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A COMPUTATIONAL STUDY OF PRECONDITIONING
TECHNIQUES FOR THE STOCHASTIC DIFFUSION EQUATION
WITH LOGNORMAL COEFFICIENT
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Abstract. We present a computational study of several preconditioning techniques for the GM-
RES algorithm applied to the stochastic diffusion equation with a lognormal coefficient discretized
with the stochastic Galerkin method. The clear block structure of the system matrix arising from
this type of discretization motivates the analysis of preconditioners designed according to a field-
splitting strategy of the stochastic variables. This approach is inspired by a similar procedure
used within the framework of physics based preconditioners for deterministic problems, and its
application to stochastic PDEs represents the main novelty of this work. Our numerical investi-
gation highlights the superior properties of the field-split type preconditioners over other existing
strategies in terms of computational time and stochastic parameter dependence.
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1. Introduction

In the last decade, stochastic partial differential equations (SPDEs) have at-
tracted great attention from the scientific community, due to their ability to take
into account uncertainties entering the problem through the input data. These
sources of uncertainty may arise for instance from boundary and initial conditions,
coefficients, forcing terms, or intrinsic randomness of the processes as in the case of
heterogeneous media [1, 2, 3, 4, 5, 6]. The solutions of SPDEs allows to characterize
the mean, variance and in general the probability density function of quantities of
interest in the post-processing phase [7, 8, 9]. Among a wide variety of numeri-
cal methods for solving SPDEs [10], a popular approach is the stochastic Galerkin
method (SGM), where a Galerkin projection is employed to approximate the infinite
dimensional stochastic space with a finite dimensional one, spanned by appropriate
basis functions [11].

In this work, we focus on the efficient numerical solution of the stochastic dif-
fusion equation with a lognormal coefficient, arising for instance in the framework
of groundwater flows, where the permeability coefficient is often considered to be
lognormal [12; 13]. Using the SGM with a polynomial chaos expansion of the
exponential coefficient, the resulting stiffness matrix is block dense, due to the non-
linearity of the coefficient [14], and ill-conditioned with respect to the mesh size and
to the stochastic parameters such as the standard deviation of the input lognormal
field [15, 16, 17, 18]. The aforementioned properties of the matrix require the de-
sign of ad hoc preconditioned solvers for the efficient solution of the SGM system.
When the stochastic diffusion problem is well-posed, regardless of the type of co-
efficient projected onto the stochastic basis, the SGM system matrix is symmetric
and positive definite, hence a huge variety of preconditioned conjugate gradient
(PCG) solvers has been proposed in the literature [19, 20, 21, 22, 15, 23, 9, 24].
As pointed out in [14] however, the density of the matrix given by a lognormal
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coefficient makes the use of PCG methods problematic, given that for every PCG
iteration a matvec operation has to be performed. On the other hand, in two recent
studies very relevant to our framework [15, 14], the preconditioned GMRES algo-
rithm has been shown to perform better than PCG in terms of both solution time
and dependence on the stochastic parameters for a stochastic diffusion equation
with lognormal coefficient. In the above mentioned studies, the diffusion problem
is reformulated as a convection-diffusion problem with the result that the nonlinear
coeflicient is transformed into a linear one, and the resulting matrix gains sparsity,
while losing symmetry. The gain in sparsity is due to the fact that the system
matrix is obtained from the discretization of a stochastically linear problem, hence
the result is a block sparse matrix with at most 2N + 1 non zero blocks per row
[15], with N being the number of stochastic variables. The preconditioned GMRES
from [15] and [14] showed independence on spatial discretization and most stochas-
tic parameters, however a mild but relevant influence on the standard deviation of
the input lognormal field was observed (with the number of iterations going from
6 to 27 in the worst case scenario in [15]). Hence, the important work done in
the two studies described above motivated our choice of studying the performances
of a preconditioned GMRES algorithm rather than a PCG as most studies in the
literature have done. We also mention [25] for a work that has employed a flexible
GMRES algorithm as a solver.

After choosing the solver, the next crucial step is the choice of appropriate pre-
conditioners. Several different strategies have been carried out for this task, with
the most popular possibly being the so called mean-based preconditioner [26, 9].
Variants of the mean-based preconditioner have also been designed [18]. More-
over, domain decomposition type methods have also been used as preconditioning
techniques [21, 19, 25], as well as low-rank approaches [20] and other approaches
such as multigrid [23, 24]. In particular, the extensive study on iterative solvers
for stochastic PDEs carried out in [23] reported that for the case of a lognormal
field, only a CG solver preconditioned with multigrid with a block Gauss-Seidel
smoother showed robust convergence, i.e. close to steady number of iterations, as
the other approaches considered suffered a dependence on the stochastic parame-
ters, such as the variance of the input field. The study in [23] also concluded that
for large problems, multigrid type methods should be preferred. Hence, in light of
[23], in the present study we decided to consider preconditioners of multigrid type,
specifically geometric multigrid. For completeness, we also mention works that em-
ployed geometric or algebraic multigrid as a solver, although not in the context of
a lognormal diffusion coefficient [1, 27].

The major novelty of this work is the introduction of block preconditioners for
the multigrid smoother with a structure arising from using the stochastic modes as
a field-splitting (F'S) strategy. This approach is motivated by promising results on
FS preconditioners for deterministic PDEs obtained by the authors in a series of
papers [28, 29, 30, 31]. When used on deterministic PDEs, the FS strategy yields a
block structure associated with the physical variables on the physical domain. On
the other hand, here the stochastic modes are used in an analogous way as physical
variables for the splitting strategy. The FS approach can also be applied directly
as a preconditioner for the GMRES algorithm although, as it will be shown, the
best computational performances are obtained if FS is used within the framework
of geometric multigrid, i.e. on the smoother. To the best of our knowledge, this is
the first work to perform a computational analysis of the performances of GMRES
preconditioned with geometric multigrid in the framework of SPDEs. Because from
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now on we will be dealing only with geometric multigrid, MG will implicitly refer
to its geometric variant.

The paper is organized as follows: Section 2 presents the mathematical formula-
tion of the stochastic diffusion problem with lognormal coefficient and its weak form,
discretized with the stochastic Galerkin method. In Section 3, five preconditoned
GMRES solvers are introduced, including those using F'S, and their implementation
is discussed. In Section 4, the performance of the solvers introduced in the previous
section is assessed through a thorough numerical study, focusing on computational
time, number of iterations, and their dependence on the spatial parameter and
stochastic parameters. Finally, conclusions are drawn in the last section.

2. Numerical Modeling

Let (©, F,P) be a probability space, where (2 is the set of outcomes, F C 2%
is the o-algebra of events, and P : F — [0,1] is a probability measure. We define
the spatial domain D C R? d = 1,2,3 and denote its boundary with dD. Then,
a general stochastic diffusion problem reads: find v : D x © — R such that the
following equations hold P-almost everywhere in {2

(1) -V (a(z,w)Vu(z,w)) = f(z), in D x Q,
(2) u(x,w) =0, on 0D x Q.

Note that, for simplicity, we only consider the stochastic contribution coming
from the coefficient function and not from the forcing term. To guarantee that
the problem in (1) is well-posed, we make the following assumptions, similar to
[10, 32, 6, 33, 8],

Assumption 1. The coefficient function a(x,w) in system (1) has the following
properties:

1. There exists a positive constant amin < 00 such that ami, < a(x,w) almost
surely on , for allx € D.

2. a(z,w) = a(z,y(w)) in DxQ, where y(w) = (y1(w), y2(w), ..., yn (w)) is a vector
of real-valued uncorrelated random variables.

3. a(x,y(w)) is measurable with respect to y.

We recall that a statement is true almost surely if the only set on which it does
not hold has zero probability measure. For any n =1,..., N, let T';, := y,(Q) € R,
and denote the probability density function (PDF) of y, by pn(yn) : I, — RT.
Then the joint image of {y, (w)}"_; can be defined as I := UTJLI T, with the joint
PDF p(y): T — R*.

2.1. Lognormal random field. Define the random field v(x, y(w)) as,

(3) V(@ y(w)) = log(a(z, y(w)) — amin),

where a(x,y(w)) is the random field in Eq. (1) satisfying Assumption 1. The
truncated Karhunen-Loeve (KL) expansion [34, 35, 36] is used to approximate =,
yielding

N
(4) Y@, y(W)) & Yier (@, y(W) == py + YV Abn(@)yn (y(w)),
n=1

where 1, is the mean of y(z,y(w)), (An, by(z)) is the n'" eigenpair of the co-
variance function of v(x,y(w)) whose eigenvalues ), are positive, and listed in
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non-increasing order. It follows that the stochastic coefficient a(x,y(w)) can be
rewritten as

(5) a(@, y(w)) = amin + exp(y(,y(w))),
and approximated by

N
(6)  a(z,y(w)) ~axr(x,y(w)) = @min + exp (uw + Z \/Ebn(w)yn(w))

Throughout the paper we assume that y is Gaussian, hence the random variables
{Yn (w)}ﬁzl are standard independent and identically distributed. It follows that
the random field v(x, y(w)) is Gaussian and so a(x, y(w)) is lognormal. The eigen-
pair (A, b, (x)) is obtained with the solution of the following generalized eigenvalue
problem

(7) /D Cy(z, &)by (x)dx = Apby (Z),

where C, (z, &) is the covariance function of the field v(«, y(w)). Here the covari-
ance function of y(x, y(w)) is assumed to be
1,8

Sy 2 N
(8) Cv(m,a:)Jwexp{—IT(Z;xi—xﬂ)],
where 0., denotes the standard deviation of v(x,y(w)), d is the dimension of the
spatial variable and L. > 0 is a correlation length satisfying L. < diam(D). Details
on how to solve Eq. (7) using a Galerkin procedure can be found in [8]. For ease
of notation, from now on we will drop the w from all y(w) and y, (w).

2.2. The Stochastic Galerkin Method. The weak formulation of the stochastic
diffusion problem consists of finding u(z,y) € W = H(D) @ L*(T) satisfying

// (x, y)Vu(z,y)Vo(z, y)dedy = //fwy (z, y)p(y)dzdy

for all v(x,y) € W.

The above equation can be discretized with the SGM introducing a finite dimen-
sional space to approximate the infinite dimensional space L?(T"). Let p € N denote
the polynomial order of the associated approximation and let P, (I') C L*(T) be
a multivariate polynomial space over I" associated with the index set J(p), defined
by

N
(10) PrpT) = Span{ [ |pedw,ume Fn},
n=1

with p = (p1,pa,...,pn). In this work the index set is chosen as

(11) J(p)={p€NN‘ ipnép}-

n=1
Other choices of J(p) are possible, see for instance [37] and [10]. The dimension of
Prp () is finite and is given by M, = (N + p)!/(N!p!). With the finite element
space V,(D) C Hg(D) and the finite dimensional polynomial space Pz, (I') C
L?*(I), the approximate solution up, € Wy, = Vi(D) @ Pr(p)(T') of the discrete
weak formulation satisfies

(12) / /D a2, 4) Vaunp (2, y) Vorp (@, y)dzdy = / /D £ (@, y)onp(@, y)ply) dedy
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for all vpp(,y) € Wh.

For V,,(D), we choose piecewise continuous biquadratic polynomials {@(w)}jl 1
whereas for Pz, (I"), we choose multivariate Hermite polynomials {1, (y)}pes(p)-
The multivariate polynomials are obtained in a tensor product fashion from the
univariate probabilist Hermite polynomials, which are appropriately scaled so that
they form an orthonormal basis with respect to the PDF [8, 10]

ex —2
(13) (o) = 2L,

This choice is motivated by the assumption of Gaussian distributed input. The
orthonormal relation means

(14) /leh (yn)ij (yn)pn(yn)dyn = §ij7

where d;; is the Kronecker’s delta. With the two bases introduced, the discrete
solution up, can then be written as

(15) Unp (T, y) Z ZUPJ¢] (y) = Z up(@)Pp(y),

pEJ (p) 3= PEJ (p)

where we define
h
(16) Uup(x) = Zunj(z’j(w)a up = [up1,Up2, .. Up,J,]-

The deterministic function uy, is the finite element solution corresponding to the
p'? stochastic mode and wu,, is the vector of its nodal values. Then substituting Eq.
(15) into Eq. (12), the following linear algebraic system is recovered

a7) (/A on(w) ()o(w)d )ty = [ Fi(wow)a,
p’'ed(p
where A;(y) = [,a(x,y)Vo;(x) - Vo (x)de and f; = [, f(x)¢;(x)dz, for
Ji'=1... Jh
As in [10, 15], we use a generalized polynomial chaos expansion [38] for the
coefficient axr(x,y) in Eq. (6): for any g € N, it is computed as

(18) arxL(T,y) = Z aq(®)1bq(y),
q9€J(q)

where ag(x) = [raxr(®,y)Yq(y)p(y)dy. Note that the larger ¢ is, the more
accurate the projection of the random field will be, however the resulting system
matrix will have a denser sparsity pattern, see [10]. Substituting Eq. (18) in the
expression of A; ;/(y) yields, for all j, 7' =1,..., J,

(19) Z Paly / (D)V5(x) - Vo (@)dz = 3 ve(w)[Aglis
qeTJ (q qe T (q)

where [Aglj ;0 = [, aq(x)Vo;(x) - Vi (z)dx can be computed component-wise
using a quadrature rule over J, elements. Replacing A(y) in Eq. (17) with Eq.
(19), we obtain for all p’ € J(p),

(20) S 5 | [Halawin o) u, = 5y

p'€J(p) a€T(9)
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where Fr = fF T (y)p(y)dy. Let us define
Q) (Galy = [ Gy @p@plyldy ad K= 3 Go @A)
r q<J(q)

where @) denotes the Kronecker product. Then Eq. (20) can be rewritten in matrix
form as

(22) Ku=F.

Note that the stochastic stiffness matrix K in Eq. (22) is symmetric positive-definite
and consists of (]V[p)2 block matrices, i.e.,

Kipn Kip - Kinm,
Kyy Koi -+ Ko,
Ky,1 Kua2 o0 Kuyou,

where each block K; ; has the size of [4,], i.e. J, x Jp, so the size of K is MpJp, x
M,Jp. Recall that for the finite element space Vj, (D), we have chosen piecewise
continuous biquadratic polynomials, which for a structured mesh in 2D produce a
25-point stencil. This means that each row of K will have M, X 25 non zero entries.
Moreover, as pointed out for instance in [16], K is badly conditioned with respect
to the input standard deviation o.,, the finite element mesh size h, and the total
degree p of the stochastic basis.

3. Preconditioned GMRES solvers

The system (22) resulting from the discretization of the stochastic diffusion equa-
tion is solved with the GMRES algorithm preconditioned with MG. On each multi-
grid level, the iterative solver below is employed as a smoother

(24) ul = u® 4 p~Y(F — Ku®),

where ¢ = 1,...,%max, tmax = 1 unless otherwise stated, and P! represents the
action of an appropriate preconditioner. At the coarsest level, a direct solver is
used in place of Eq. (24). Two different strategies are used to select P. With the
first, P is the incomplete LU (ILU) factorization of the whole matrix K, whereas
with the second P is a matrix obtained according to an FS strategy, as explained
next. With this second approach, it is required to invert diagonal blocks of a ma-
trix, and these inverse matrices are approximated using an ILU factorization. The
solver obtained using the ILU factorization directly on K is labeled G-M-I (because
GMRES is preconditioned by MG with level solver in Eq. (24) preconditioned by
ILU), whereas the one obtained using FS is denoted by G-M-F-I (because GMRES
is preconditioned by MG with level solver in Eq. (24) preconditioned by FS and
then ILU is used to approximate the inverses of the diagonal blocks). Consider-
ing that the G-M-I approach is fairly standard and well established, we focus on
the field-split type preconditioners, which are the main novelty of this work. The
G-M-F-I is obtained with the most straightforward splitting strategy: to each sto-
chastic mode (also referred to as field) we associate one split. For instance, if we
have 15 stochastic fields, i.e. M, = 15, then 15 splits are generated, one for each
mode. Hence, referring to the stochastic stiffness matrix K in (23), with G-M-F-I
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Fields

Up,0, Up,1, U2, Up,3, Up,4, U1 0, U1,1, U1,2, U1 3, U0, U2 1, U2 2, U3 0, U3,1, U4 0

l

Fields Split
Split0 Split1 Split2 Split14

Uo,0 o1 Ug,2 . .. U4,0

FIGURE 1. Schematics of the grouping procedure for the G-M-F-I
preconditioned solver.

the iterative solver in (24) is preconditioned with the matrix P below

K, 0 0

Ko Koo -+ 0
(25) J I o .

Ky,n Ku,o -0 Kumym,

This choice of P is usually refereed to as left multiplicative field-split preconditioner.
Because P is a lower triangular matrix, computing its inverse requires to invert only
the diagonal blocks K;; for ¢ = 0,...,M,. As mentioned above, each inverse is
approximated using an ILU factorization. Schematics of the field-splits that make
up the G-M-F-I are shown in Figure 1. A preliminary numerical investigation
showed that the fields obtained from the splitting just described can be grouped
back together to further enhance the performances of the preconditioner. Namely,
a robust and efficient preconditioner can be obtained grouping the fields according
to the leading digits of the N-tuples of J(p). The preconditioned solver that takes
advantage of this approach is labeled G-M-Fg-I. With this new strategy, we aim
to reduce the number of splits for the matrix K, which otherwise grows fast with
N and p, i.e. My = (N +p)!/(Np!), so that the resulting G-M-Fg-I algorithm is
faster and more robust than G-M-F-I.

To illustrate this alternative grouping procedure, we consider the case of N =2
and p = 4, but the technique can be easily generalized to other values of N and p.
For the values of N and p chosen, we have M,, = 15, hence a total of 15 fields. Next
we group the fields based on the same first digit in the multi-index and generate 5
groups: Group0, Groupl, Group2, Group3, and Group4, as showed in Figure 2.

For any group, if there exists one field whose multi-index has all identical digits,
i.e. the red fields in Figure 2, this group will form an new split, otherwise it will be
included in the preceding split. With this principle, three splits are created: Splitl
consisting of Group0, Split2 consisting of Groupl, and Split3 consisting of Group2,
Group3, and Group4. With this grouping method, the preconditioner P used in
Eq. (24) for G-M-Fg-I can be written as

Kg0,90 0 0
(26) P = Kgl,gO K917g1 0 ,
KglgO Kg2,91 Kg2»92

where the inverse of the diagonal sub-blocks Kg; 4i, 2 = 1,...,3, are again approx-
imated by the inverse of their ILU decomposition. Note that the matrices in Eq.



FIELD-SPLIT PRECONDITIONING FOR STOCHASTIC DIFFUSION 227

Fields

Up,0, Uo,1, Up,2, Ug,3, Up 4, U10, U1,1, Ug,2, U1 3, U2, U2 1, U2 2, U3, U3 1, Ug,0

4/»/\

Group0 Groupl Group2 Group3 Group4

Ug,0, Uo,1, Up,2, Up,3, Up 4 Uy, Up1, U2, U3 Uz, Uz1, U2 U3, U3,1 Uy0

Fields Split

Split0 Splitl Split2

Group0 Groupl Group2, Group3, Group4

FIGURE 2. Schematics of the grouping procedure for the G-M-Fg-I
preconditioned solver.

(25) and (26) are the same, but the preconditioning strategies differ in the way vari-
ables are grouped. The ILU decomposition resulting from the grouping described
in Eq. (26) involves larger blocks and this will be shown to have a remarkable effect
on the robustness of the G-M-Fg-I solver with respect to the G-M-F-I, with little
effect on the computational cost per iteration.

To have a well assorted set of preconditioners to compare, we also apply ILU and
FS+ILU directly to the GMRES solver, producing the methods here denoted as G-1
and G-F-I, respectively. These preconditioners can be immediately derived from
the ones already described considering only one level for MG without any coarse
grid correction. In order to boost the performance of the G-F-I preconditioned
solver, and only for this case, we consider ip.x = 50 in Eq. (24) to obtain a more
accurate action of the inverse of each diagonal block K;;. We did not adopt this
choice for G-M-F-I and G-M-Fg-I, because none of them benefited from it in terms
of computational time. The alternative G-Fg-I grouping is not considered because
in a preliminary numerical investigation it exhibited inferior convergence properties
than the G-F-I. A summary of the methods discussed is shown in Figure 3.

4. Computational Investigation

In this section, we apply the five preconditioned solvers discussed in the previous
section to solve the two dimensional stochastic diffusion problem in (1) with f = 1.
The physical domain is a unit square with Dirichlet zero boundary conditions. For
the approximation of the stochastic lognormal coefficient a(ax, y) with the truncated
KL expansion axr(x,y) in Eq. (6) we choose .y = 0, amin = 0.01, and L. = 0.1.
All the numerical simulations have been carried out on a Dell OptiPlex 760 with
SFF/Core 2 Duo E8400 @ 3.00 GHz using FEMuS [39], a in-house open-source finite
element C++ library built on top of PETSc [40], i.e. the solver and preconditioning
tools used here are those made available by PETSc. In the GMRES solver, the
tolerance for the preconditioned residual norm is set to 1071%. We remark that the
true residual norm has also been monitored to check that it went to zero with a
trend similar to the preconditioned residual norm. This ensures that the solutions
of the preconditioned systems are the same once convergence is reached, and they
are not influenced by the specific choice of preconditioner. A V-cycle is used for
the multigrid, with one pre and post-smoothing iteration, i.e. imax = 1 in Eq. (24),
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(a)
S

u
GMRES > ILU
peE J(p)

(b)

GMRES ILU

(c)

u
peJ(p)
(d)

FiGUurRE 3. Building blocks that make up each preconditioned
solver considered in the numerical investigation: (a) G-I (b) G-
F-I (c) G-M-I (d) G-M-F-I (e) G-M-Fg-1.

except for the G-F-I for which iy, = 50. Note that our algorithm is not limited
to the V-cycle multigrid but also applicable to the W-cycle or the F-cycle. All
simulations presented here have been run on a single process. We first investigate
the effect of mesh refinement on the performances of the preconditioners. For this
case, we fix the standard deviation o, = 0.08 in (8), p = 4 in (10), ¢ = 5 in
(18), and the stochastic dimension N = 2 in (4). Starting with a coarse mesh
with 2 x 2 quadrilateral elements indicated as level L = 1, we perform a midpoint
refinement procedure to obtain the subsequent levels. For instance, L = 3 refers to
a mesh with 8 x 8 cells obtained refining L. — 1 times the original coarse mesh. The
numerical results for the computational time and the number of GMRES iterations
are reported in Table 1. The number of GMRES iterations increases dramatically
for G-I and noticeably for G-F-I, showing a rate of convergence that depends on L.
On the other hand, the number of GMRES iterations remains stable for the MG-
type preconditioned solvers, namely G-M-I, G-M-F-I, and G-M-Fg-I, displaying a
rate of convergence that is independent of the mesh size. G-M-F-I and G-M-Fg-I
are the ones that present the best results in terms of computational time among
the methodologies tested, being at least twice faster than the other methods for the
case of L = 6.

Next, the effect of the input standard deviation o, on the robustness and ef-
ficiency of the preconditioned solvers is studied. The input standard deviation is
increased from 0.08 to 1.6, while fixing L = 5, p = ¢ = 5, and the stochastic dimen-
sion N = 2. The finite element solutions associated with the first and the second
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TABLE 1. CPU times [s] and GMRES iterations as the size of the
mesh is decreased, considering 0, = 0.08, p =4, ¢ =5, and N = 2.

Precond. | G-I | G-F-1 | G-M-1 | G-M-F-1 | G-M-Fg-I

0.27 | 0.09 | 0.27 0.13 0.13

L=3 B | B | ™ (7) (7)
1.66 | 0.61 1.28 0.48 0.48

L=4 | (60) | (1) | (7) (7) (7)
11.60 | 4.74 | 5.65 1.84 1.83

L=5 (129) | (16) (7) (6) (6)
142.97 | 59.84 | 26.81 10.20 10.08

L=6 (363) | (40) (7) (6) (6)

TABLE 2. CPU times [s] and GMRES iterations as the input stan-
dard deviation o, is increased, considering L = 5, p = ¢ = 5, and

N =2.
Precond. | G-I | G-F-1 | G-M-I | G-M-F-I | G-M-Fg-I
25.92 | 7.18 | 13.85 3.81 3.81
0,=0.08 | (129) | (16) (7) (6) (6)
26.92 | 7.70 | 13.86 3.82 3.83
0,=0.1 | (135) | (17) (7) (6) (6)
28.25 | 8.82 | 13.86 3.82 3.83
0,=0.2 | (145) | (19) (7) (6) (6)
30.86 | 9.48 | 13.87 4.24 4.29
o,=04 | (163) | (20) (7) (7) (7)
35.02 | 11.59 | 13.88 4.66 4.68
0,=0.8 | (195) | (25) (7) (8) (8)
36.97 | 12.82 | 13.88 5.53 4.72
0,=1.0 | (207) | (28) (7) (10) (8)
40.07 | 14.22 | 13.89 8.42 5.11
o,=14 |(232) | (31) (7) (17) (9)
42.48 | 16.71 | 14.30 11.10 5.14
o,=1.6 | (246) | (37) (8) (23) (9)

U0,0

0.0e+00

— 002

004
006
-8.0e02

Uo,1

)

1.1e-02

— 0.005

o}
-0.005
-1.1e02

FIGURE 4. Graphs of up,0 and ug 1 for the case 0, = 1.6, L = 5,
p=gq=2>5,and N = 2.
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TABLE 3. CPU times [s] and GMRES iterations with ¢, = 0.08 as
the integer p in Eq. (10) is increased, considering level = 5, ¢ = 5,

and N = 2.
Precond. | G-I | G-F-1 | G-M-I | G-M-F-I | G-M-Fg-1
11.60 | 4.74 | 5.65 1.84 1.83
p=4 | (129)| (16) | (7) (6) (6)
25.92 | 7.18 | 13.85 3.81 3.81
p=5_ | (129) | (16) | (7) (6) (6)
52.50 | 10.33 | 30.05 7.01 6.89
p=6_ | (129) | (16) | (7) (6) (6)
97.90 | 14.47 | 61.51 13.37 14.70
p=7_|(129)| (16) | (7) (6) (6)

TABLE 4. CPU times [s] and GMRES iterations with 0., = 0.8 as
the integer p in Eq. (10) is increased, considering level = 5, ¢ = 5,

and N = 2.
Precond. G-I | G-F-1| G-M-I | G-M-F-T | G-M-Fg-1I

15.95 | 7.00 5.66 2.24 2.20

p=4 (193) | (24) | (7) (8) (8)
35.02 | 11.59 | 13.88 4.66 4.68

p=5 (195) | (25) | (7) (8) (8)
69.95 | 18.10 | 30.05 8.62 8.44

p=6 (195) | (26) | (7) (8) (8)
128.19 | 27.38 | 61.52 17.34 17.26

p=7 | (195) | (27) | (7) (8) (8)

TABLE 5. CPU times [s] and GMRES iterations with o, = 1.4 as
the integer p in Eq. (10) is increased, considering level = 5, ¢ = 5,

and N = 2.
Precond. | G-I | G-F-1 | G-M-I | G-M-F-1 | G-M-Fg-I

18.32 | 835 | 5.66 3.46 241

p=4 | (229) | (29) | (V) (14) 9)
40.07 | 14.22 | 13.89 8.42 5.11

p=5_ | (232) | 31) | (7) (17) 9)
80.18 | 24.04 | 30.05 18.90 9.99

p=6 | (234) | 35) | (7) (21) (10)
145.64 | 46.37 | 61.52 59.41 22.31

p=7_ ] (235) | (47) | (7) (33) (10)

stochastic mode, i.e. ugo and ug , obtained with G-M-F-I are shown in Figure 4
for the case of 0, = 1.6. Recall that uy, is defined in Eq. (16). Results are reported
in Table 2: concerning the number of GMRES iterations, we see that for G-I and
G-F-I there is a monotone increase with o, suggesting a rate of convergence that
depends on this parameter.

More interestingly, for G-M-F-I the number of GMRES iteration remains stable
for o, < 0.8, but it grows consistently for o, > 0.8, going from 6 iterations with
oy = 0.08 to 23 iterations with o, = 1.6. A similar behavior for a preconditioned
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GMRES solver was observed in [15]. On the other hand, the G-M-Fg-1 is practically
insensitive to variations of o, going from 6 to 9 iterations for the values of o con-
sidered. This behavior shows that the grouping strategy adopted for G-M-Fg-I has
significantly improved the robustness of the solver over the straightforward group-
ing used in G-M-F-I. The G-M-I is also insensitive to variations of o,. Concerning
the CPU times, the G-M-F-I and G-M-Fg-I methods are generally faster than the
others. For o, < 0.8, the performance of G-M-F-I and G-M-Fg-I are compara-
ble, whereas for o, > 0.8, G-M-Fg-I outperforms G-M-F-I. Such a behavior can
be attributed to the difference in number of GMRES iterations between the two
methods. For instance, for o, = 1.6, the G-M-Fg-I is about twice as fast as G-M-
F-I, because G-M-Fg-I has half the iterations that G-M-F-I has. The G-M-Fg-I is
always the fastest method among those considered. The CPU time of G-M-I grows
slowly, although it is three times as large as G-M-Fg-1. The G-F-I is faster than the
G-M-I for small o, although it becomes slower for large o,. The CPU time of G-I
is always the worse among the methods considered. To summarize, regarding the
dependence on 0., G-M-Fg-I is the fastest method and is optimal, G-M-F-I is the
second fastest but is not optimal, G-M-I is optimal but slower than the previous
two. G-I and G-F-I deteriorate both in terms of iterations and CPU time.

We continue our analysis investigating the effect of the dimension of the sto-
chastic finite dimensional space varying the value of p. We vary p from 4 to 7 and
set L = 5, ¢ = 5, and the stochastic input dimension N = 2. Three specific val-
ues of o, are selected, namely 0.08, 0.8, and 1.4, that represent a relatively small,
medium, and large standard deviation. Results are reported in Tables 3, 4, and
5, respectively. For the small and medium o, in Tables 3 and 4 respectively, we
observe that the number of GMRES iterations remains stable for all methods as
p increases, meaning that the rate of convergence is independent of p. The MG-
type methods always perform better than G-I and G-F-I in terms of number of
iterations. Concerning the CPU time, G-M-F-I and G-M-Fg-I are again the most
efficient, moreover G-F-I outperforms G-M-I. A different situation happens for the
large value of o, in Table 5, where the number of GMRES iterations increases sig-
nificantly for G-F-I and G-M-F-I whereas for G-I, G-M-I and G-M-Fg-I it remains
practically stable. It is also found that G-M-Fg-I outperforms all other methods in
terms of computational time. For instance if p = 7, G-M-Fg-I is at least 2 times
faster than G-F-I, G-M-I, and G-M-F-I and 6.5 times faster than G-I.

TABLE 6. CPU times [s] and GMRES iterations with o, = 0.08 as
the integer ¢ in Eq. (18) is increased, with L = 5, p = 5, and

N =2.
Precond. | G-I | G-F-I | G-M-I | G-M-F-I | G-M-Fg-I
25.39 | 7.11 | 13.18 3.78 3.81
g=4 | (129) | (16) | (7) (6) (6)
25.92 | 7.18 | 13.85 3.81 3.81
g=5_ | (129) | (16) | (7) (6) (6)
25.92 | 7.18 | 13.85 3.81 3.82
g=6 | (129) | (16) | (7) (6) (6)
2593 | 7.18 | 1391 3.81 3.82
¢=7_|(129) ] (16) | (7) (6) (6)

The effect of the accuracy of the data projection is also studied, increasing ¢ in
Eq. (18) from 4 to 7 with L = 5, p = 5, and N = 2. Results are listed in Tables 6, 7,
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TABLE 7. CPU times [s] and GMRES iterations with o, = 0.8 as
the integer ¢ in Eq. (18) is increased, L =5, p=>5, and N = 2.

Precond. | G-I | G-F-1 | G-M-I | G-M-F-I | G-M-Fg-1I
34.53 | 11.49 | 13.22 4.65 4.68
g=4 | (195) | (25) | (7) (3) (8)
35.02 | 11.59 | 13.88 4.66 4.68
g=5_|(195) | (25) | (7) (8) (8)
35.02 | 11.60 | 13.90 4.66 4.70
g=6 | (195) | (25) | (7) (3) (3)
35.02 | 11.60 | 13.90 4.66 4.70
q=7_ | (195) ] (25) | (7) (®) (3)

TABLE 8. CPU times [s] and GMRES iterations with o, = 1.4 as
the integer ¢ in Eq. (18) is increased, with L = 5, p = 5, and

N =2.
Precond. | G-I | G-F-1 | G-M-I | G-M-F-I | G-M-Fg-1
39.65 | 14.09 | 13.23 7.96 5.10
g=4 |(232) | B | (7) (16) 9)
40.07 | 14.22 | 13.89 8.42 5.11
¢=5_|(232) | B | (7) (17) 9)
40.07 | 14.22 | 13.90 8.42 5.11
=6 | (232)] B | (7) (17) 9)
40.15 | 14.23 | 13.90 8.42 5.11
¢=7_1(232) ] B | (7) (17) 9)

and 8 for the small, medium, and large values of o.,, respectively (i.e. 0.08, 0.8, 1.4).
We find that the number of the GMRES iterations for all methods is invariant of g,
suggesting that the rate of convergence is not influenced by an increasing density
of the stiffness matrix. Similarly, the timing results are insensitive to the variation
of q. The G-M-F-I and the G-M-Fg-I are comparable and outperform the other
methods for the small and medium o, whereas the G-M-Fg-I performs the best for
the large value of o,. Note that the G-F-I is faster than the G-M-I for the small
and medium o,.

TABLE 9. CPU times [s] and GMRES iterations with o, = 0.08
as the stochastic input dimension N is increased, with L = 5 and

p=q=3
Precond. | G-I | G-F-I | G-M-I | G-M-F-I | G-M-Fg-I

4.74 2.82 1.99 0.80 0.71

N=2 | (129) | (15) | (7) (6) (6)

24.66 | 6.84 | 12.12 3.43 2.91

N=3 |y | (15 | 0 | (® (6)
102.61 | 15.77 | 61.64 13.36 11.57

N=4 | (145) | (15) | (7) (6) (6)

At last, we investigate the influence of the dimension of the stochastic input NV,
which influences the dimension of the stochastic finite dimensional space, given that
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TABLE 10. CPU times [s] and GMRES iterations with ¢, = 0.8
as the stochastic input dimension N is increased, with L = 5 and

p=q=3.
Precond. G-I | G-F-1| G-M-I | G-M-F-I | G-M-Fg-I

6.53 3.93 1.99 0.97 0.79

N=2 | (190) | (22) | (7) (8) (7)

30.85 | 9.93 | 12.12 4.19 3.25

N=3 | (190) | (23) | (7) (8) (7)
139.39 | 24.72 | 62.07 17.90 12.96

N=1 | (230) | @) | (D | ()

TABLE 11. CPU times [s] and GMRES iterations with ¢, = 1.4
as the stochastic input dimension N is increased, with L = 5 and

p=q=3
Precond. | G-I | G-F-1 | G-M-I | G-M-F-1 | G-M-Fg-I

748 | 4.40 | 1.98 1.32 0.86

N=2 (223) | (25) (7) (12) (8)
34.06 | 12.25 | 12.46 6.89 3.57

N=3 (215) | (29) (8) (15) (8)
156.56 | 29.57 | 61.92 34.82 14.43

N=4 (269) | (30) (8) (20) ()

M, = (N + p)!/(N!p!). We vary N from 2 to 4 with L = 5 and p = ¢ = 3. The
numerical results are displayed in Tables 9, 10, and 11 for the small, medium, and
large values of ¢, respectively, (i.e. 0.08, 0.8, 1.4). For the small and medium o, in
Tables 9 and 10, the number of GMRES iterations remains stable when N increases
for G-F-1, G-M-I, G-M-F-I, and G-M-Fg-I, whereas it increases for G-I. Moreover,
the performance of G-M-Fg-I is the best in terms of computational time. For the
large o, results are shown in Table 11, where the number of GMRES iterations
increases for G-I, G-F-I, and G-M-F-I but it remains stable for both G-M-I and
G-M-Fg-1 , suggesting that the only rate of convergence that does not depend on
N is that of G-M-I and G-M-Fg-1. Again we find that G-M-Fg-I is the most efficient
in terms of CPU time. For instance if N = 4 and 0, = 1.4, G-M-Fg-I is at least
2 times faster than G-M-F-I and G-F-I, 4 times faster than G-M-I, and 10 times
faster than G-I. The analysis presented in this paper shows that the new field split
preconditioners, i.e. G-M-F-I and G-M-Fg-I, are not in general more robust than G-
M-I, which is already optimal in terms of number of iterations, but their advantage
lies in having a smaller cost per iteration, since the ILU preconditioner is applied
to smaller diagonal block matrices. In all simulations, we observed that G-M-Fg-1
is as robust as G-M-I, but significantly cheaper.

For the stochastic diffusion problem with lognormal coefficient, after considering
the effects of a variation of the mesh refinement, o, p, ¢ and N, we can hereby
conclude that G-M-Fg-1 is the best preconditioned solver among the ones considered
in this work.
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5. Conclusions

A computational comparison of several preconditioners for the GMRES algo-
rithm applied to the stochastic diffusion problem with lognormal coefficient has
been presented. The main focus of our work was to highlight the performances of
field-split type preconditioners, that are inspired by physics based preconditioners
for deterministic problems. A thorough analysis of the robustness and dependence
on the mesh size and stochastic parameters showed that the field-split type pre-
conditioners used within a multigrid framework are the best option, among the
methods tested, especially if a specific grouping strategy is chosen.The best pre-
conditioned solver presented (G-M-Fg-I) showed independence on mesh refinement,
data projection (i.e. density of the matrix), input standard deviation, stochastic
dimension (i.e. number of stochastic variables) and polynomial order of the SGM
approximate solution. Moreover, it was always the fastest in terms of CPU time,
which is of great importance when dealing with computationally heavy solutions
of linear systems arising from a stochastic Galerkin type of discretization. These
features make the G-M-Fg-I a highly valuable preconditioned solver for the specific
problem at hand. The methodologies used in this work will be applied in the fu-
ture to more complex stochastic PDEs to further investigate the potential of the
field-split approach and, in particular, of the G-M-Fg-I preconditioned solver.
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