V ∗,ν
t

h (xth) = E(a,b)∼σth(x
t
h)
Q
t

h(xth, a, b)− Ea∼br(νth),b∼ν
t
h
Q∗,ν

t

h (xth, a, b)

≥ Ea∼br(νth),b∼ν
t
h
Q
t

h(xth, a, b)− Ea∼br(νth),b∼ν
t
h
Q∗,ν

t

h (xth, a, b)

= Ea∼br(νth),b∼ν
t
h

[
Q
t

h(xth, a, b)−Q
∗,νt
h (xth, a, b)

]
≥ 0,

where νth := P2σ
t
h and πth := P1σ

t
h is the projection of σth on the first and second coordinate

respectively and br is the best response policy of a given distribution. The last inequality holds due to
(D.7). Therefore, the statement holds for h, which suggests that the induction holds.

Combining with Eq. (D.1), we arrive at a bound in terms of wth(zth), wth(zth) and the martingale
difference sequences:

V ∗,ν
t

1 (xth)− V π
t,∗

1 (xth) ≤
H∑
h=1

(
2βt min{1, wth(zth)}+ 2βt min{1, wth(zth)}+ ξth + γth

)
, (D.8)
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where νt is the policy that operates according to νth at time h and πt is
the sequence of πth accordingly. The rest of the proof follows by bounding∑T
t=1

∑H
h=1 min{1, wth(zth)},

∑T
t=1

∑H
h=1 min{1, wth(zth)} and the martingale difference

sequences.

The bound of
∑T
t=1

∑H
h=1 min{1, wth(zth)} and

∑T
t=1

∑H
h=1 min{1, wth(zth)} comes directly from

the following lemma 17 which can be simply derived from Lemma 11 in Abbasi-Yadkori et al. [2011]
and is an analogue of Lemma E.3 of Yang et al. [2020]:
Lemma 17 (Lemma E.3 of Yang et al. [2020]). For any sequence {xt}t≥1 taking values on the
RKHS H satisfying ∀t, ‖xt‖H ≤ L. Let IH be the identity operator on H and Λ0 := λIH the
multiplication operator by λ. Furthermore, if we let Λt := Λ0 +

∑t
i=1 xix

>
i be a positive definite

operator from H to H and Kt ∈ Rt×t the gram matrix of H obtained from {xt}t≥1. Then the
following holds for ∀t > 0:

t∑
i=1

min{1,x>i Λ−1t−1xi} ≤ 2logdet(I + Kt/λ).

We recall that by Lemma 11, wth =
[
φ
V
t
h+1

(z)>(Λ
t

h)−1φ
V
t
h+1

(z)
]1/2

, and the same holds for wth.

Let xt = φ
V
t
h+1

(zth) and Λ0 = λI in Lemma 17 and by applying the Cauchy-Schwarz inequality,
we have that

H∑
h=1

T∑
t=1

βt min{1, wth(zth)},
H∑
h=1

T∑
t=1

βt min{1, wth(zth)} ≤ 2βH ·
√
T
√

ΓK(T, λ), (D.9)

where βt = β takes values as in Lemma 3 for each t and ΓK(T, λ) is defined as the supremum over
all V ’s and z’s as in Definition 2. For the martingale difference sequence ξth+γth, as |ξth + γth| ≤ 4H ,
we bound it by Azuma-Hoeffding which gives us with probability at least 1− δ:

T∑
t=1

H∑
h=1

ξth + γth ≤ O
(
H
√
TH · log(1/δ)

)
.

Combining the above inequality with the bound in (D.9) and (D.8) concludes our proof of Theorem 4.

D.2 Proof of Corollary 6

Due to the selection of t0, we have

V ∗,ν
t0

1 (x1)− V π
t0 ,∗

1 (x1) ≤ V t01 (x1)− V t01 (x1) ≤ 1

T

T∑
t=1

V
t

1(x1)− V t1(x1) ≤
√
β2H2ΓK(T, λ)

T
,

(D.10)

where the first inequality holds due to (D.6) and its counterpart for V t1, the second one holds due to
the selection of t0. From (D.10) we can see that by selecting T as what our statement suggests, the
ε-approximate NE can be guaranteed.

E Proof of Results for KernelCCE-VTR+

In this section we give the proof of results in Appendix B. One of the key results of this paper is the
following Bernstein self-normalized concentration inequality:
Theorem 18 (Bernstein inequality for vector-valued martingales). Let {Gt}∞t=1 be a filtration,
{xt, ηt+1}t≥1 be a stochastic process so that xt ∈ Rd is Gt-measurable and ηt+1 ∈ R is Gt+1-
measurable. Fix R,L, σ, λ > 0, µ∗ ∈ Rd. For t ≥ 1 we observe 〈µ∗,xt〉+ ηt+1 and suppose that
ηt+1,xt also satisfy

|ηt+1| ≤ R, E[ηt+1|Gt] = 0, E[η2t+1|Gt] ≤ σ2, ‖xt‖2 ≤ L.
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Then, for any δ ∈ (0, 1), with probability at least 1− δ we have∥∥∥∥ t∑
i=1

xiηi+1

∥∥∥∥
Z−1
t

≤ βt, ∀t > 0, (E.1)

where for each t ≥ 1, Zt = λI +
∑t
i=1 xix

>
i , and

βt = 8σ
√

log det(I + Kt/λ) log(4t2/δ) + 4R log(4t2/δ), [Kt]i,j = 〈xi,xj〉H.

Proof. The proof can be derived by following the proof of Theorem 2 in Zhou et al. [2021a]. We
only need to replace Lemma 12 in Zhou et al. [2021a] with Lemma 17, then the remaining of the
proof goes through the same as Zhou et al. [2021a].

We first give the proof of Lemma 12.

E.1 Proof of Lemma 12

Proof. We only provide the proof of the max-player, and results of the min-player can be derived
similarily. We recall that we define yth,1 to be the vector of regression targets(

V
1

h+1(x1h+1)/R
1

h, . . . , V
t−1
h+1(xt−1h+1)/R

t−1
h

)>
∈ Rt−1.

Furthermore by Lemma 11 in Section A, we know that θ
t

h,1 =
(
Ψ
t

h,1

)> [
K
t

h,1 + λ1 · I
]−1

yth,1

and φ
V
t
h+1

(z) =
(
Ψ
t

h,1

)>
(K

t

h,1 + λ1 · I)−1k
t

h,1(z) + λ1 · (Λ
t

h,1)−1φ
V
t
h+1

(z), which enable us

to bound the difference
〈
φ
V
t
h+1

(z),θ
t

h,1 − θ∗h,1
〉
H

as follows:

〈
φ
V
t
h+1

(z),θ
t

h,1 − θ∗h
〉
H

= φ
V
t
h+1

(z)>
(
Ψ
t

h,1

)> [
K
t

h,1 + λ1 · I
]−1

yth,1

−
(
θ
∗
h

)> [(
Ψ
t

h,1

)> [
K
t

h,1 + λ1 · I
]−1

k
t

h,1(z) + λ1 · (Λ
t

h,1)−1φ
V
t
h+1

(z)

]
= (k

t

h,1)>
[
K
t

h,1 + λ1 · I
]−1 [

yth,1 −Ψ
t

h,1θ
∗
h

]
︸ ︷︷ ︸

I1

−λ1 · φV th+1
(z)>(Λ

t

h,1)−1θ∗h︸ ︷︷ ︸
I2

.

For bounding I2, we apply the Cauchy-Schwarz inequality and have

λ1 · φV th+1
(z)>(Λ

t

h)−1θ∗h ≤
∥∥∥λ1 · φV th+1

(z)>(Λ
t

h,1)−1
∥∥∥
H
· ‖θ∗h‖H

(a)

≤ B ·
√
λ1φV th+1

(z)>(Λ
t

h,1)−1λ1(Λ
t

h,1)−1φ
V
t
h+1

(z)
(b)

≤
√
λ1B · wth,1(z),

where (a) is due to the assumption that ‖θ∗h‖H ≤ B, and (b) is by the definition of wth and the fact

that
(
Λ
t

h,1

)−1
is a self-adjoint mapping on the RKHSH satisfying

∥∥∥∥(Λ
t

h,1

)−1∥∥∥∥
op

≤ 1
λ1

.

For bounding I1, we observe the following equality:

(k
t

h,1)>
[
K
t

h,1 + λ1 · I
]−1 [

yth,1 −Ψ
t

h,1θ
∗
h

]
= φ

V
t
h+1

(z)>(Λ
t

h,1)−1(Ψ
t

h,1)>
[
yth,1 −Ψt

h,1θ
∗
h

]
= φ

V
t
h+1

(z)>(Λ
t

h,1)−1
t−1∑
τ=1

φV τh+1
(zτh)

[
V
τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh)
]
/
(
R
τ

h

)2
.
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Again by applying the Cauchy-Schwarz inequality, we bound the RHS of the above equality as

|I1| ≤
∥∥∥φV th+1

(z)
∥∥∥

(Λ
t
h,1)

−1 ·

∥∥∥∥∥
t−1∑
τ=1

φV τh+1
(zτh)

[
V
τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh)
]
/
(
R
τ

h

)2∥∥∥∥∥
(Λ

t
h,1)

−1

.

We note that for the given h considered in Lemma 12. If we define {Ft}t≥0 as the σ-algebra generated
by all data before iteration t− 1 along with all data before time h at iteration t, then

ητ+1 :=
(
V
τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh)
)
/R

τ

h ∈ Fτ+1 (E.2)

is a mean zero random variable with respect to filtration Fτ . By the choice of Rh such that Rh ≥ αt,
we can bound the absolute value of ητ+1 by

∣∣∣(V τh+1(xτh+1)− (PhV
τ

h+1)(zτh)
)
/R

τ

h

∣∣∣ ≤ 2H/ατ .

We take ητ+1 as in Eq. (E.2) in Theorem 18 and {xt}t≥1 is
{
φ
V
t
h+1

(zth)/R
t

h

}
t≥1
∈ Fτ . Then by

directly utilizing Theorem 18, we have that the following inequality holds with probability at least
1− δ/H , ∥∥∥∥∥

t−1∑
τ=1

φV τh+1
(zτh)

[
V
t

h+1(xτh+1)− (PhV
t

h+1)(zτh)
]
/R

τ

h

∥∥∥∥∥
2

(Λ
t
h,1)

−1

≤ 16H/α

√
log det(I + K

(1)
t /λ1) log(4t2H/δ) + 8H/α log(4t2H/δ)

≤ 16H/α
√

log det(I + Kt/ (λ1(αt)2)) log(4t2H/δ) + 8H/α log(4t2H/δ)

≤ 16H/α
√

ΓK(T, λ1(αt)2)
√

log(4t2H/δ) + 8H/α log(4t2H/δ),

where K
(1)
t is the gram matrix for {xτ}τ∈[t−1] =

{
φ
V
t
h+1

(zτh)/R
τ

h

}
τ∈[t−1]

, Kt is the gram matrix

for
{
φ
V
t
h+1

(zτh)
}
τ∈[t−1]

.

On the other hand, when estimating Ph
(
V
t

h+1

)2
, we have the following result regarding θ

t

h,2 holds
with probability at least 1− δ/H:∣∣∣∣〈φ(V th+1)

2(z),θ
t

h,2 − θ∗h
〉
H

∣∣∣∣ ≤ 16H2
√

ΓK(T, λ2/H2)
√

log(4t2H/δ) + 8H2 log(4t2H/δ) +
√
λ2 ·B.

By letting

β
(1)
t = 16H/α

√
ΓK(T, λ1(αt)2)

√
log(4t2H/δ) + 8H/α log(4t2H/δ) +

√
λ1 ·B,

and

β
(2)
t = 16H2

√
ΓK(T, λ2/H2)

√
log(4t2H/δ) + 8H2 log(4t2H/δ) +

√
λ2 ·B,

we have that from the above theoretical derivation and by taking union bounds over h ∈ [H],∣∣∣φV τh+1
(z)>(θ∗h − θ

t

h,1)
∣∣∣ ≤ β(1)

t · wth,1(z),

and ∣∣∣φ(V τh+1)
2(z)>(θ∗h − θ

t

h,2)
∣∣∣ ≤ β(2)

t · wth,2(z), (E.3)

with probability at least 1− 2δ. This concludes our proof.

From Lemma 12, we can prove that R
t

h is an upper bound of the actual variance of V
t

h+1.
Lemma 19. Following the setting of Lemma 12 and assume that event E occurs, the following holds
for any (t, h) ∈ T ×H:∣∣∣VestV

t

h+1(zth)− VV th+1(zth)
∣∣∣ ≤ min

{
H2, β

(2)
t wth,2

}
+ min

{
H2, 2Hβ

(1)
t wth,1

}
.
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Proof. By the triangle inequality we have that

|VestV
t

h+1(zth)− VV th+1(zth)|

≤
∣∣∣〈φ(V th+1)

2(zth),θ∗h〉H −
[
〈φ

(V th+1)
2(zth),θ

t

h,2〉H
]
[0,H2]

∣∣∣
+
∣∣∣(〈φV th+1

(zth),θ∗h〉H)2 −
[
〈φ

V
t
h+1

(zth),θ
t

h,1〉H
]2
[−H,H]

∣∣∣
≤ min

{
H2,

∣∣∣〈φ(V th+1)
2(zth),θ∗h − θ

t

h,2〉H
∣∣∣}+ min

{
H2, 2H

∣∣∣〈φV th+1
(zth),θ∗h − θ

t

h,1〉H
∣∣∣}

≤ min
{
H2, β

(2)
t wth,2

}
+ min

{
H2, 2Hβ

(1)
t wth,1

}
,

(E.4)
where the last inequality directly comes from Lemma 12.

Lemma 20 (Fine-tuned bound). Assuming that for any h ∈ [H], ‖θ∗h‖H ≤ B. Let βt satisfy

βt ≥ 16
√

ΓK(T, λ1(αt)2)
√

log(4t2H/δ) + 8H/α log(4t2H/δ) +
√
λ1 ·B. (E.5)

Then on the event defined in Lemma 12, there exists an event E1 such that the following holds with
probability at least 1− δ for any (t, h) ∈ [T ]× [H] and any (x, a, b) ∈ S ×A×A:∣∣∣〈φV th1 (zth),θ∗h − θ

t

h,1〉H
∣∣∣ ≤ βt · wkh,1(zkh).

Proof. From the definition of Rh and E
t

h, we know that

R
t

h ≥ VestV
t

h+1(zth) + min
{
H2, β

(2)
t wth,2

}
+ min

{
H2, 2Hβ

(1)
t wth,1

}
.

Combining with the result in Lemma 19 where we bound the absolute difference between the estimated
variance and the true variance in Eq. (E.4), we have that on the event E defined in Lemma 12:

R
t

h ≥ VV th+1(zth).

We derive a fine-tuned bound on the variance of ηt+1 defined in Eq. (E.2) that on event E :

E
[
η2t+1 | Ft

]
= VV th+1(zth)/

(
R
t

h

)2
≤ 1.

The rest of the proof follows by a direct application of Theorem 18.

Lemma 21. On the event E ∩ E1, there exists an event E2 such that E2 holds with probability at least
1− δ, we have

T∑
t=1

H∑
h=1

(
R
t

h

)2
≤ HTα2 + 3(H2T +H3 log(1/δ)) + 4H

T∑
t=1

H∑
h=1

Ph[V
t

h+1 − V
µt

h+1]

+ 2β
(2)
T

√
TH ·

√
2HΓK(T, λ2/H2)

+ 7β
(1)
T H2

√
TH ·

√
2HΓK(T, λ1/α2).

Proof. First by considering the definition of Rh, we know that

T∑
t=1

H∑
h=1

(
R
t

h

)2
≤

T∑
t=1

H∑
h=1

(
α2
t + VestV

t

h+1(zth) + E
t

h

)
=

T∑
t=1

H∑
h=1

(
α2
t + VestV

t

h+1(zth) + min
{
H2, β

(2)
t wth,2

}
+ min

{
H2, 2Hβ

(1)
t wth,1

})

25



≤ HTα2 +
T∑
t=1

H∑
h=1

(
VV th+1(zth) + 2 min

{
H2, β

(2)
t wth,2

}
+ 2 min

{
H2, 2Hβ

(1)
t wth,1

})
≤ HTα2 +

T∑
t=1

H∑
h=1

[
VV th+1(zth)− VV πth+1(zth)

]
︸ ︷︷ ︸

I

+
T∑
t=1

H∑
h=1

VV πth+1(zth)︸ ︷︷ ︸
II

+
T∑
t=1

H∑
h=1

2 min
{
H2, β

(2)
t wth,2

}
+

T∑
t=1

H∑
h=1

2 min
{
H2, 2Hβ

(1)
t wth,1

}
︸ ︷︷ ︸

III

.

The rest of the proof for bounding I, II, III goes the same as in the proof of Lemma A.6 in Chen et al.
[2022], except that we replace Lemma B.4 in Chen et al. [2022] with Lemma 17.

Proof of Theorem 13. The first part of the proof follows almost the same as in the proof of Theorem 4
by replacing wth with wth,1 and wth with wth,1, except that now we have βR

t

h ≥ 2H so that we
have (E.6) instead of (D.8).

V ∗,ν
t

1 (xt1)− V π
t,∗

1 (xt1)

≤
H∑
h=1

(
4βtR

t

h min{1, wth,1(zth)/R
t

h}+ 4βtR
t
h min{1, wth,1(zth)/R

t

h}+ ξth + γth

)
,

(E.6)

Similarily, for any 1 ≤ h′ ≤ H , we have

V
t

h′(x
t
h′)− V

t
h′(x

t
h′)

≤
H∑
h=1

(
2βtR

t

h min{1, wth,1(zth)/R
t

h}+ 2βtR
t
h min{1, wth,1(zth)/R

t

h}+ ξth + γth

)
.

Applying Azuma-Hoeffding inequality onto (E.7), we have with probability at least 1− δ,
T∑
t=1

H∑
h=1

Ph[V
t

h+1 − V
t
h+1](xth, a

t
h, b

t
h)

≤
T∑
t=1

H∑
h=1

(
2βtR

t

h min{1, wth,1(zth)/R
t

h}+ 2βtR
t
h min{1, wth,1(zth)/R

t

h}+ ξth + γth

)
+

T∑
t=1

H∑
h=1

ξth.

(E.7)

Then we estimate the two summation terms
∑T
t=1

∑H
h=1R

t

h min{1, wth,1(zth)/R
t

h} and∑T
t=1

∑H
h=1R

t

h min{1, wth,1(zth)/R
t

h} separately. By definitions in Lemma 11, Section A, we
know that

T∑
t=1

H∑
h=1

R
t

h min{1, wth,1(zth)/R
t

h}

=
T∑
t=1

H∑
h=1

R
t

h min

{
1,
[
φ
V
t
h+1

(z)>Λ
t

h,1φV th+1
(z)
]1/2

/R
t

h

}

≤

√√√√ T∑
t=1

H∑
h=1

(
R
t

h

)2√√√√ T∑
t=1

H∑
h=1

min
{

1,
[
φ
V
t
h+1

(z)>Λ
t

h,1φV th+1
(z)
]
/R

t

h

}

≤

√√√√ T∑
t=1

H∑
h=1

(
R
t

h

)2
·
√

2HΓK(T, λ1α2).
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Similarly,

T∑
t=1

H∑
h=1

Rth min{1, wth,1(zth)/Rth} ≤

√√√√ T∑
t=1

H∑
h=1

(
Rth
)2 ·√2HΓK(T, λ1α2).

By Lemma 21, we have
T∑
t=1

H∑
h=1

(
R
t

h

)2
+
(
Rth
)2

= O

(
HTα2 +H2T +H3 log(1/δ) +H

T∑
t=1

H∑
h=1

Ph[V
t

h+1 − V
t
h+1]

+ β
(2)
T

√
TH

√
HΓK(T, λ2/H2) + β

(1)
t H2

√
TH

√
HΓK(T, λ1/α2)

)
≤ O

(
HTα2 +H2T +H3 log(1/δ))

+H2βt

√√√√ T∑
t=1

H∑
h=1

(
R
t

h

)2
+
(
Rth
)2 ·√H · ΓK(T, λ1α2) +H3

√
HT log(H/δ)

+ β
(2)
t

√
TH

√
HΓK(T, λ2/H2) + β

(1)
t H2

√
TH

√
HΓK(T, λ1α2)

)
, (E.8)

where the inequality holds due to Cauchy-Schwarz inequality. Next, by taking

α = H/
√

ΓK(T, 1/B2), λ2 = H2/B2, λ1 = 1/(α2B2),

we have
β
(1)
t = 16H/α

√
ΓK(T, λ1(α)2)

√
log(4t2H/δ) + 8H/α log(4t2H/δ) +

√
λ1 ·B = Õ(ΓK(T,H2/B2)),

β
(2)
t = 16H2

√
ΓK(T, λ2/H2)

√
log(4t2H/δ) + 8H2 log(4t2H/δ) +

√
λ2 ·B = Õ(H2),

βt = 16
√

ΓK(T, λ1(α)2)
√

log(4t2H/δ) + 8H/α log(4t2H/δ) +
√
λ1 ·B = Õ(

√
ΓK(T,H2/B2)).

For simplicity, let deff := ΓK(T,H2/B2), then by (E.8) we have
T∑
t=1

H∑
h=1

(
R
t

h

)2
+
(
Rth
)2

≤ Õ


√√√√ T∑

t=1

H∑
h=1

(
R
t

h

)2
+
(
Rth
)2
H5/2deff +H3d

3/2
eff T

1/2 +H7/2T 1/2 +H3T/deff +H2T

 .

With the fact that x ≤ a
√
x+ b leads to x = O(a2 + b), we have

T∑
t=1

H∑
h=1

(
R
t

h

)2
+
(
Rth
)2

= Õ(d2effH
5 +H3d

3/2
eff T

1/2 +H7/2T 1/2 +H3T/deff +H2T ). (E.9)

Finally, substituting (E.9) into (E.6) and bound the summation of ξth, γ
t
h by Azuma-Hoeffding

inequality, we have
T∑
t=1

V ∗,ν
t

1 (xth)− V π
t,∗

1 (xth)

≤ Õ

βt
√√√√ T∑

t=1

H∑
h=1

(
R
t

h

)2
+
(
Rth
)2 ·√H · deff +H

√
2HT log(H/δ)


= Õ

(
d2effH

3 + d1.75eff H2T 0.25 + deffH
2.25T 0.25 +

√
deffH

2
√
T + deffH

1.5
√
T
)

= Õ

(
d2effH

3 +
√
deffH4 + d2effH

3
√
T +

(
d7effH

8 + d4effH
9
)1/4

T 1/4

)
.

This completes the proof of the theorem.
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F Proof of Results for KernelCCE-VTR with Misspecification

In this section we prove Theorem 10.

Lemma 22. Assuming that for any h ∈ [H], ‖θ∗h‖H ≤ B. Let λ = 1 + 1/T and βt satisfies

(
βt
H

)2

≥ 3ΓK(T, λ) + 3 + 6 · log

(
1

δ

)
+ 3λ

(
B

H

)2

+ 3ι2mist. (F.1)

Then for any δ > 0, with probability at least 1− δ the following holds for any (t, h) ∈ [T ]× [H] and
any z ∈ Z: ∣∣∣〈φV th+1

(z),θ
t

h

〉
H
− PhV

t

h+1(z)
∣∣∣ ≤ βt · wth(z) +H · ιmis,∣∣∣〈φV th+1

(z),θth

〉
H
− PhV th+1(z)

∣∣∣ ≤ βt · wth(z) +H · ιmis.

The proof of Theorem 10 shares similar techniques with the proof of Theorem 4, except that we need
Lemma 22 instead of Lemma 3. We detail the whole proof for completeness.

We recall that the duality gap is defined as
∑T
t=1 V

∗,νt
1 (xt1) − V π

t,∗
1 (xt1). As can be seen in our

Algorithm, we maintain an optimistic estimate of V ∗,v
t

h (·) as V
t

h+1(·) and a pessimistic estimate of

V π
t,∗

h (·) as V th+1(·). Hence the term V
t

h+1(xth)− V th+1(xth) is approximately the upper bound of
the duality gap. We write the decomposition formally as below:

V ∗,ν
t

h (xth)− V π
t,∗

h (xth) = V
t

h(xth)− V th(xth)︸ ︷︷ ︸
I

−
(
V π

t,∗
h (xth)− V th(xth)

)
︸ ︷︷ ︸

II

−
(
V
t

h(xth)− V ∗,ν
t

h (xth)
)

︸ ︷︷ ︸
III

.

(F.2)
We use δ

t

h to denote an important quantity
〈
φ
V
t
h+1

(zth),θ∗h − θ
t

h

〉
H

(and
〈
φV th+1

(zth),θ∗h − θ
t
h

〉
H

)
in estimating the duality gap. In the rest of the proof we aim to show that all of the above three
terms can be bounded by a quantity related to δ

t

h (δth) and a stochastic random variable that forms a
martingale difference sequence when considering for all h ∈ [H], t ∈ [T ].

For bounding term I, we first define two sequences of zero mean variables:

γth := Q
t

h(xth, a
t
h, b

t
h)−Qt

h
(xth, a

t
h, b

t
h)− E(a,b)

[
Q
t

h(x, a, b)−Qt
h
(x, a, b)

]
,

ξth :=
(
Ph(V

t

h+1 − V
t
h+1)

)
(xth, a

t
h, b

t
h)−

(
V
t

h+1(xth+1)− V th+1(xth+1)
)
,

(F.3)

where γth depicts the stochastic error with respect to the policy and ξth depicts the stochastic error
with respect to the transition. We refer the readers to the proof of Lemma 23 for detailed explanations
on these two error term. Given the above definition, we have the following Lemma 23.

Lemma 23. Under the settings of Lemma 22, we have the following recursive bound for ∀h ∈ [H]:

V
t

h(xth)− V th(xth)

≤ V th+1(xth+1)− V th+1(xth+1) + 2βt min{1, wth(xth)}+ 2βt min{1, wth(xth)}+ 2H · ιmis + ξth + γth.
(F.4)

Proof of Lemma 23. Follows the same derivative as in Lemma 16 as it still holds that βt ≥ H in
Lemma 22
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For bounding II and III, we observe that the gap between two consecutive points of the values of term
II can be decomposed as(

V
t

h(xth)− V ∗,ν
t
h

h (xth)
)
−
(
V
t

h+1(xth+1)− V ∗,ν
t
h

h+1 (xth+1)
)

=
(
V
t

h(xth)− V ∗,ν
t
h

h (xth)
)
−
(
Q
t

h(zth)−Q∗,ν
t
h

h (zth)
)

︸ ︷︷ ︸
I1

+
(
Q
t

h(zth)−Q∗,ν
t
h

h (zth)
)
−
(
Ph(V

t

h+1 − V
∗,νth
h+1 )

)
(zth)︸ ︷︷ ︸

I2

+
(
Ph(V

t

h+1 − V
∗,νth
h+1 )

)
(zth)−

(
V
t

h+1(xth+1)− V ∗,ν
t
h

h+1 (xth+1)
)

︸ ︷︷ ︸
I3

.

(F.5)

In the two-player game setting II and III are symmetric, so the terms I1, I2, I3 has their corre-
spondence denoted as I′1, I

′
2, I
′
3 separately. Utilizing the bound in Lemma 3, we can bound |I2|

and |I′2| by 2βt min{1, wth(zth)} + H · ιmis and 2βt min{1, wth(zth)} + H · ιmis respectively via

similar techniques as in the Proof of Lemma 16 and the fact that
∣∣∣Qth(zth)−Q∗,ν

t
h

h (zth)
∣∣∣ ≤ 2H ,∣∣∣Qt

h
(zth)−Qπ

t
h,∗
h (zth)

∣∣∣ ≤ 2H as well as the following inequalities:∣∣∣(Qth(zth)−Q∗,ν
t

h (zth)
)
−
(
Ph(V

t

h+1 − V
∗,νt
h+1 )

)
(zth)

∣∣∣ ≤ 2βtw
t
h(zth) +H · ιmis,∣∣∣(Qt

h
(zth)−Qπ

t,∗
h (zth)

)
−
(
Ph(V th+1 − V

πt,∗
h+1 )

)
(zth)

∣∣∣ ≤ 2βtw
t
h(zth) +H · ιmis.

(F.6)

For I3 and I′3, we note that both terms are stochastic noises with mean zero, where the stochasticity
lies in the transition probability. We denote them as α1

h,t and α2
h,t respectively.

Finally for bounding I1 and I′1, we utilize the properties of the CCE. (For simplicity we only prove
the bound for I1, it is trivial to generalize to the bound for I1)

V
t

h(xth)− V ∗,ν
t
h

h (xth) = E(a,b)∼σth(x
t
h)
Q
t

h(xth, a, b)− Ea∼br(νth),b∼ν
t
h
Q
∗,νth
h (xth, a, b),

≥ Ea∼br(νth),b∼ν
t
h
Q
t

h(xth, a, b)− Ea∼br(νth),b∼ν
t
h
Q
∗,νth
h (xth, a, b)

= Ea∼br(νth),b∼ν
t
h

[
Q
t

h(xth, a, b)−Q
∗,νth
h (xth, a, b)

]
,

where νth := P2σ
t
h and πth := P1σ

t
h is the projection of σth on the first and second coordinate

respectively and br is the best response policy of a given distribution. Defining

ζ1h,t := Ea∼br(νth),b∼ν
t
h

[
Q
t

h(xth, a, b)−Q
∗,νth
h (xth, a, b)

]
−
[
Q
t

h(xth, a
t
h, b

t
h)−Q∗,ν

t
h

h (xth, a
t
h, b

t
h)
]
,

ζ2h,t := Ea∼πth,b∼br(πth)

[
Q
πth,∗
h (xth, a, b)−Q

t

h
(xth, a, b)

]
−
[
Q
πth,∗
h (xth, a

t
h, b

t
h)−Qt

h
(xth, a

t
h, b

t
h)
]
,

we are at the conclusion that

V
t

h(xth)− V ∗,ν
t
h

h (xth) ≥ Qth(xth, a
t
h, b

t
h)−Q∗,ν

t
h

h (xth, a
t
h, b

t
h) + ζ1h,t,

V
πth,∗
h (xth)− V th(xth) ≥ Qπ

t
h,∗
h (xth, a

t
h, b

t
h)−Qt

h
(xth, a

t
h, b

t
h) + ζ2h,t.

Bringing this lower bound result together with the previous absolute bound (F.6) into Eq. (F.5) and
its counterpart for the min-player, we have(

V
∗,νth
h (xth)− V th(xth)

)
−
(
V
∗,νth
h+1 (xth+1)− V th+1(xth+1)

)
+
(
V th(xth)− V π

t
h,∗

h (xth)
)
−
(
V th+1(xth+1)− V π

t
h,∗

h+1 (xth+1)
)

≥ α1
h,t + α2

h,t + ζ1h,t + ζ2h,t − 2βt min{1, wth(zth)} − 2βt min{1, wth(zth)} − 2H · ιmis.

(F.7)
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Combining with Eq. (F.2), we arrive at a bound in terms of wth(zth), wth(zth) and the martingale
difference sequences:

H∑
h=1

V ∗,ν
t

h (xth)− V π
t,∗

h (xth)

≤
H∑
h=1

(
4βt min{1, wth(xth)}+ 4βt min{1, wth(xth)}+ 4H · ιmis + ξth + γth + α1

h,t + α2
h,t + ζ1h,t + ζ2h,t

)
,

where νt is the policy that operates according to νth at time h and πt is
the sequence of πth accordingly. The rest of the proof follows by bounding∑T
t=1

∑H
h=1 min{1, wth(zth)},

∑T
t=1

∑H
h=1 min{1, wth(zth)} and the martingale difference se-

quences. Following the same techniques as in the proof of Theorem 4, we again apply Lemma 17 and
Cauchy-Schwarz inequality, together with the Azuma-Hoeffding for bounded martingale differences,
we arrive at our final result.

G Proof of Results for KernelCCE-VTR with Neural Approximation

In this section, we proof our result for the neural network approximation.

Proof of Theorem 15. Let C be defined in Lemma 14. We define a rescaled version of φ as φ̃/C,
then we know that for any bounded value functions Vh(·) : S 7→ [−1, 1],

|PhVh(z)− 〈φ̃Vh(z), C(θ∗h − θ(0))〉| ≤ C1|S|B4/3m−1/6L3
√

logm, ‖φ̃Vh(z)‖2 ≤ 1.

Defining θ̃∗h := Cθ∗h and θ̃(0) := Cθ(0) and taking ιmis := C ·B4/3 ·m−1/6 ·
√

logm, by Theorem 10
we know that for λ̃ = 1 + 1

T , any δ > 0 and any β satisfying(
β

H

)2

≥ 2ΓK̃(T, λ̃) + 3 + 6 · log

(
1

δ

)
+ 3λ

(
B̃

H

)2

+ 3C2 ·B8/3 ·m−1/12 · logm · t,

there exists a global constant c > 0 such that with probability at least 1− δ, we have

Regret(T ) ≤ c
(
βH
√
T · ΓK̃(T, λ) + 1 +H2Tιmis

)
.

where B̃ = C ·B, and

ΓK̃(T, λ) := sup
(Vi)i,(zi)i

1

2
log det(I + K̃({Vi}i, {zi}i)/λ), (G.1)

where K̃ ∈ RT×T is the matrix based on the kernel function k induced by the feature mapping φ̃,
where

kV1,V2
(z1, z2) = 〈φ̃V1

(z1), φ̃V2
(z2)〉.

Rescaling gives

ΓK̃(T, λ̃) = ΓK(T,C2λ̃).

Choosing λ := C2(1 + 1
T ) completes our proof of Theorem 15.

H Proof of Auxillary Lemmas

In this section, we prove the essential lemmas in the proof of our main theorems. First of all we
present a concentration bound for self-normalized processes in an RKHS H, which is critical in
determining the main term of the regret bound.
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Theorem 24 (Self-Normalized Concentration Bounds for RKHS [Chowdhury and Gopalan, 2017,
Yang et al., 2020]). Let {xt}t≥1 be a discrete time stochastic process taking values in Z , H is an
RKHS with kernel K(·, ·) : Z × Z 7→ R, {Ft}t≥0 is a given filtration. We assume that xt is Ft−1
measurable in the sense that for ∀t ≥ 1, xt ∈ Ft−1. Furthermore, {εt}t≥1 is a real-valued stochastic
process with each εt Ft measurable and σ-sub-Gaussian. Define Kt ∈ R(t−1)×(t−1) as the Gram
matrix for data {xτ}τ∈[t−1] of the RKHSH. Then for any λ > 1 and δ ∈ (0, 1), with probability at
least 1− δ, the following holds simultaneosly for all t ≥ 0:

‖ε1:t−1‖2((Kt+(λ−1)·I)−1+I)
−1 ≤ 2σ2 log

√
det (λI + Kt)

δ
.

Proof. See Lemma E.1 in Yang et al. [2020] and Theorem 1 in Chowdhury and Gopalan [2017] for
the detailed proof.

H.1 Proof of Lemma 3

Proof of Lemma 3. We only provide the proof of the max-player, and results of the min-player
can be derived similarly. We recall the definition of yth is the vector of regression targets(
V

1

h+1(x1h+1), . . . , V
t−1
h+1(xt−1h+1)

)>
∈ Rt−1. Furthermore by Lemma 11 in Section A, we

know that θ
t

h =
(
Ψ
t

h

)> [
K
t

h + λI
]−1

yth and φ
V
t
h+1

(z) =
(
Ψ
t

h

)>
(K

t

h + λI)−1k
t

h(z) + λ ·

(Λ
t

h)−1φ
V
t
h+1

(z), which enable us to bound the difference
〈
φ
V
t
h+1

(z),θ
t

h − θ∗h
〉
H

as follows:〈
φ
V
t
h+1

(z),θ
t

h − θ∗h
〉
H

= φ
V
t
h+1

(z)>
(
Ψ
t

h

)> [
K
t

h + λI
]−1

yth

−
(
θ
∗
h

)> [(
Ψ
t

h

)> [
K
t

h + λI
]−1

k
t

h(z) + λ · (Λt

h)−1φ
V
t
h+1

(z)

]
= (k

t

h)>
[
K
t

h + λI
]−1 [

yth −Ψ
t

hθ
∗
h

]
︸ ︷︷ ︸

I1

−λ · φ
V
t
h+1

(z)>(Λ
t

h)−1θ∗h︸ ︷︷ ︸
I2

.

For bounding I2, we apply the Cauchy-Schwarz inequality and have

λ · φ
V
t
h+1

(z)>(Λ
t

h)−1θ∗h ≤
∥∥∥λ · φV th+1

(z)>(Λ
t

h)−1
∥∥∥
H
· ‖θ∗h‖H

(a)

≤ B ·
√
λφ

V
t
h+1

(z)>(Λ
t

h)−1λ(Λ
t

h)−1φ
V
t
h+1

(z)
(b)

≤
√
λB · wth(z),

where (a) is due to the assumption that ‖θ∗h‖H ≤ B and (b) is by the definition of wth and the fact

that
(
Λ
t

h

)−1
is a self-adjoint mapping on the RKHSH satisfying

∥∥∥∥(Λ
t

h

)−1∥∥∥∥
op

≤ 1
λ .

For bounding I1, we observe the following equality:

(k
t

h)>
[
K
t

h + λI
]−1 [

yth −Ψ
t

hθ
∗
h

]
= φ

V
t
h+1

(z)>(Λ
t

h)−1(Ψ
t

h)>
[
yth −Ψt

hθ
∗
h

]
= φ

V
t
h+1

(z)>(Λ
t

h)−1
t−1∑
τ=1

φV τh+1
(zτh)

[
V
τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh)
]
.

Again by applying the Cauchy-Schwarz inequality, we bound the RHS of the above equality as

|I1| ≤
∥∥∥φV th+1

(z)
∥∥∥

(Λth)
−1
·

∥∥∥∥∥
t−1∑
τ=1

φV τh+1
(zτh)

[
V
τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh)
]∥∥∥∥∥

(Λth)
−1

.

We note that for a given h that we consider in Lemma 3. If we define {Ft}t≥0 as the σ-
algebra generated by all data before iteration t and all data before step h at iteration t + 1,
V
τ

h+1(xτh+1) − (PhV
τ

h+1)(zτh) ∈ Fτ is a mean zero random variable with respect to filtration
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Fτ−1 with
∣∣∣V τh+1(xτh+1)− (PhV

τ

h+1)(zτh)
∣∣∣ ≤ H . We take ετ = V

τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh) in

Theorem 24 and {xt}t≥1 is
{
φ
V
t
h+1

(zth)
}
t≥1

. Then by directly utilizing Theorem 24, we have that∥∥∥∥∥
t−1∑
τ=1

φV τh+1
(zτh)

[
V
t

h+1(xτh+1)− (PhV
t

h+1)(zτh)
]∥∥∥∥∥

2

(Λth)
−1

=
∥∥(Ψt

h)>εth
∥∥2

(Λth)
−1 = (εth)>Ψt

hΛ
−1
t (Ψt

h)>εth.

By Lemma 11 and Theorem 24 again, we arrive at the following:

(εth)>Ψt
hΛ
−1
t (Ψt

h)>εth ≤ (εth)>Kt(Kt + λI)−1εth ≤ (εth)> (Kt + (λ− 1) · I) (Kt + λI)−1εth

= (εth)>
(

(Kt + (λ− 1) · I)
−1

+ I
)−1

εth

≤ H2 log

√
det (λI + Kt)

δ
≤ 2H2 · logdet(λI + Kt) + 2H2 · log

1

δ
.

By taking λ = 1 + 1
T ,∣∣∣φ(z)>(θ∗h − θ

t

h)
∣∣∣

≤

{[
H2 · logdet [λI + Kt] + 2H2 · log

(
1

δ

)]1/2
+
√
λB

}
· bth(z)

≤

{[
H2 · logdet [I + Kt/λ] + (λ− 1)tH2 + 2H2 · log

(
1

δ

)]1/2
+
√
λB

}
· bth(z)

≤

{[
H2 · ΓK(T, λ) +H2 + 2H2 · log

(
1

δ

)]1/2
+
√
λB

}
· bth(z).

Let (β/H)2 = 2ΓK(T, λ)+2+4·log
(
1
δ

)
+2λ

(
B
H

)2
, we know from the above theoretical derivation

that
∣∣∣φ(z)>(θ∗h − θ

t

h)
∣∣∣ ≤ β · bth(z) with probability at least 1− δ, which concludes our proof.

H.2 Proof of Lemma 22

Proof of Lemma 22. The first half of the proof of Lemma 22 follows exactly the same as in the
proof of Lemma 3, we restate the proof for completeness and analyze the error terms brought by
misspecification in the later half of the proof. We only provide the proof of the max-player, and results
of the min-player can be derived similarily. We recall the definition of yth is the vector of regression

targets
(
V

1

h+1(x1h+1), . . . , V
t−1
h+1(xt−1h+1)

)>
∈ Rt−1. Furthermore by Lemma 11 in Section A, we

know that θ
t

h =
(
Ψ
t

h

)> [
K
t

h + λI
]−1

yth and φ
V
t
h+1

(z) =
(
Ψ
t

h

)>
(K

t

h + λI)−1k
t

h(z) + λ ·

(Λ
t

h)−1φ
V
t
h+1

(z), which enable us to bound the difference
〈
φ
V
t
h+1

(z),θ
t

h − θ∗h
〉
H

as follows:〈
φ
V
t
h+1

(z),θ
t

h − θ∗h
〉
H

= φ
V
t
h+1

(z)>
(
Ψ
t

h

)> [
K
t

h + λI
]−1

yth

−
(
θ
∗
h

)> [(
Ψ
t

h

)> [
K
t

h + λI
]−1

k
t

h(z) + λ · (Λt

h)−1φ
V
t
h+1

(z)

]
= (k

t

h)>
[
K
t

h + λI
]−1 [

yth −Ψ
t

hθ
∗
h

]
︸ ︷︷ ︸

I1

−λ · φ
V
t
h+1

(z)>(Λ
t

h)−1θ∗h︸ ︷︷ ︸
I2

.

For bounding I2, we apply the Cauchy-Schwarz inequality and have

λ · φ
V
t
h+1

(z)>(Λ
t

h)−1θ∗h ≤
∥∥∥λ · φV th+1

(z)>(Λ
t

h)−1
∥∥∥
H
· ‖θ∗h‖H

(a)

≤ B ·
√
λφ

V
t
h+1

(z)>(Λ
t

h)−1λ(Λ
t

h)−1φ
V
t
h+1

(z)
(b)

≤
√
λB · wth(z),
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where (a) is due to the assumption that ‖θ∗h‖H ≤ B and (b) is by the definition of wth and the fact

that
(
Λ
t

h

)−1
is a self-adjoint mapping on the RKHSH satisfying

∥∥∥∥(Λ
t

h

)−1∥∥∥∥
op

≤ 1
λ .

For bounding I1, we observe the following equality:

(k
t

h)>
[
K
t

h + λI
]−1 [

yth −Ψ
t

hθ
∗
h

]
= φ

V
t
h+1

(z)>(Λ
t

h)−1(Ψ
t

h)>
[
yth −Ψt

hθ
∗
h

]
= φ

V
t
h+1

(z)>(Λ
t

h)−1
t−1∑
τ=1

φV τh+1
(zτh)

[
V
τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh)
]

+ φ
V
t
h+1

(z)>(Λ
t

h)−1
t−1∑
τ=1

φV τh+1
(zτh)

[
(PhV

τ

h+1)(zτh)−
〈
φV τh+1

,θ∗h

〉
H

]
.

Again by applying the Cauchy-Schwarz inequality, we bound the RHS of the above equality as

|I1| ≤
∥∥∥φV th+1

(z)
∥∥∥

(Λth)
−1
·

∥∥∥∥∥
t−1∑
τ=1

φV τh+1
(zτh)

[
V
τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh)
]∥∥∥∥∥

(Λth)
−1︸ ︷︷ ︸

A1

+
∥∥∥φV th+1

(z)
∥∥∥

(Λth)
−1
·

∥∥∥∥∥
t−1∑
τ=1

φV τh+1
(zτh)

[
(PhV

τ

h+1)(zτh)− φ>
V
τ
h+1
θ∗h

]∥∥∥∥∥
(Λth)

−1︸ ︷︷ ︸
A2

.

(H.1)

For bounding A1, we note that for a given h that we consider in Lemma 22. If we define {Ft}t≥0
as the σ-algebra generated by all data before iteration t and all data before step h at iteration t+ 1,
V
τ

h+1(xτh+1) − (PhV
τ

h+1)(zτh) ∈ Fτ is a mean zero random variable with respect to filtration

Fτ−1 with
∣∣∣V τh+1(xτh+1)− (PhV

τ

h+1)(zτh)
∣∣∣ ≤ H . We take ετ = V

τ

h+1(xτh+1)− (PhV
τ

h+1)(zτh) in

Theorem 24 and {xt}t≥1 is
{
φ
V
t
h+1

(zth)
}
t≥1

. Then by directly utilizing Theorem 24, we have that∥∥∥∥∥
t−1∑
τ=1

φV τh+1
(zτh)

[
V
t

h+1(xτh+1)− (PhV
t

h+1)(zτh)
]∥∥∥∥∥

2

(Λth)
−1

=
∥∥(Ψt

h)>εth
∥∥2

(Λth)
−1 = (εth)>Ψt

hΛ
−1
t (Ψt

h)>εth.

By Lemma 11 and Theorem 24 again, we arrive at the following:

(εth)>Ψt
hΛ
−1
t (Ψt

h)>εth ≤ (εth)>Kt(Kt + λI)−1εth ≤ (εth)> (Kt + (λ− 1) · I) (Kt + λI)−1εth

= (εth)>
(

(Kt + (λ− 1) · I)
−1

+ I
)−1

εth

≤ 2H2 log

√
det (λI + Kt)

δ
≤ H2 · logdet(λI + Kt) + 2H2 · log

1

δ
.

For bounding the term A2 in Eq. (H.1), we apply the following lemma, which is the RKHS version
of the Lemma 8 in Zanette et al. [2020]:
Lemma 25 (Lemma 8 in Zanette et al. [2020]). Let {ai}i=1,...,t be any sequence of vectors in the
RKHS H and {bi}i=1,...,t be any sequence of scalars such that |bi| ≤ ε ∈ R+. For any λ ≥ 0 and
t ∈ N we have: ∥∥∥∥∥

t∑
i=1

aibi

∥∥∥∥∥
[
∑t
i=1 aia

>
i +λI]

−1

≤ tε2.

33



Proof of Lemma 25. By defining the feature matrix A := (a1, . . . ,at) and the vector b :=

(b1, . . . , bt)
>, we have the following formulation

t∑
t=1

aibi = Ab,

∥∥∥∥∥
t∑
i=1

aibi

∥∥∥∥∥
[
∑t
i=1 aia

>
i +λI]

−1

= ‖Ab‖[AA>+λIH]−1 = b>A>[AA> + λIH]−1Ab.

Via the same reasoning as in the proof of item (a) in Lemma 11,

b>A>[AA> + λIH]−1Ab = b>[A>A + λIH]−1A>Ab

= b>b− λ · b>[A>A + λIH]−1b ≤ ‖b‖2 ≤ tε2,
which concludes our proof of Lemma 25.

By letting bτ =

[
(PhV

τ

h+1)(zτh)− φ>
V
t
h+1

θ∗h

]
and aτ = φV τh+1

(zτh) and knowing that |bτ | ≤ ιmis,

we have the bound for item A2 that A2 ≤ ιmis ·
√
t. Then by taking λ = 1 + 1

T ,∣∣∣φ(z)>(θ∗h − θ
t

h)
∣∣∣

≤

{[
H2 · logdet [λI + Kt] + 2H2 · log

(
1

δ

)]1/2
+
√
λB +H · ιmis

√
t

}
· bth(z) (H.2)

≤

{[
H2 · logdet [I + Kt/λ] + (λ− 1)tH2 + 2H2 · log

(
1

δ

)]1/2
+
√
λB +H · ιmis

√
t

}
· bth(z)

(H.3)

≤

{[
H2 · ΓK(T, λ) +H2 + 2H2 · log

(
1

δ

)]1/2
+
√
λB +H · ιmis

√
t

}
· bth(z). (H.4)

Let (β/H)2 = 3ΓK(T, λ) + 3 + 6 · log
(
1
δ

)
+ 3λ

(
B
H

)2
+ ιmist

2,
∣∣∣φ(z)>(θ∗h − θ

t

h)
∣∣∣ ≤ β · bth(z)

with probability at least 1− δ. We present the last step of our proof in the following part. Equipped
with Assumption 9, we are able to bound the distance between the optimal estimated expected value
at time h+ 1 with the true expected value as in the following Lemma 26, which concludes our proof:
Lemma 26. For any bounded value function V (·) : S 7→ [−1, 1] and any z ∈ Z , there exists a
θ∗h ∈ H such that:

|PhV (z)− 〈φV (z),θ∗h〉H| ≤ ιmis,

where φV is defined in Section 3.2. The proof of Lemma 26 is a simply application of the definition
of total variation distance.

H.3 Proof of Lemma 14

In this section we prove Lemma 14. We need the following lemmas.
Lemma 27 (Lemma 4.1 in Cao and Gu 2019, Zhou et al. 2020). There exist constants Ci > 0 such
that for any δ ∈ (0, 1), if B satisfies that

C1m
−1L−3/2 max{log−3/2m, log3/2(|Z|L2/δ)} ≤ B ≤ C2L

−6(logm)−3/2,

then with probability at least 1 − δ, for all θ1 and θ2 satisfying θ1,θ2 ∈ B(θ(0), B) and all
(s′, z) ∈ S × Z , we have

|f(s′, z;θ1)− f(s′, z;θ2)− 〈φ(s′, z;θ2),θ1 − θ2〉| ≤ C3B
4/3m−1/6L3

√
logm.

Lemma 28 (Lemma B.3 in Cao and Gu 2019, Zhou et al. 2020). There exist constants Ci > 0 such
that for any δ ∈ (0, 1), if B satisfies that

C1m
−1L−3/2 max{log−3/2m, log3/2(|Z|L2/δ)} ≤ B ≤ C2L

−6(logm)−3/2,

then probability at least 1− δ, for all θ satisfying θ ∈ B(θ(0), B) and all (s′, z) ∈ S × Z , we have
‖φ(s′|z)‖2 ≤ C3

√
L.
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Proof of Lemma 14. By Lemma 28 we have

‖φV (z)‖2 =

∥∥∥∥∑
s′

V (s′)φ(s′|z)
∥∥∥∥
2

≤
∑
s′

|V (s′)|‖φ(s′|z)‖2 ≤ C1|S|
√
L.

By the assumption of Ph(s′|z), we have θ∗h ∈ B(θ(0), B). Thus, by Lemma 27, we have with
probability at least 1− δ, for all s′ ∈ S, z ∈ Z, h ∈ [H],

|Ph(s′|z)− 〈φ(s′, z;θ(0)),θ∗h − θ(0)〉| = |f(s′, z;θ∗h)− f(s′, z;θ(0))− 〈φ(s′, z;θ(0)),θ∗h − θ(0)〉|

≤ C2B
4/3m−1/6L3

√
logm,

where the equality holds by the assumption of Ph and f(s′, z;θ(0)) = 0 guaranteed by the ini-
tialization scheme, the inequality holds due to Lemma 27. Therefore, for any value function
V : S → [−1, 1], we have

|PhV (z)− 〈φV (z),θ∗h − θ(0)〉| =
∣∣∣∣∑
s′

V (s′)Ph(s′|z)−
∑
s′

V (s′)〈φ(s′|z),θ∗h − θ(0)〉
∣∣∣∣

≤
∑
s′

|V (s′)||Ph(s′|z)− 〈φ(s′|z),θ∗h − θ(0)〉|

≤ C2|S|HB4/3m−1/6L3
√

logm,

where the second inequality we use the fact that |V | ≤ 1.

I Implementation Details of FIND CCE

Suppose that we have Q1, Q2 ∈ S×A×A → R. Given a state x ∈ S , let P1, P2 ∈ R|A|×|A| denote
the matrices of Q values such that [Pi]m,n = Qi(x, am, an) for i = 1, 2, where am, an denote the
m-th and n-th actions ofA. Suppose the CCE ofQ1, Q2 given x is denoted by a matrix σ ∈ R|A|×|A|,
where σm,n denotes the probability of selecting m-th and n-th actions. Then σ satisfies the following
two groups of constraints:

• Since σ is a probability matrix, then we have
∀1 ≤ m,n ≤ |A|, 0 ≤ σm,n ≤ 1, (I.1)
|A|∑
i=1

|A|∑
j=1

σi,j = 1. (I.2)

• To satisfy (3.1), we have

∀1 ≤ m ≤ |A|,
|A|∑
i=1

|A|∑
j=1

σi,j [P1]i,j ≥
|A|∑
j=1

[P1]m,j

|A|∑
i=1

σi,j .

⇔ ∀1 ≤ m ≤ |A|,
|A|∑
i=1

|A|∑
j=1

σi,j([P1]m,j − [P1]i,j) ≤ 0 (I.3)

• To satisfy (3.2), we have

∀1 ≤ n ≤ |A|,
|A|∑
i=1

|A|∑
j=1

σi,j [P2]i,j ≤
|A|∑
i=1

[P2]i,n

|A|∑
j=1

σi,j .

⇔ ∀1 ≤ n ≤ |A|,
|A|∑
i=1

|A|∑
j=1

σi,j([P2]i,j − [P2]i,n) ≤ 0. (I.4)

There are total |A|2 number of unknown variables (σm,n) with 1 equality constraint and |A|2 + 2|A|
number of inequality constraints. The above linear system can be converted into a standard linear
programming problem with 2|A|2 number of variables σm,n, σ̂m,n, 1 ≤ m,n ≤ |A|, such that

max
σm,n,σ̂m,n

0
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σm,n ≥ 0

σ̂m,n ≥ 0

σm,n + σ̂m,n ≤ 1

−σm,n − σ̂m,n ≤ −1

|A|∑
i=1

|A|∑
j=1

σi,j ≤ 1

−
|A|∑
i=1

|A|∑
j=1

σi,j ≤ −1

|A|∑
i=1

|A|∑
j=1

σi,j([P1]m,j − [P1]i,j) ≤ 0

|A|∑
i=1

|A|∑
j=1

σi,j([P2]i,j − [P2]i,n) ≤ 0

The above linear system can be solved by Karmarkar’s algorithm [Karmarkar, 1984] within Õ(|A|7)

time complexity, or with Stochastic Central Path Method [Cohen et al., 2021] within Õ(|A|2w) time
complexity, where w = 2.373... is the matrix multiplication constant.

36


	Introduction
	Related Work
	Preliminaries
	Two-player Markov Games
	Nonlinear Function Approximation by Reproducing Kernel Hilbert Spaces

	Algorithm
	Main Results
	Bernstein-type Bonus, Misspecification, and Neural Function Approximation
	KernelCCE-VTR with Bernstein-type Bonus
	Kernel Function Approximation with Misspecification

	Conclusions
	Properties of the Reproducing Kernel Hilbert Spaces
	Details of KernelCCE-VTR+
	Variance Estimator
	Main Results

	Neural Network (NN) Function Approximation
	Neural Function Approximation

	Proof of Results for KernelCCE-VTR
	Proof of Theorem 4
	Proof of Corollary 6

	Proof of Results for KernelCCE-VTR +
	Proof of Lemma 12

	Proof of Results for KernelCCE-VTR with Misspecification
	Proof of Results for KernelCCE-VTR with Neural Approximation
	Proof of Auxillary Lemmas
	Proof of Lemma 3
	Proof of Lemma 22
	Proof of Lemma 14

	 Implementation Details of FIND_CCE

