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ABSTRACT

Massively multilingual models subsuming tens or even hundreds of languages
pose great challenges to multi-task optimization. While it is a common practice
to apply a language-agnostic procedure optimizing a joint multilingual task objec-
tive, how to properly characterize and take advantage of its underlying problem
structure for improving optimization efficiency remains under-explored. In this
paper, we attempt to peek into the black-box of multilingual optimization through
the lens of loss function geometry. We find that gradient similarity measured along
the optimization trajectory is an important signal, which correlates well with not
only language proximity but also the overall model performance. Such observa-
tion helps us to identify a critical limitation of existing gradient-based multi-task
learning methods, and thus we derive a simple and scalable optimization proce-
dure, named Gradient Vaccine, which encourages more geometrically aligned pa-
rameter updates for close tasks. Empirically, our method obtains significant model
performance gains on multilingual machine translation and XTREME benchmark
tasks for multilingual language models. Our work reveals the importance of prop-
erly measuring and utilizing language proximity in multilingual optimization, and
has broader implications for multi-task learning beyond multilingual modeling.

1 INTRODUCTION

Modern multilingual methods, such as multilingual language models (Devlin et al., 2018; Lample
& Conneau, 2019; Conneau et al., 2019) and multilingual neural machine translation (NMT) (Firat
et al., 2016; Johnson et al., 2017; Aharoni et al., 2019; Arivazhagan et al., 2019), have been showing
success in processing tens or hundreds of languages simultaneously in a single large model. These
models are appealing for two reasons: (1) Efficiency: training and deploying a single multilingual
model requires much less resources than maintaining one model for each language considered, (2)
Positive cross-lingual transfer: by transferring knowledge from high-resource languages (HRL),
multilingual models are able to improve performance on low-resource languages (LRL) on a wide
variety of tasks (Pires et al., 2019; Wu & Dredze, 2019; Siddhant et al., 2020; Hu et al., 2020).

Despite their efficacy, how to properly analyze or improve the optimization procedure of multilingual
models remains under-explored. In particular, multilingual models are multi-task learning (MTL)
(Ruder, 2017) in nature but existing literature often train them in a monolithic manner, naively using
a single language-agnostic objective on the concatenated corpus of many languages. While this
approach ignores task relatedness and might induce negative interference (Wang et al., 2020b), its
optimization process also remains a black-box, muffling the interaction among different languages
during training and the cross-lingual transferring mechanism.

In this work, we attempt to open the multilingual optimization black-box via the analysis of loss
geometry. Specifically, we aim to answer the following questions: (1) Do typologically similar
languages enjoy more similar loss geometries in the optimization process of multilingual models?
(2) If so, in the joint training procedure, do more similar gradient trajectories imply less interference
between tasks, hence leading to better model quality? (3) Lastly, can we deliberately encourage

*Work done during an internship at Google.



more geometrically aligned parameter updates to improve multi-task optimization, especially in
real-world massively multilingual models that contain heavily noisy and unbalanced training data?

Towards this end, we perform a comprehensive study on massively multilingual neural machine
translation tasks, where each language pair is considered as a separate task. We first study the
correlation between language and loss geometry similarities, characterized by gradient similarity
along the optimization trajectory. We investigate how they evolve throughout the whole training
process, and glean insights on how they correlate with cross-lingual transfer and joint performance.
In particular, our experiments reveal that gradient similarities across tasks correlate strongly with
both language proximities and model performance, and thus we observe that typologically close
languages share similar gradients that would further lead to well-aligned multilingual structure (Wu
et al., 2019) and successful cross-lingual transfer. Based on these findings, we identify a major
limitation of a popular multi-task learning method (Yu et al., 2020) applied in multilingual models
and propose a preemptive method, Gradient Vaccine, that leverages task relatedness to set gradient
similarity objectives and adaptively align task gradients to achieve such objectives. Empirically, our
approach obtains significant performance gain over the standard monolithic optimization strategy
and popular multi-task baselines on large-scale multilingual NMT models and multilingual language
models. To the best of our knowledge, this is the first work to systematically study and improve loss
geometries in multilingual optimization at scale.

2 INVESTIGATING MULTI-TASK OPTIMIZATION IN MASSIVELY
MULTILINGUAL MODELS

While prior work have studied the effect of data (Arivazhagan et al., 2019; Wang et al., 2020a),
architecture (Blackwood et al., 2018; Sachan & Neubig, 2018; Vazquez et al., 2019; Escolano et al.,
2020) and scale (Huang et al., 2019b; Lepikhin et al., 2020) on multilingual models, their opti-
mization dynamics are not well understood. We hereby perform a series of control experiments
on massively multilingual NMT models to investigate how gradients interact in multilingual set-
tings and what are their impacts on model performance, as existing work hypothesizes that gradient
conflicts, defined as negative cosine similarity between gradients, can be detrimental for multi-task
learning (Yu et al., 2020) and cause negative transfer (Wang et al., 2019).

2.1 EXPERIMENTAL SETUP

For training multilingual machine translation models, we mainly follow the setup in Arivazhagan
et al. (2019). In particular, we jointly train multiple translation language pairs in a single sequence-
to-sequence (seq2seq) model (Sutskever et al., 2014). We use the Transformer-Big (Vaswani et al.,
2017) architecture containing 375M parameters described in (Chen et al., 2018a), where all param-
eters are shared across language pairs. We use an effective batch sizes of 500k tokens, and utilize
data parallelism to train all models over 64 TPUv3 chips. Sentences are encoded using a shared
source-target Sentence Piece Model (Kudo & Richardson, 2018) with 64k tokens, and a <2xx>
token is prepended to the source sentence to indicate the target language (Johnson et al., 2017). The
full training details can be found in Appendix B.

To study real-world multi-task optimization on a massive scale, we use an in-house training cor-
pus' (Arivazhagan et al., 2019) generated by crawling and extracting parallel sentences from the
web (Uszkoreit et al., 2010), which contains more than 25 billion sentence pairs for 102 languages
to and from English. We select 25 languages (50 language pairs pivoted on English), containing
over 8 billion sentence pairs, from 10 diverse language families and 4 different levels of data sizes
(detailed in Appendix A). We then train two models on two directions separately, namely Any—En
and En—Any. Furthermore, to minimize the confounding factors of inconsistent sentence seman-
tics across language pairs, we create a multi-way aligned evaluation set of 3k sentences for all
languages?. Then, for each checkpoint at an interval of 1000 training steps, we measure pair-wise
cosine similarities of the model’s gradients on this dataset between all language pairs. We examine
gradient similarities at various granularities, from specific layers to the entire model.

"We also experiment on publicly available dataset of WMT and obtain similar observations in Appendix C.
’In other words, 3k semantically identical sentences are given in 25 languages.
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Figure 1: Cosine similarities of encoder gradients between xx-en language pairs averaged across all
training steps. Darker cell indicates pair-wise gradients are more similar. Best viewed in color.*

2.2  OBSERVATIONS

We make the following three main observations. Our findings are consistent across different model
architectures and settings (see Appendix C and D for more results and additional discussions).

1. Gradient similarities reflect language proximities. We first examine if close tasks enjoy simi-
lar loss geometries and vice versa. Here, we use language proximity (defined according to their
memberships in a linguistic language family) to control task similarity, and utilize gradient simi-
larity to measure loss geometry. In Figure 1, we use a symmetric heatmap to visualize pair-wise
gradient similarities, averaged across all checkpoints at different training steps. Specifically, we
observe strong clustering by membership closeness in the linguistic family, along the diagonal
of the gradient similarity matrix. In addition, all European languages form a large cluster in the
upper-left corner, with an even smaller fine-grained cluster of Slavic languages inside. Further-
more, we also observe similarities for Western European languages gradually decrease in West
Slavic—South Slavic—East Slavic, illustrating the gradual continuum of language proximity.

2. Gradient similarities correlate positively with model quality. As gradient similarities correlate
well with task proximities, it is natural to ask whether higher gradient similarities lead to better
multi-task performance. In Figure 2(a), we train a joint model of all language pairs in both
En—Any and Any—En directions, and compare gradient similarities between these two. While
prior work has shown that En—Any is harder and less amenable for positive transfer (Arivazhagan
et al., 2019), we find that gradients of tasks in En—Any are indeed less similar than those in
Any—En. On the other hand, while larger batch sizes often improve model quality, we observe
that models trained with smaller batches have less similar loss geometries (Appendix D). These
all indicate that gradient interference poses great challenge to the learning procedure.

To further verify this, we pair En—Fr with different language pairs (e.g. En—Es or En—Hi),
and train a set of models with exactly two language pairs®. We then evaluate their performance
on the En—Fr test set, and compare their BLEU scores versus gradient similarities between
paired two tasks. As shown in Figure 2(b), gradient similarities correlate positively with model
performance, again demonstrating that dissimilar gradients introduce interference and undermine
model quality.

3. Gradient similarities evolve across layers and training steps. While the previous discussion
focuses on the gradient similarity of the whole model averaged over all checkpoints, we now
study it across different layers and training steps. Figure 4(c) shows the evolution of the gradient

“Western European includes Romance and Germanic.
3To remove confounding factors, we fix the same sampling strategy for all these models.
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Figure 2: Comparing gradient similarity versus model performance. (a): Similarity of model gradi-
ents between xx-en (left) and en-xx (right) language pairs in a single Any—Any model. (b): BLEU
scores on en-fr of a set of trilingual models versus their gradient similarities. Each model is trained
on en-fr and another en-xx language pair.

similarities throughout the training. Interestingly, we observe diverse patterns for different gradi-
ent subsets. For instance, gradients between En—Fr and En—Hi gradually become less similar
(from positive to negative) in layer 1 of the decoder but more similar (from negative to positive)
in the encoder of the same layer. On the other hand, gradient similarities between En—Fr and
En—Es are always higher than those between En—Fr and En—Hi in the same layer, consistent
with prior observation that gradients reflect language similarities.

In addition, we evaluate the difference between gradient similarities in the multilingual encoder
and decoder in Figure 4(a). We find that the gradients are more similar in the decoder (positive
values) for the Any— En direction but less similar (negative values) for the En—Any direction.
This is in line with our intuition that gradients should be more consistent when the decoder only
needs to handle one single language. Moreover, we visualize how gradient similarities evolve
across layers in Figure 4(b). We notice that similarity between gradients increase/decrease as we
move up from bottom to top layers for the Any— En/En—Any direction, and hypothesize that this
is due to the difference in label space (English-only tokens versus tokens from many languages).
These results demonstrate that the dynamics of gradients evolve over model layers and training
time.

Our analysis highlights the important role of loss geometries in multilingual models. With these
points in mind, we next turn to the problem of how to improve multi-task optimization in multilin-
gual models in a systematic way.

3 PROPOSED METHOD

Following our observations that inter-task loss ge-
ometries correlate well with language similarities
and model quality, a natural question to ask next
is how we can take advantage of such gradient dy-
namics and design optimization procedures superior
to the standard monolithic practice. Since we train
large-scale models on real-world dataset consisting
of billions of words, of which tasks are highly unbal-
anced and exhibit complex interactions, we propose
an effective approach that not only exploits inter-task ~ Figure 3: Counts of active PCGrad (left) and
structures but also is applicable to unbalanced tasks GradVac (right) during the training process.
and noisy data. To motivate our method, we first review a state-of-the-art multi-task learning method
and show how the observation in Section 2 helps us to identify its limitation.

Num of PCGrad
Num of GradVac
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3.1 GRADIENT SURGERY

An existing line of work (Chen et al., 2018b; Sener & Koltun, 2018; Yu et al., 2020) has success-
fully utilized gradient-based techniques to improve multi-task models. Notably, Yu et al. (2020)
hypothesizes that negative cosine similarities between gradients are detrimental for multi-task opti-
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Figure 4: Evaluating gradient similarity across model architecture and training steps. (a): Differ-
ence between gradient similarities in the encoder and decoder. Positive value (darker) indicates the
encoder has more similar gradient similarities. (b): Gradient similarities across layers. (¢): Gradient
similarities of different components and tasks across training steps.

mization and proposes a method to directly project conflicting gradients (PCGrad), also known as
the Gradient Surgery. As illustrated in the left side of Figure 5(a), the idea is to first detect gradient
conflicts and then perform a “surgery” to deconflict them if needed. Specifically, for gradients g;
and g; of the ¢-th and j-th task respectively at a specific training step, PCGrad (1) computes their
cosine similarity to determine if they are conflicting, and (2) if the value is negative, projects g; onto
the normal plane of g; as:

gi gj g
g 11~
The altered gradient g/ replaces the original g; and this whole process is repeated across all tasks in
a random order. For more details and theoretical analysis, we refer readers to the original work.

g =8 — (1)

Now, we can also interpret PCGrad from a different perspective: notice that the gradient cosine
similarity will always be zero after the projection, effectively setting a target lower bound. In other
words, PCGrad aims to align gradients to match a certain gradient similarity level, and implicitly
makes the assumption that any two tasks must have the same gradient similarity objective of zero.
However, as we shown in Section 2, different language proximities would result in diverse gradient
similarities. In fact, many language pairs in our model share positive cosine similarities such that the
pre-condition for PCGrad would never be satisfied. This is shown in the left of Figure 5(b), where
PCGrad is not effective for positive gradient similarities and thus it is very sparse during training in
the left of Figure 3. Motivated by this limitation, we next present our proposed method.

3.2 GRADIENT VACCINE

The limitation of PCGrad comes from the unnecessary assumption that all tasks must enjoy similar
gradient interactions, ignoring complex inter-task relationships. To relax this assumption, a natural
idea is to set adaptive gradient similarity objectives in some proper manner. An example is shown in
the right of Figure 5(b), where two tasks have a positive gradient similarity of cos(#) = ¢;;. While
PCGrad ignores such non-negative case, the current value of ¢;; may still be detrimentally low for
more similar tasks such as French versus Spanish. Thus, suppose we have some similarity goal of
cos(0') = Z; > ¢;; (e.g. the “normal” cosine similarity between these two tasks), we alter both
the magnitude and direction of g; such that the resulting gradients match such gradient similarity
objective. In particular, we replace g; with a vector that satisfies such condition in the vector space
spanned by g; and g;, i.e. a; - g; + a2 - g;. Since there are infinite numbers of valid combinations
of a; and ay, for simplicity, we fix a; = 1 and by applying Law of Sines in the plane of g; and g,

we solve for the value of ay and derive the new gradient for the i-th task as ©:

el (65 /1 = 6% — 611 /1 — (6F)2)

lgsll/1 = (&)

2

g =g+

8See Appendix E for derivation detail, implementation in practice and theoretical analysis.
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Figure 5: Comparing PCGrad (left) with GradVac (right) in two cases. (a): For negative similarity,
both methods are effective but GradVac can utilize adaptive objectives between different tasks. (b):
For positive similarity, only GradVac is active while PCGrad stays “idle”.

This formulation allows us to use arbitrary gradient similarity objective ¢17;- in [—1, 1]. The remaining
question is how to set such objective properly. In the above analysis, we have seen that gradient
interactions change drastically across tasks, layers and training steps. To incorporate these three
factors, we exploit an exponential moving average (EMA) variable for tasks ¢, j and parameter
group k (e.g. the k-th layer) as:

S = (1= B + Bl (3)
where ¢1(2<: is the computed gradient similarity at training step ¢, 5 is a hyper-parameter, and QASEJOI)C =
0. The full method is outlined in Algorithm 1 (Appendix E). Notice that gradient surgery is a special
case of our proposed method such that qbz; = 0. As shown in the right of Figure 5(a) and 5(b),
our method alters gradients more preemptively under both positive and negative cases, taking more

proactive measurements in updating the gradients (Figure 3). We therefore refer to it as Gradient
Vaccine (GradVac).

4 EXPERIMENTS

We compare multi-task optimization methods with the monolithic approach in multilingual settings,
and examine the effectiveness of our proposed method on multilingual NMT and multilingual lan-
guage models.

4.1 GENERAL SETUP

We choose three popular scalable gradient-based multi-task optimization methods as our baselnes:
GradNorm (Chen et al., 2018b), MGDA (Sener & Koltun, 2018), and PCGrad (Yu et al., 2020).
For fair comparison, language-specifc gradients are computed for samples in each batch. The sam-
pling temperature is also fixed at T=5 unless otherwise stated. For the baselines, we mainly follow
the default settings and training procedures for hype-parameter selection as explained in their re-
spective papers. For our method, to study how sensitive GradVac is to the distribution of tasks, we
additionally examine a variant that allows us to control which languages are considered for GradVac.
Specifically, we search the following hyper-parameters on small-scale WMT dataset and transfer to
our large-scale dataset: tasks considered for GradVac {HRL_only, LRL _only, all_task}, parameter
granularity {whole_model, enc_dec, all_layer, all_matrix }, EMA decay rate 8 {le-1, le-2, 1e-3}. We
find {LRL _only, all_layer, le-2} to work generally well and use these in the following experiments
(see Appendix F for more details and results).

4.2 RESULTS AND ANALYSIS

WMT Machine Translation. We first conduct comprehensive analysis of our method and other
baselines on a small-scale WMT task. We consider two high-resource languages (WMT14 en-
fr, WMT19 en-cs) and two low-resource languages (WMT14 en-hi, WMT18 en-tr), and train two
models for both to and from English. Results are shown in Table 1.

First, we observe that while the naive multilingual baseline outperforms bilingual models on low-
resource languages, it performs worse on high-resource languages due to negative interference
(Wang et al., 2020b) and constrained capacity (Arivazhagan et al., 2019). Existing baselines fail



En—Any Any—En
en-fr  en-cs en-hi en-tr  avg fr-en cs-en hi-en tr-en avg
Monolithic Training
41.80 2476 577 9.77 20.53 ‘ 36.38 29.17 8.68 13.87 22.03

(1) Bilingual Model
(2) Multilingual Model 3724 2022 13.69 18777 2248 | 3429 27.66 1848 22.01 2561

Multi-task Training

(3) GradNorm (Chen et al., 2018b) | 37.02 18.78 11.57 1544 20.70 | 3458 27.85 18.03 22.37 25.71
(4) MGDA (Sener & Koltun, 2018) | 38.22 17.54 12.02 13.69 20.37 | 35.05 26.87 1828 2241 25.65
(5) PCGrad (Yu et al., 2020) 3772 20.88 13.77 1823 22.65 | 3437 27.82 1878 2220 25.79
(6) PCGrad w. all_layer 38.01 21.04 1395 1846 2287 | 3457 27.84 18.84 2248 2593
Our Approach
(7) GradVac w. fixed_obj 3841 21.12 1375 18.68 2299 | 3455 2797 1872 22.14 25.85
(8) GradVac w. whole_model 3876 2132 1422 18.89 2330 | 34.84 28.01 18.85 2224 25.99
(9) GradVac w. all_layer 39.27 21.67 14.88 19.73 23.89 | 3528 2842 19.07 22.58 26.34

Table 1: BLEU scores on the WMT dataset. The best result for multilingual model is bolded while
underline signifies the overall best.

to address this problem properly, as they obtain marginal or even no improvement (row 3, 4 and 5).
In particular, we look closer at the optimization process for methods that utilize gradient signals to
reweight tasks, i.e. GradNorm and MGDA, and find that their computed weights are less meaningful
and noisy. For example, MGDA assigns larger weight for en-fr in the en-xx model, that results in
worse performance on other languages. This is mainly because these methods are designed under
the assumption that all tasks have balanced data. Our results show that simply reweighting task
weights without considering the loss geometry has limited efficacy.

By contrast, our method significantly outperforms all baselines. Compared to the naive joint train-
ing approach, the proposed method improves over not only the average BLEU score but also the
individual performance on all tasks. We notice that the performance gain on En—Any is larger com-
pared to Any—En. This is in line with our prior observation that gradients are less similar and more
conflicting in En—Any directions.

We next conduct extensive ablation studies for deeper analysis: (1) GradVac applied to all layers
vs. whole model (row 8 vs. 9): the all_layer variant outperforms whole_model, showing that setting
fine-grained parameter objectives is important. (2) Constant objective vs. EMA (row 7 vs. 9): we
also examine a variant of GradVac optimized using a constant gradient objective for all tasks (e.g.

Z-Tj = 0.5, V4, 7) and observe performance drop compared to using EMA variables. This highlights
the importance of setting task-aware objectives through task relatedness. (3) GradVac vs. PCGrad
(row 8-9 vs. 5-6): the two GradVac variants outperform their PCGrad counterparts, validating the
effectiveness of setting preemptive gradient similarity objectives.

Massively Multilingual Machine Transla-
tion. We then scale up our experiments and

transfer the best setting found on WMT to the Any—En | High | Med | Low | All
same massive dataset used in Section 2. We $f§ %S?g égié éig; %23?
visualize model performance in Flgure 6 and GradVac | 28.99 | 28.94 | 24.58 | 2721
average BLEU scores are shown in Table 2.

We additionally compare with models trained En—Any | High | Med | Low | All
with uniform language pairs sampling strategy I=1 22.62 | 21.53 | 12.41 1 18.18
T=1 d find that thod tperf T=5 22.04 | 21.43 | 13.07 | 18.25
(T=1) and find that our method outperforms GradVac | 24.20 | 21.83 | 13.30 | 19.08

both multilingual models. Most notably, while
uniform sampling favor high-resource language
pairs more than low-resource ones, GradVac Table 2: Average BLEU scores of 25 language
is able to improve both consistently across all ~pairs on our massively multilingual dataset.
tasks. We observe larger performance gain on

high-resource languages, illustrating that addressing gradient conflicts can mitigate negative interfer-
ence on these head language pairs. On the other hand, our model still perform worse on resourceful
languages compared to bilingual baselines, most likely limited by model capacity.

XTREME Benchmark. We additionally apply our method to multilingual language models and
evaluate on the XTREME benchmark (Hu et al., 2020). We choose tasks where training data are
available for all languages, and finetune a pretrained multilingual BERT model (mBERT) (Devlin
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Figure 6: Comparing multilingual models with bilingual baselines on our dataset. Language pairs
are listed in the order of training data sizes (high-resource languages on the left).

| de en es hi jv kk mr my sw te tl yo  avg

mBERT 832 779 875 822 776 876 820 758 877 789 838 90.7 829
+ GradNorm | 83.5 774 872 827 784 879 812 734 852 787 83.6 915 82.6

+ MGDA 82.1 742 856 815 778 878 819 743 865 782 875 91.7 824

+ PCGrad 837 786 882 818 796 876 818 742 859 785 85.6 922 83.1

+ GradVac 839 794 882 81.8 80.5 874 821 739 878 793 878 93.0 838

Table 3: F1 on the NER tasks of the XTREME benchmark.

et al., 2018) on these languages jointly (see Appendix G for experiment details and additional re-
sults). As shown in Table 3, our method consistently outperforms naive joint finetuning and other
multi-task baselines. This demonstrates the practicality of our approach for general multilingual
tasks.

5 RELATED WORK

Multilingual models train multiple languages jointly (Firat et al., 2016; Devlin et al., 2018; Lample
& Conneau, 2019; Conneau et al., 2019; Johnson et al., 2017; Aharoni et al., 2019; Arivazhagan
et al., 2019). Follow-up work study the cross-lingual ability of these models and what contributes
to it (Pires et al., 2019; Wu & Dredze, 2019; Wu et al., 2019; Artetxe et al., 2019; Kudugunta et al.,
2019; Karthikeyan et al., 2020), the limitation of such training paradigm (Arivazhagan et al., 2019;
Wang et al., 2020b), and how to further improve it by utilizing post-hoc alignment (Wang et al.,
2020c; Cao et al., 2020), data balancing (Jean et al., 2019; Wang et al., 2020a), or calibrated training
signal (Mulcaire et al., 2019; Huang et al., 2019a). In contrast to these studies, we directly investigate
language interactions across training progress using loss geometry and propose a language-aware
method to improve the optimization procedure.

On the other hand, multilingual models can be treated as multi-task learning methods (Ruder, 2017;
Zamir et al., 2018). Prior work have studied the optimization challenges of multi-task training (Hes-
sel etal., 2019; Schaul et al., 2019), while others suggest to improve training quality through learning
task relatedness (Zhang & Yeung, 2012), routing task-specifc paths (Rusu et al., 2016; Rosenbaum
et al., 2019), altering gradients directly (Kendall et al., 2018; Chen et al., 2018a; Du et al., 2018;
Yu et al., 2020), or searching pareto solutions (Sener & Koltun, 2018; Lin et al., 2019). However,
while these methods are often evaluated on balanced task distributions, multilingual datasets are
often unbalanced and noisy. As prior work have shown training with unbalanced tasks can be prone
to negative interference (Ge et al., 2014; Wang & Carbonell, 2018), we study how to mitigate it in
large models trained with highly unbalanced and massive-scale dataset.

6 CONCLUSION

In this paper, we systematically study loss geometry through the lens of gradient similarity for mul-
tilingual modeling, and propose a novel approach named GradVac for improvement based on our
findings. Leveraging the linguistic proximity structure of multilingual tasks, we validate the as-
sumption that more similar loss geometries improve multi-task optimization while gradient conflicts



can hurt model performance, and demonstrate the effectiveness of more geometrically consistent
updates aligned with task closeness. We analyze the behavior of the proposed approach on mas-
sive multilingual tasks with superior performance, and we believe that our approach is generic and
applicable beyond multilingual settings.
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A DATA STATISTICS

Data Distribution over Language Pairs
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Figure 7: Per language pair data distribution of the dataset used to train our multilingual model. The
yaxis depicts the number of training examples available per language pair on a logarithmic scale.

We select 25 languages (50 language pairs) from our dataset to be used in our multilingual models
for more careful studies on gradient trajectory. For such purpose, we pick languages that belong
to different language families (typologically diverse) and with various levels of training data sizes.
Specifically, we consider the following languages and their details are listed in 4: French (fr), Span-
ish (es), German (de), Polish (pl), Czech (cs), Macedonian (mk), Bulgarian (bg), Ukrainian (uk),
Belarusian (be), Russian (ru), Latvian (Iv), Lithuanian (It), Estonian (et), Finnish (fi), Hindi (hi),
Marathi (mr), Gujarati (gu), Nepali (ne), Kazakh (kk), Kyrgyz (ky), Swahili (sw), Zulu (zu), Xhosa
(xh), Indonesian (id), Malay (ms).

Our corpus has languages belonging to a wide variety of scripts and linguistic families. The selected
25 languages belong to 10 different language families (e.g. Turkic versus Uralic) or branches within
language family (e.g. East Slavic versus West Slavic), as indicated in Figure 1 and Table 4. Families
are groups of languages believed to share a common ancestor, and therefore tend to have similar
vocabulary and grammatical constructs. We therefore utilize membership of language family to
define language proximity.

In addition, our language pairs have different levels of training data, ranging from 10° to 10° sen-
tence pairs. This is shown in Figure 7. We therefore have four levels of data sizes (number of
languages in parenthesis): High (7), Medium (8), Low (5), and Extremely Low (5). In particular,
we consider tasks with more than 108 to be high-resource, 107 — 108 to be medium-resource, and
rest to be low-resource (with those below 5 million sentence pairs to be extremely low-resource).
Therefore, our dataset is both heavily unbalanced and noisy, as it is crawled from the web, and thus
introduces optimization challenges from a multi-task training perspective. These characteristics of
our dataset make the problem that we study as realistic as possible.

B TRAINING DETAILS

For both bilingual and multilingual NMT models, we utilize the encoder-decoder Transformer
(Vaswani et al., 2017) architecture. Following prior work, we share all parameters across all lan-
guage pairs, including word embedding and output softmax layer.

To train each model, we use a single Adam optimizer (Kingma & Ba, 2014) with default decay
hyper-parameters. We warm up linearly for 30K steps to a learning rate of le-3, which is then
decayed with the inverse square root of the number of training steps after warm-up. At each training
step, we sample from all language pairs according to a temperature based sampling strategy as in
prior work (Lample & Conneau, 2019; Arivazhagan et al., 2019). That is, at each training step, we

sample each sentence from all language pairs to train proportionally to P; = (ZL.iLj )%, where L; is
J

the size of the training corpus for language pair i and T is the temperature. We set T=5 for most of
our experiments.
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Language Id  Language Family Data Size | Language Id  Language Family  Data Size
French fr Western European High Finnish fi Uralic High
Spanish es  Western European High Hindi hi Indo-Iranian Medium
German de  Western European High Marathi mr Indo-Iranian Ex-Low
Polish pl West Slavic High Gujarati gu Indo-Iranian Low

Czech cs West Slavic High Nepali ne Indo-Iranian Ex-Low
Macedonian mk South Slavic Low Kazakh kk Turkic Low

Bulgarian bg South Slavic Medium Kyrgyz ky Turkic Ex-Low

Ukrainian uk East Slavic Medium Swahili sW Benue-Congo Low

Belarusian  be East Slavic Low Zulu zu Benue-Congo Ex-Low
Russian ru East Slavic High Xhosa xh Benue-Congo Ex-Low
Latvian Iv Baltic Medium | Indonesian id  Malayo-Polynesian High

Lithuanian It Baltic Medium Malay ms Malayo-Polynesian ~ Medium

Estonian et Uralic Medium

Table 4: Details of all languages considered in our dataset. Notice that since German (Germanic)
is particularly similar to French and Spanish (Romance), we consider a larger language branch for
them named “Western European”. “Ex-Low” indicates extremely low-resource languages in our
dataset. We use BCP-47 language codes as labels (Phillips & Davis, 2006).

Language Id Language Family Data Size Validation Set

French fr Romance 41M newstest2013
Spanish es Romance 15M newstest2012
Russian ru Slavic 38M newstest2018
Czech cs Slavic 37M newstest2018
Latvian Iv Baltic 6M newstest2017
Lithuanian 1t Baltic 6M newstest2019
Estonian et Uralic 2M newstest2018
Finnish fi Uralic 6M newstest2018

Table 5: Details of all languages selected from WMT for gradient analysis.

C ADDITIONAL RESULTS ON WMT

C.1 DATA

We experiment with WMT datasets that are publicly available. Compared to our dataset, they only
contain a relatively small subsets of languages. Therefore, we select 8 languages (16 language pairs)
of 4 language families to conduct the same loss geometries analysis in Section 2. These languages
are detailed in Table x5: French (fr), Spanish (es), Russian (ru), Czech (cs), Latvian (lv), Lithuanian
(It), Estonian (et), Finnish (fi). We collect all available training data from WMT 13 to WMT 19,
and then perform a deduplication process to remove duplicated sentence pairs. We then use the
validation sets to compute gradient similarities. Notice that unlike our dataset, WMT validation sets
are not multi-aligned. Therefore, the semantic structures of these sentences may introduce an extra
degree of noise.

C.2 VISUALIZATION

As in Section 2, we compute gradients on the validation sets on all checkpoints and averaged across
all checkpoints to visualize our results. We use similar setups to our previous analysis, including
model architectures, vocabulary sizes, and other training details. The main results are shown in
Figure 8. Similar to our findings in Section 2, gradient similarities cluster according to language
proximities, with languages from the same language family sharing the most similar gradients on
the diagonal. Besides, gradients in the English to Any directions are less similar compared to the
other direction, consistent with our above findings. Overall, despite the scale being much smaller in
terms of number of languages and sizes of training data, findings are mostly consistent.
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Figure 8: Cosine similarities on WMT dataset averaged across all training steps.
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Figure 9: Cosine similarities (on Transformer-Base models) of xx-en language pairs on WMT dataset
averaged across all training steps.

C.3 VISUALIZATION ON SMALLER MODELS

Prior work has shown languages fighting for capacity in multilingual models (Arivazhagan et al.,
2019; Wang et al., 2020b). Therefore, we are also interested to study the effect of model sizes
on gradient trajectory. Since our larger dataset contains 25 language pairs in a Transformer-Large
model, we additionally train a Transformer-Base model using the 8 language pairs of WMT. We
visualize it in Figure 9 and find that our observed patterns are more evident in smaller models.
This finding is consistent across other experiments we ran and indicates that languages compete for
capacity with small model sizes thereby causing more gradient interference. It also shows that our
analysis in this work is generic across different model settings.

D ADDITIONAL RESULTS ON OUR DATASET

In Figure 1 we show visualization on models trained using Any—En language pairs. Here, we
also examine models trained in the other direction, En—Any. As shown in Figure 10, we have
similar observations made in Section 2 such that gradient similarities cluster strongly by language
proximities. However, the en-xx model has smaller scales in cosine similarities and more negative
values. For example, Nepali shares mostly conflicting gradients with other languages, except for
those belonging to the same language family. This is in line with our above discussion that gradient
interference may be a source of optimization challenge, such that the en-xx model is harder to train
than the xx-en model.
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Figure 10: Cosine similarities of decoder gradients between en-xx language pairs averaged across
all training steps. Darker cell indicates pair-wise gradients are more similar.
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Figure 11: Cosine similarities of decoder gradients between en-xx language pairs averaged across
all training steps. Darker cell indicates pair-wise gradients are more similar. Model trained with
smaller batch sizes.

Moreover, while our previous models are trained using a large batch size for better performance (as
observed in prior work (Arivazhagan et al., 2019)), we also evaluate gradients in a model trained
with smaller batches (125k tokens) in Figure 11. Compared to model trained with larger batch sizes,
this model enjoy similar patterns but with smaller gradient cosine similarity values, indicating that
gradients are less similar. This presents an additional potential explanation of why larger batch sizes
can be more effective for training large models: they may better reflect the correct loss geometries
such that gradients are less conflicting in nature. For our case, this means larger batches better reflect
language proximities hence gradients of better quality.

Finally, these results also reveal that gradient similarities are mostly dependent on task relatedness,
as even sentence pairs with identical semantic meanings can have negative cosine similarities due to
language differences.
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Algorithm 1 GradVac Update Rule

1: Require: EMA decay 3, Model Components M = {6}, }, Tasks for GradVac G = {7;}

2: Initialize model parameters
3: Initialize EMA variables 6.) = 0,Vi, j, k
4: Initialize time step t = 0
5: while not converged do
6:  Sample minibatch of tasks B = {7;}
7. for 8, € M do
8: Compute gradients g;, < Vo, L7;,VT; € B
9: Set gl < ik
10: for 7, € GN B do
11: for 7, € B\ 7; in random order do
. gik Bik
12: Compute 15y ey
t
13: if d)(Jk < qﬁgﬁc then

2 (t t t (t)
g5 11 /1= (002 =00\ /1= (802

. !/ !/ )
14: Set g;;, = gix + el /=302 " 8jk
15: end if A
16: Update (") = (1 — B)d55) + 8ol
17: end for
18: end for
19: Update 6y, with gradient > _ g/,

20:  end for

21: Updatet ¢+ 1
22: end while
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E PROPOSED METHOD DETAILS

In this part, we provide details of our proposed method, Gradient Vaccine (GradVac). We first show
how to derive our formulation in Eq. 2, followed by how we instantiate in practice. And last, we
also study its theoretical property.

E.1 METHOD DERIVATION

As stated in Section 3, the goal of our proposed method is to align gradients between tasks to
match a pre-set target gradient cosine similarity. An example is shown in Figure 12, where we
have two tasks 7, j and their corresponding gradients g; and g; have a cosine similarity of ¢;;,

ie. cos(d) = ¢i; = %. Then, we want to alter their gradients, such that the resulting new
i J
gradients have gradient similarity of some pre-set value ¢27; To do so, we replace g; with a new

vector in the vector space spanned by g; and g, g, = a1 - g; + ag - g;. Without loss of generality,

we set a; = 1 and solve for as, i.e. find the ay such that cos(y) = S8l =

T B :
= = Q;.. using Laws
e/ Me; T ij+ DY usIng

of Sines, we must have that:

Igill _ _asllg;ll
sin(y)  sin(6 — )’ @

and thus we can further solve for as as:

Igill _ asllg;ll
sin(y)  sin(f —7)
lgill az||g;ll
sin(y)  sin(0) cos(y) — cos(6) sin(y)
lgill az||g; |l

1= (6F)2 6T\ [1— 62, — dujy /1 — (o7)2

Igill (974/1 = 63 — dijy/1 = (6;)?)
lgilly/1— (¢7;)?

We therefore arrive at the update rule in Eq. 2. Our formulation allows us to set arbitrary target
values for any two gradients, and thus we can better leverage task relatedness by setting individual
gradient similarity objective for each task pair. Notice that we can rescale the gradient such that the
altered gradients will have the same norm as before. But in our experiment we find it is sufficient to
ignore this step. On the other hand, we note that when @Tj = 0, we have that:

Igill (6554/1 — 07 — diy /1 — (#7)?)
Ilg;lly/1 = (85;)
_ gl (0= ¢4)
18
__8i'g sl
lgillllesll lle;ll
_ _Bi'8j
18512

=

= a9 =

az

This is exactly the update rule of PCGrad in Eq. 1. Thus, PCGrad is a special case of our proposed
method.

E.2 ALGORITHM IN PRACTICE

Our proposed method is detailed in Algorithm 1. In our experiments on multilingual NMT and
multilingual BERT, we utilize a set of exponential moving average (EMA) variables to set proper
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az - g;

Figure 12: Pictorial description of our method.

pair-wise gradient similarity objectives, as shown in Eq. 3. This is motivated by our observations
in Section 2 such that gradients of different languages in a Transformer model evolve across layers
and training steps. Therefore, we conduct GradVac on different model components independently.
For example, we can do one GradVac on each layer in the model, or just perform a single GradVac
on the entire model. In addition, we also introduce an extra degree of freedom by controlling which
tasks to perform GradVac. This corresponds to selecting a of tasks G and only alter gradients for
tasks within this set, as shown in line 10 in Algorithm 1. Empirically, we find performing GradVac
by layers and on low-resource languages to work generally the best (See Appendix F for detailed
discussion).

E.3 THEORETICAL PROPERTY

Finally, we analyze the theoretical property of our method. Supper we only have two tasks, and
their losses are £; and Lo, and we denote their gradient cosine similarity at a given step as ¢1s.
When ¢15 is negative, our method is largely equivalent to PCGrad and enjoy PCGrad’s convergence
analysis. Thus, here we consider the other case when ¢15 is positive and show that:

Theorem 1. Suppose L1 and Lo are convex and differentiable, and that the gradient of L is Lipschitz
continuous with constant L > 0. Then, the GradVac update rule with step size’ t < m and

. 4T
t < 4, % (p12 > 0 and ¢p1, > ¢1o is some target cosine similarity), will
12

converge to the optimal value L(0*).

where a =

Proof. Let gy = VL, and g5 = VL, be gradients for task 1 and task 2 respectively. Thus we have
g = g1 + g2 as the original gradientand g’ = g + a H:TH g1 +a HE;H go as the altered gradient by
the GradVac update rule, such that:

_ sin(¢12) cos(¢1y) — cos(¢p12) sin(¢1s)

sin(¢1T2)

&)

where ¢7, is some pre-set gradient similarity objective and ¢I, > ¢1o (thus @ > 0 since we only
consider the angle between two gradients in the range of 0 to 7).

Then, we obtain the quadratic expansion of L as:
1
LOT) < LO)+VLO)T (O —0)+ 5v2£(0)||¢9+ —0)? (6)
and utilize the assumption that V £ is Lipschitz continuous with constant L, we have:

L) < £0) + VLB (07 - 6) + 5 LI6" — 0] a)

"Notice that in reality a® will almost always be smaller than 1 and thus it is sufficient to assume ¢ < %
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Thus, we plug in the update rule of GradVac to obtain:

£(9+) < ﬁ(@) —t-gT(g+ HgQH g +a ”gl” )+ LtZH Hg2”g1 _|_a||g1||g2||2
g 2] ® Yl g2
(Plug in g = g1 + go and re-arrange terms)
1+a
=L(0) - (t - Lt? + agra(t — Lt*))(llg1]|* + llg2])

— (2a(t - LtQ) +¢12(2t — Lt*(1+a*)) (g - llg2l)
1+a 9 2 1+CL2 2
=LO)— (- Le*) (g [1* + llg2ll®) — 2¢12(t — L") (g1l - g2l

— (agr2(t — Lt2))(llg1||2 +lg201?) — (2a(t — Lt*) (g1l - g2
(Remove non-positive terms)

< £0) — (L L)+ leal®) — 26000~ L) - )
= £(0) ~ (t = L) g P + el + 262l - g )

— () (t- ”“ L) (g1 + llgall? + 281 - g2)

—£0)— (¢ - L) gy 1 ol

— (o) (t- ”“ Lt2) g

The last line implies that if we choose learning rate ¢ to be small enough ¢ < 7y, We have

2
L(14a

2
that t — 2221t > 0 and thus £(#") < L£(6) (unless the gradient has zero norm). This tells us
applying update rule of GradVac can reach the optimal value £(6*) since the objective function

strictly decreases. [
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| en-fr en-cs en-hi en-tr avg
GradVac w. HRL_only | 39.07 21.51 1492 19.63 23.78

GradVac w. LRL_only | 39.27 21.67 14.88 19.73 23.89
GradVac w. all_task 38.85 21.47 1448 1975 23.64

Table 6: Comparing which tasks to be included for GradVac. Parameter granularity fixed at all_layer
while f=1e-2.

‘ en-fr en-cs en-hi en-tr avg
GradVac w. whole_model | 38.76 21.32 14.22 18.89 23.30
GradVac w. enc_dec 39.05 21.73 1454 19.33 23.66
GradVac w. all_layer 39.27 21.67 14.88 19.73 23.89
GradVac w. all_matrix 38.95 2156 14.57 19.01 23.52

Table 7: Comparing parameter granularity for GradVac. GradVac tasks fixed at LRL_only while
B=1e-2.

| en-fr en-cs en-hi en-tr avg
GradVac w. =le-1 | 38.72 20.74 1452 19.25 23.31
GradVac w. g=1e-2 | 39.27 21.67 14.88 19.73 23.89
GradVac w. p=1e-3 | 38.85 2096 14.85 19.68 23.59

Table 8: Comparing EMA decay rate 8 for GradVac. Parameter granularity fixed at all_layer and
GradVac tasks fixed at LRL_only.

F HYPER-PARAMETER SETTINGS

Here, we show how we choose the best hyper-parameter setting for our method. As discussed in
Appendix E, there are three hyper-parameter settings for our implementation: (1) which tasks to be
considered for GradVac, (2) which layers to measure EMA and perform GradVac, (3) EMA decay
rate. Due to the scale of our model on the larger dataset, we use the smaller scale WMT dataset to
find the optimal setting and transfer to other experiments. We do this by grid search using average
perplexity on the validation set. Below, we demonstrate part of our results for each hyper-parameter
to choose from.

First, we examine the effect of what tasks to include for GradVac, i.e. G in Algorithm 1. We consider
three options: (1) HRL_only: only perform GradVac on high-resource languages, (2) LRL _only:
only perform GradVac on low-resource languages, (3) all_task: perform GradVac on all languages.
Results are shown in Table 6. We find that only conducting GradVac on a subset of languages obtain
better performance while it is the best to conduct GradVac on low-resource language only. This is
probably because the effective batch sizes of low-resource languages are usually smaller due to the
sampling strategy.

Next, we compare the effect of parameter granularity on model quality. This corresponds to set-
ting different model components for GradVac (M in Algorithm 1). We consider four possibilities,
from coarse to fine-grained: (1) whole_model: only perform GradVac once on the entire model, (2)
enc_dec: perform separately for encoder and decoder, (3) all_layer: perform individually for each
layer in encoder and decoder, (4) all_matrix: perform for each parameter matrix in the model. As
shown in Table 7, we find that choosing proper parameter granularity is important, as neither too
coarse nor too fine-grained perform the best. This is consistent with our observation made in Sec-
tion 2. However, we note that our settings are based on NLP tasks and Transformer networks, and
therefore the best overall setting for problems of other domains may vary.

Finally, we study how sensitive our method is on the hyper-parameter (3, i.e. the EMA decay rate.
Results in Table 8 illustrate that setting an effective “window” of 100 training steps work best for
our problem setups. This is expected, as setting a larger 8 value corresponds to conduct GradVac

21



| ar bg de en es fr hi hu mr ta te vi avg

mBERT 842 947 927 910 938 933 880 919 833 803 904 792 88.6
+ GradNorm | 83.5 947 923 91.0 936 932 882 914 830 805 90.6 79.1 884

+ MGDA 844 945 923 904 935 927 881 923 834 805 902 787 884

+ PCGrad 83.7 948 926 915 942 928 885 917 837 805 908 794 887

+ GradVac 84.1 950 93.6 917 944 939 885 924 835 79.8 909 795 889

Table 9: F1 on the POS tasks of the XTREME benchmark.

more aggressively, and vice versa. In general, we find our best settings to be consistent across tasks
in this paper.

G XTREME EXPERIMENTS

G.1 FINETUNING DETAILS

We also conduct experiments on the XTREME benchmark (Hu et al., 2020) for cross-lingual trans-
fer tasks. While other work mostly focus on zero-shot cross-lingual transfer (finetune on English
training data and then evaluate on the target language test data), we use a different setup of multi-
task learning such that we finetune multiple languages jointly and evaluate on all languages. Notice
that our goal is not to compare with state-of-the-art results on this benchmark but rather to examine
the effectiveness of our proposed method on pre-trained multilingual language models. We therefore
only consider tasks that contain training data for all languages: named entity recognition (NER) and
part-of-speech tagging (POS).

The NER task is from the WikiAnn (Pan et al., 2017) dataset, which is built automatically from
Wikipedia. A linear layer with softmax classifier is added on top of pretrained models to predict the
label for each word based on its first subword. We report the F1 score. Similar to NER, POS is also
a sequence labelling task but with a focus on synthetic knowledge. In particular, the dataset we used
is from the Universal Dependencies treebanks (Nivre et al., 2018). Task-specific layers are the same
as in NER and we report F1. We select 12 languages for each task randomly.

We use the multilingual BERT (Devlin et al., 2018) as our base model, which is a Transformer
model pretrained on the Wikipedias of 104 languages using masked language modelling (MLM). It
contains 12 layers and 178M parameters. Following Hu et al. (2020), we finetune the model for 10
epochs for NER and POS, and search the following hyperparameters: batch size {16, 32}; learning
rate {2e-5, 3e-5, 5e-5}.

G.2 POS RESULT

We evaluate all multi-task baselines on the POS tasks in Table 9. We find that our proposed method
outperforms other methods on average, consistent with results in other settings (Section 4).
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