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18 Abstract

19 Chinese hamster ovary (CHO) cells are widely used for mass production of therapeutic 

20 proteins in the pharmaceutical industry. With the growing need in optimizing the performance of 

21 producer CHO cell lines, research on CHO cell line development and bioprocess continues to 

22 increase in recent decades. Bibliographic mapping and classification of relevant research studies 

23 will be essential for identifying research gaps and trends in literature. To qualitatively and 

24 quantitatively understand the CHO literature, we have conducted topic modeling using a CHO 

25 bioprocess bibliome manually compiled in 2016, and compared the topics uncovered by the 

26 Latent Dirichlet Allocation (LDA) models with the human labels of the CHO bibliome. The 

27 results show a significant overlap between the manually selected categories and computationally 

28 generated topics, and reveal the machine-generated topic-specific characteristics. To identify 

29 relevant CHO bioprocessing papers from new scientific literature, we have developed a 

30 supervised learning model, Logistic Regression, to identify specific article topics and evaluated 

31 the results using three CHO bibliome datasets, Bioprocessing set, Glycosylation set, and 

32 Phenotype set. The use of top terms as features supports the explainability of document 

33 classification results to yield insights on new CHO bioprocessing papers.

34
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35 1. Introduction

36 CHO bibliome. Chinese hamster ovary (CHO) cells are widely used for biological and 

37 medical research (1, 2). They are the predominant host for mass production of many 

38 therapeutic proteins such as recombinant monoclonal antibodies in the pharmaceutical 

39 industry (3). With the increasing market demand and growing need in optimizing the 

40 performance of producer CHO cell lines, research on CHO cell line development and 

41 bioprocess engineering continuously increases in recent decades (4, 5). In 2016, Golabgir 

42 et al. (6) reported a manual bibliographic compilation of the published CHO cell studies 

43 from January 1995 to June 2015, which were retrieved with keywords “CHO cells” 

44 and/or “Chinese hamster ovary” in the title or abstract from Thomson Reuters Web of 

45 ScienceTM. The initial article set (10,279 abstracts) was manually filtered to identify a 

46 bioprocess (BP) set (1157 abstracts) that focus on CHO cell bioprocesses and 

47 biotechnologies, including host cell line engineering, strain selection/screening, and cell 

48 culture media design, etc. The non-BP set covers the remaining abstracts describing 

49 studies irrelevant to CHO bioprocess. For each BP abstract in the CHO bibliome, one or 

50 more category labels from a total of 16 research categories were manually assigned based 

51 on the types of phenotypic and bioprocess data contained therein (6). 

52 The CHO bibliome continues to grow since its last compilation in 2015, with over 

53 500 PubMed citations annually. To automate text analysis of the CHO bibliome and gain 

54 insight to key topics and trends in CHO bioprocessing and biotechnologies, we have 

55 applied topic modeling to explore and classify CHO literature and compared results with 

56 those manually assigned category labels in the CHO bibliome. When coupled with our 
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57 classifiers trained with supervised machine learning methods, the resulting models can 

58 automatically classify the newly published CHO cell studies after 2015 into bioprocess 

59 categories and help researchers select CHO cell research articles of their interest.  

60 Topic modeling and document classification. Natural language processing 

61 (NLP) allows machines to interpret human language with either unsupervised or 

62 supervised approaches (7, 8). For text analysis to uncover the main topics in an unlabeled 

63 set of documents, probabilistic topic models are considered an effective framework for 

64 unsupervised topic discovery (9, 10). Latent Dirichlet Allocation (LDA) is a widely used 

65 topic modeling method (11) with many applications (12). It is a generative probabilistic 

66 model of a corpus. The basic principle is that documents are represented as random 

67 mixtures over latent (hidden) topics, where each topic is characterized by a distribution 

68 over words in the corpus. In this study, LDA is adopted for an automatic exploration of 

69 latent topics in the CHO bioprocess bibliome, which are then compared and contrasted 

70 with those previously manually assigned research categories. This allows to gain insight 

71 into practical performance of LDA topic models in comparison with human manual 

72 category labels, and potential benefits from applying topic modeling to identify 

73 significant topics. 

74 To identify new CHO bioprocessing papers from PubMed (especially for 

75 publications after 2015), a classifier is needed to separate BP from non-BP studies and 

76 identify their bioprocessing topics by learning how the existing CHO bibliome classifies 

77 them. For this task, a supervised approach, Logistic Regression, is utilized to classify the 

78 bibliome using three datasets, one for the overall “Bioprocess” category (BP set), and two 
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79 on the specific bioprocessing categories of “Phenotype and Production Characteristics” 

80 (Phenotype set) and “Glycosylation” (Glycosylation set), respectively. Logistic 

81 regression allows for different term representations to be used in classification efficiently, 

82 ranging from a term's binary presence/absence method, , term frequency (tf), and term 

83 frequency-inverse document frequency (tf-idf) (13). Our objective is to determine if each 

84 category of interest includes unique terms that could be used for document classification. 

85 If the model is able to predict the category of a document in a dataset with high accuracy, 

86 it suggests that the documents in that category share an adequate amount of unique terms 

87 for classification, which may yield insights on new CHO bioprocessing papers.

88 2. Methods

89 The CHO bibliome processing and analysis workflow consists of document processing, 

90 unsupervised topic modeling, and supervised document classification, as summarized in Fig  1.

91 Figure 1. Overview of the CHO bibliome processing and analysis workflow. 

92 2.1 Document processing 

93 Literature corpus. For both topic modeling and document classification tasks in this study, 

94 we used the abstracts that were compiled in the CHO bibliome paper (6). To retrieve the abstract 

95 texts for the citations in the bibliome, PubMed was used for obtaining PMIDs based on matching 

96 of title, doi, and/or journal information. PubTator API was used to retrieve the documents 

97 containing both title and abstract text with PMID as query (14). The resulting dataset consisted 
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98 of 9689 documents, including 1049 documents in the Bioprocessing (BP) set and 8640 

99 documents in the non-BP set.

100 Pre-processing. The text processing included typical NLP steps: removal of special 

101 characters and numbers, removal of stop words (NLTK package (15)), tokenization, and term 

102 lemmatization (with Part of Speech (POS) Tagging allowed for 'NOUN', 'VERB', 'ADJ', 

103 'ADV','PROPN', 'NUM'; with spaCy library (13, 16) ). The processing was conducted within a 

104 Jupyter notebook (17).

105  Further text processing for document classification was conducted within a Jupyter 

106 notebook using Python. The dataset of 9689 documents (BP + non-BP) were mapped to their 

107 designated topic classification as marked in (6). The articles were labeled with a 0 or 1 signifying 

108 each document's allocation to the negative and positive set, respectively, for each bioprocess 

109 category of interest. These articles with known bioprocess classification allow a training set and 

110 test set to be created. 5-fold cross-validation was used for checking the accuracy of the model, 

111 where 80% of the dataset was used as the training set and 20% as the test set each time. 

112 Document sets. Three document sets were compiled to study the efficiency and accuracy of 

113 the classifiers for predicting previously unseen documents. The BP set consisting of 1049 BP and 

114 8640 non-BP documents was used to discern bioprocessing-related papers from all CHO cell 

115 publications. Two human-labeled categories of the BP documents, Glycosylation and Phenotype, 

116 were used to study how well the system can automatically identify articles containing these two 

117 bioprocess categories of interest. The Glycosylation set consisted of 70 Glycosylation and 979 

118 non-Glycosylation BP documents, while the Phenotype set consisted of 547 Phenotype and 502 

119 non-Phenotype BP documents. 
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120 2.2 Topic modeling using LDA

121 LDA is among the most widely applied probabilistic topic modeling approach (12). 

122 Python’s GENSIM package(18) was used for LDA applications in this study. Bigrams and 

123 trigrams were created with GENSIM phrase detection and added to the dictionary. Words that 

124 appear in less than 5 documents were filtered out, resulting in 2534 words in the final dictionary. 

125 Lastly, BP documents were included in training the LDA model with Python's GENSIM 

126 package. Method of grid search is employed to select the best set of hyperparameters (i.e., the 

127 number of topics, alpha, and eta) for the final LDA model. The resulting document-to-topic 

128 probabilities based on the chosen model were analyzed and compared with the previously 

129 reported manual category assignments. Python library pyLDAvis (19) is used for interactive 

130 topic model visualization.

131 2.3 Document classification

132 Logistic regression. It was implemented for classification of three document sets, BP, 

133 Glycosylation, and Phenotype. Multiple trials were conducted. The first trial was run using a 

134 binary term representation feature  with the entirety of the vocabulary. The binary feature 

135 specifying whether a term was present or not in the article was considered. The results thus 

136 represented as a baseline for the performance of the logistic regression on classification tasks.

137 The second trial involved the use of tf-idf (13), which is often used to capture the 

138 importance of the terms in the document. Only terms with minimum document frequency 

139 (df_min) of 0.05 and a maximum document frequency (df_max) of 0.95 were used. This allowed 

140 words to be removed that only occurred a very limited amount of times in the dataset. The use of 

141 the entire feature list allows the feature list length to be altered in subsequent trials. Tf-idf was 
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142 applied to the dataset, first with the entire feature list, followed by altered feature list with 

143 decreasing size to see if a more optimal set occurred within the entire list of features. The code 

144 used for the logistic regression trials can be found here: https://github.com/udel-biotm-

145 lab/Chinese-Hamster-Ovary-Cell-Logistic-Regression.git.

146 Under-sampling. It is common practice to use under-sampling when the distribution of the 

147 sets is quite skewed, as in the cases of BP/non-BP (1049/8640 documents) and 

148 Glycosylation/non-Glycosylation BP (70/979 documents). We applied under-sampling of the 

149 majority class by varying the under-sampling rate with each iteration. The statistics of the overall 

150 efficacy of the model were taken with each trial. The fraction of the majority set was varied 

151 between 0.1 and 0.9 by intervals of 0.1. This means that the majority set, negative set, was cut 

152 down to 10% and all the way up to 90%. The test set and training set remained as specified 

153 above. As the under-sampling rate was adjusted, the feature set length was altered by 10% each 

154 time as well, thus, as the fraction of the negative set increased towards 90% by 10% intervals the 

155 feature set length increased at the same rate. Once under-sampling was conducted, logistic 

156 regression was run using the tf-idf.

157 3. Results and Discussion 

158 3.1 LDA topic modeling

159 Comparative analysis of LDA topics and manual categories. We have compared 

160 the topics (“Topics”) uncovered by the LDA models with bioprocess categories (“Categories”) 

161 manually compiled in the CHO bibliome (6). The 15 human labeled categories and their 
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162 document sizes are: Phenotype and Production Characteristics (“Phenotype”, 547 documents), 

163 Enzyme Analysis (“Enzyme”, 152), Glycosylation (“Glycosylation”, 70), Purification and 

164 Separation Methods (“Purification”, 55), Gene expression and Transcriptomics 

165 (“Transcriptomics”, 51), Modeling (“Modeling”, 36), Proteomics (“Proteomics”, 36), 

166 Metabolomics and Fluxomics (“Metabolomics”, 32), Metabolism and Metabolic Flux Analysis 

167 (“Metabolism”, 31), Expression and Transfection Methods (“Expression”, 30), Secretory 

168 Pathway and Product Secretion (“Secretion”, 29), Cell Line Construction and Characterization 

169 (“Cell Line”, 26), Genomics and Epigenetics (“Genomics”, 24), RNAs and codon usage 

170 (“RNAs”, 23 documents), and Culture Strategy and Bioreactor Design (“Culture”, 18). Note one 

171 remaining category in the CHO bioprocess bibliome, Review Articles or Other (116 documents) 

172 that consists of review articles on CHO cells and high-throughput data for CHO culturing, was 

173 presented as part of the “others” category in the results below.

174 The LDA model discovered 9 topics (Fig  2, S2 File) from the bioprocess documents. 

175 The top four topics, covering 20.5% to 12.6% of tokens (i.e., terms or words including bigrams 

176 and trigrams) of the corpus, account for a total of 65.5% of tokens in the whole corpus.  

177 Figure 2. LDA topic categorization of CHO bibliome: distribution of bioprocessing 

178 documents in each of the 9 topics discovered by LDA model. 

179 LDA allows multiple topics for each document, by showing the probability of each topic 

180 (10). For example, document for PMID 9043639 has probability of 0.49 for Topic-4 and 0.37 for 

181 Topic-1 according to the LDA model predictions (S2 Fig). To simplify further analysis, each BP 

182 document was assigned a representative Topic ID corresponding to the highest probability score 

183 (e.g., PMID 9043639 is assigned Topic-4 as its representative topic). To compare how LDA 
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184 topics align with human category labels, heatmaps were generated where the columns show the 

185 human Category label and rows correspond to documents (PMIDs shown on the left) broken into 

186 different LDA topic groups (S3 Fig). 

187 Figure 3. Comparison between automatically generated LDA topics and manually assigned 

188 categories. (A) Distribution of human-annotated categories among computer-generated LDA 

189 topics. (B) Distribution of the top four LDA topics in manual categories. (C) Distribution of the 

190 top four manual categories in LDA topics. 

191 Fig  3 shows the comparative analysis of automatically generated LDA topics and the 

192 manually annotated categories. The overall distribution readily reveals that human category 

193 labels are differentially captured by LDA topics (Fig  3A). Among the four largest topics 

194 (containing 153 to 218 documents), Topic-1 is mapped to Categories “Phenotype”, 

195 “Transcriptomics", “Proteomics”, and several other categories; Topic-2 to Categories 

196 “Phenotype”, “Expression”, “Cell Line”, “Secretion”; Topic-3 to “Phenotype”, “Glycosylation”,  

197 “Purification”, “Enzyme”; and Topic-4 to “Enzyme” and “Phenotype” (Fig  3B). While Topic-1, 

198 -2 and -3 spread over several topics, Topic-4 has only two major categories. The document sets 

199 for the remaining topics are much smaller and predominant with Category “Phenotype” (Fig  

200 3A). Among the top 4 categories, “Phenotype”, “Enzyme”, “Glycosylation” and “Purification”, 

201 the largest is “Phenotype” which accounts for over 50% of all bioprocess publications in the 

202 CHO bibliome. Not surprising, it has a diverse distribution over many Topics (Fig  3C). In 

203 contrast, the other three categories all have only one dominant Topic each, “Enzyme” is 

204 dominant with Topic-4, and “Glycosylation” and “Purification” are dominant with Topic-3.     
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205 Interpretable terms in topic models. A basic question to ask about a topic model is 

206 whether the topics are interpretable to human. LDA represents documents as a mixture of topics, 

207 and a topic as a mixture of words, with different weights as the probability of those words 

208 appearing in the topic. Fig  4 shows the top terms for each topic and a pyLDAvis display from 

209 interactive topic model visualization (S2 File). In Fig  4A, each of the LDA topics is featured 

210 with top 30 most frequent terms with term weights (i.e., probabilities). Here, word “cell” is 

211 among the top 15 most frequent words for all topics. It is ranked first in Topic-4, -5, -6, -7, with 

212 the highest weight for Topic-4. On the contrary, word “mutant” is exclusive to Topic-4 among 

213 the top 30 words for all topics, therefore it is a discriminative key term in capturing a document 

214 into Topic-4. Fig  4B shows the pyLDAvis display of top 30 most frequent words for Topic-4. In 

215 addition to “mutant”, several terms such as “synthesis”, “biosynthesis”, “cholesterol”, 

216 “transport” have overlapping red bar and blue bar, indicating these terms are also frequent and 

217 exclusive to Topic-4 (also see PMID 9456320, 7742354, and 18946045 for examples, S3 File). 

218 With the terms mapped closely between Topic-4 and Category “Enzyme”, it is not surprising to 

219 see that majority of documents captured in Topic-4 are indeed in Category “Enzyme” in human 

220 annotation, and vice versa, indicating an intrinsic cohesiveness of human label and fitted LDA 

221 model for this topic (Fig  3A). 

222 In contrast, there are 3 significant human label categories for Topic-3, “Glycosylation”, 

223 “Purification” and “Enzyme” (excluding category “Phenotype” which have known intrinsically 

224 diverse documents). Among the most frequent words for Topic-3, “glycosylation”, “structure”, 

225 “purify”, “glycan”, “oligosaccharide”, “glycoprotein”, “nglycan”, “residue” are discriminative 

226 terms for categories “Glycosylation” and “Purification” (S3 File).  Likewise the frequent and 

227 discriminative words for Topic-2 include “expression”,  “gene”, “clone”, “stable”, “promoter”, 
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228 “transfection”, “selection”, “vector”, which correlate well with categories “Expression”, “Cell 

229 Line” and “Secretion” where those words can be common and expected to occur together. In 

230 summary, our LDA model is able to cluster BP documents into topics with salient terms that are 

231 discriminative and descriptive for their underlying categories, and the computationally generated 

232 models correlate well with several human-labeled categories.  

233 Figure 4. LDA topics with term probability. (A) The top 30 most frequent terms from nine 

234 LDA topics with weights. (B) Visualization of topic modeling results using pyLDAvis. Left 

235 shows semantic topic space, where each circle is a single topic and its size represents its 

236 importance in the model. The proximity between two circles reflects the semantic similarity of 

237 their concepts. Right shows Top-30 most salient terms for Topic-4. The terms (red bars) are in 

238 descending order of probability, and the blue bars show the terms’ frequency over whole corpus 

239 (i.e., a pair of overlaid bars represent both the corpus-wide frequency of a given term as well as 

240 the topic-specific frequency of the term).  For a given term, when the red bar is almost the same 

241 length as the blue bar, it means it is a salient term almost exclusive to the topic. 

242 3.2 Logistic regression for classification 

243 Binary representation. The results for binary representation of a term (presence or absence of 

244 a term in a document) serve as a baseline to see if each subsequent configuration improved the 

245 overall effectiveness of the classifier (Table 1). The Phenotype set obtained the best 

246 classification results. The BP set had lower F1-score, precision, and recall. The Glycosylation set 

247 had large fluctuations in the results and this could be the first sign that the small positive set and 
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248 the large size difference between the positive and negative set is affecting the results of the 

249 classification.

250 Table 1. Logistic regression utilizing binary representation of terms.

 Document Set (Size) F1-Score Precision Recall Accuracy

Phenotype/non-Phenotype (547/502) 0.76 0.78 0.75 0.76

BP/non-BP (1049/8640) 0.61 0.66 0.57 0.92

Glycosylation/non-Glycosylation (70/979) 0.22 0.5 0.14 0.93

251 Term frequency-inverse document frequency (tf-idf). Utilizing tf-idf, the length of 

252 the feature set can be seen. This allows feature engineering to find optimal configurations of the 

253 classifier. The df_min and df_max values were set to remove terms with very low occurrence 

254 rates. The results show that by using tf-idf the performance (especially precision) improved 

255 slightly for the BP vs. non-BP (Table 2). The statistics for logistic regression with a shortened 

256 feature list of top terms were quite similar to the trial run with all terms (Table 2). However, this 

257 configuration may be more desirable as the same results can be achieved with a much smaller set 

258 of terms.

259 For the Glycosylation set, the performance dropped to all zeros with a high accuracy 

260 level. This trend indicates that the model was predicting all of the documents as negatives and 

261 because the true number of positives was so limited the accuracy was 93%. This confirms the 

262 need for under-sampling. The accuracy is also much higher than the other statistics for the BP vs. 

263 non-BP which shows that under-sampling may be needed here as well. 
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264 Table 2. Logistic regression utilizing tf-idf with all terms and chosen top terms.

 Document Set Feature Size F1-Score Precision Recall Accuracy

Phenotype/non-Phenotype All terms (474) 0.76 0.79 0.73 0.76

BP/non-BP All terms (706) 0.62 0.75 0.53 0.93

Phenotype/non-Phenotype Top terms (250) 0.75 0.76 0.75 0.75

BP/on-BP Top terms (500) 0.63 0.75 0.54 0.93

265 Under-sampling.  Previous results showed that the results were better for the phenotype/non-

266 phenotype sets than with the other two classifications. We believe this is because the 

267 phenotype/non-phenotype document distribution is reasonably balanced, unlike the other two 

268 cases. We conducted under-sampling to address the unbalanced size of the positive and negative 

269 data for the Glycosylation/non-Glycosylation (70/972) and the BP/non-BP (1049/8640) sets. 

270 When the ratio of the positive to the negative data was set to be roughly 1:1, the performance 

271 was greatly improved (Table 3). 

272 Table 3. Logistic regression utilizing under-sampling and tf-idf with chosen top terms 

273 (fraction of majority set = 0.1)

Document Set F1-Score Precision Recall Accuracy

Glycosylation/non-Glycosylation 0.64 0.7 0.58 0.76

BP/non-BP 0.71 0.65 0.78 0.66
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274 Table 2 shows that the best results were obtained in the case of phenotype/non-phenotype 

275 dataset. These results is based on the simple choice of representation of terms – whether or not 

276 the term appeared in the document. Table 3 shows the results of the same three classifications 

277 with use of tf-idf for the terms. We observed that this commonly-used representation of terms in 

278 information retrieval doesn’t have any significant impact on phenotype/non-phenotype 

279 classification but offers a slight improvement for BP/non-BP classification, with a significant 

280 gain in precision. This experiment also used a cut-off for the use of terms by applying a 

281 threshould for minimum and maximum document frequency (i.e., how many documents does a 

282 given term appear in). Further restrictions to terms by using top terms only did not show much 

283 change in the composite F1 scores. 

284 We also noted that the BP/non-BP and Glycosylation/non-Glycosylation datasets are 

285 imbalanced with distribution being heavily skewed towards the negative set. This clearly 

286 impacted the results of these two classification tasks in contrast to the better balanced 

287 phenoype/non-phenotype. To address this situation, we applied under-sampling of the majority 

288 class and show in Table 3 the F1 scores improves significantly, especially in the gain of recall as 

289 is to be expected with undersampling the majority, negative class.

290 4. Conclusions

291 In this work, we have described approaches to analyze CHO cell literature that would be of 

292 general interest to researchers of CHO bioprocessing research and broader bioengineering and 

293 biotechnology community. It makes use of the existing CHO bibliome dataset previously 

294 manually labeled with research categories in 2016. Our unsupervised topic modeling enabled a 

295 detailed comparison between human labels and machine-generated topics, which empowers 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2022. ; https://doi.org/10.1101/2022.08.22.504864doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504864
http://creativecommons.org/licenses/by/4.0/


16

296 qualitative and quantitative understanding of the CHO literature set. Even though the size of the 

297 corpus for LDA is relative small in our current study from NLP perspective, select topics notably 

298 mirror some human manually assigned topic categories. With the insight gained from our LDA 

299 model, we further applied supervised learning for document classification to address the pressing 

300 need of classifying new unseen publications automatically instead of time-consuming manual 

301 labeling. Making use of terms as features for given topics, the effect of different feature 

302 representations  on classifier performance is studied. Our study showcases important applications 

303 of text analytics on a biological scientific corpus: it discovers structural relations between topics 

304 and documents, summarizes corpus via visualization, and discusses challenges and future studies 

305 for consideration.

306 We have explored supervised deep learning method BioBERT (Bidirectional Encoder 

307 Representations from Transformers) due to its strength in classifying biomedical literature (20). 

308 We used the Google Cloud platform and conducted preliminary studies where the learning rate, 

309 epoch amount, and token limits, as well as other variables can be controlled (20, 21). This 

310 method is a possible path for supervised text classification of datasets such as the CHO 

311 bioprocess bibliome, but more research must be performed to test its applicability. BERT models 

312 are powerful models and tend to overfit when training data is not sufficiently large. This was a 

313 factor for not including their use in this work.
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