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ABSTRACT: For coastal communities subjected to tsunami hazard, to guide risk-informed
evacuation planning, it is critical to accurately assess the evacuation risk. To simulate the
evacuation process, agent based models (ABM) have been used. However, ABM is typically
quite expensive to run, especially when the number of agents/evacuees is large. Direct adop-
tion of such model in evacuation risk assessment entails significant computational challenges.
To address this, this paper develops multi-fidelity Gaussian process (MFGP) model to re-
place the high-fidelity ABM model for efficient evacuation risk assessment. MFGP model is
trained using small number of runs of high-fidelity ABM model and large number of cheaper
lower-fidelity ABM models established using simplified assumptions. Principal component
analysis (PCA) is used to reduce the dimension of the temporal and spatial outputs related
to evacuation, and the MFGP model is trained efficiently for the low-dimensional latent out-
puts. Application to tsunami evacuation risk assessment for Seaside, Oregon verifies the high
accuracy and efficiency of the MFGP.

1 INTRODUCTION

An earthquake-induced tsunami can cause
significant loss of life, especially for the low-
lying coastal communities facing the near-
field tsunami strike. Evacuation to safety
zones is regarded as the most effective way to
survive a tsunami. To provide valuable infor-
mation for effective evacuation planning, the
tsunami evacuation risk needs to be assessed.

To accurately assess the tsunami evacu-
ation risk, the complex evacuation process
needs to be modeled and various uncertain-
ties in the evacuation need to be quantified
and propagated. Recently, agent-based mod-
eling (ABM) has been used to simulate the
evacuation process considering its capability
of capturing the emergent phenomenon, pro-
viding a natural description of the evacuation

system, and being flexible (Bonabeau, 2002;
Wang et al., 2016;Wang and Jia, 2021). How-
ever, the high-fidelity agent-based model is
typically quite expensive to run when fully
characterizing the natural and human system
dynamics and modeling the realistic evacu-
ation behaviors, individual-level interactions
among agents, and the agents’ interactions
with the multi-hazard environment. To assess
the evacuation risk, various uncertainties as-
sociated with the evacuation need to be quan-
tified and propagated including those associ-
ated with the multiple hazards (i.e., cascad-
ing hazards of earthquake and tsunami) and
the evacuation decisions and behaviors. Di-
rect adoption of high-fidelity ABM model in
stochastic simulation based uncertainty prop-
agation to estimate evacuation risk entails sig-
nificant computational challenges.
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To facilitate efficient risk assessment and

uncertainty quantification in general, in the
literature, surrogate models have been pro-
posed to replace the expensive system mod-
els (Dubourg et al., 2011; Jia and Taflanidis,
2013; Gidaris et al., 2015; Jia et al., 2016).
To build surrogate models, high-fidelity train-
ing data are needed. For expensive models,
the total number of high-fidelity training data
may be limited, which may lead to low ac-
curacy of trained surrogate model. To effi-
ciently build surrogate models with high ac-
curacy, multi-fidelity surrogate models have
been proposed, which can leverage the trend
information provided by a large number of
low-fidelity model runs (i.e., less accurate but
cheap to establish) and the accuracy provided
by a small number of expensive high-fidelity
model runs (i.e., accurate but expensive to es-
tablish) (Kennedy and O’Hagan, 2000; Qian
et al., 2006; Li and Jia, 2020).

Inspired by the metamodeling approach de-
veloped in Gidaris et al. (2015) for seismic
risk assessment, we develop surrogate models
for efficient tsunami evacuation risk assess-
ment. In Gidaris et al. (2015), kriging surro-
gate model is trained based on high-fidelity
data to approximate the relationship between
the structural response and the structural and
ground motion parameters that are considered
as uncertain, where to address the stochastic
character of the seismic excitation under the
influence of the white noise surrogate model
is built with respect to the statistics of the
structural responses under different realiza-
tions of the white noise.

Here, instead of kriging metamodel trained
on only high-fidelity data, this paper develops
multi-fidelity Gaussian process (GP) surro-
gate model to replace the high-fidelity ABM
model for efficient evacuation risk assess-
ment. Besides high-fidelity ABM model,
cheaper lower-fidelity ABM model is estab-
lished by using simplified assumptions (e.g.,
constant evacuation speed, larger time steps,
and smaller population size). Then an accu-
rate MFGP surrogate model is trained by us-
ing the multi-fidelity training data. In addi-

tion, to address the challenge of high dimen-
sional outputs (e.g., the spatial and tempo-
ral evacuation performances), principal com-
ponent analysis (PCA) is used to reduce the
output dimension and establish low dimen-
sional latent outputs. MFGP model is then
efficiently trained with respect to the latent
outputs. In the end, the MFGP model is used
to efficiently evaluate the tsunami evacuation
risk for Seaside, Oregon, and the impacts of
population size and evacuation behaviors on
the evacuation risk are investigated.

2 QUANTIFICATION OF TSUNAMI
EVACUATION RISK

2.1 Tsunami evacuation risk

To quantify the tsunami evacuation risk, we
use the simulation-based framework shown in
Fig. 1. In particular, x= [x1, ...,xi, ...,xnx ] ∈ X
represents the inputs into the tsunami evac-
uation model and ξ = [ξ1, ...,ξi, ...,ξnξ ] ∈ Ξ
represents the uncertain model parameters in
the evacuation model, and y(x,ξ ) represents
the evacuation performances (e.g., the casu-
alty rate) for given [x,ξ ]. We use the prob-
ability distribution function (PDF) p(ξ |x) to
quantify the uncertainty in ξ under given x.
h(x) represents the risk consequence measure
for given x. Propagating the uncertainties in
x, quantified by PDF p(x), leads to the quan-
tification of the evacuation risk (denoted H)

H =
∫
X
h(x)p(x)dx (1)

For given input x, to calculate the risk con-
sequence measure h(x), the uncertainties in
the evacuation model need to be considered.
Typically, h(x) is related to the distribution
or statistics of the evacuation performance
y(x,ξ ). For example, h(x) can be probability
of y(x,ξ ) exceeding certain threshold and this
probability can be established using the distri-
bution information (e.g., mean and standard
deviation in case of normal or lognormal dis-
tribution) of y(x,ξ ) (Gidaris et al., 2015). To
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Figure 1. Framework for quantification of tsunami
evacuation risk.

this end, we use y(x) to represent the statis-
tics (e.g., mean and/or standard deviation) of
y(x,ξ ). In this context, y(x) can be written in
more general form as

y(x) =
∫

Ξ
M[y(x,ξ )]p(ξ |x)dξ (2)

where M[.] is a function such that Eq. (2)
gives the interested statistics y(x). Essen-
tially, h(x) can be written as h(x) = h(y(x)).
Later in the illustrative example, we fo-
cus on the mean of y(x,ξ ), in which case
M[y(x,ξ )] = y(x,ξ ).

Note that in the context of evacuation risk
assessment, since many times we are inter-
ested in the spatial and temporal evacua-
tion performance, the output y(x,ξ ) and cor-
responding y(x) could be high-dimensional.
For y(x), it can be written as y(x) =
[y1(x), ...,yny(x)] with dimension of ny.

2.2 Conditional tsunami evacuation risk

Besides the evacuation risk, we are also in-
terested in investigating how the evacuation
risk varies with the critical model inputs.
Some inputs in x might have larger impacts
on the evacuation risk (i.e., critical model in-
puts such as the proportion of the popula-

tion that evacuate by car in the multi-modal
evacuation) than others. Such investigations
can provide importation information for ef-
fective evacuation planning. For this, we need
to evaluate the so-called conditional evacua-
tion risk. For example, if we are interested
in the impact of input xi, then we can define
conditional evacuation risk H(xi), which rep-
resents the conditional evacuation risk under
the given value of xi and can be quantified by

H(xi) =
∫
X∼i

h(x∼i,xi)p(x∼i)dx∼i (3)

where x∼i represents the remaining of the in-
puts excluding xi. Besides scalar input xi, the
evacuation risk conditional on any subsets of
x, denoted xs (with xs ⊂ x), can be defined
similarly.

2.3 Computational challenges

To estimate the evacuation risk H in Eq. (1),
general stochastic simulation techniques such
as Monte Carlo Simulation (MCS) can be
used. However, it typically requires a large
number of evaluations of h(x). In the con-
text of the current problem, each evaluation
of h(x) would require calculation of y(x) that
involves propagating uncertainties in ξ based
on Eq. (2) and is quite expensive itself due
to the need to repeatedly run the evacuation
model. Overall, evaluation of the evacua-
tion risk H entails significant computational
challenges. It would be even more computa-
tionally expensive to estimate the conditional
evacuation risk (e.g.,H(xi)) due to the need to
repeat the evacuation risk estimation for dif-
ferent values of xi (or more generally xs).

3 RISK ASSESSMENT USING MULTI-
FIDELITY GAUSSIAN PROCESS
MODEL

This section presents the proposed approach
for efficient evacuation risk assessment us-
ing multi-fidelity Gaussian process (GP) sur-
rogate model.
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3.1 Multi-fidelity Gaussian Process model

with PCA

The development of the multi-fidelity Gaus-
sian process model requires, first, the cre-
ation of a high-fidelity database (i.e., nh sim-
ulations based on the high-fidelity numeri-
cal model for input Xh = {x1h, . . . ,x

nh
h }) and

a low-fidelity database (i.e., nl simulations
based on the low-fidelity numerical model for
input Xl = {x1l , . . . ,x

nl
l }). The selection of

these inputs is frequently referenced as de-
sign of experiments, and can be established
using some space filling technique such as
Latin Hypercube Sampling (LHS). These se-
lected input points are also frequently refer-
enced as the training set or support points. It
is noteworthy to point out that here Xh is taken
as a subset of Xl , which allows direct com-
parison between high-fidelity data and low-
fidelity data for the design sites in Xh, guid-
ing how the low-fidelity data should be “cor-
rected” to match the high-fidelity data.

Let Yl of size nl × ny denote the observa-
tion matrix from the low-fidelity model (i.e.,
response over Xl), and Yh of size nh × ny
the observation matrix from the high-fidelity
model (i.e., response over Xh). Let Y =
[Yl;Yh] denote the joint observation matrix,
which has size n×ny with n = nl +nh. Con-
sidering the fact that there are differences be-
tween the low-fidelity outputs and the high-
fidelity outputs, the outputs Yl and Yh should
be normalized before combining them.

We then apply PCA to Y to find a low-
dimensional representation. Based on Y, we
can establish a transformation

YT = PZT (4)

where P is the ny× nz projection matrix con-
taining the eigenvectors corresponding to the
nz largest eigenvalues, and Z is the latent out-
put matrix that has size of n× nz. Note that
in Eq. (4), there is an truncation error that is
typically very small, and not explicitly writ-
ten. In Z, we can identify the latent output
that correspond to the low-fidelity outputs and
high-fidelity outputs, denoted as Zl and Zh,

respectively. Z= [Zl;Zh], with Zl having size
of nl ×nz and Zh having size of nh×nz.
Based on Zl and Zh, we then train multi-

fidelity Gaussian process (MFGP) model for
the latent outputs

zh(x) = ρzl(x)+ zδ (x) (5)

Once the surrogate model is established in
the latent spaces for zl(x) and zδ (x), denoted
as ẑl(x) and ẑδ (x), the prediction for zh(x)
can be established as ẑh(x) = ρ ẑl(x)+ ẑδ (x).
Then the prediction for the original output can
be established through the transformation

ŷh(x) = Pẑh(x) = P [ρ ẑl(x)+ ẑδ (x)] (6)

Overall, instead of building multi-fidelity
Gaussian process in the original output space,
we first build multi-fidelity Gaussian process
for the low-dimensional latent outputs with
the formulation in Eq. (5) and then for pre-
diction at new input x, first the established
MFGP is used to predict the latent outputs,
then the PCA transformation in Eq. (6) is used
to directly transform the latent outputs to the
corresponding outputs in the original space.
To evaluate the accuracy of the established

MFGP, error statistics are calculated us-
ing leave-one-out cross validation (LOOCV),
which is performed as follows. First, the
observations from the high-fidelity data set
is sequentially removed, and the correspond-
ing training data set will be composed of
the remaining high-fidelity data and the orig-
inal low-fidelity data. Second, the MFGP
is trained based on the corresponding train-
ing set and used to predict the response over
the removed data point. Finally, for the
high-fidelity data points, there is an obser-
vation matrix and a prediction matrix, both
of which are of size nh × ny). Based on
the matrices, the error between the predic-
tions and the high-fidelity observations (i.e.,
the overall LOOCV error) can be calculated.
Here we use the mean error ME as the error
statistics, and the LOOCV ME is given by:
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ME = ∑nh

i=1 |yh(xih)− ŷh(xih)|/∑nh
i=1 |yh(xih)|,

where ŷh(xih) is the mean prediction from
the established MFGP. Smaller value for ME
means better accuracy of the trained MFGP.

Due to the high computational effort for
each evaluation of the high-fidelity model, it
is desirable to use small number for nh, but at
the same time we want the MFGP model to
have good accuracy. To select an appropriate
nh and nl , we investigate how theME changes
over different selection of nh and nl . When
there is little variation in ME or when ME
is below a target level, indicating good accu-
racy of the established MFGP model, we se-
lect the corresponding nh and nl values. Here
to establish the training data, LHS is used to
sample evenly in the input space, so that the
trained MFGP will have good accuracy over
the input space. The training data (especially
the high-fidelity data) can also be adaptively
selected based on criteria such as the variance
of the GP model to effectively build MFGP
model with high accuracy. This will be ex-
plored in future research.

3.2 Risk estimation using MFGP

Then the trained MFGP is used to predict the
risk consequence measure h(x) = h[ŷh(x)] for
any given x for efficient risk estimation. The
evacuation risk H is estimated using MFGP
with N simulations by

Ĥ =
1
N

N

∑
k=1

h[ŷh(xk)] (7)

where xk is the kth sample of the input x
generated from p(x). The high efficiency of
MFGP means that a larger N value can be
used to improve the accuracy of the risk es-
timate. Similarly, the conditional evacuation
risk (e.g., H(xi)) can be estimated

Ĥ(xi) =
1
N

N

∑
k=1

h[ŷh(xk∼i,xi)] (8)

4 ILLUSTRATIVE EXAMPLE

4.1 Study area

We select Seaside, Oregon (shown in
Fig.2(b)) as the study area for the tsunami
evacuation risk assessment. Seaside is lo-
cated close to the Cascadia Subduction Zone
(CSZ, shown in Fig.2(a)), which makes the
community have a high risk to the combined
CSZ seismic and tsunami hazard, and many
tsunami evacuation studies have been fo-
cused on this community (Wang et al., 2016;
Mostafizi et al., 2017, 2019).

Figure 2. (a) Cascadia Subduction Zone (CSZ) (USGS,
2020), and (b) Seaside, Oregon.

4.2 Agent-based tsunami evacuation model

4.2.1 High-fidelity model

We adopt the agent-based model for tsunami
evacuation simulation developed in Wang
(2021) as the high-fidelity agent-based
tsunami evacuation model. The agent-based
model in Wang (2021) is developed through
improving the agent-based tsunami evac-
uation model introduced in Wang and Jia
(2021), which extends on the agent-based
modeling framework for near-field tsunami
evacuation proposed in Wang et al. (2016).
The model used here is briefly reviewed.
The agent-based tsunami evacuation model

consists of the evacuation environment model
(EEM), evacuation decision and behavior
model (EBM), and evacuation performance
model (EPM). The EEM includes the multi-
hazard model (i.e., seismic and tsunami haz-
ards), transportation network, tsunami shel-
ter, and population distribution. The traffic
capacity reductions of the damaged bridge
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due to the seismic damage and the blocked
road due to debris from damaged buildings
are considered. The time histories of the
tsunami inundation are generated using Com-
MIT/MOST. In the EBM, the evacuation de-
cision and behavior are modeled. The evac-
uation decision includes the departure time,
the multi-modal evacuation (i.e., evacuation
on foot and by car), and the path selection
such as searching the shortest path. For
the evacuation behavior, individual behavior
and interactions between evacuees and with
the damaged environment are modeled. The
speed adjustment for both the pedestrian and
car is considered in the modeling of the in-
dividual evacuation behavior. The interac-
tions between evacuees include those occur-
ring between pedestrians or cars (e.g., fol-
lowing others), and between the pedestrian
and car (e.g., the pedestrian-vehicle interac-
tion modeled by the traffic stage transition).
The interactions between evacuees and the
damaged environment include the traffic ca-
pacity reduction of the damaged bridge or
blocked road, reroute behavior (e.g., when
traffic jam occurs ahead), and acceleration be-
havior for pedestrians (e.g., when inundation
comes closer). In the EPM, the commonly
used quantity of interest such as the casualty
rate can be selected as the evacuation perfor-
mance measure and the critical water depth is
used to determine the casualty.

The agent-based tsunami evacuation model
is developed in NetLogo. Fig. 3 shows the
developed model, where (a) shows a realiza-
tion of the population distribution in the study
area and (b) shows the evacuation at a cer-
tain time instant. Due to the incorporation of
many important factors and mechanisms as-
sociated with the evacuation process and the
detailed modeling, the high-fidelity model is
quite expensive to run.

4.2.2 Low-fidelity model

Based on the high-fidelity agent-based
tsunami evacuation model, the low-fidelity
evacuation model is developed by neglecting
the pedestrian-vehicle interaction and the

Figure 3. Illustration of the high-fidelity agent-based
tsunami evacuation model.

speed adjustment for both the pedestrian and
car in the EBM. When the pedestrian-vehicle
interaction is neglected, the pedestrian and
car travel on the sidewalk and lane with the
fixed width, respectively (i.e., corresponding
to the balanced traffic stage in the simulation
of the pedestrian-vehicle interaction (Wang
and Jia, 2021)). Also, the pedestrian evacu-
ates at the preferred walking speed and the
car drives at the free-flow speed. Compared
to the high-fidelity evacuation model, the
low-fidelity model is cheaper to run but with
lower accuracy.

4.3 Implementation details

4.3.1 High-fidelity model

We consider the historical seismic event in
1700 as the hypothetical seismic and tsunami
hazard inputs, in which Mw = 9.0 and the fo-
cal depth of 40 km are considered. It is as-
sumed that the tsunami evacuation occurs at
noontime of some weekend in summer and
lasts for one hour starting the occurrence of
the earthquake.
For the high-fidelity model described in the

previous section, it is implemented in Net-
Logo with a time step of five seconds. Ta-
ble 1 summarizes the model parameters ξ
and associated uncertainties in the context of
the evacuation risk quantification described in
Section 2, in which “U” represents the uni-
form distribution on the interval given in the
parentheses. The departure time t (unit: min)
follows Rayleigh distribution with delay time
τ (unit: min) and scalar parameter σt . Both
τ and σt are parts of the inputs x, which are
defined in Table 2. The pedestrian speed vp
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Table 1. Model parameters ξ in the tsunami evacuation
simulation using the high-fidelity agent-based model.

ξi Distribution

t
Rayleigh distribution with delay time
τ and scalar parameter σt

vp
Normal distribution with mean µp

and SD σp, truncated in (0.75, 3.83)
T1PA ; T2PA U(1.00, 1.53);U(2.30, 4.19)
T1MA ; T2MA U(0.59, 0.97);U(1.64, 3.14)
T1Mac ; T2Mac U(0.59, 0.97) ;U(1.53, 2.79)
T1LR ; T2LR U(0.27, 0.38);U(0.54, 1.04)

follows truncated in (0.75, 3.83) (unit: m/s)
normal distribution with mean µp (unit: m/s)
and standard deviation (SD) σp (unit: m/s).
Both µp and σp are included in the inputs
x. T1PA , T2PA , T1MA , T2MA , T1Mac , T2Mac , T1LR ,
and T2LR represents the threshold in the traffic
stage transition and corresponds to the road
class “Principle Arterial”, “Minor Arterial”,
“Major Collector”, and “Local Road”, respec-
tively. In addition, ξ includes the parameters
associated with seismic damages to bridges
and buildings (e.g., the seismic damage state
DS j with j= 1,2, ...5), and the parameters as-
sociated with the location of the population.

Table 2 presents the inputs x for the high-
fidelity agent-based model along with their
lower and upper bounds. Here, t0 is the time
when receiving the tsunami warning (unit:
min); ne is the population; ρ1 and ρ3 denote
the population proportion on the beach and
in the residential area, respectively (the pop-
ulation proportion in the downtown ρ2 = 1-
ρ1 - ρ3); pc is the proportion of the evacuees
that use the car; p f and pr represent the pro-
portion of the evacuees that follow others and
use the official evacuation route, respectively
(the proportion of the evacuees that search the
shortest path ps = 1 - p f - pr); hc represents
the critical depth (unit: m).

As to outputs (i.e., evacuation performance
y(x,ξ )), we consider three types of casualty
rates, i.e., pedestrian casualty rate (i.e., num-
ber of casualties that evacuate on foot over the
population, denoted PCR), car casualty rate
(i.e., number of casualties that evacuate by

Table 2. Inputs x in the tsunami evacuation simulation
using the high-fidelity agent-based model.

xi LB UB xi LB UB
t0 3 10 pc 0 1
τ 0 5 µp 1.22 2.68
σt 1 5 σp 0.05 1
ne 4000 15,000 p f 0.1 0.3
ρ1 0.2 0.6 pr 0.3 0.6
ρ3 0.25 0.35 hc 0.5 2

car over the population, denoted CCR), and
total casualty rate (i.e., number of all casual-
ties over the population, denoted TCR). All
outputs are collected every 12 time steps in
the model, corresponding to 1 minute of the
evacuation in actual time. In terms of com-
putational time, depending on the parameters
for the simulation (e.g., population size, evac-
uation modes, etc.), the runtime for each sim-
ulation ranges from 2 to 7 hours of CPU time.

4.3.2 Low-fidelity model

As discussed in Section 4.2.2, the pedestrian-
vehicle interaction and the speed adjustment
for both the pedestrian and car are not mod-
eled in the EBM of the low-fidelity agent-
based model. Correspondingly, T1PA , T2PA ,
T1MA , T2MA , T1Mac , T2Mac , T1LR , and T2LR are
not included in the model parameters ξ com-
pared to the evacuation simulation using the
high-fidelity model. As to inputs x, a smaller
population size will is used by scaling the ac-
tual ne in x by one half when building the
low-fidelity model. This low-fidelity model
is run with a time step of ten seconds with
data collected every 6 steps, which again cor-
responds to 1 minute of the evacuation in ac-
tual time. Other details on the evacuation
simulation in terms of the inputs and outputs
using the low-fidelity model are the same as
those using the high-fidelity model. In terms
of computational time, depending on the pa-
rameters for the simulation, the runtime for
each simulation ranges from 0.5 to 1.5 hours
of CPU time, corresponding to significant re-
duction in runtime compared to that for the
high-fidelity model.
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4.3.3 MFGP

For the multi-fidelity training data, nh = 50
and nl = 200 are used. This selection leads to
average ME below 1% for the interested out-
puts. For each x in the training set, to evaluate
the corresponding y(x), which corresponds to
the mean of y(x,ξ ) in the current example,
50 simulations are run under 50 realizations
of the parameters ξ generated from p(ξ |x).
In this study, for the outputs we focus on
the TCR and PCR over time and train MFGP
models for these outputs. For these outputs,
the output dimension is ny = 60. By applying
PCA, the dimension can be reduced to around
nz = 11 that accounts for more than 99.9%
of the total variance in the training data. In
the future, outputs with much higher ny values
will be investigated (e.g., when looking at re-
sponses over all the 757 patches in the ABM
model and over time, the output dimension
would be around ny = 757×60= 45420). In
those cases, more significant reductions in the
output dimensions by PCA are expected.

5 RESULTS AND DISCUSSIONS

5.1 Tsunami evacuation risk assessment

For tsunami evacuation risk assessment, we
consider the uncertain input x with distribu-
tions defined in Table 3. For x that follow
truncated normal distribution (denoted TN),
“Parameter 1” and “Parameter 2” following
the uniform distribution, respectively, repre-
sents the mean and SD of the corresponding
normal distribution. The x other than ne, ρ1,
ρ3, and pc follow uniform distribution on the
interval between “Parameter 1” and “Parame-
ter 2”. We select the mean of the casualty rate
(i.e., PCR, CCR, and TCR) over uncertain ξ
as the risk consequence measure. Then the
evacuation risk corresponds to the expected
value of these casualty rates.

Three cases (case 1-3) are investigated to
illustrate the efficient tsunami evacuation risk
assessment. Case 1 is to estimate the varia-
tion of the evacuation risk with time after the
earthquake. Previous studies have shown that

Table 3. Distributions of the uncertain inputs x in the
tsunami evacuation simulation.

xi Distribution Parameter 1 Parameter 2
t0 U 3 10
τ U 0 5
σt U 1 5
ne TN U[4K, 15K] U[3K, 7K]
ρ1 TN U[0.2, 0.6] U[0.05, 0.25]
ρ3 TN U[0.25, 0.35] U[0.05, 0.25]
pc TN U[0, 1] U[0.05, 0.25]
µp U 1.22 2.68
σp U 0.05 1
p f U 0.1 0.3
pr U 0.3 0.6
hc U 0.5 2

the proportion of the evacuees that evacuate
by car (i.e, pc) and the population (i.e, ne)
have relatively large impacts on the evacua-
tion risk (Wang and Jia, 2021). To investigate
this we define case 2 to estimate the variation
of H(pc) as a function of pc, and case 3 to
estimate the variation of H(pc,ne) as a func-
tion of [pc,ne]. For case 2 and 3, the expected
casualty rates correspond to the ones at the
end of the evacuation simulation (i.e., at t=60
min). The risk for all these cases are esti-
mated using the trained MFGP with N=2000
simulations, which only takes several min-
utes, corresponding to great efficiency.

5.2 Results and discussions

Fig. 4 shows the variation of the evacuation
risk with time after the earthquake (i.e., case
1). No casualty occurs till around 29 min after
the earthquake when the inundation reaches
the community. After around 29 min, casu-
alty starts occurring and all the PCR, CCR,
TCR start increasing over time. Overall, both
the PCR and CCR first increase slowly before
around t=35 min and then increase fast till
around t=45 min, after which both the PCR
and CCR increase slowly till around t=50
min (when the inundation reaches the run-up
limit) and then almost do not increase till the
end of the evacuation. The variation of the
TCR with time shows a similar trend.
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Figure 4. Variation of the evacuation risk with time
after the earthquake.

The variation of the expected casualty rate
H(pc) as a function of pc (i.e., case 2) is
shown in Fig. 5. The PCR decreases with
an increase of pc (i.e., more cars and fewer
pedestrians), i.e., from 39.7% to 0. This de-
crease can be attributed to the decrease in
the number of pedestrians and less pedestrian
congestion due to fewer people evacuating on
foot. The CCR increases with the increase of
pc, i.e., from 0 at pc = 0 to 43.2% at pc =
1, which means that the increase of car use
would increase the CCR significantly. This
can be attributed to the increase in the num-
ber of cars or potentially more severe traffic
congestion caused by more car uses. Due to
the decrease of the PCR and increase of the
CCR with pc, the TCR first decreases (i.e.,
from 39.7% to 28.5%) and then increases
(i.e., from 28.5% to 43.2%). Some value of
pc exists such that the corresponding TCR is
minimum, i.e., pc=0.4 leads to a minimum
TCR of 28.5%.

Figure 5. Variation of the expected casualty rate H(pc)
as a function of pc.

Fig. 6 shows the variation of the expected
PCR and CCR as a function of [pc,ne]. (i.e.,

case 3). For the PCR under any given value
of ne, it shows a similar trend to that under
the uncertain ne in case 2, i.e., the PCR de-
creases as pc increases. Under the given value
of pc, the PCR increases as ne increases, e.g.,
the PCR increases from 28.3% when ne=4000
to 49.1% when ne=15,000 under pc=0. This
should be attributed to the more severe pedes-
trian congestion as more people evacuate on
foot. Due to the same reason, the increase of
the PCRwith the increase of ne is larger under
the smaller value of pc. For the CCR under
any given population, it shows a similar trend
to that under the uncertain population in case
2, i.e., the CCR increases as pc increases. In
this sense, the variation of the CCR with pc
shows an opposite trend to that for the PCR.
However, the variation of the CCR with ne
shows a similar trend to that for the PCR.

Figure 6. Variation of the expected PCR and CCR as a
function of [pc,ne].

Figure 7. Variation of the expected TCR as a function
of [pc,ne].

The variation of the expected TCR as a
function of [pc,ne]. (i.e., case 3) is shown
in Fig. 7. Under any given population, the
TCR first decreases and then increases with
the car use (i.e., pc). This variation of the
TCR with pc is consistent with that in case
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2 corresponding to uncertain ne. However,
the value of pc corresponding to the minimum
TCR is smaller under a larger population. Un-
der any given value of pc, the TCR increases
significantly with ne, which means the evacu-
ation risk would be higher for a larger popu-
lation.
6 CONCLUSIONS
This paper proposed to use multi-fidelity
Gaussian process (GP) surrogate model to re-
place the high-fidelity ABM model for effi-
cient evacuation risk assessment. To train
the MFGP, ABM models with different fi-
delity levels and computational efforts were
established. PCA was integrated with MFGP
to facilitate training of MFGP models for
high-dimensional outputs. The trainedMFGP
model was used to efficiently evaluate the
tsunami evacuation risk for Seaside, Oregon.
The results verified the high efficiency of the
MFGP model in evacuation risk assessment.
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