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Abstract

Stochastic gradient descent (SGD) has achieved great success due to its superior
performance in both optimization and generalization. Most of existing general-
ization analyses are made for single-pass SGD, which is a less practical variant
compared to the commonly-used multi-pass SGD. Besides, theoretical analyses for
multi-pass SGD often concern a worst-case instance in a class of problems, which
may be pessimistic to explain the superior generalization ability for some particular
problem instance. The goal of this paper is to provide an instance-dependent and
algorithm-dependent excess risk bound of multi-pass SGD for least squares in
the interpolation regime, which is expressed as a function of the iteration number,
stepsize, and data covariance. We show that the excess risk of SGD can be exactly
decomposed into the excess risk of GD and a positive fluctuation error, suggesting
that SGD always performs worse, instance-wisely, than GD, in generalization. On
the other hand, we show that although SGD needs more iterations than GD to
achieve the same level of excess risk, it saves the number of stochastic gradient
evaluations, and therefore is preferable in terms of computational time.

1 Introduction

Stochastic gradient descent (SGD) is one of the workhorses in modern machine learning due to its
efficiency and scalability in training and good ability in generalization to unseen test data. From
the optimization perspective, the efficiency of SGD is well understood. For example, to achieve the
same level of optimization error, SGD saves the number of gradient computations compared to its
deterministic counterpart, i.e., batched gradient descent (GD) [7, 8], and therefore saves the total
amount of running time. However, the generalization ability (e.g., excess risk bounds) of SGD is far
less clear, especially from theoretical perspective.

Single-pass SGD, a less practical SGD variant where each training data is used only once, has been
extensively studied in theory. In particular, a series of works establishes excess risk bounds of
single-pass SGD for learning general smooth and convex objectives [32, 24, 26] as well as learning
least squares [3, 10, 18, 19, 27, 13, 43, 39]. In practice, though, one often runs SGD with multiple
passes over the training data and outputs the final iterate, which is referred to as multi-pass SGD (or
simply SGD in the rest of this paper when there is no confusion). Compared to single-pass SGD that
has limited number of optimization steps, multi-pass SGD allows the algorithm to perform arbitrary
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number of optimization steps, which is more powerful in optimizing the empirical risk and thus leads
to smaller bias error [28].

Despite the extensive application of multi-pass SGD in practice, there are only a few theoretical
techniques being developed to study the generalization of multi-pass SGD. One is based on the
uniform stability [12, 16], which is defined as the change of the model outputs under a small change
in the training data. However, the stability based generalization bound is a worst-case guarantee,
which is relatively crude and does not show difference between GD and SGD (See, e.g., Chen et al.
[9] showed GD and SGD have the same stability parameter in the convex smooth setting). On the
contrary, one easily observes a generalization difference between SGD and GD even in learning the
simplest least square problem (see Figure 1). In addition, Lin and Rosasco [22], Pillaud-Vivien et al.
[28], Mücke et al. [25] explored the risk bounds for multi-pass SGD using the operator methods that
are originally developed for analyzing single-pass SGD. Their bounds are sharp in the minimax sense
for a class of least square problems that satisfy certain source condition (which restricts the norm of
the optimal parameter) and capacity condition (or effective dimension, which restricts the spectrum
of the data covariance matrix). Still, their bounds are uniform for a class of problem instances, and
cannot point-wisely adapt to each problem instance (e.g., a least square problem with a particular
data covariance matrix). In particular their reults are pessimistic for the benign-overfitting [4] least
square instances (see Theorem 4.2 and related discussions).

In this paper, our goal is to establish an algorithm-dependent and problem-dependent excess risk
bound of multi-pass SGD for least squares. Our focus is the interpolation regime where the training
data can be perfectly fitted by a linear interpolator (which holds almost surely when the number of
parameter d exceeds the number of training data n). We assume the data has a sub-Gaussian tail [4].
Our main contributions are summarized as follows:

• We show that for any iteration number and stepsize, the excess risk of SGD can be exactly
decomposed into the excess risk of GD (with the same stepsize and iteration number) and the
so-called fluctuation error, which is attributed to the accumulative variance of stochastic gradients
in all iterations. This suggests that GD (with optimally tuned hyperparameters) always achieves a
smaller excess risk than SGD for least square problems.

• We further establish problem-dependent bounds for the excess risk of GD and the fluctuation error,
stated as a function of the eigenspectrum of the data covariance, iteration number, training sample
size, and stepsize. Compared to the bounds proved in prior works [22, 28, 25], our bounds allow a
wider range of iteration numbers t, and correctly vanishes when t → ∞ in the benign overfitting
regime [4]. In contrast, the prior results do not allow t → ∞.

• We develop a new suite of proof techniques for analyzing the excess risk of multi-pass SGD. The
key idea is considering the error in its matrix form and how it is updated based on the tensor
operators defined by the second-order and fourth-order moments of the empirical data distribution
(i.e., sampling with replacement from the training dataset), rather than the operators used in
the single-pass SGD analysis that are defined based on the population data distribution [18, 43],
together with a sharp characterization on the properties of the operators.

Based on the excess risk upper bounds for SGD and GD, we make the following complexity
comparison between SGD and GD: to achieve the same order of excess risk, while SGD may need
more iterations than GD, it can have fewer stochastic gradient evaluations than GD. For example,
consider the case that the data covariance matrix has a polynomially decaying spectrum with rate
i−(1+r), where r > 0 is an absolute constant. In order to achieve the same order of excess risk, we
have the following comparison in terms of iteration complexity and gradient complexity2:

• Iteration Complexity: SGD needs to take Õ(nmax{0.5, r
r+1}) more iterations than GD, with optimally

tuned iteration number and stepsize.
• Gradient Complexity: SGD needs Õ(nmax{0.5, 1

r+1}) less stochastic gradient evaluations than GD.

Notation. For n > 0, we use poly(n) to define some positive high-degree polynomial functions of
n. For two positive-value functions f(x) and g(x) we write f(x) ≲ g(x) if f(x) ≤ cg(x) for some
constant c > 0, we write f(x) ≳ g(x) if g(x) ≲ f(x), and f(x) ≂ g(x) if both f(x) ≲ g(x) and
g(x) ≲ f(x) hold. We use Õ(·) to hide some polylogarithmic factors in the standard big-O notation.
For two matrices A and B, we denote ⟨A,B⟩ =

∑
i,j AijBij and A⊗B as their Kronecker product.

2We define the gradient complexity as the number of required stochastic gradient evaluations to achieve a
target excess risk, which is closely related to the total computation time.
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Figure 1: Excess risk comparison between SGD and GD with large and small stepsizes. The true parameter
w∗ is randomly drawn from N (0, I) and the model noise variance σ2 = 1. The problem dimension is
d = 256, and we randomly draw n = 128 training data. We consider two data covariance with eigenspectrum
λi = i−1 log−2(i + 10) and λi = i−2. For SGD, the reported risk is averaged over 100 repeats of the
algorithm’s randomness. The large stepsize is η = 0.2 and the small stepsize is η = 0.02.

2 Related Work

Optimization. Regarding optimization efficiency, the benefit of SGD is well understood [7, 8,
23, 5, 34, 35, 26]. For example, for strongly convex losses (can be relaxed with certain growth
conditions), GD has less iteration complexity, but SGD enjoys less gradient complexity [7, 8].
More recently, it is shown that SGD can converge at an exponential rate in the interpolating regime
[26, 23, 5, 34, 35], therefore SGD can match the iteration complexity of GD. Nevertheless, all the
above results are regrading the optimization performance; our focus in this paper is to study the
generalization performance of SGD (and GD).

Risk Bounds for Multi-Pass SGD. The risk bounds of multi-pass SGD are also studied from the
operator perspective [30, 22, 28, 25]. The work by Rosasco and Villa [30] focused on cyclic SGD,
i.e., SGD with multiple passes but fixed sequence on the training data. Their results are limited
to small stepsizes (γ = O(1/n)), while ours allow constant stepsize. Similar to Lin and Rosasco
[22], Pillaud-Vivien et al. [28], Mücke et al. [25], we decompose the population risk of SGD iterates
into a risk term caused by batch GD iterates and a fluctuation error term between SGD and GD
iterates. But our methods of bounding the fluctuation error are different (see more in Section 5).
Moreover, our results are based on different assumptions: Lin and Rosasco [22], Pillaud-Vivien et al.
[28], Mücke et al. [25] assumed finiteness on the optimal parameter, and their results only apply to
data covariance with a specific type of spectrum (nearly polynomially decaying ones); in contrast,
our results assume a Gaussian prior on the optimal parameter (which might not admit a finite norm),
and our results are stated as a function of the entire eigenspectrum of the data covariance, thus cover
more general data covariance (including those with polynomially decaying spectrum). Lei et al. [21]
studied risk bounds for multi-pass SGD with general convex loss. When applied to least square
problems, their bounds are cruder than ours.

Uniform Stability. Another approach for characterizing the generalization of multi-pass SGD is
through uniform stability [16, 9, 20, 42, 6]. There are mainly two differences between this and
our approach. First, we directly bound the excess risk of SGD; but the uniform stability can only
bound the generalization error, there needs an additional triangle inequality to relate excess risk
with generalization error plus optimization error (plus approximation error) — this inequality can
easily be loose (consider the algorithmic regularization effects). Secondly, the uniform stability
bound is also crude. For example, in the non-strongly convex setting, the uniform stability bound for
SGD/GD linearly scales with the total optimization length (i.e., sum of stepsizes), which grows as t
[16, 9, 20, 42, 6] (this is minimaxly unavoidable according to Zhang et al. [42], Bassily et al. [6]).
Notably, Bassily et al. [6] extended the uniform stability approach to the non-convex and smooth
setting. We left such an extension of our method as a future work.

3 Problem Setup
Let x be a feature vector in a Hilbert space H (its dimension is denoted by d, which is possibly
infinite) and y ∈ R be its response, and assume that they jointly follow an unknown population
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distribution D. In linear regression problems, the population risk of a parameter w is defined by

LD(w) :=
1

2
E(x,y)∼D(⟨x,w⟩ − y)2,

and the excess risk is defined by

E(w) := LD(w)−min
w

LD(w) =
1

2
∥w −w∗∥2H, where H := ED[xx

⊤], (3.1)

where w∗ = argminw LD(w) denotes the global minimizer of the population risk. Additionally,
following Zou et al. [43, 44], we assume that the data covariance matrix H is positive definite. In the
statistical learning setting, the population distribution D is unknown, and one is provided with a set
of n training samples, S = (xi, yi)

n
i=1, that are drawn independently at random from the population

distribution. We also use X := (x1, . . . ,xn)
⊤ and y := (y1, . . . , yn)

⊤ to denote the concatenated
features and labels, respectively. The linear regression problems aim to find a parameter based on the
training set S that affords a small excess risk.

Multi-Pass SGD. We are interested in solving the linear regression problem using multi-pass
stochastic gradient descent (SGD)3 with a constant learning rate. The algorithm generates a sequence
of iterates (wt)t≥1 according to the following update rule: the initial iterate is w0 = 0 (which can be
assumed without loss of generality); then at each iteration, an example (xit , yit) is drawn from S
uniformly at random, and the iterate is updated by

wt+1 = wt − η · xit(x
⊤
itwt − yit),

where η > 0 is a constant stepsize (i.e., learning rate).

GD. Another popular algorithm is gradient descent (GD). For the clarity of notations, we use (ŵt)t≥1

to denote the GD iterates, which follow the following updates:

ŵt+1 = ŵt − η · 1
n

n∑
i=1

xi(x
⊤
i ŵt − yi), ŵ0 = 0,

where η > 0 is a constant stepsize.

Definitions and Assumptions. The eigenvalues of the population data covariance H is denoted by
(λi)i≥1, sorted in non-increasing order. Given the training data (X,y), we define ϵ = y − Xw∗

the collection of model noise, A = XX⊤ as the Gram matrix, and Σ = n−1X⊤X as the empirical
covariance. Then the minimum-norm solution is defined by

ŵ := (X⊤X)†X⊤y = X⊤A−1y.

It is clear that in the interpolation regime, with appropriate stepsizes, both SGD and GD algorithms
converge to ŵ [14, 4].

The assumptions required by our theorems are summarized in below.

Assumption 3.1 For the linear regression problem:

A The components of H−1/2x are independent and 1-subGaussian.
B The response y is generated by y := ⟨w∗,x⟩+ ξ, where w∗ is the ground truth weight vector and

ξ is a noise independent of x. Furthermore, the additive noise satisfies E[ξ] = 0, E[ξ2] ≤ σ2.
C The ground truth w∗ follows a Gaussian prior N (0, ω2 · I), where ω2 is a constant.
D The minimum-norm solution ŵ linearly interpolates all training data, i.e., yi = ŵ⊤xi for i ∈ [n].

Assumptions 3.1A and B are standard for analyzing overparameterized linear regression problem in
the benign overfitting regime [4, 33]. Note that Assumption 3.1A is widely made in the analysis of
high-dimensional least squares estimations [11, 38, 17]. However, Assumption 3.1A is not standard
for analyzing SGD [3, 22, 28, 18, 43]. We conjecture Assumption 3.1A can be relaxed and leave
this as a future work. Moreover, Assumption 3.1C is also widely adopted in analyzing least square
problems (see, e.g., Ali et al. [2], Dobriban et al. [11], Xu and Hsu [40]). There are also many different
conditions being made on the ground truth w∗ in existing works [28] to study the generalization

3We focus on SGD with replacement in this paper. Extending our results to SGD without replacement is an
important yet challenging future direction (see more discussions in Section 6).
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of SGD (e.g., ∥H1/2−rw∗∥2 → ∞ for r ≥ 0). However, they are not directly comparable to
Assumption 3.1C. Finally, Assumption 3.1D holds almost surely when d > n, i.e., the number of
parameter exceeds the number of data.

In the following, the presented risk bounds will hold (i) with high-probability with respect to the
randomness of sampling feature vectors X, and (ii) in expectation with respect to the randomness
of multi-pass SGD algorithm, the randomness of sampling additive noise ϵ and the randomness of
the true parameter w∗ as a prior. For these purpose, we will use Eit , ESGD,Ew∗ to refer to taking
expectation with respect to the randomness of sampling data (from the training set) at the t-th iteration,
the randomness of the entire SGD algorithm (i.e., sampling data at each iteration, i1, . . . , it, . . . ) and
the prior distribution of w∗, respectively.

4 Main Results

Our first theorem shows that, under the same stepsize and number of iterates, SGD always generalizes
worse than GD.

Theorem 4.1 (Risk decomposition) Suppose that Assumption 3.1D holds. Then the excess risk of
SGD can be decomposed by

ESGD

[
E(wt)

]
= E(ŵt) + FluctuationError(wt).

Moreover, the fluctuation error is always non-negative.

A Risk Comparison. Theorem 4.1 shows that, in the interpolation regime, SGD affords a strictly
larger excess risk than GD, given the same hyperparameters (stepsize η and number of iterates
t). Therefore, despite of a possibly higher computational cost, the optimally tuned GD dominates
the optimally tuned SGD in terms of the generalization performance. This observation is verified
empirically by experiments in Figure 1.

Theorem 4.1 relates the risk of SGD iterates to that of GD iterates. This idea has appeared in earlier
literature [22, 28, 25]. However, their decomposition is obtained via Young’s inequality (see, e.g., Eq.
(13) in Appendix A of Mücke et al. [25]), and is therefore stated as an upper bound on the SGD risk.

Our next theorem is to characterize the fluctuation error of SGD (with respect to GD).

Theorem 4.2 (Fluctuation error bound) Suppose that Assumptions 3.1A, B and D all hold. Then
for every n ≥ 1, t ≥ 1 and η ≤ c/ tr(H) for some absolute constant c, with probability at least
1− 1/poly(n), it holds that

FluctuationError(wt) ≲[
log(t) ·

(
tr(H) log(n)

t
+

k† log5/2(n)

n1/2t

)
+

log5/2(n)η

n1/2
·
∑
i>k†

λi

]
·min

{
∥ŵ∥22, tη · ∥ŵ∥2Σ

}
,

where k† ≥ 0 is an arbitrary index (can be infinity).

We first explain the factor min
{
∥ŵ∥22, tη · ∥ŵ∥2Σ

}
in our bound. First of all, when the interpolator

ŵ has a small ℓ2-norm, the quantity is automatically small. Furthermore, ∥ŵ∥2Σ ≲ ω2 ≲ 1 easily
holds under mild assumptions on w∗, e.g., Assumption 3.1C. Then, for finite t one can bound the
factor with min

{
∥ŵ∥22, tη · ∥ŵ∥2Σ

}
≲ ω2ηt. More interestingly, for SGD with constant stepsize

and infinite optimization steps (t → ∞), our risk bound can still vanish, while all risk bounds in prior
works [22, 28, 25] are vacuous. To see this, one can consider a sequence of k†, e.g., k† =

√
t, then it

is clear that log(t)k†(t)/t,
∑

i>k†(t) λi → 0 when t → ∞, so the fluctuation error vanishes.

To complement the above results, we provide the following risk bound for GD. We emphasize that
any risk bound for GD can be plugged into Theorems 4.1 and 4.2 to obtain a risk bound for SGD.

Theorem 4.3 (GD risk) Suppose that Assumptions 3.1A, B and C all hold. Then for every n ≥ 1,
t ≥ 1 and η < 1/∥H∥2, with probability at least 1− 1/poly(n), it holds that

Ew∗,ϵ[E(ŵt)] ≲ ω2 ·

(
λ̃2

n2
·
∑
i≤k∗

1

λi
+
∑
i>k∗

λi

)
+ σ2 ·

(
k∗

n
+

n

λ̃2

∑
i>k∗

λ2
i

)
,
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where k∗ := min{k : nλk+1 ≤ n
ηt +

∑
i>k λi} and λ̃ := n

ηt +
∑

i>k∗ λi.

The bound presented in Theorem 4.3 is comparable to that for ridge regression established by Tsigler
and Bartlett [33] and will be much better than the bound of single-pass SGD when the signal-to-noise
ratio is large [44, Theorem 5.1], e.g., ω2 ≫ σ2. In fact, Theorem 4.3 is proved via a reduction to
ridge regression results. In particular, the quantity n/(ηt) for GD is an analogy to the regularization
parameter λ for ridge regression [41, 29, 37, 2]. As a final remark, the assumption that w∗ follows a
Gaussian prior is the main concealing in Theorem 4.3 (which is not required by Tsigler and Bartlett
[33]). The Gaussian prior on w∗ is known to allow a connection between early stopped GD with
ridge regression [2]. We conjecture that this assumption is not necessary and potentially removable.

Combining Theorems 4.1, 4.2 and 4.3, we obtain the following risk bound for multi-pass SGD:

Corollary 4.4 Suppose that Assumptions 3.1A, B, C and D all hold. Then with probability at least
1− 1/poly(n), it holds that

ESGD,w∗,ϵ

[
E(wt)

]
≲ ω2 ·

(
λ̃2

n2
·
∑
i≤k∗

1

λi
+
∑
i>k∗

λi

)
+ σ2 ·

(
k∗

n
+

n

λ̃2

∑
i>k∗

λ2
i

)

+ η ·
[
log(t) ·

(
tr(H) log(n) +

k† log5/2(n)

n1/2

)
+

log5/2(n)tη

n1/2
·
∑
i>k†

λi

)]
·min

{
(tη)−1 ·

(
nω2 + σ2 tr(A−1)

)
, ω2 tr(H) + σ2

}
,

where k† is an arbitrary index, k∗ := min{k : nλk+1 ≤ n
ηt +

∑
i>k λi} and λ̃ := n

ηt +
∑

i>k∗ λi.

Comparison with Existing Results. We now discuss relationships between our bound and existing
ones for multi-pass SGD [22, 28, 25]. First, we highlight that our bound is problem-dependent in the
sense that the bound is stated as a function of the spectrum of data covariance; in contrast, existing
papers only provide a minimax analysis for multi-pass SGD. Secondly, we rely on a different set
of assumptions from the aforementioned papers. In particular, Pillaud-Vivien et al. [28] requires a
source condition on the data covariance (e.g. ∥H1/2−rw∗∥2 < ∞ for some constant r ≥ 0), and
Lin and Rosasco [22], Mücke et al. [25] require an effective dimension to be small, but our results
are more general regarding the data covariance. Moreover, we assume w∗ follows a Gaussian prior
(Assumption 3.1C), which is also not directly comparable to the source condition in existing works.

Bartlett et al. [4] showed that OLS generalizes in the so called benign overfitting regime. Since when
t → ∞, SGD (with constant stepsize) converges to OLS, it would be interesting to compare the SGD
solution with OLS in such a regime. We will do so with the following Corollary 4.5.

Corollary 4.5 Suppose that Assumptions 3.1A, B, C and D all hold. Assume the spectrum of H
satisfies λi = i−1 log(i + 1)−β for some absolute constant β > 1, then with probability at least
1− 1/poly(n), there exists a choice of t and η such that

ESGD,w∗,ϵ[E(wt)] ≲ ω2 · log(n)1−β + σ2 log(n)−β .

Besides, for any fixed stepsize η, we have

lim
t→∞

ESGD,w∗,ϵ[E(wt)] ≲ ω2 · log(n)1−β + σ2 log(n)−1.

As a sanity check, our bound for t → ∞ matches the upper and lower bounds on the excess risk
of OLS (which can be obtained by setting λ = 0 in Theorem 1 and Lemmas 2 & 3 in Tsigler and
Bartlett [33]). Moreover, Corollary 4.5 suggests that the excess risk achieved by multipass SGD is
always no worse than that of OLS, and could be strictly smaller than that of OLS when β > 0.This
demonstrates the benefit of multi-pass SGD over OLS.

The following corollary characterizes the risk of multi-pass SGD for data covariance with a polyno-
mially decaying spectrum.

Corollary 4.6 Suppose that Assumptions 3.1A, B, C and D all hold. Assume the spectrum of H
decays polynomially, i.e., λi = i−1−r for some absolute constant r > 0, then with probability at
least 1− 1/poly(n), it holds that

Ew∗,ϵ[E(ŵt)] ≲ ω2 · (tη)−r/(r+1) + σ2 · (tη)
1/(r+1)

n
,

6
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Figure 2: Iteration and gradient complexity comparison between SGD and GD. The curves report the minimum
number of steps/gradients for each algorithm (with an optimally tuned stepsize) to achieve a targeted risk.
Experiment setup is the same as that in Figure 1.

ESGD,w∗,ϵ[E(wt)] ≲ ω2 · (tη)−r/(r+1) + σ2 · (tη)
1/(r+1)

n

+ (ω2 + σ2) · η · log(t) ·
[
log(n) +

log5/2(n)

n1/2
· (tη)1/(r+1)

]
.

Corollary 4.6 provides concrete excess risk bounds for SGD and GD, based on which we can make a
comparison between SGD and GD in terms of their iteration and gradient complexities. For simplicity,
in the following discussion, we assume that ω2 ≂ σ2 ≂ 1. Then choosing tη ≂ n minimizes the
upper bound for GD risk and yields the O(n−r/(r+1)) rate. Here GD can employ a constant stepsize.
Similarly, SGD can match the GD’s rate, O(n−r/(r+1)), by setting tη ≂ n and

η ≲ log−1(t) ·min{log−1(n) · n− r
r+1 , log−

5
2 (n) · n− 1

2 )}. (4.1)

The above implies that SGD (fixed stepsize, last iterate) can only cooperate with small stepsize.

Iteration Complexity. We first compare GD and SGD in terms of the iteration complexity. To reach
the optimal rate, GD can employ a constant stepsize and set the number of iterates to be t ≂ n.
However, in order to shelve the fluctuation error, the stepsize of SGD cannot be large, as required by
(4.1). More precisely, in order to match the optimal rate, SGD needs to use a small stepsize, η ≂ n/t,
with a large number of iterates,

t ≂

{
log(n) · n1+ r

r+1 = Õ(n1+ r
r+1 ), r > 1;

log3.5(n) · n1.5 = Õ(n1.5), r ≤ 1.

It can be seen that the iteration complexity of SGD is much worse than that of GD. This result is
empirically verified by Figure 2 (a).

Gradient Complexity. We next compare GD and SGD in terms of the gradient complexity. Recall
that for each iterate, GD computes n gradients but SGD only computes 1 gradient. Therefore, to reach
the optimal rate, the total number of gradient computed by GD needs to be Θ(n2), but that computed
by SGD is only Õ(nmax{(2r+1)/(r+1),1.5}). Thus, the gradient complexity of SGD is better than that
of GD by a factor of Õ(nmin{0.5,1/(r+1)}). This result is empirically verified by Figure 2 (b).

5 Overview of the Proof Technique

In this section, we will provide an overview of our proof technique and sketch the proof of Theorems
4.1 and 4.2. The remaining proof is deferred to Appendix.

Our proof technique is inspired by the operator methods for analyzing single-pass SGD [3, 10, 18,
19, 27, 13, 43, 39]. In particular, they track an error matrix, (wt − w∗) ⊗ (wt − w∗) that keeps
richer information than the error norm ∥wt −w∗∥22. For single-pass SGD where each data is used
only once, the resulted iterates enjoy a simple dependence on history that allows an easy calculation
of the expected error matrix (with respect to the randomness of data generation). However for
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multi-pass SGD, a data might be used multiple times, which prevents us from tracking the expected
error matrix directly. Instead, a trackable analogy to the error matrix is the empirical error matrix,
(wt − ŵ)⊗ (wt − ŵ) where ŵ is the minimum norm interpolator. More precisely, note that

wt+1 − ŵ = wt − ŵ − η · (xitx
⊤
itwt − xitx

⊤
itŵ) = (I− ηxitx

⊤
it)(wt − ŵ). (5.1)

Therefore the expected (over the algorithm’s randomness) empirical error matrix updates as follows:

let Et := ESGD

[
(wt − ŵ)(wt − ŵ)⊤

]
, then Et+1 = Eit

[
(I− ηxitx

⊤
it)Et(I− ηxitx

⊤
it)
]

Let Σ := 1
nX

⊤X be the empirical covariance matrix. We then follow the operator method [43] to
define the following operators on symmetric matrices (e.g., J):

G ◦ J := (I− ηΣ)J(I− ηΣ), M◦ J := ESGD[xitx
⊤
itJxitx

⊤
it ], M̃ ◦ J := ΣJΣ.

Based on these operators, we can obtain a close form update rule for Et:

Et = G ◦Et−1+η2 · (M−M̃)◦Et−1 = Gt ◦E0︸ ︷︷ ︸
Θ1

+ η2 ·
∑t−1

k=0 Gt−1−k ◦ (M−M̃) ◦Ek︸ ︷︷ ︸
Θ2

. (5.2)

Here the first term Θ1 := (I − ηΣ)tE0(I − ηΣ)t = (ŵt − ŵ)(ŵt − ŵ)⊤ is exactly the error
matrix caused by GD iterates (with stepsize η and iteration number t), and the second term Θ2 is a
fluctuation matrix that captures the deviation of wt with respect to a corresponding GD iterate ŵt.
We remark that the expected error matrix Et contains all information of wt.

Risk Decomposition (Theorem 4.1). The following fact is clear from the update rule (5.1).

Fact 5.1 The GD iterates satisfy ŵt+1 − ŵ = (I− ηΣ)(ŵt − ŵ) and ESGD[wt − ŵ] = ŵt − ŵ.

Based on Fact 5.1 and (5.2), we have

ESGD[(wt −w∗)(wt −w∗)⊤]

= Et + (ŵ −w∗)(ŵt − ŵ)⊤ + (ŵt − ŵ)(ŵ −w∗)⊤ + (ŵ −w∗)(ŵ −w∗)⊤

= Θ1 + (ŵ −w∗)(ŵt − ŵ)⊤ + (ŵt − ŵ)(ŵ −w∗)⊤ + (ŵ −w∗)(ŵ −w∗)⊤ +Θ2

= (ŵt −w∗)(ŵt −w∗)⊤ +Θ2,

where Θ1 and Θ2 are defined in (5.2) and the last equality is due to Θ1 = (ŵt − ŵ)(ŵt − ŵ)⊤.
Also note that

ESGD[E(wt)] =
1

2
ESGD

[
∥wt −w∗∥2H

]
=

1

2

〈
ESGD[(wt −w∗)(wt −w∗)⊤],H

〉
.

Combining these two inequalities proves Theorem 4.1:

ESGD[E(wt)] =
1
2∥ŵt −w∗∥2H︸ ︷︷ ︸

GD error

+ η2

2 ·
∑t−1

k=0

〈
Gt−1−k ◦ (M−M̃) ◦Ek,H

〉︸ ︷︷ ︸
Fluctuation error

. (5.3)

Finally, the fluctuation error is non-negative because both G and M−M̃ are PSD mappings.

Bounding the Fluctuation Error (Theorem 4.2). There are several challenges in the analysis of
fluctuation error: (1) it is difficult to characterize the matrix (M− M̃) ◦ Ek since the matrix Ek

is unknown; (2) the operator G involves an exponential decaying term with respect to the empirical
covariance matrix Σ, which does not commute with the population covariance matrix H.

To address the first problem, we note that the operators M̃, G, M are PSD mappings and enjoy
commutative property and then obtain the following result:

FluctuationError ≤ η2

2 ·
∑t−1

k=0⟨M ◦ Gt−1−k ◦H,Ek⟩. (5.4)

Now, the input of the operator M◦ Gt−1−k will not be an unknown matrix but a fixed one (i.e., H),
and the remaining effort will be focusing on characterizing M◦ Gk ◦H. Applying the definitions of
M and G implies

M◦ Gk ◦H = Ei

[
xix

⊤
i (I− ηΣ)kH(I− ηΣ)kxix

⊤
i

]
. (5.5)
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Then our idea is to first prove an uniform upper bound on the quantity x⊤
i (I− ηΣ)kH(I− ηΣ)kxi

for all i ∈ [n] (e.g., denoted as U(k, η, n)), then it can be naturally obtained that

M◦ Gk ◦H ⪯ U(k, η, n) · Ei[xix
⊤
i ] = U(k, η, n) ·Σ, (5.6)

then we will only need to characterize the inner product ⟨Ek,Σ⟩ in (5.4), which can be understood
as the optimization error at the k-th iteration.

In order to precisely characterize U(k, η, n), we encounter the second problem that the population
covariance H and empirical covariance Σ are not commute, thus the exponential decaying term
(I − ηΣ)k will not be able to fully decrease H since some components of H may lie in the small
eigenvalue directions of Σ. Therefore, we consider the following decomposition

x⊤
i (I− ηΣ)kH(I− ηΣ)kxi = x⊤

i (I− ηΣ)kΣ(I− ηΣ)kxi︸ ︷︷ ︸+x⊤
i (I− ηΣ)k(H−Σ)(I− ηΣ)kxi︸ ︷︷ ︸ .

Then for Θ1, it can be seen that the decaying term (I−ηΣ)k is commute with Σ thus can successfully
make it decrease. For Θ2, we will view the difference H−Σ as the component of H that cannot be
effectively decreased by (I− ηΣ)k, which will be small as n increases. More specifically, we can
get the following upper bound on Θ1.
Lemma 5.2 If the stepsize satisfies γ ≤ c/ tr(H) for some small absolute constant c, then with
probability at least 1− 1/poly(n), it holds that Θ1 ≲ tr(H) · log(n) ·min

{
1

(k+1)η , ∥H∥2
}
.

For Θ2, we will rewrite xi as e⊤i X where ei ∈ Rn and X ∈ Rn×d, then

Θ2 = e⊤i X(I− ηΣ)k(H−Σ)(I− ηΣ)kX⊤ei ≤ ∥e⊤i X(I− ηΣ)k∥22 · ∥H−Σ∥2. (5.7)

Then since X and Σ have the same column eigenspectrum, we can fully unleash the decaying
power of the term (I− ηΣ)k on X. Further note the that the row space of X is uniform distributed
(corresponding to the index of training data), which is independent of ei. This implies that we can
adopt standard concentration arguments with covering on n fixed vectors {ei}ni=1 to prove a sharp
high probability upper bound (compared to the naive worst-case upper bound). Consequently, we
state the upper bound on Θ2 in the following lemma.

Lemma 5.3 For every i ∈ [n] and k∗ ∈ [d], it holds with probability at least 1 − 1/poly(n) that

Θ2 ≲ log5/2(n)
n1/2 ·

(
k∗

(k+1)η +
∑

i>k∗ λi

)
.

6 Conclusion and Discussion

In this paper, we establish an instance-dependent excess risk bound of multi-pass SGD for inter-
polating least square problems. The key takeaways include: (1) the excess risk of SGD is always
worse than that of GD, given the same setup of stepsize and iteration number; (2) in order to achieve
the same level of excess risk, SGD requires more iterations than GD; and (3) however, the gradient
complexity of SGD can be better than that of GD. The proposed technique for analyzing multi-pass
SGD could be of broader interest. The code and data for our experiments can be found on Github 4.

Several interesting problems are left for future exploration:

A problem-dependent excess risk lower bound could be useful to help understand the sharpness of
our excess risk upper bound for multi-pass SGD and establish a clear separation between SGD and
GD in terms of iteration and gradient complexity. The challenge here is mainly from the fact that
the empirical covariance matrix Σ does not commute with the population covariance matrix H. In
particular, one needs to develop an even sharper characterization on the quantity M◦ Gk ◦H (see
(5.5)); more precisely, a sharp lower bound on x⊤

i (I− ηΣ)kH(I− ηΣ)kxi is required.

SGD with decaying stepsizes could potentially improve the generalization performance of SGD with
a constant stepsize. In this regard, most of our analysis can be extended to SGD/GD with decaying
stepsizes. For example, Theorem 4.1 directly holds even for varying stepsizes, and Theorem 4.3
also holds under a small modification, i.e., changing tη to

∑t−1
k=0 ηk. However, our bounds on the

fluctuation error may be more subtle to adapt. We conjecture that our analysis idea can still be applied,
but the detailed calculations will depend on the particular stepsize scheduler of interests.

4https://github.com/uclaml/multipass-SGD
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Multi-pass SGD without replacement is a more practical SGD variant than the multi-pass SGD with
replacement studied in this work. The key difference is that, the former does not pass training data
independently (since each data must be used for equal times). In terms of optimization complexity, it
has already been demonstrated in theory that multi-pass SGD without replacement (e.g., SGD with
single shuffle or random shuffle) outperforms multi-pass SGD with replacement [15, 31, 1]. However,
in terms of generalization, whether or not multi-pass SGD without replacement can outperform
multi-pass SGD with replacement is still an open problem, as there lacks a sharp excess risk analysis
for multi-pass SGD without replacement. The techniques presented in this paper can shed light on
this direction.
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A Proof Sketch for Theorem 4.3

Recall that ŵ = X⊤(XX⊤)−1y = X⊤A−1y, where A := XX⊤ is the gram matrix. Then we can
reformulate ŵt by

ŵt = ŵ − (I− ηΣ)t(ŵ0 − ŵ) =
(
I− (I− ηΣ)t

)
X⊤A−1y = X⊤(I− (I− ηn−1A)t

)
A−1y.

Denote Ã := A
(
I− (I− ηn−1A)t

)−1
, the excess risk of ŵt is

E(ŵt) =
1

2

∥∥X⊤Ã−1y −w∗∥∥2
H

=
1

2

∥∥w∗(I−X⊤Ã−1X
)∥∥2

H︸ ︷︷ ︸
BiasError

+
1

2

∥∥X⊤Ã−1ϵ
∥∥2
H︸ ︷︷ ︸

VarError

. (A.1)

The remaining proof will be relates the excess risk of early stopped GD to that of ridge regression
with certain regularization parameters. In particular, note that the excess risk of the ridge regression
solution with parameter λ is 1

2∥X
⊤(A+ λI)−1y −w∗∥2H. Then it remains to show the relationship

between Ã and A+ λI, which is illustrated in the following lemma.

Lemma A.1 There is a constant c > 0 such that for every η ≤ c/λ1 and t > 0, it holds that
1
2

(
A+ n

ηtI
)
⪯ Ã ⪯ A+ 2n

tη · I.

Then, the lower bound of Ã will be applied to prove the upper bound of variance error of GD, as
shown in (A.1), which is at most four times the variance error achieved by the ridge regression with
λ = n/(ηt). The upper bound of Ã will be applied to prove the upper bound of the bias error of GD,
which is at most the bias error achieved by ridge regression with λ = 2n/(ηt). Finally, we can apply
the prior work [33, Theorem 1] on the excess risk analysis for ridge regression to complete the proof
for bounding the bias and variance errors separately.

B Risk Bound for the Fluctuation Error

We first state the following properties of the operators G, M, and M̃, which are essential in the
subsequent analysis:

• PSD mapping: for every PSD matrix J, M◦ J, (M−M̃) ◦ J and G ◦ J are all PSD matrices.
• Commutative property: for two PSD matrices B1 and B2, we have

⟨G ◦B1,B2⟩ = ⟨B1,G ◦B2⟩, ⟨M ◦B1,B2⟩ = ⟨B1,M◦B2⟩, ⟨M̃ ◦B1,B2⟩ = ⟨B1,M̃ ◦B2⟩

B.1 Proof of Inequality (5.4)

Lemma B.1 The fluctuation error satisfies

FluctuationError ≤ η2

2
·
t−1∑
k=0

⟨M ◦ Gt−1−k ◦H,Ek⟩.

Proof. [Proof of Lemma B.1] By Lemma 5.3, we have

FluctuationError =
η2

2
·
t−1∑
k=0

⟨Gt−1−k ◦ (M−M̃) ◦Ek,H⟩.

Then note that M, M−M̃ and G are the PSD mapping. Then we have

Gt−1−k ◦ (M−M̃) ◦Ek ⪯ Gt−1−k ◦M ◦Ek

for all k ≥ 0. Further using the commutative property of G and M, we have

⟨Gt−1−k ◦M ◦Ek,H⟩ = ⟨M ◦ Gt−1−k ◦H,Ek⟩.
This completes the proof.
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B.2 Proof of Lemma 5.2

We first present the following two useful lemmas.

Lemma B.2 (Theorem 9 in Bartlett et al. [4]) There is an absolute constant c such that for any
δ ∈ (0, 1) with probability at least 1− δ,

∥Σ−H∥2 ≤ c∥H∥2 ·max

{√
r(H)

n
,
r(H)

n
,

√
log(1/δ)

n
,
log(1/δ)

n

}
,

where r(H) =
∑

i λi/λ1.

Lemma B.3 (Lemma 22 in [4]) There is a universal constant c such that for any independent, mean
zero, σ-subexponential random variables ξ1, . . . , ξn, any a = (a1, . . . , an) and any t ≥ 0,

P
(∣∣∣∣ n∑

i=1

aiξi

∣∣∣∣ ≥ t

)
≤ 2 exp

[
− cmin

(
t2

σ2∥a∥22
,

t

σ∥a∥∞

)]
.

Proof. [Proof of Lemma 5.2] Note that (1 − x)k ≤ 1/[x(k + 1)] for all k > 0 and x ∈ (0, 1), we
have

(I− ηΣ)kΣ(I− ηΣ)k = Σ(I− ηΣ)2k ⪯ 1

2(k + 1)η
· I.

Besides, we also have Σ(I− ηΣ)2k ⪯ Σ. This implies that

Θ1 ≤ min

{
x⊤
i Σxi,

∥xi∥22
2(k + 1)η

}
≤ min

{
∥Σ∥2 · ∥xi∥22,

∥xi∥22
2(k + 1)η

}
. (B.1)

Then applying Lemma B.2 and using the assumption that λ1 = Θ(1), we have

∥Σ∥2 ≲ ∥H∥2.

Besides, by Assumption 3.1, we have

∥xi∥22 =
∑
i

λi · z2i

where zi is independent 1-subgaussian random variable and satisfies E[z2i ] = 1. Therefore, applying
Lemma B.3 we can get with probability 1− δ,

∥xi∥22 ≲
∑
i

λi +max

{
log(1/δ) · λ1,

√
log(1/δ)

∑
i

λ2
i

}
.

Setting δ = 1/poly(n) and applying union bound over all i ∈ [n], we can get with probability at least
1− 1/poly(n), it holds that ∥xi∥22 ≤ log(n) · tr(H) for all i ∈ [n]. Putting this into (B.1) completes
the proof.

B.3 Proof of Lemma 5.3

We first provide the following useful facts and lemmas.

Fact B.4 (Part of Lemma 8 in Bartlett et al. [4]) The gram matrix A = XX⊤ can be decomposed
by

A =
∑
i

λiziz
⊤
i ,

where zi ∈ Rn are independent 1-subgaussian random vector satisfying E[∥zi∥22] = n.
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Fact B.5 Assume n < d and the gram matrix A is of full-rank, then it holds that

X(Id − ηΣ)k = (In − ηn−1A)kX.

Proof. [Proof of Fact B.5] Note that X ∈ Rn×d, consider its SVD decomposition X = UΛV⊤,
where U ∈ Rn×n, V ∈ Rd×d and Λ ∈ Rn×d. Then we have Σ = n−1X⊤X = n−1VΛ⊤ΛV⊤,
which implies that

X(I− ηΣ)k = UΛV⊤V(Id − ηn−1Λ⊤Λ)kV⊤ = UΛ(Id − ηn−1Λ⊤Λ)kV⊤.

Additionally, it is easy to verify that Λ(Id − ηn−1Λ⊤Λ) = (In − ηn−1ΛΛ⊤)Λ. Therefore, it
follows that

X(I− ηΣ)k = UΛ(Id − ηn−1Λ⊤Λ)kV⊤ = U(In − ηn−1ΛΛ⊤)kΛV⊤ = (In − ηA)kX,

where the last equality follows from the fact that A = UΛΛ⊤U⊤. This completes the proof.

Lemma B.6 Let u ∈ Sn−1 be a uniformly random unit vector, then for any fixed PSD matrix
Θ ∈ Rn×n, with probability at least 1− 1/poly(n), it holds that

u⊤Θu ≲
log(n)

n
· tr(Θ).

Proof. We first consider a Gaussian random vector v ∼ N(0, In/n), then it is clear that we can
reformulate it as v = r · u, where u is a uniformly random unit vector and E[r] = 1. Note that
nr2 follows χ2(n) distribution, then by standard concentration result for sub-exponential random
variable [36], we have with probability at least 1− e−cn for some small constant c > 0 that r ≥ 1/2.
Moreover, let Θ =

∑
i µiziz

⊤
i be the eigen-decomposition of Θ, we have

nv⊤Θv − tr(Θ) =
n∑

i=1

µi[n(z
⊤
i v)

2 − 1] :=
n∑

i=1

µiξi

where ξi ∼ χ2(1)− 1 distribution, which is 1-subexponential. Then applying Lemma B.3, we have
with probability at least 1− 2e−x such that

n∑
i=1

µiξi ≤ C ·max

(
xµ1,

√√√√x
n∑

i=1

µ2
i

)
holds for some constant C.

Combining the previous results, we have with probability at least 1− ecn − 2e−x,

u⊤Θu = r−1v⊤Θv ≤ 2

n

[
tr(Θ) + C ·max

(
xµ1,

√√√√x
n∑

i=1

µ2
i

)]
.

Further note that
∑n

i=1 µ
2
i , µ1 ≤ tr2(Θ), then setting x = C ′ log(n) for some absolute constant C ′,

we have with probability at least 1− 1/poly(n),

u⊤Θu = r−1v⊤Θv ≤ C ′′ log(n)

n
· tr(Θ)

for some absolute constant C ′′. This completes the proof.

Lemma B.7 For any k∗ ∈ [d], with probability at least 1− 1/poly(n), it holds that

tr(A(In − ηn−1A)2k) ≲
nk∗

(k + 1)η
+ n log(n) ·

∑
i>k∗

λi.

15



Proof. Let µ1, . . . , µn be the sorted (in descending order) eigenvalues of A, then we have

tr
(
A(In − ηn−1A)2k)

)
=

n∑
i=1

µi · (1− ηn−1µi)
2k ≤

n∑
i=1

min

{
n

2(k + 1)η
, µi

}
, (B.2)

where the inequality follows from the fact that (1− x)k ≤ 1/[(k + 1)x] for all x ∈ (0, 1) and k > 0.
Additionally, by Fact B.4 we have

A =
∑
i

λiziz
⊤
i ,

where {zi}i=1,...,n are i.i.d. 1-subgaussian random vectors satisfying E[zi] = 0 and E[∥zi∥22] = n.
Then define

Ak :=
∑
i>k

λiziz
⊤
i , (B.3)

and

Ak =
n∑

i=1

µi(Ak)uiu
⊤
i

be its eigen-decomposition. Then note that A−Ak +
∑j

i=1 µi(Ak)uiu
⊤
i has rank at most k + j,

thus there must exist a linear space L of dimension n− k − j (that is orthogonal to {zi}i=1,...,k and
{ui}ji=1) such that for all v ∈ L,

v⊤Av ≤ v⊤µ1

(
Ak −

j∑
i=1

µi(Ak)uiu
⊤
i

)
v = v⊤µj+1(Ak)v.

This implies that for any k ∈ [n] and j ∈ [n− k], it holds that

µk+j(A) ≤ µj(Ak),

and thus
n∑

i=k+1

µi ≤
n+1−i∑
i=1

µi(Ak) ≤ tr(Ak). (B.4)

Moreover, by the definition of Ak in (B.3), we have

tr(Ak) =
∑
i>k

λi∥zi∥22.

Then note that ∥zi∥22/n− 1 is 1-subexponential, by Lemma B.3, we have with probability at least
1− 2e−x

tr(Ak) ≤ n
∑
i>k

λi + C · n ·max

(
xλk+1,

√
x
∑
i>k

λ2
i

)
.

for some absolute constant C. Then setting x = Θ(log(n)) and using the fact that
∑

i>k λ
2
i ≤

(
∑

i>k λi)
2, we have with probability at least 1− 1/poly(n),

tr(Ak) ≲ n log(n) ·
∑
i>k

λi. (B.5)

Putting (B.5) into (B.4) and further applying (B.2), we have for any k∗ ∈ [n], with probability at
least 1− 1/poly(n)

tr
(
A(In − ηn−1A)2k)

)
≤

k∗∑
i=1

n

2(k + 1)η
+ tr(Ak) ≲

nk∗

(k + 1)η
+ n log(n) ·

∑
i>k∗

λi.

This completes the proof.
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Proof. [Proof of Lemma 5.3] Recalling the formula of Θ2, we have

Θ2 = x⊤
i (I− ηΣ)k(H−Σ)(I− ηΣ)kxi.

Moreover, note that xi can be rewritten as xi = e⊤i X, where ei ∈ Rn and X ∈ Rn×d. Then

Θ2 = e⊤i X(I− ηΣ)k(H−Σ)(I− ηΣ)kX⊤ei

≤ ∥e⊤i X(I− ηΣ)k∥22 · ∥H−Σ∥2. (B.6)

Then by Fact B.5, we have

∥e⊤i X(I− ηΣ)k∥22 = ∥e⊤i (In − ηn−1A)kX∥
= e⊤i (In − ηn−1A)kXX⊤(In − ηn−1A)kei

= e⊤i A(In − ηn−1A)2kei.

Note that ei is independent of the randomness of A and the eigenvectors of A is rotation invariant.
Specifically, note that A = UΛΛ⊤U⊤, where U ∈ Rn×n is an orthonormal matrix and ΛΛ⊤ ∈
Rn×n is an diagonal matrix. Then we consider the conditional distribution P(A|ΛΛ⊤), which can
be viewed as a distribution over the orthonormal matrix U, denoted by P(U). Then note that U can
also be understood as a rotation matrix when operated on an vector, and using Fact B.4, we have for
any rotation matrix P, it holds that

PAP⊤ =
∑
i

λiPziz
⊤
i P

⊤

which has the same distribution of A =
∑

i λiziz
⊤
i since Pzi and zi have the same distribution.

Therefore, it can be verified that for any different orthonormal matrices U1 and U2 and let P =
U2U

⊤
1 , which is also an orthonormal matrix, we have

P(U1ΛΛ⊤U⊤
1 |ΛΛ⊤) = P(PU1ΛΛ⊤U⊤

1 P
⊤|ΛΛ⊤) = P(U2ΛΛ⊤U⊤

2 |ΛΛ⊤).

This implies that P(U1) = P(U2) for any U1 ̸= U2. Therefore, we can conclude that P(U) is an
uniform distribution over the entire class of orthonormal matrices. Then note that

A(In − ηn−1A)2k = P
(
ΛΛ⊤(I− n−1ηΛΛ⊤)2k

)
P⊤.

Then for any fixed i, using the fact that P is a uniformly random rotation matrix, we have P⊤ei is
a random unit vector in Sn−1. Then applying Lemmas B.6 and B.7, and taking union bound over
i ∈ [n], we have with probability at least 1− 1/poly(n),

e⊤i A(In − ηn−1A)2kei ≲
log(n)

n
· tr
(
A(In − ηn−1A)2k

)
≲ log(n) ·

(
k∗

(k + 1)η
+ log(n) ·

∑
i>k∗

λi

)
. (B.7)

Finally, applying Lemma B.2 and setting δ = 1/poly(n), we have

∥H−Σ∥2 ≲

√
log(n)

n
. (B.8)

Putting (B.8) and (B.7) into (B.6), we can obtain

Θ2 ≤ ∥e⊤i X(I− ηΣ)k∥22 · ∥H−Σ∥2 ≲
log5/2(n)

n1/2
·
(

k∗

(k + 1)η
+
∑
i>k∗

λi

)
,

which completes the proof.

17



B.4 Completing the analysis for fluctuation error: Proof of Theorem 4.2

Combining the established upper bounds on Θ1 and Θ2 in Lemmas 5.2 and 5.3 gives the following
lemma.

Lemma B.8 If the stepsize satisfies γ ≤ 1/(c tr(H)) for some absolute constant c, then with
probability at least 1− 1/poly(n), there exists an absolute constant C such that

M◦ Gk ◦H ⪯ C ·
[
log(n) ·min

{
1

(k + 1)η
, ∥H∥2

}
· tr(H) +

log5/2(n)

n1/2
·
(

k∗

(k + 1)η
+
∑
i>k∗

λi

)]
·Σ.

Lemma B.9 For any t > 0, if the stepsize satisfies η ≤ 1/(c tr(H) log(t)) for some absolute
constant c, then it holds that

t−1∑
k=0

⟨Σ,Ek⟩ ≲
1

η
· ⟨I− (I− ηΣ)t,E0⟩,

t−1∑
k=0

⟨Σ,Ek⟩
t− k

≲
1

ηt

〈
(I− (I− ηΣ)t),E0

〉
+ log(t)

〈
(I− ηΣ)tΣ,E0

〉
.

Proof. [Proof of Lemma B.9] In this part we seek to bound
∑t−1

k=0

〈
Σ,Ek

〉
and

∑t−1
k=0

⟨Σ,Ek⟩
t−k in

separate. By (5.2), we can get

⟨Σ,Et⟩ ≤ ⟨Σ,Gt ◦E0⟩+ η2
t−1∑
k=0

⟨Σ,Gt−1−k ◦M ◦Ek⟩

= ⟨Gt ◦Σ,E0⟩+ η2
t−1∑
k=0

⟨M ◦ Gt−1−k ◦Σ,Ek⟩

= ⟨(I− ηΣ)2tΣ,E0⟩+ η2
t−1∑
k=0

⟨M ◦
(
(I− ηΣ)2(t−1−k)Σ

)
,Ek⟩. (B.9)

Note that (I− ηΣ)2(t−1−k)Σ ⪯ 1
η(t−k)I, and M◦ I ⪯ c tr(H)Σ for some absolute constant c, we

then have the following by (B.9)

⟨Σ,Et⟩ ≤ ⟨(I− ηΣ)2tΣ,E0⟩+ cη tr(H)
t−1∑
k=0

⟨Σ,Ek⟩
t− k

. (B.10)

We now bound
∑t−1

k=0⟨Σ,Ek⟩ by recursively applying (B.10) to establish
t−1∑
k=0

⟨Σ,Ek⟩ ≤ ⟨
t−1∑
k=0

(I− ηΣ)2kΣ,E0⟩+ cη tr(H)
t−1∑
k=0

k−1∑
i=0

⟨Σ,Ei⟩
k − i

≤ 1

η
⟨I− (I− ηΣ)t,E0⟩+ 2cη tr(H) log(t)

t−1∑
i=0

⟨Σ,Ei⟩,

and conclude that
t−1∑
k=0

⟨Σ,Ek⟩ ≤
1

1− 2cη tr(H) log(t)
· 1
η
· ⟨I− (I− ηΣ)t,E0⟩ (B.11)

≤ C · 1
η
· ⟨I− (I− ηΣ)t,E0⟩. (B.12)

Similarly, we then bound
∑t−1

k=0
⟨Σ,Ek⟩
t−k by recursively applying (B.10) to establish

t−1∑
k=0

⟨Σ,Ek⟩
t− k

≤ ⟨
t−1∑
k=0

(I− ηΣ)2kΣ

t− k
,E0⟩+ cη tr(H)

t−1∑
k=0

k−1∑
i=0

⟨Σ,Ei⟩
(t− k)(k − i)
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≤ ⟨
t−1∑
k=0

(I− ηΣ)2kΣ

t− k
,E0⟩+ 2cη tr(H) log(t)

t−1∑
i=0

⟨Σ,Ei⟩
t− i

,

so we can conclude that
t−1∑
k=0

⟨Σ,Ek⟩
t− k

≤ 1

1− 2cη tr(H) log(t)
⟨
t−1∑
k=0

(I− ηΣ)2kΣ

t− k
,E0⟩ (B.13)

≲
t−1∑
k=0

(I− ηΣ)2kΣ

t− k
,E0⟩ (B.14)

≲

(
1

ηt

〈
(I− (I− ηΣ)t),E0

〉
+ log(t)

〈
(I− ηΣ)tΣ,E0

〉)
, (B.15)

where the last inequality is due to
t−1∑
k=0

(I− ηΣ)2kΣ

t− k
≲

1

ηt
(I− (I− ηΣ)t) + log(t) · (I− ηΣ)tΣ.

Lemma B.10 For any t ≥ 0 and η ≤ 1/(c tr(H) log(t)) for some absolute constant c, it holds that〈
I− (I− ηΣ)t,E0

〉
≤ min

{
∥ŵ∥22, tη · ⟨Σ,E0⟩

}
tη ·

〈
(I− ηΣ)tΣ,E0

〉
≤ min

{
∥ŵ∥22, tη · ⟨Σ,E0⟩

}
Proof. According to the definition of Et and applying zero initialization w0 = 0, then we have
E0 = ŵŵ⊤ ⪯ ∥ŵ∥22 · I. Moreover, note that our choice of stepsize guarantees that I− ηΣ is a PSD
matrix, we have

I− (I− ηΣ)t ⪯ I, I− (I− ηΣ)t ⪯ tηΣ, (I− ηΣ)tΣ ⪯ Σ, (I− ηΣ)tΣ ⪯ 1

tη
· I.

Then it follows that〈
I− (I− ηΣ)t,E0

〉
≤ min

{
⟨I,E0⟩, tη · ⟨Σ,E0⟩

}
= min

{
∥ŵ∥22, tη · ⟨Σ,E0⟩

}
〈
(I− ηΣ)tΣ,E0

〉
≤ min

{
⟨Σ,E0⟩,

1

tη
· ⟨I,E0⟩

}
= min

{
⟨Σ,E0⟩,

∥ŵ∥22
tη

}
.

This completes the proof.

Now we are ready to complete the proof of Theorem 4.2. Proof. [Proof of Theorem 4.2] By Lemma
B.1, we have

FluctuationError︸ ︷︷ ︸
∗

≤ η2

2
·
t−1∑
k=0

⟨M ◦ Gt−1−k ◦H,Ek⟩.

Additionally, by Lemma B.8, we further have

(∗) ≲ η2 ·
t−1∑
k=0

[
log(n)

(t− k)η
· tr(H) +

log5/2(n)

n1/2
·
(

k∗

(t− k)η
+
∑
i>k∗

λi

)]
· ⟨Σ,Ek⟩

≲ η ·
(
log(n) tr(H) +

k∗ log5/2(n)

n1/2

)
·
t−1∑
k=0

⟨Σ,Ek⟩
t− k

+ η2 · log
5/2(n)

n1/2
·
∑
i>k∗

λi ·
t−1∑
k=0

⟨Σ,Ek⟩.

Then applying Lemma B.9, we can further obtain

(∗) ≲ η ·
(
log(n) tr(H) +

k∗ log5/2(n)

n1/2

)
·
(

1

ηt

〈
(I− (I− ηΣ)t),E0

〉
+ log(t)

〈
(I− ηΣ)tΣ,E0

〉)
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+ η · log
5/2(n)

n1/2
·
∑
i>k∗

λi · ⟨I− (I− ηΣ)t,E0⟩

=

(
log(n) tr(H)

t
+

log5/2(n)

n1/2t
· (k∗ + ηt

∑
i>k∗

λi)

)
·
〈
(I− (I− ηΣ)t),E0

〉〉
+ η log(t) ·

(
log(n) tr(H) +

k∗ log5/2(n)

n1/2

)
·
〈
(I− ηΣ)tΣ,E0

〉
≲

[
log(t) ·

(
tr(H) log(n)

t
+

k∗ log5/2(n)

n1/2t

)
+

log5/2(n)η

n1/2
·
∑
i>k∗

λi

)]
·min

{
∥ŵ∥22, tη · ⟨Σ,E0⟩

}
.

where the last inequality follows from Lemma B.10.

C Risk bounds for Gradient Descent with Early Stopping

C.1 Proof of Lemma A.1

Proof. [Proof of Lemma A.1] For the first inequality, note that

I− (I− ηn−1A)t ⪯
{
I;

n−1ηtA,

we then obtain

Ã := A
(
I− (I− ηn−1A)t

)−1 ⪰

{
A;
n
ηtI.

Therefore
Ã ⪰ 1

2

(
A+

n

ηt
I
)
.

For the second inequality, note that

Ã−A = A(I− ηn−1A)t
[
I− (I− ηn−1A)t

]−1
.

Then it suffices to consider the scalar function f(x) := nx(1 − ηx)t/
[
1 − (1 − ηx)t

]
. Then we

consider two cases: (1) tηx ≥ log(2) and (2) tηx < log(2). For the first case, it is clear that

nx(1− ηx)t

1− (1− ηx)t
≤ n · 1/(tη)

1− 1/2
=

2n

tη
,

where we use the inequality (1− ηx)tx ≤ 1/(tη) in the first inequality. For the case of tηx < log(2),
we have (1− ηx)t ≤ 1− ηxt/2 and thus

nx(1− ηx)t

1− (1− ηx)t
≤ nx

ηxt/2
=

2n

tη
.

Combining the about results in two cases, we have f(x) ≤ 2n/(tη) and thus

Ã = A+A(I− ηn−1A)t
[
I− (I− ηn−1A)t

]−1 ⪯ A+
2n

tη
· I.

This completes the proof of the second inequality.

Then, the lower bound of Ã will be applied to prove the upper bound of variance error of GD, as
shown in (A.1), which is at most four times the variance error achieved by the ridge regression with
λ = n/(ηt). The upper bound of Ã will be applied to prove the upper bound of the bias error of GD,
which is at most the bias error achieved by ridge regression with λ = 2n/(ηt). Finally, we can apply
the prior work [33, Theorem 1] on the excess risk analysis for ridge regression to complete the proof
for bounding the bias and variance errors separately. The detailed proofs are provided as follows.
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C.2 Variance Error

Lemma C.1 For any stepsize γ ≤ c/ tr(H) for some absolute constant c and any k∗ ∈ [d], with
probability at least 1− 1/poly(n),

Eϵ[VarError] ≲
k∗

n
+

n(
n/(ηt) +

∑
i>k∗ λi

)2 ·
∑
i>k∗

λ2
i

Proof. By (A.1), we have

Eϵ[VarError] :=
∥∥X⊤Ã−1ϵ

∥∥2
H

≲ tr
(
XHX⊤Ã−2

)
≲ tr

(
XHX⊤

(
A+

n

ηt
I
)−2)

, (C.1)

where the last inequality is by Lemma A.1. One finds that (C.1) corresponds to the variance error of
ridge regression in [33] for λ = n

ηt . Then by Theorem 1 in Tsigler and Bartlett [33], one immediately
obtains a bound for GD variance error:

Eϵ[VarError] ≲
k∗

n
+

n(
n/(ηt) +

∑
i>k∗ λi

)2 ·
∑
i>k∗

λ2
i ,

where

k∗ := min

{
k : nλk+1 ≤ n

ηt
+
∑
i>k

λi

}
.

Setting λ̃ = n/(ηt) +
∑

i>k∗ λi completes the proof.

C.3 Bias Error

Lemma C.2 Assume the ground truth w∗ follows a Gaussian Prior w∗ ∼ N (0, ω2 · I). Then for
any stepsize γ ≤ c/ tr(H) for some absolute constant c and any k∗ ∈ [d], with probability at least
1− 1/poly(n),

Ew∗ [BiasError] ≲ ω2 ·
(
λ̃2

n2
·
∑
i≤k∗

1

λi
+
∑
i>k∗

λi

)
.

Proof. Note that given the ground truth w∗, the bias error is

BiasError := ∥H 1
2

(
I−X⊤Ã−1X

)
w∗∥22.

Further note that
w∗ ∼ N (0, ω2 · Id),

then taking expectation over w∗ gives

Ew∗ [BiasError] = Ew∗
[
∥H 1

2

(
I−X⊤Ã−1X

)
w∗∥22

]
= ω2 · tr

(
H
(
I−X⊤Ã−1X

)2)
≤ ω2 · tr

(
H
(
I−X⊤

(
A+

2n

tη

)−2

X
)2)

︸ ︷︷ ︸
∗

where the last inequality is by Lemma A.1 and that A commutes with Ã. Moreover, note that the
quantity (∗) is actually the expected bias error of the ridge regression solution with the regularization
parameter 2n/(tη). Therefore, by Theorem 1 in Tsigler and Bartlett [33], we have

(∗) ≲ Ew∗∼N (0,I)

[(
2n/(ηt) +

∑
i>k∗ λi

n

)2

· ∥w∗
0:k∗∥2

H−1
0:k∗

+ ∥w∗
k∗:∞∥2Hk∗:∞

]
≂

λ̃2

n2
·
∑
i≤k∗

1

λi
+
∑
i>k∗

λi,

where

k∗ := min

{
k : nλk+1 ≤ n

ηt
+
∑
i>k

λi

}
,

and λ̃ = n/(ηt) +
∑

i>k∗ λi. This completes the proof.
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C.4 Proof of Theorem 4.3

Proof. [Proof of Theorem 4.3] The proof can be completed by combining Lemmas C.1 and C.2.

D Proof of Corollaries

D.1 Proof of Corollary 4.4

The following lemma will be useful in the proof.

Lemma D.1 Assume w∗ ∼ N (0, ω2 · I) and w0 = 0, then

Ew∗,ϵ[⟨E0,Σ⟩] ≲ ω2 · log(n) · tr(H) + σ2.

Ew∗,ϵ[∥ŵ∥22] = nω2 + σ2 tr(A−1).

Proof. Applying the formula of ŵ and the initialization w0 = 0, we have

⟨E0,Σ⟩ = ⟨X⊤A−1y(X⊤A−1y)⊤,Σ⟩ = 1

n
∥y∥22 =

1

n
∥Xw∗ + ϵ∥22 ≤ 2

n
∥Xw∗∥22 +

2

n
∥ϵ∥22,

where the last inequality follows from Young’s inequality. Note that ϵ is a combination of n
independent random variables with variance σ2, we have E[∥ϵ∥22] = nσ2. Besides, regarding the first
term, we have with probability at least 1− 1/poly(n),

E[∥Xw∗∥22] = ω2 · tr(XX⊤) ≲ ω2 · n · tr(H).

Combining the above results immediately gives

Ew∗,ϵ[⟨E0,Σ⟩] ≲ ω2 · tr(H) + σ2.

Moreover, note that ŵ = X⊤A−1y = X⊤A−1(Xw∗ + ϵ), we have

Ew∗,ϵ[∥ŵ∥22] = Ew∗,ϵ

[
tr
(
X⊤A−1(Xw∗ + ϵ)(Xw∗ + ϵ)⊤A−1X

)]
= Ew∗,ϵ

[
tr
(
X⊤A−1Xw∗w∗⊤X⊤A−1X

)
+ tr

(
X⊤A−1ϵϵ⊤A−1X

)]
= ω2 tr

(
X⊤A−1XX⊤A−1X

)
+ σ2 tr(X⊤A−2X),

where the last equality is due to w∗ ∼ N (0, ω2I) and ϵ ∼ N (0, σ2). Then note that A = XX⊤, we
have

Ew∗,ϵ[∥ŵ∥22] = ω2 tr(In) + σ2 tr(A−1) = nω2 + σ2 tr(A−1).

This completes the proof.

Proof. [Proof of Corollary 4.4] Plugging Lemma D.1 into Theorem 4.2 and then combining Theorems
4.2 and 4.3 completes the proof.

D.2 Proof of Corollary 4.5

Proof. [Proof of Corollary 4.5] First, note that k† can be arbitrarily chosen, we will first pick
k† = tη/ log(tη)β , which leads to

∑
i>k† = log(tη)1−β . Then Corollary 4.4 implies that

ESGD,w∗,ϵ

[
FlutuationError(wt)

]
≲

η

log(1/η)
·
[
log(t) log(n) +

log5/2(n)tη

n1/2
· log(tη)1−β

]
·min

{
nω2 + σ2 tr(A−1)

tη
, ω2 tr(H) + σ2

}
.

It is clear that when t → ∞, we have

ESGD,w∗,ϵ

[
FlutuationError(wt)

]
≲

η(nω2 + σ2 tr(A−1))

log(1/η)
·
[
log(t)

tη
log(n) +

log5/2(n)

n1/2
· log(tη)1−β

]
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→ 0. (D.1)

Then we will move on to the GD error in Corollary 4.4, we can get that

λk∗ ≂
1

ηt
+

1

n

∑
i>k∗

λi.

Plugging the fact that λi = i−1 log(i+ 1)−β , the above equality implies that

(k∗)−1 log(k∗)−β ≂
1

ηt
+

1

n
log(k∗)1−β ,

which further leads to

k∗ = min

{
tη

log(tη)β
,

n

log(n)

}
.

Note that when characterizing the upper bound of SGD, we can pick k∗ arbitrarily. Therefore, we will
consider two cases accordingly: (1) tη/ log(tη)β ≤ n/ log(n); and (2) tη/ log(tη)β > n/ log(n).
For the first case, we will pick k∗ = tη/ log(tη)β and get that

λ̃ ≂
n

tη
+ log(tη)1−β .

Then given the value of k∗, we can further obtain that∑
i≤k∗

1

λi
=
∑
i≤k∗

i log(i+ 1)β ≂ (k∗)2 log(k∗)β ≂
(tη)2

log(tη)β∑
i≤k∗

λi ≂ log(tη)1−β

∑
i>k∗

λ2
i =

∑
i>k∗

1

i2 log(i+ 1)2β
≂

1

k∗ log(k∗)2β
≂

1

tη log(tη)β
.

Therefore, we can get that

λ̃2

n2
·
∑
i≤k∗

1

λi
+
∑
i>k∗

λi ≂ log(tη)1−β ,
k∗

n
+

n

λ̃2

∑
i>k∗

λ2
i ≲

tη

n log(tη)β
.

Then we can get the following according to Corollary 4.4,

ESGD,w∗,ϵ

[
E(wt)

]
≲ ω2 · log(tη)1−β + σ2 · tη

n log(tη)β

+
η

log(1/η)
·
[
log(t) log(n) +

log5/2(n)tη

n1/2
· log(tη)1−β

]
·min

{
nω2 + σ2 tr(A−1)

tη
, ω2 tr(H) + σ2

}
,

Taking tη = n and set

η ≲ log−3(n) · n−1/2,

we can immediately get that

ESGD,w∗,ϵ[E(wt)] ≲ ω2 · log(n)1−β + σ2 log(n)−β .

For the second case of tη/ log(tη)β > n/ log(n), we will pick k∗ = n/ log(n), which leads to
λ̃ = log(n)1−β . Then we can get∑

i≤k∗

1

λi
≂

n2

log(n)2−β
,

∑
i≤k∗

λi ≂ log(n)1−β ,
∑
i>k∗

λ2
i ≂

1

n log(n)2β−1
.

This further leads to

λ̃2

n2
·
∑
i≤k∗

1

λi
+
∑
i>k∗

λi ≂ log(n)1−β ,
k∗

n
+

n

λ̃2

∑
i>k∗

λ2
i ≂

1

log(n)
.
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Then we can get the following upper bound on the excess risk of SGD:

ESGD,w∗,ϵ

[
E(wt)

]
≲ ω2 · log(n)1−β + σ2 · 1

log(n)

+
η

log(1/η)
·
[
log(t) log(n) +

log5/2(n)tη

n1/2
· log(tη)1−β

]
·min

{
nω2 + σ2 tr(A−1)

tη
, ω2 tr(H) + σ2

}
.

Taking t → ∞ and applying (D.1) give

lim
t→∞

ESGD,w∗,ϵ[E(wt)] ≲ ω2 · log(n)1−β + σ2 log(n)−1.

This completes the proof.

D.3 Proof of Corollary 4.6

Proof. [Proof of Corollary 4.6] We will first calculate k∗ defined in Corollary 4.4. Note that

k∗ = min

{
k : nλk+1 ≤ n

ηt
+
∑
i>k

λi

}
,

and
∑

i>k λi =
∑

i>k i
−1−r ≂ k−r. Then, it can be shown that

k∗ = (tη)1/(r+1). (D.2)

Recall that Corollary 4.4 shows

ESGD,w∗ [Risk(wt)]

≲ ω2 ·

(
λ̃2

n2
·
∑
i≤k∗

1

λi
+
∑
i>k∗

λi

)
︸ ︷︷ ︸

I1

+σ2 ·

(
k∗

n
+

n

λ̃2

∑
i>k∗

λ2
i

)
︸ ︷︷ ︸

I2

+(ω2 tr(H) + σ2))η

·
[
log(t) ·

(
tr(H) log(n) +

k∗ log5/2(n)

n1/2

)
+

log5/2(n)tη

n1/2
·
∑
i>k∗

λi

)]
︸ ︷︷ ︸

I3

.

Then, applying (D.2) gives∑
i>k∗

λi ≂ (k∗)−r ≂ (tη)−r/(r+1),
∑
i>k∗

λ2
i ≂ (k∗)−2r−1 ≂ (tη)−(2r+1)/(r+1),

∑
i≤k∗

1

λi
≂ (k∗)r+2 = (tη)(r+2)/(r+1), λ̃ ≂

n

tη
, tr(H) ≂ 1

Putting the above into the formula of I1, I2, and I3, we can get

I1 ≲
n2/(tη)2

n2
· (tη)(r+2)/(r+1) + (tη)−r/(r+1) ≂ (tη)−r/(r+1);

I2 ≲
(tη)1/(r+1)

n
+

n

n2/(tη)2
· (tη)−(2r+1)/(r+1) ≂

(tη)1/(r+1)

n
;

I3 ≲ log(t) ·
(
log(n) +

(tη)1/(r+1) log5/2(n)

n1/2

)
+

log5/2(n)tη

n1/2
· (tη)−r/(r+1)

)
≲ log(t) ·

[
log(n) +

log5/2(n)

n1/2
· (tη)1/(r+Corollary1)

]
.

Combining the above results leads to

ESGD,w∗ [Risk(wt)] ≲ ω2 · (tη)−r/(r+1) + σ2 · (tη)
1/(r+1)

n
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+ (ω2 + σ2) · η · log(t) ·
[
log(n) +

log5/2(n)

n1/2
· (tη)1/(r+1)

]
.

This completes the proof.
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