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Abstract

Chinese hamster ovary (CHO) cells are widely used for mass production of therapeutic
proteins in the pharmaceutical industry. With the growing need in optimizing the performance of
producer CHO cell lines, research on CHO cell line development and bioprocess continues to
increase in recent decades. Bibliographic mapping and classification of relevant research studies
will be essential for identifying research gaps and trends in literature. To qualitatively and
quantitatively understand the CHO literature, we have conducted topic modeling using a CHO
bioprocess bibliome manually compiled in 2016, and compared the topics uncovered by the
Latent Dirichlet Allocation (LDA) models with the human labels of the CHO bibliome. The
results show a significant overlap between the manually selected categories and computationally
generated topics, and reveal the machine-generated topic-specific characteristics. To identify
relevant CHO bioprocessing papers from new scientific literature, we have developed a
supervised learning model, Logistic Regression, to identify specific article topics and evaluated
the results using three CHO bibliome datasets, Bioprocessing set, Glycosylation set, and
Phenotype set. The use of top terms as features supports the explainability of document

classification results to yield insights on new CHO bioprocessing papers.
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1. Introduction

CHO bibliome. Chinese hamster ovary (CHO) cells are widely used for biological and

medical research (1, 2). They are the predominant host for mass production of many
therapeutic proteins such as recombinant monoclonal antibodies in the pharmaceutical
industry (3). With the increasing market demand and growing need in optimizing the
performance of producer CHO cell lines, research on CHO cell line development and
bioprocess engineering continuously increases in recent decades (4, 5). In 2016, Golabgir
et al. (6) reported a manual bibliographic compilation of the published CHO cell studies
from January 1995 to June 2015, which were retrieved with keywords “CHO cells”
and/or “Chinese hamster ovary” in the title or abstract from Thomson Reuters Web of
Science™., The initial article set (10,279 abstracts) was manually filtered to identify a
bioprocess (BP) set (1157 abstracts) that focus on CHO cell bioprocesses and
biotechnologies, including host cell line engineering, strain selection/screening, and cell
culture media design, etc. The non-BP set covers the remaining abstracts describing
studies irrelevant to CHO bioprocess. For each BP abstract in the CHO bibliome, one or
more category labels from a total of 16 research categories were manually assigned based
on the types of phenotypic and bioprocess data contained therein (6).

The CHO bibliome continues to grow since its last compilation in 2015, with over
500 PubMed citations annually. To automate text analysis of the CHO bibliome and gain
insight to key topics and trends in CHO bioprocessing and biotechnologies, we have
applied topic modeling to explore and classify CHO literature and compared results with

those manually assigned category labels in the CHO bibliome. When coupled with our
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classifiers trained with supervised machine learning methods, the resulting models can
automatically classify the newly published CHO cell studies after 2015 into bioprocess

categories and help researchers select CHO cell research articles of their interest.

Topic modeling and document classification. Natural language processing

(NLP) allows machines to interpret human language with either unsupervised or
supervised approaches (7, 8). For text analysis to uncover the main topics in an unlabeled
set of documents, probabilistic topic models are considered an effective framework for
unsupervised topic discovery (9, 10). Latent Dirichlet Allocation (LDA) is a widely used
topic modeling method (11) with many applications (12). It is a generative probabilistic
model of a corpus. The basic principle is that documents are represented as random
mixtures over latent (hidden) topics, where each topic is characterized by a distribution
over words in the corpus. In this study, LDA is adopted for an automatic exploration of
latent topics in the CHO bioprocess bibliome, which are then compared and contrasted
with those previously manually assigned research categories. This allows to gain insight
into practical performance of LDA topic models in comparison with human manual
category labels, and potential benefits from applying topic modeling to identify

significant topics.

To identify new CHO bioprocessing papers from PubMed (especially for
publications after 2015), a classifier is needed to separate BP from non-BP studies and
identify their bioprocessing topics by learning how the existing CHO bibliome classifies
them. For this task, a supervised approach, Logistic Regression, is utilized to classify the

bibliome using three datasets, one for the overall “Bioprocess” category (BP set), and two
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on the specific bioprocessing categories of “Phenotype and Production Characteristics”
(Phenotype set) and “Glycosylation” (Glycosylation set), respectively. Logistic
regression allows for different term representations to be used in classification efficiently,
ranging from a term's binary presence/absence method, , term frequency (tf), and term
frequency-inverse document frequency (tf-idf) (13). Our objective is to determine if each
category of interest includes unique terms that could be used for document classification.
If the model is able to predict the category of a document in a dataset with high accuracy,
it suggests that the documents in that category share an adequate amount of unique terms

for classification, which may yield insights on new CHO bioprocessing papers.

2. Methods

The CHO bibliome processing and analysis workflow consists of document processing,

unsupervised topic modeling, and supervised document classification, as summarized in Fig 1.

Figure 1. Overview of the CHO bibliome processing and analysis workflow.

2.1 Document processing

Literature corpus. For both topic modeling and document classification tasks in this study,

we used the abstracts that were compiled in the CHO bibliome paper (6). To retrieve the abstract
texts for the citations in the bibliome, PubMed was used for obtaining PMIDs based on matching
of title, doi, and/or journal information. PubTator API was used to retrieve the documents

containing both title and abstract text with PMID as query (14). The resulting dataset consisted
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98  0f 9689 documents, including 1049 documents in the Bioprocessing (BP) set and 8640

99  documents in the non-BP set.

100  Pre-processing. The text processing included typical NLP steps: removal of special

101  characters and numbers, removal of stop words (NLTK package (15)), tokenization, and term
102  lemmatization (with Part of Speech (POS) Tagging allowed for NOUN', 'VERB', 'ADJ',
103  'ADV'PROPN', 'NUM'; with spaCy library (13, 16) ). The processing was conducted within a

104  Jupyter notebook (17).

105 Further text processing for document classification was conducted within a Jupyter

106  notebook using Python. The dataset of 9689 documents (BP + non-BP) were mapped to their

107  designated topic classification as marked in (6). The articles were labeled with a 0 or 1 signifying
108 each document's allocation to the negative and positive set, respectively, for each bioprocess

109  category of interest. These articles with known bioprocess classification allow a training set and
110  test set to be created. 5-fold cross-validation was used for checking the accuracy of the model,

111 where 80% of the dataset was used as the training set and 20% as the test set each time.

112  Document sets. Three document sets were compiled to study the efficiency and accuracy of

113 the classifiers for predicting previously unseen documents. The BP set consisting of 1049 BP and
114 8640 non-BP documents was used to discern bioprocessing-related papers from all CHO cell

115  publications. Two human-labeled categories of the BP documents, Glycosylation and Phenotype,
116  were used to study how well the system can automatically identify articles containing these two
117  bioprocess categories of interest. The Glycosylation set consisted of 70 Glycosylation and 979
118  non-Glycosylation BP documents, while the Phenotype set consisted of 547 Phenotype and 502

119  non-Phenotype BP documents.
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120 2.2 Topic modeling using LDA

121 LDA is among the most widely applied probabilistic topic modeling approach (12).

122  Python’s GENSIM package(18) was used for LDA applications in this study. Bigrams and

123 trigrams were created with GENSIM phrase detection and added to the dictionary. Words that
124  appear in less than 5 documents were filtered out, resulting in 2534 words in the final dictionary.
125  Lastly, BP documents were included in training the LDA model with Python's GENSIM

126  package. Method of grid search is employed to select the best set of hyperparameters (i.e., the
127  number of topics, alpha, and eta) for the final LDA model. The resulting document-to-topic

128  probabilities based on the chosen model were analyzed and compared with the previously

129  reported manual category assignments. Python library pyLDAvis (19) is used for interactive

130  topic model visualization.

131 2.3 Document classification

132 Logistic regression. It was implemented for classification of three document sets, BP,

133  Glycosylation, and Phenotype. Multiple trials were conducted. The first trial was run using a

134  binary term representation feature with the entirety of the vocabulary. The binary feature

135  specifying whether a term was present or not in the article was considered. The results thus

136  represented as a baseline for the performance of the logistic regression on classification tasks.
137 The second trial involved the use of tf-idf (13), which is often used to capture the

138  importance of the terms in the document. Only terms with minimum document frequency

139  (df min) of 0.05 and a maximum document frequency (df max) of 0.95 were used. This allowed
140  words to be removed that only occurred a very limited amount of times in the dataset. The use of

141  the entire feature list allows the feature list length to be altered in subsequent trials. Tf-1df was
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142  applied to the dataset, first with the entire feature list, followed by altered feature list with
143  decreasing size to see if a more optimal set occurred within the entire list of features. The code
144  used for the logistic regression trials can be found here: https://github.com/udel-biotm-

145  lab/Chinese-Hamster-Ovary-Cell-Logistic-Regression.git.

146  Under-sampling. It is common practice to use under-sampling when the distribution of the

147  sets is quite skewed, as in the cases of BP/non-BP (1049/8640 documents) and

148  Glycosylation/non-Glycosylation BP (70/979 documents). We applied under-sampling of the
149  majority class by varying the under-sampling rate with each iteration. The statistics of the overall
150 efficacy of the model were taken with each trial. The fraction of the majority set was varied

151 between 0.1 and 0.9 by intervals of 0.1. This means that the majority set, negative set, was cut
152 down to 10% and all the way up to 90%. The test set and training set remained as specified

153  above. As the under-sampling rate was adjusted, the feature set length was altered by 10% each
154  time as well, thus, as the fraction of the negative set increased towards 90% by 10% intervals the
155  feature set length increased at the same rate. Once under-sampling was conducted, logistic

156  regression was run using the tf-idf.

157 3. Results and Discussion

158 3.1 LDA topic modeling

159  Comparative analysis of LDA topics and manual categories. We have compared

160  the topics (“Topics”) uncovered by the LDA models with bioprocess categories (“Categories”)

161  manually compiled in the CHO bibliome (6). The 15 human labeled categories and their
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162  document sizes are: Phenotype and Production Characteristics (“Phenotype”, 547 documents),
163  Enzyme Analysis (“Enzyme”, 152), Glycosylation (“Glycosylation”, 70), Purification and

164  Separation Methods (“Purification”, 55), Gene expression and Transcriptomics

165  (“Transcriptomics”, 51), Modeling (“Modeling”, 36), Proteomics (“Proteomics”, 36),

166  Metabolomics and Fluxomics (“Metabolomics”, 32), Metabolism and Metabolic Flux Analysis
167  (“Metabolism”, 31), Expression and Transfection Methods (“Expression”, 30), Secretory

168  Pathway and Product Secretion (“Secretion”, 29), Cell Line Construction and Characterization
169  (“Cell Line”, 26), Genomics and Epigenetics (“Genomics”, 24), RNAs and codon usage

170  (“RNAs”, 23 documents), and Culture Strategy and Bioreactor Design (“Culture”, 18). Note one
171 remaining category in the CHO bioprocess bibliome, Review Articles or Other (116 documents)
172  that consists of review articles on CHO cells and high-throughput data for CHO culturing, was

173  presented as part of the “others” category in the results below.

174 The LDA model discovered 9 topics (Fig 2, S2 File) from the bioprocess documents.
175  The top four topics, covering 20.5% to 12.6% of tokens (i.e., terms or words including bigrams

176  and trigrams) of the corpus, account for a total of 65.5% of tokens in the whole corpus.

177  Figure 2. LDA topic categorization of CHO bibliome: distribution of bioprocessing

178  documents in each of the 9 topics discovered by LDA model.

179 LDA allows multiple topics for each document, by showing the probability of each topic
180  (10). For example, document for PMID 9043639 has probability of 0.49 for Topic-4 and 0.37 for
181  Topic-1 according to the LDA model predictions (S2 Fig). To simplify further analysis, each BP
182  document was assigned a representative Topic ID corresponding to the highest probability score

183  (e.g., PMID 9043639 is assigned Topic-4 as its representative topic). To compare how LDA
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184  topics align with human category labels, heatmaps were generated where the columns show the
185  human Category label and rows correspond to documents (PMIDs shown on the left) broken into

186  different LDA topic groups (S3 Fig).

187  Figure 3. Comparison between automatically generated LDA topics and manually assigned
188  categories. (A) Distribution of human-annotated categories among computer-generated LDA
189  topics. (B) Distribution of the top four LDA topics in manual categories. (C) Distribution of the

190 top four manual categories in LDA topics.

191 Fig 3 shows the comparative analysis of automatically generated LDA topics and the
192  manually annotated categories. The overall distribution readily reveals that human category

193 labels are differentially captured by LDA topics (Fig 3A). Among the four largest topics

194  (containing 153 to 218 documents), Topic-1 is mapped to Categories “Phenotype”,

195  “Transcriptomics", “Proteomics”, and several other categories; Topic-2 to Categories

196  “Phenotype”, “Expression”, “Cell Line”, “Secretion”; Topic-3 to “Phenotype”, “Glycosylation”,
197  “Purification”, “Enzyme”; and Topic-4 to “Enzyme” and “Phenotype” (Fig 3B). While Topic-1,
198 -2 and -3 spread over several topics, Topic-4 has only two major categories. The document sets
199  for the remaining topics are much smaller and predominant with Category “Phenotype” (Fig
200 3A). Among the top 4 categories, “Phenotype”, “Enzyme”, “Glycosylation” and “Purification”,
201  the largest is “Phenotype” which accounts for over 50% of all bioprocess publications in the
202  CHO bibliome. Not surprising, it has a diverse distribution over many Topics (Fig 3C). In

203  contrast, the other three categories all have only one dominant Topic each, “Enzyme” is

204  dominant with Topic-4, and “Glycosylation” and “Purification” are dominant with Topic-3.

10
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Interpretable terms in topic models. A basic question to ask about a topic model is

whether the topics are interpretable to human. LDA represents documents as a mixture of topics,
and a topic as a mixture of words, with different weights as the probability of those words
appearing in the topic. Fig 4 shows the top terms for each topic and a pyLDAvis display from
interactive topic model visualization (S2 File). In Fig 4A, each of the LDA topics is featured
with top 30 most frequent terms with term weights (i.e., probabilities). Here, word “cell” is
among the top 15 most frequent words for all topics. It is ranked first in Topic-4, -5, -6, -7, with
the highest weight for Topic-4. On the contrary, word “mutant” is exclusive to Topic-4 among
the top 30 words for all topics, therefore it is a discriminative key term in capturing a document
into Topic-4. Fig 4B shows the pyLDAVvis display of top 30 most frequent words for Topic-4. In
addition to “mutant”, several terms such as “synthesis”, “biosynthesis”, “cholesterol”,
“transport” have overlapping red bar and blue bar, indicating these terms are also frequent and
exclusive to Topic-4 (also see PMID 9456320, 7742354, and 18946045 for examples, S3 File).
With the terms mapped closely between Topic-4 and Category “Enzyme”, it is not surprising to
see that majority of documents captured in Topic-4 are indeed in Category “Enzyme” in human
annotation, and vice versa, indicating an intrinsic cohesiveness of human label and fitted LDA
model for this topic (Fig 3A).

In contrast, there are 3 significant human label categories for Topic-3, “Glycosylation”,
“Purification” and “Enzyme” (excluding category “Phenotype” which have known intrinsically

29 ¢¢

diverse documents). Among the most frequent words for Topic-3, “glycosylation”, “structure”,

“purity”, “glycan”, “oligosaccharide”, “glycoprotein”, “nglycan”, “residue” are discriminative
terms for categories “Glycosylation” and “Purification” (S3 File). Likewise the frequent and

2 13 29 ¢¢ 29 ¢

discriminative words for Topic-2 include “expression”, “gene”, “clone”, “stable”, “promoter”,

11
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228  “transfection”, “selection”, “vector”, which correlate well with categories “Expression”, “Cell
229  Line” and “Secretion” where those words can be common and expected to occur together. In
230  summary, our LDA model is able to cluster BP documents into topics with salient terms that are
231  discriminative and descriptive for their underlying categories, and the computationally generated

232  models correlate well with several human-labeled categories.

233  Figure 4. LDA topics with term probability. (A) The top 30 most frequent terms from nine
234  LDA topics with weights. (B) Visualization of topic modeling results using pyLDAvis. Left
235 shows semantic topic space, where each circle is a single topic and its size represents its

236  importance in the model. The proximity between two circles reflects the semantic similarity of
237  their concepts. Right shows Top-30 most salient terms for Topic-4. The terms (red bars) are in
238  descending order of probability, and the blue bars show the terms’ frequency over whole corpus
239  (i.e., a pair of overlaid bars represent both the corpus-wide frequency of a given term as well as
240  the topic-specific frequency of the term). For a given term, when the red bar is almost the same

241  length as the blue bar, it means it is a salient term almost exclusive to the topic.

242 3.2 Logistic regression for classification

243  Binary representation. The results for binary representation of a term (presence or absence of

244  aterm in a document) serve as a baseline to see if each subsequent configuration improved the
245  overall effectiveness of the classifier (Table 1). The Phenotype set obtained the best
246  classification results. The BP set had lower F1-score, precision, and recall. The Glycosylation set

247  had large fluctuations in the results and this could be the first sign that the small positive set and

12
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the large size difference between the positive and negative set is affecting the results of the

classification.

Table 1. Logistic regression utilizing binary representation of terms.

Document Set (Size) F1-Score | Precision Recall Accuracy
Phenotype/non-Phenotype (547/502) 0.76 0.78 0.75 0.76
BP/non-BP (1049/8640) 0.61 0.66 0.57 0.92
Glycosylation/non-Glycosylation (70/979) | 0.22 0.5 0.14 0.93

Term frequency-inverse document frequency (tf-idf). Utilizing tf-idf, the length of

the feature set can be seen. This allows feature engineering to find optimal configurations of the
classifier. The df min and df max values were set to remove terms with very low occurrence
rates. The results show that by using tf-idf the performance (especially precision) improved
slightly for the BP vs. non-BP (Table 2). The statistics for logistic regression with a shortened
feature list of top terms were quite similar to the trial run with all terms (Table 2). However, this
configuration may be more desirable as the same results can be achieved with a much smaller set

of terms.

For the Glycosylation set, the performance dropped to all zeros with a high accuracy
level. This trend indicates that the model was predicting all of the documents as negatives and
because the true number of positives was so limited the accuracy was 93%. This confirms the
need for under-sampling. The accuracy is also much higher than the other statistics for the BP vs.

non-BP which shows that under-sampling may be needed here as well.

13
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264  Table 2. Logistic regression utilizing tf-idf with all terms and chosen top terms.

Document Set Feature Size F1-Score [ Precision [ Recall Accuracy
Phenotype/non-Phenotype | All terms (474) [ 0.76 0.79 0.73 0.76
BP/non-BP All terms (706) | 0.62 0.75 0.53 0.93
Phenotype/non-Phenotype | Top terms (250) | 0.75 0.76 0.75 0.75
BP/on-BP Top terms (500) | 0.63 0.75 0.54 0.93

265 Under-sampling. Previous results showed that the results were better for the phenotype/non-

266  phenotype sets than with the other two classifications. We believe this is because the

267  phenotype/non-phenotype document distribution is reasonably balanced, unlike the other two
268  cases. We conducted under-sampling to address the unbalanced size of the positive and negative
269  data for the Glycosylation/non-Glycosylation (70/972) and the BP/non-BP (1049/8640) sets.
270  When the ratio of the positive to the negative data was set to be roughly 1:1, the performance

271  was greatly improved (Table 3).

272  Table 3. Logistic regression utilizing under-sampling and tf-idf with chosen top terms

273  (fraction of majority set = 0.1)

Document Set F1-Score [ Precision [ Recall Accuracy
Glycosylation/non-Glycosylation | 0.64 0.7 0.58 0.76
BP/non-BP 0.71 0.65 0.78 0.66

14
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274 Table 2 shows that the best results were obtained in the case of phenotype/non-phenotype
275  dataset. These results is based on the simple choice of representation of terms — whether or not
276  the term appeared in the document. Table 3 shows the results of the same three classifications
277  with use of tf-idf for the terms. We observed that this commonly-used representation of terms in
278 information retrieval doesn’t have any significant impact on phenotype/non-phenotype

279  classification but offers a slight improvement for BP/non-BP classification, with a significant
280  gain in precision. This experiment also used a cut-off for the use of terms by applying a

281  threshould for minimum and maximum document frequency (i.e., how many documents does a
282  given term appear in). Further restrictions to terms by using top terms only did not show much
283  change in the composite F1 scores.

284 We also noted that the BP/non-BP and Glycosylation/non-Glycosylation datasets are
285 imbalanced with distribution being heavily skewed towards the negative set. This clearly

286  impacted the results of these two classification tasks in contrast to the better balanced

287  phenoype/non-phenotype. To address this situation, we applied under-sampling of the majority
288  class and show in Table 3 the F1 scores improves significantly, especially in the gain of recall as

289 s to be expected with undersampling the majority, negative class.

200 4. Conclusions

291  In this work, we have described approaches to analyze CHO cell literature that would be of
292  general interest to researchers of CHO bioprocessing research and broader bioengineering and
293  biotechnology community. It makes use of the existing CHO bibliome dataset previously

294  manually labeled with research categories in 2016. Our unsupervised topic modeling enabled a

295  detailed comparison between human labels and machine-generated topics, which empowers
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296  qualitative and quantitative understanding of the CHO literature set. Even though the size of the
297  corpus for LDA is relative small in our current study from NLP perspective, select topics notably
298  mirror some human manually assigned topic categories. With the insight gained from our LDA
299  model, we further applied supervised learning for document classification to address the pressing
300 need of classifying new unseen publications automatically instead of time-consuming manual
301 labeling. Making use of terms as features for given topics, the effect of different feature

302  representations on classifier performance is studied. Our study showcases important applications
303  of text analytics on a biological scientific corpus: it discovers structural relations between topics
304  and documents, summarizes corpus via visualization, and discusses challenges and future studies
305 for consideration.

306 We have explored supervised deep learning method BioBERT (Bidirectional Encoder
307  Representations from Transformers) due to its strength in classifying biomedical literature (20).
308  We used the Google Cloud platform and conducted preliminary studies where the learning rate,
309  epoch amount, and token limits, as well as other variables can be controlled (20, 21). This

310  method is a possible path for supervised text classification of datasets such as the CHO

311 bioprocess bibliome, but more research must be performed to test its applicability. BERT models
312  are powerful models and tend to overfit when training data is not sufficiently large. This was a

313  factor for not including their use in this work.
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