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We introduce and analyse various regularized combined field integral equations (CFIER) formulations
of time-harmonic Navier equations in media with piece-wise constant material properties. These
formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-
to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within
which the well posedness of CIER formulations can be established. We also use the DtN approximations
to derive and analyse OS methods for the solution of elastodynamics transmission problems. The
pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels
of Navier boundary integral operators, which is also the basis of high-order Nyström quadratures for
their discretizations. Based on these high-order discretizations we investigate the rate of convergence of
iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We
present a variety of numerical results that illustrate that the CFIER methodology leads to important
computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of
the ensuing discretized boundary integral equations. Finally, we show that the OSmethods are competitive
in the high-frequency high-contrast regime.
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preconditioners; domain decomposition methods.
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1. Introduction

Numerical solutions of elastodynamics scattering and transmission problems based on boundary integral
equation (BIE) formulations enjoy certain attractive features over their volumetric counterparts, mainly
on account of the dimensional reduction and the explicit enforcement of radiation conditions at infinity.
Robust BIE formulations of elastodynamics scattering and transmission problems can be derived via
the combined field strategy. Furthermore, in the case of impenetrable scattering problems, alternative
robust regularized formulations can be constructed based on the incorporation of approximations of
Dirichlet-to-Neumann (DtN) operators (Chaillat et al., 2015, 2021; Darbas & Le Louër, 2015). These
formulations are intrinsically more suitable for iterative solvers in the high-frequency regime, where
they lead to important computational savings over the classical combined field formulations.
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648 V. DOMÍNGUEZ AND C. TURC

We pursue in this paper the construction of regularized BIE formulations of both penetrable and
impenetrable elastodynamics scattering problems in two dimensions. While for the impenetrable case
we use similar ideas to construct regularized formulations as those introduced in Chaillat et al. (2015,
2021), in the penetrable case we follow the blueprint introduced in Boubendir et al. (2015) for Helmholtz
problems. In a nutshell, we use principal symbols of periodic pseudodifferential operators to construct
approximations of DtN operators that are then readily incorporated in a scheme to construct well-posed
BIE formulations of scattering and transmission elastodynamic problems. The DtN approximations we
use are square-root Fourier multipliers, and they have the distinct advantage that (a) their implementation
is straightforward in the trigonometric interpolation framework and (b) the analysis of both impenetrable
and penetrable regularized formulations can be performed in the same vein. In addition, we explore
these DtN approximations to formulate Optimized Schwarz (OS) methods for a domain decomposition
approach for transmission elastodynamics problems. Just like in the Helmholtz case (Boubendir et al.,
2017), we establish rigorously that the Schwarz iteration operators are compact perturbations of the
identity in the case of smooth interfaces of material discontinuity, which allows us to prove the well
posedness of the OS approach.

While the big picture does not differ a great deal from the elastodynamics to the Helmholtz case
with respect to the well posedness of regularized formulations of scattering and transmission problems,
the details are considerably more involved in the elastodynamics case, notwithstanding the fact that
one has to deal with vector (as opposed to scalar) quantities. A first notable difference is encountered
in the double layer boundary integral operators (BIOs), which are no longer compact operators in
the elastodynamics case, not even for smooth boundaries. Consequently, the DtN pseudodifferential
principal symbol calculus is more complicated in elastodynamics, as the contributions arising from the
double layer BIOs cannot be any longer ignored. We use in this paper the periodic pseudodifferential
calculus (Hsiao &Wendland, 2008), which in conjunction with logarithmic singularity splittings for the
kernels of the four elastodynamics BIOs allows us to compute their principal symbols in the sense of
pseudodifferential operators. These calculations are the basis on which we construct our approximations
of the DtN operators. However, these kernel logarithmic singularity splittings are quite cumbersome
(Chapko et al., 2000), significantly more so than their Helmholtz counterparts. Owing to these additional
complications, we chose to present the full details of these calculations in an appendix to this paper.

We employ Nyström discretizations for the numerical solution of the various BIEs derived in
this paper. We pursue the classical Nyström method based on trigonometric interpolation, logarithmic
kernel singularity splittings and the classical Kussmaul and Martensen (Kussmaul, 1969; Martensen,
1963) quadratures for the analytic resolution of periodized logarithmic singularities. This discretization
strategy leads to high-order BIE solvers for elastodynamics scattering and transmission problems in
the case of smooth boundaries. However, since the Kussmaul-Martensen discretizations rely on global
interpolation, they are not compatible with fast methods such as the fast multipole methods (Hao et al.,
2014), which may limit their appeal. Other high-order discretization strategies that rely on use of panels
(e.g. Alpert quadratures (Alpert, 1999)) and which are compatible with fast methods are currently being
explored. One distinct advantage of the use of trigonometric interpolation is facilitating a straightforward
implementation of Fourier multipliers, and thus of the DtN approximations we construct on the basis
of the periodic pseudodifferential calculus. We follow here the common practice in the community of
using square-root Fourier multiplier approximations of DtN operators (Antoine & Darbas, 2005, 2007;
Darbas & Le Louër, 2015), which tend to deliver the best results in the high-frequency regime on account
of their nearly optimal treatment of modes in the Fourier space transition regime from propagating to
evanescent modes. The implementation of those nonlocal operators is significantly more challenging
when panel discretizations are used, and the prevalent strategy resorts to Padé approximations of square
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 649

roots (Antoine & Darbas, 2005, 2007), which, in turn, requires solutions of certain elliptical problems
on the boundary. The latter feature Laplace-Beltrami operators in the case of surfaces in 3D, and as such,
they are challenging to solve in the context of Nyström discretizations and are the subject of ongoing
research.

The paper is organized as follows: in Section 2, we introduce the Navier equations that govern
elastodynamics waves in two dimensions; in Section 3, we present the boundary layer potentials and
integral operators associated with the Navier equations and we construct their principal parts in the
sense of pseudodifferential operators. An essential part of this construction are detailed calculations of
the kernels of the BIOs involved, with a special emphasis being given to their splitting into regular
and singular parts. An exhaustive account of these factorizations is presented in the Appendix. In
Sections 4 and 5, we construct and analyse regularized BIE formulations for both penetrable and
impenetrable scattering problems; Nyström discretizations of the elastodynamics BIOs as well as a
variety of numerical results that illustrate the high-order convergence of these methods and the iterative
behavior of the various formulations considered in this paper are presented in Section 6.

2. Navier equations and boundary integral operators

In this section, we present the Navier equations and their associated four BIOs. We will pay special
attentions to the kernels of such operators for two reasons: (a) to derive the principal part (in the
pseudodifferential sense) of the underlying operators; and (b) to describe precisely a factorization of
these kernels into regular and singular parts, which is subsequently exploited by spectral Kress Nyström
methods. Although the latter methods were introduced in the 1980s for the Helmholtz equation and then
extended in the 1990s for the elastodynamic equations, the complexity of the functions involved makes
the splitting technique quite difficult in the elastodynamics case, and many details are unfortunately
missing from the literature. Some references can be found in Chapko et al. (2000) and Domínguez et
al. (2015, Section 4). In the former paper, the emphasis is placed on the hypersingular operator, and we
actually follow some of the notations introduced in that work. On the other hand, we find in the second
paper a brief description of all four of the BIO kernels but the regular and singular factorizations of the
kernels is omitted. Our main objective is to write in an appropriate framework a certain integration by
parts formula for the hypersingular Navier BIO, which is an essential piece in the numerical method
object of this paper.

2.1 Navier equation

Let us introduce first some notation for geometric quantities. We will use the following notation for
points x = (x1, x2) ∈ R2. Any vector is understood to be a column vector, in such a way that

x#y = x · y = x1y1 + x2y2, x y# =
[
x1y1 x1y2
x1y2 x2y2

]
.

We will also denote

r := x − y, r := |r| = |x − y|.

For any sufficiently regular curve ! (Lipschitz is enough), the unit outward pointing vector is well
defined and will be denoted henceforth by n = (n1, n2). Consider also t = (−n2, n1) the unit tangent
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650 V. DOMÍNGUEZ AND C. TURC

vector obtained by rotating n clockwise by 90 degrees. The curve ! will be assumed to be simply
connected unless we state otherwise.

Let u = (u1, u2) : R2 → R2 be a vector function. For a linear isotropic and homogeneous elastic
medium with Lamé constants λ and µ such that λ > −µ, the strain and the stress tensor are defined as

ε(u) := 1
2
(∇u+ (∇u)#) =

[
∂x1u1

1
2

(
∂x1u2 + ∂x2u1

)

1
2

(
∂x1u2 + ∂x2u1

)
∂x2u2

]

σ λ,µ(u) := 2µε(u)+ λ(∇ · u)I2

where I2 is the identity matrix of order 2. The time-harmonic elastic wave (Navier) equation is given by

∇ · σ λ,µ(u)+ ω2u = µ%u+ (λ + µ)∇(∇ · u)+ ω2u = 0

where the frequency ω ∈ R+ and the divergence operator “∇·” is applied row-wise (here we assume the
density ρ is equal to 1). We often alleviate the notation and will simply write σ for the stress tensor if
the context make clear which values for the Lamé constants are being considered.

The trace operator on ! is denoted by γ!u whereas the normal stress tensor, or traction operator, is
given by

T!u := σ (u)n = λ(∇ · u)n+ 2µ(n · ∇)u − µ(∇ × u)
[ −1
1

]
n. (2.1)

Let then (− and (+ = R2 \ (+ be the interior and exterior of !. We will study in this paper BIE
formulations for the following boundary value problems:

(a) Solution of the exterior Dirichlet/Neumann, unpenetrable domain, time-harmonic Navier
equation:

∣∣∣∣∣∣∣∣

u ∈ H1
loc((+) := H1

loc((+) × H1
loc((+),

∇ · σ (u)+ ω2u = 0 in (+,
DC/NC on !,
+RC.

(2.2)

Here H1
loc((+) is the space of functions which are locally in the Sobolev space H1((+), DC

stands for Dirichlet condition, i.e.,

γ!u = f,

and NC, for Neumann condition,

T!u = λ.

Finally, RC stands for the radiation condition, or Kupradze condition, at infinity cf. (Kupradze
et al., 1979) or (Ammari et al., 2009, Ch. 2). Hence, if up and us are the longitudinal and
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 651

transversal wave defined as

up := − 1
k2p

∇ ∇ · u us := u − up (2.3)

with

k2p := ω2

λ + 2µ
, k2s := ω2

µ
, (2.4)

the associated wave numbers, we require that uniformly in x, with x̂ := x/|x|,

∂up
∂ x̂

(x) − ikpup(x),
∂us
∂ x̂

(x) − iksus(x) = o
(
|x|−1/2

)
. (2.5a)

An equivalent formulation is given by

σ (up)(x) · x̂ − ikp(λ + 2µ)up(x), σ (us)(x) · x̂ − iksµus(x) = o
(
|x|−1/2

)
, (2.5b)

which in turns implies

up(x) · us(x), (σ (us)(x)̂x) · (σ (up)(x)̂x) = o
(
|x|−1

)
. (2.5c)

We refer to (Kupradze et al., 1979, Ch. III, §2) for a proof of these results in R3, which can be
easily adapted to our two-dimensional case.
Both problems are uniquely solvable (see, for 2D and 3D problems, (Bramble & Pasciak, 2008),
(Kupradze et al., 1979, Ch. 3) or (Ammari et al., 2009, Ch. 2)).

(b) Transmission problems: For different material properties (λ+,µ+) in (+ and (λ−,µ−) in (−
we seek a solution of

∣∣∣∣∣∣∣∣∣∣∣∣

u− ∈ H1((−), u+ ∈ H1
loc((+),

∇ · σ−(u−)+ ω2
−u− = 0 in (−,

∇ · σ+(u+)+ ω2
+u− = 0 in (+,

γ!u+ − γ!u− = −γ!u
inc,

T+,!u+ − T−,!u− = −T+,!u
inc,

+ RC.

(2.6)

We have used above the ± signs in the normal stress tensor (T±,!) to clarify the domain from
which it is applied, be it the exterior/interior domain with respect to ! (that is, (+ or (−). We
will keep using this notation whenever the context is not clear enough to resolve this aspect.
We also implicitly assumed that the densities ρ± = 1 in both media.
On the other hand, the function uinc appearing in the right-hand-side above is a solution of the
exterior Navier problem in a neighborhood of (+ (typically a shear or a pressure plane wave).
This problem is known to be uniquely solvable. We refer the reader to (Costabel & Stephan,
1990, Corolary 2.7), (Ammari et al., 2009, Ch. 2) or (Kupradze et al., 1979, Chapter III).
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652 V. DOMÍNGUEZ AND C. TURC

We finish this section by introducing the exterior/interior DtN operator, which will play an essential
role in this work: for g : ! → C sufficiently smooth (we will give detailed conditions later) we define

Y+,!g := T+,!u+, Y−,!g := T−,!u−. (2.7)

where u+ satisfies the RC and

σ±(u±)+ ω2
±u± = 0, γ!u± = g.

Let us emphasize that the exterior DtN operator Y+,! is well defined for all frequencies ω, unlike the
interior DtN operator Y−,! , which fails to be properly defined whenever ω2 is an eigenvalue for the
Dirichlet problem of the Navier differential operator in the bounded domain (−. Notice that the second
transmission condition can be rewritten now as

Y+,!γ!u+ − Y−,!γ!u− = −T+,!u
inc

assuming that the inner DtN operator is properly defined.

3. Boundary integral operators for elastodynamics

3.1 Fundamental solution. Boundary layer potentials and integral operators

We briefly summarize the more relevant results of the Calderón calculus associated with layer potentials
and boundary integral operators for two-dimensional elastodynamics. We refer the reader to Costabel
& Stephan (1990), (Kupradze et al., 1979, Ch. 2), (Ammari et al., 2009, §2.4) and Domínguez et al.
(2015) for exhaustive studies on this topic. While the first three references deal only with the 3D case,
we point out that all of the results established in those works can be easily adapted to the 2D case.

The fundamental solution of the time-harmonic elastic wave equation is given by the 2 × 2 matrix
function

Φ(x, y) := 1
µ

φ0(ksr)I2 +
1
ω2∇x∇#

x (φ0(ksr) − φ0(kpr)), r = |x − y|

where

φj(z) :=
i
4
H(1)
j (z). (3.1)

In the expression above, H(1)
j denotes the Hankel function of order j and first kind, so that for the

particular case j = 0, φ0(kr) is just the fundamental solution of the Helmholtz equation % + k2.
Using the fundamental solution Φ(x, y) of the Navier equation we can define the single and double

layer potentials. Specifically, for a given density (vector) function λ! defined on !, the single layer
potential is defined as

(SL !λ!)(z) :=
∫

!
Φ(z, y)λ!(y) dy, z ∈ R2 \ !. (3.2)
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 653

Analogously, for a given density (vector) function g! defined on !, the double layer potential is defined
as

(DL !g!)(z) :=
∫

!

[
Ty,!Φ(z, y)

]#
g!(y) dy, z ∈ R2 \ ! (3.3)

where Ty,!Φ(z, y) is the normal stress tensor applied column-wise to Φ(z, y) with respect to the y
variable.

We then have the following representation formula which is referred to as the Somigliana identity

u± = ±DL !γ!u± ∓ SL !T!u±, (3.4)

for any u± solution of the homogeneous Navier equation in (± satisfying additionally the radiation
condition in the exterior domain.

The single layer potential is continuous in R2, and thus, assuming that z = x + εn(x), x ∈ ! and
taking the limit as ε → 0 in equation (3.2) we can define the single layer operator

(V!λ!)(x) :=
∫

!
Φ(x, y)λ!(y) dy, x ∈ !. (3.5)

The application of the traction operator T! to the single layer potential SL !λ! gives rise to jump
discontinuities

lim
ε→0

T!(SL !λ!)(x± εn(x)) = ∓λ!(x)+ (K#
! λ!)(x), x ∈ !

where the adjoint double layer operator is defined as

(K#
! λ!)(x) := p.v.

∫

!
Tx,!Φ(x, y)λ!(y) dy.

The integral above is singular and it has to be understood in the sense of Cauchy principal value (which
is what p.v. stands for). The double layer potential DL ! undergoes a jump discontinuity across ! so
that

lim
ε→0

(DL !g!)(x+ εn(x)) − lim
ε→0

(DL !g!)(x − εn(x)) = g!(x), x ∈ !,

and

lim
ε→0

(DL !g!)(x+ εn(x))+ lim
ε→0

(DL !g!)(x − εn(x)) = 2(K!g!)(x), x ∈ !

where the double layer operator is defined explicitly as

(K!g!)(x) := p.v.
∫

!

[
Ty,!Φ(z, y)

]#
g!(y) dy.
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654 V. DOMÍNGUEZ AND C. TURC

Finally, applying the traction operator T! to the double layer potential DL !g! we obtain the
hypersingular operator

lim
ε→0

(T!DL !g!)(x± εn(x)) = (W!g!)(x), x ∈ !

where the BIO W! is defined as

(W!g!)(x) := f. p.
∫

!
Tx,!

[
Ty,!Φ(r)

]#g!(y) dy.

The kernel of the operator defined above is strongly singular (that is it behaves like O(|x − y|−2) as
y → x), and as such the integral in its definition must be interpreted in a Hadamard finite part sense
(which it is what “f.p.” stands for in the expression above).

Remark 3.1. It is a well-established result that the matrix BIO

C! :
[
K! −V!

W! −K#
!

]
: H1/2(!) × H−1/2(!) → H1/2(!) × H−1/2(!)

is continuous. Here H±1/2(!) := H±1/2(!) × H±1/2(!) are the standard Sobolev spaces in which
Dirichlet and Neumann traces on the boundary are considered. Furthermore Chaillat et al. (2021),

C2! = 1
4
I

where I =
[
I

I

]
is the identity operator in Hs(!) × Ht(!). This makes the operators

1
2
I ± C!

projections in the space inH1/2(!)×H−1/2(!), known in the literature as the exterior/interior Calderón
operators. Since

u± = ±DL !g! ∓ SL !λ! ⇔
(
1
2
I ± C!

) [
g!

λ!

]
=

[
γ!u±
T!u±

]

we have

(
1
2
I ± C!

) [
γ!u±
T!u±

]
=

[
γ!u±
T!u±

]
, or equivalently (γ!u±,T!u±) ∈ Ker

(
1
2I ∓ C!

)
.

Let us end this remark by stating the convention we have followed so far: We will use boldface
roman letters (as f or g) for functions that naturally belong to H1/2(!), whereas Greek letters will be
used to represent functions (or distributions) in H−1/2(!) —without excluding the possibility that for
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 655

Navier problems with regular enough boundary data the functions involved also turn out to be more
regular even though ! is only Lipschitz.

3.2 Parameterized operators and functional spaces

In this section, we introduce parameterized versions of the kernels of the Navier layer potentials and
their associated BIOs. We will assume from now on that there exists a 2π−periodic smooth regular
parameterization of the closed curve !, x : R → !. We then denote

ν(t) = (x′
2(t),−x′

1(t)) = (n ◦ x)(t)|x′(t)|,

the parameterized normal tangent field to !.
We will adopt the following convention:

H1/2(!) × H−1/2(!) , (g! ,λ!) ! (g,λ) := (g! ◦ x, (λ! ◦ x)|x′|) ∈ H1/2 × H−1/2.

Here,

Hs := Hs × Hs, Hs :=
{
ϕ ∈ D′(R) ϕ(· + 2π) = ϕ, ‖ϕ‖s < ∞

}

with

‖ϕ‖2s := |ϕ̂(0)|2 +
∑

n/=0

|n|2s|ϕ̂(n)|2, ϕ̂(n) :=
∫ 2π

0
ϕ(t) exp(−int) dt.

We extend actually such identification for any s ≥ 0:

Hs(!) , g! ! g := g! ◦ x ∈ Hs, H−s(!) , ϕ! ! ϕ := (ϕ! ◦ x) : |x′| ∈ H−s.

When s = 0, i.e. L(!) := L2(!)×L2(!) we can choose between either of the two identifications above
depending on what is most appropriate for our purposes.

Notice that with this convention

∫

!
g! · λ! =

∫ 2π

0
g · λ =: 〈g,ϕ〉, g = g! ◦ x, λ = (λ! ◦ x) |x′|.

For any u : (± → C2 sufficiently smooth we follow this convention and thus define the
2π−periodic vector fields:

γu := u ◦ x, Tu := (T!u ◦ x) |x| = (σ (u) ◦ x)ν (3.6)

D
ow
nloaded from

 https://academ
ic.oup.com

/im
am
at/article/87/4/647/6674490 by guest on 09 N

ovem
ber 2022



656 V. DOMÍNGUEZ AND C. TURC

which are the (parameterized) trace and normal stress tensor. With these notations in hand, we then
introduce the parameterized version of the Navier layer potentials

(SLλ)(z) :=
∫ 2π

0
Φ(z, x(t))λ(t) dt, z ∈ R2 \ !, (3.7)

(DLg)(z) :=
∫ 2π

0

[
TtΦ(z, x(t))

]# g(t) dt, z ∈ R2 \ !, (3.8)

where

TtΦ(·, x(t)) := Ty,!Φ(·, y)
∣∣∣ y=x(t)|x′(t)|, (3.9)

and their associated four BIOs

(Vλ)(t) :=
∫ 2π

0
V(τ , t)λ(t) dt =

∫ 2π

0
Φ(x(τ ), x(t))λ(t) dt, (3.10a)

(Kg)(τ ) := p.v.
∫ 2π

0
K(τ , t) g(t) dt = p.v

∫ 2π

0

[
TtΦ(x(τ ), x(t))

]# g(t) dt, (3.10b)

(K#λ)(τ ) := p.v.
∫ 2π

0
K#(t, τ )λ(t) dt = p.v

∫ 2π

0
TτΦ(x(τ ), x(t))λ(t) dt, (3.10c)

(Wg)(τ ) := f. p.
∫ 2π

0
W(τ , t) g(t) dt = f. p.

∫ 2π

0
Tτ

[
TtΦ(x(τ ),x(t))

]# g(t) dt. (3.10d)

(Here, and similarly to (3.9), TτΨ (x(τ ), ·) := Tx,!Ψ (x, ·)
∣∣
x=x(τ )|x′(τ )|, for any 2 × 2 matrix function

Ψ : ! × ! → C2×2). Observe that with these definitions, K and K# are effectively transpose of each
other:

〈Kg,λ〉 = 〈g,K#λ〉, ∀g ∈ Hs, ∀λ ∈ H−s.

As in Remark 3.1 the (parameterized) version

C :
[
K −V
W −K#

]
: H1/2 × H−1/2 → H1/2 × H−1/2

can be shown to satisfy the related properties:

C2 = 1
4
I

(
±1
2
I + C

)2

= ±1
2
I + C
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 657

and that a similar relation can be established between functional densities defined on ! and boundary
traces of their associated combined field layer potentials. Indeed, if we define

u± = ±DLg ∓ SLλ in (±,

we have
(
1
2
I ± C

) [
γ±u
T±u

]
=

[
γ±u
T±u

]
, or equivalently (γ±u,T±u) ∈ Ker

(
1
2I ∓ C

)
.

In particular, the Somigliana identity cf. (3.4) looks similar in this framework:

u± = ±DL γ±u ∓ SLT±u. (3.11)

3.3 Principal symbol pseudodifferential calculus

Our next result establishes the fact that the difference between the kernels of the four parametrized BIOs
associated with the time harmonic Navier equations (i.e. elastodynamics) and their static counterparts
(i.e. elasticity) exhibit integrable singularities only, and the nature of the latter can be made explicit:

Proposition 3.2. There exist smooth 2π−periodic 2 × 2 matrix functions

Alog, Areg, Breg, Clog, Dreg

so that

V(τ , t) = V0(τ , t)+ Alog(τ , t) sin
2 τ − t

2
log r + Areg(τ , t),

K(τ , t) = K0(τ , t)+ Blog(τ , t) sin(τ − t) log r + Breg(τ , t),

W(τ , t) = W0(τ , t)+ Clog(τ , t) log r + Dreg(τ , t),

where

V0(τ , t) := − λ + 3µ
4π(λ + 2µ)µ

log r I2 +
λ + µ

4π(λ + 2µ)µ
G(r),

K0(τ , t) :=
µ

λ + 2µ

(
∂

∂t
1
2π

log r
) [ −1

1

]
+ 1

2πr2
(ν(t) · r)

(
µ

λ + 2µ
I2 + 2

λ + µ

λ + 2µ
G(r)

)
,

W0(τ , t) := −µ(λ + µ)

λ + 2µ
∂2

∂τ ∂t
1
π

(
− log r I2 + G(r)

)

with

r := x(τ ) − x(t), r := |r| = |x(τ ) − x(t)|, G(r) := 1
r2
rr# =

[
r21 r1r2
r1r2 r22

]
.

Proof. We refer the reader to Appendix and Remark A.4. "
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658 V. DOMÍNGUEZ AND C. TURC

Notice that in the previous results we have used the same symbols r and r to represent different but very
closely related quantities. We believe that this similarity justifies this slight abuse of notation.

Let us stress some consequences of the previous result. The (matrix) functions V0(t, τ ), K0(t, τ ),
K#
0 (t, τ ) and W0(t, τ ) are the kernels of the corresponding BIOs (single layer, double layer, adjoint

double layer and hypersingular operator) for the elasticity layer operators. Hence, if we introduce the
integral operators

0ϕ := − 1
2π

∫ 2π

0
log

(
4e−1 sin2

· − t
2

)
ϕ(t) dt,

Hg := −i0g′ + ĝ(0) = p.v.
1
2π i

∫ 2π

0
cot

t − ·
2

g(t) dt + 1
2π

∫ 2π

0
g(t) dt,

which are actually Fourier multiplier operators whose action is explicitly given by

0g = ĝ(0)+
∑

n/=0

1
|n| ĝ(n) exp(in ·), Hg = −

∑

n<0

ĝ(n) exp(in ·)+
∑

n≥0

ĝ(n) exp(in ·), (3.12)

together with the matrix operators

& =
[
0

0

]
, &−1 =

[
0−1

0−1

]
, H =

[ −H
H

]
= H# (3.13)

the following regularity results can be easily established, cf. Remark A.4

K − αH : Hs → Hs+2, V − β& : Hs → Hs+3,

W − δ&−1 : Hs → Hs+1, K# − αH : Hs → Hs+2, (3.14)

where

α := iµ
2(λ + 2µ)

∈ iR+, β := λ + 3µ
4µ(λ + 2µ)

> 0, δ := −µ(λ + µ)

λ + 2µ
< 0.

We note in passing that

α2 + βδ + 1
4
= 0. (3.15)

On the other hand, using the 2D Günther derivative cf. (Hsiao & Wendland, 2008, §2.2)

Dg :=
[−g′

2
g′
1

]

it holds that

H = &D, &−1 = D#&D.
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 659

Besides, it is straightforward to derive the following coercivity relations

〈&−1g, g〉 ≥ ‖g‖2
H1/2 , 〈&ϕ,ϕ〉 ≥ ‖ϕ‖2

H−1/2 . (3.16)

Having introduced these notations, set

C0 :=
[

αH −β&

δ&−1 −αH#

]
=

[
αH −β&

δ&−1 −αH

]
. (3.17)

Proposition 3.3. For any s ∈ R, C0 : Hs+1 × Hs → Hs+1 × Hs is continuous. Moreover,

C − C0 : Hs+1 × Hs → Hs+3 × Hs+2.

Besides,

C20 = 1
4
I,

(
±1
2
I + C0

)2

= ±1
2
I + C0.

Proof. The first assumption as well as the mapping properties for C − C0 are consequence of the
definition of C0 and (3.14). Notice also that

H2 = −I

which with the expressions for α, β and δ, see (3.15), proves that C2 = 1
4I. The last result is

straightforward. "
For a pseudodifferential operator A of order m (i.e. A : Hs → Hs−m) we will denote by PS(A)

its principal symbol, that is we require that (i) PS(A) is a Fourier multiplier and (ii) A − PS(A) is a
pseudodifferential operator of order m − 1, i.e. A − PS(A) : Hs → Hs−m+1 (the principal symbol
operators are not uniquely defined, and we will use in what follows various such operators depending
on the circumstances). This notation is readily extended to matrix operators, and, in view of previous
result Proposition 3.3, we have

PS(C) = C0.

A key ingredient in deriving alternative BIE formulations of scattering and transmission Navier
problems is the incorporation of principal symbols of DtN operators. Let us define Y± as the usual
parameterization of the DtN operators Y±,! introduced in (2.7). It is easy to derive from classical results
that Y± : H1/2 → H−1/2.

Lemma 3.4. For any H1/2 , g /= 0 it holds

4〈Y−g, g〉 = 0, 4〈Y+g, g〉 > 0.

Proof. The proof uses the same arguments, and follow the same lines, as in the Helmholtz equation cf.
Colton & Kress (1983). We present the proof here just for the sake of completeness.

D
ow
nloaded from

 https://academ
ic.oup.com

/im
am
at/article/87/4/647/6674490 by guest on 09 N

ovem
ber 2022



660 V. DOMÍNGUEZ AND C. TURC

Given g ∈ H1/2(!), let v− ∈ H1((−), v+ ∈ H1
loc((+) be the solutions of the Dirichlet problem for

Navier equations in interior ((−) and exterior ((+) domain. Therefore

γ v± = g, T±v± = Y±γ v± = Y±g.

For the interior DtN operator the result is consequence of the first Green identity since

〈γ v−,T−v−〉 =
∫

!
γ!v− · T!,−v−

=
∫

(−
2µε(v−) : ε(v−)+ λ|∇ · v−|2 − ω2

∫

(−
|v−|2 ∈ R.

(We have denoted above by “:” the Frobenius matrix inner product).
The proof for the exterior DtN operator is only slightly different. First, take BR a the ball centered at

origin and sufficiently large radius R. Then

〈γ v+,T+v+〉 =
∫

!
γ!v+ · T!,+v+

= −
∫

(+∩BR
2µε(v−) :ε(v−) −λ|∇ ·v−|2+ ω2

∫

(−∩BR
|v−|2 +

∫

∂BR
γ∂BRv+ · T∂BR,+v+.

Recall that v+ satisfies the radiation condition at infinity (2.5). This condition implies, by (2.5b)-(2.5c),

lim
R→∞

∫

∂BR
γ∂BRv+ T∂BR,+v+ = lim

R→∞
ikp(λ + 2µ)

∫

∂BR
|vp|2 + lim

R→∞
iksµ

∫

∂BR
|vs|2 ∈ iR+,

with vp and vs being the longitudinal and transversal wave components of v. Thus,

4〈γ v+,T+v+〉 = lim
R→∞

kp(λ + 2µ)
∫

∂BR
|vp|2 + lim

R→∞
ksµ

∫

∂BR
|vs|2 ≥ 0.

Furthermore, vp and vs are solutions of (vector) Helmholtz equations in (+, with their corresponding
Helmholtz (Sommeferld) radiation conditions at infinity cf. (2.5a). Then

4〈γ v+,T+v+〉 = 0 if and only if lim
R→∞

∫

∂BR
|vp|2 = lim

R→∞

∫

∂BR
|vp|2 = 0

which implies that vp and vs, and so v+ = vp + vs, vanish. The second result is now proven. "
We are now ready to compute the principal symbols PS(Y±). If ω2 is not an eigenvalue for

the Dirichlet problem for the Navier operator in the interior domain (−, which is equivalent to the
invertibility of single layer BIO v, cf. Remark 3.1, we derive

T+u = −V−1
(
1
2
I − K

)
γu.
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 661

Similarly, if ω2 is not an eigenvalue for the Neumann problem, which in turn renders the operator 1
2 I+K

invertible, we obtain the alternative formula

T+u =
(
1
2
I + K

)−1

Wγu.

Since ω2 cannot be simultaneously a Neumann and a Dirichlet eigenvalue in the bounded domain
(−, we use either of the formulas above for the exterior DtN operator Y+u = T+u (which is a
pseudodifferential operator of order 1, i.e., Y+ : Hs → Hs−1) together with the principal symbol
formulas for the BIOs involved in those equations and we derive a formula for its principal symbol

PS(Y+) = −β−1&−1
(
1
2
I − αH

)
= δ

(
1
2
I + αH

)−1

&−1. (3.18)

Assuming that the Dirichlet interior problem is well posed, we can proceed in the same way for the
interior DtN operator Y−, and we get

PS(Y−) = β−1&−1
(
1
2
I + αH

)
= −δ

(
1
2
I − αH

)−1

&−1. (3.19)

We note that the matrix operators H and & commute, and furthermore the two choices provided in the
right hand sides of equations (3.18) and respectively (3.19) for the calculation of the principal symbol
operators do produce the same result (this can be verified using equation (3.15)). Finally, it can be easily
seen that

PS(Y±) − Y± : Hs → Hs+1. (3.20)

We present next some straightforward results that will enable us to establish certain coercivity
properties that the operators PS(Y±) enjoy.

Lemma 3.5. It holds,

〈Hϕ, g〉 = −〈ϕ,Hg〉, ∀ϕ ∈ H−s, g ∈ Hs.

Therefore,

6 〈Hϕ,ϕ〉 = 0, ∀ϕ ∈ H0.

Besides, if c ∈ (−1/2, 1/2) then

〈(
1
2
I + ciH

)
ϕ,ϕ

〉
≥

(
1
2

− c
)

‖ϕ‖2
H0 .
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662 V. DOMÍNGUEZ AND C. TURC

Proof. The first result follows from the definition of H which, in addition, implies trivially the second
result. Finally,

〈(
1
2
I + ciH

)
ϕ,ϕ

〉
≥

(
1
2

− |c| ‖H‖H0→H0
︸ ︷︷ ︸

=1

)
‖ϕ‖2

H0

and the result is proven. "
As consequence of the above lemma we can easily derive the following coercivity result that will be

useful in what follows:

Proposition 3.6. It holds

〈
PS(Y−)g, g

〉
≥ β−1(1 − |α|)‖g‖2

H1/2 , −
〈
PS(Y+)g, g

〉
≥ β−1(1 − |α|)‖g‖2

H1/2 .

Proof. Since &−1 is positive definite we use its square root &−1/2 defined explicitly as

&−1/2 =
[
0−1/2

0−1/2

]
, 0−1/2g = ĝ(0)+

∑

n/=0

|n|1/2̂g(n),

which turns out to be an isometry from Hs into Hs−1/2. It can easily be checked that &−1/2 commutes
with H and hence

6
〈
PS(Y−)g, g

〉
= β−16

〈(
1
2
I + αH

)
&−1/2g,&−1/2g

〉
≥ β−1

(
1
2

− |α|
)

‖&−1/2g‖2
H0

= β−1
(
1
2

− |α|
)

‖g‖2
H1/2 .

The second result follows similarly. "
We will also use an alternative form of the principal symbol operator PS(Y±) that relies on

complexified square roots. To this end, we select a complex wavenumber κ with 6κ ,4κ > 0 and
we introduce a complexified version of the Fourier multiplier operator defined in equation (3.12) in the
following form

0κ =
∞∑

n=−∞
(n2 − κ2)−1/2̂g(n) exp(in ·) (3.21)

and then we define the matrix operators &κ :=
[
0κ

0κ

]
and &−1

κ accordingly. We mention that

the square roots in formula (3.21) are selected so that 4(n2 − κ2)−1/2 > 0. The incorporation of
these alternative Fourier multipliers in the DtN calculus in connection to BIE has been originally
proposed in Antoine & Darbas (2005), and has been adopted in the community because these operators
provide improved approximations of the Fourier modes in the transition region between propagating

D
ow
nloaded from

 https://academ
ic.oup.com

/im
am
at/article/87/4/647/6674490 by guest on 09 N

ovem
ber 2022



BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 663

and evanescent modes (that is frequencies such that |n| ≈ k). Clearly, &κ : Hs → Hs+1, and, besides,
by construction

6〈&κϕ,ϕ〉 ≥ c‖ϕ‖2
H−1/2 , 6〈&−1

κ ϕ,ϕ〉 ≥ c‖g‖2
H1/2 (3.22)

and

4〈&κϕ,ϕ〉 ≥ c‖ϕ‖2
H−3/2 , −4〈&−1

κ ϕ,ϕ〉 ≥ c‖g‖2
H−1/2 . (3.23)

The newly defined operators &κ enjoy the following regularity properties

&κ − & : Hs → Hs+3, &−1
κ − &−1 : Hs → Hs+1.

We can thus define complexified principal symbol DtN operators in the following manner

PSκ(Y−) := β−1&−1
κ

(
1
2
I + αH

)
= −δ

(
1
2
I − αH

)−1

&−1
κ , (3.24a)

PSκ(Y+) := −β−1&−1
κ

(
1
2
I − αH

)
= δ

(
1
2
I + αH

)−1

&−1
κ . (3.24b)

We establish that the complexified operators defined above are indeed principal symbol DtN operators
that enjoy the same coercivity properties as the DtN operators themselves

Proposition 3.7. It holds PS(Y±) − PSκ(Y±) : Hs → Hs+1. Furthermore, there exist c1 > 0 and,
provided that 6(n2 − κ2) /= 0, c2 > 0 so that

4
〈
PSκ(Y+)g, g

〉
≥ c1‖g‖2H−1/2 , −4

〈
PSκ(Y−)g, g

〉
≥ c1‖g‖2H−1/2 ,

−6
〈
PSκ(Y+)g, g

〉
≥ c2‖g‖2H1/2 , 6

〈
PSκ(Y−)g, g

〉
≥ c2‖g‖2H1/2 .

Proof. Using that

(n2 − κ2)1/2 = a2n − ib2n, an, bn > 0, an ≈ n, bn ≈ n−1, as n → ∞,

we can easily show that

0−1
κ = 52

r − i52
i

with

5rg :=
∞∑

n=−∞
an̂g(n) exp(i n · ), 5ig :=

∞∑

n=−∞
bn̂g(n) exp(i n · ).

Clearly 5i : H
s → Hs+1/2 and, provided that 6(n2 − κ2) /= 0, 5r : Hs → Hs−1/2 are continuous

invertible operators.
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664 V. DOMÍNGUEZ AND C. TURC

We then define the matrix operators 'r :=
[
5r

5r

]
and 'i :=

[
5i

5i

]
accordingly and we

notice that

PSκ(Y±) = ∓β−1'2
r

(
1
2
I ∓ αH

)
± iβ−1'2

i

(
1
2
I ∓ αH

)

so that

〈PSκ(Y±)g, g〉 = ∓β−1
〈(

1
2
I ∓ αH

)
'rg,'rg

〉
± iβ−1

〈(
1
2
I ∓ αH

)
'ig,'ig

〉
.

The result follows now from Lemma 3.5. "

Remark 3.8. Slightly different pseudodifferential approximations of the Navier boundary layer
operators were proposed by Chaillat et all in (Chaillat et al., 2015). Their approach is based on use
of tubular neighborhoods of ! that enables a pseudodifferential calculus in the (t, n) framework (here t
denotes the unit vector tangent field oriented counterclockwise on !) leading in our bidimensional case
to the following principal symbol Fourier multipliers

PSκp,κs(V)(n) :=
1

2ω2

[
n2(n2 − κ2

p )
−1/2 − (n2 − κ2

s )
1/2

n2(n2 − κ2
s )

−1/2 − (n2 − κ2
p )

1/2

]
(3.25)

and respectively

PSκp,κs(K)(n) :=
iµ

2(λ + 2µ)

[
n(n2 − κ2

p )
−1/2

−n(n2 − κ2
s )

−1/2

]
(3.26)

with 4κp > 0, 4κs > 0. The precise definition of the Fourier multiplier operator PSκp,κs(V) is given
below, and it requires the use of the tangent and normal fields on !

PSκp,κs(V)ϕ :=
∞∑

n=−∞

[
t#

n#

]
PSκp,κs(V)(n)

[
ϕ̂t(n)
ϕ̂n(n)

]
exp(in ·) ϕt := ϕ · t, ϕn := ϕ · n.

(Here we assume that the length of the curve is 2π and that an arc length parameterization is being
used; the required modification for curves of any length is straightforward). The principal symbols
defined in equations (3.25) and (3.26) lead via the Somigliana’s identities to alternative principal symbol
approximations PSκp,κs(Y±) of DtN operators

PSκp,κs(Y±)(n) = ∓(PSκp,κs(V)(n))
−1

(
1
2
I ∓ PSκp,κs(K)(n)

)
. (3.27)

3.4 Duality in product spaces

In this short subsection we present certain properties of matrix operators in connection to duality in
product spaces. We are interested in deriving an explicit formula for the dual of the Calderón operators
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 665

C : Hs1 × Hs2 → Hs1 × Hs2 with an emphasis on the case where s1 = 1/2 = −s2. To this end, for
general matrix operators

A :
[
A11 A12
A21 A22

]
: Hs1 × Hs2 → Ht1 × Ht2 , (that is, Aij : H

sj → Hti)

we work with the non-standard representation: (Hs × Ht)′ = H−t × H−s via the non-standard duality
product

[(g1,ϕ1), (g2,ϕ2)] = 〈g1,ϕ2〉 − 〈g2,ϕ1〉. (3.28)

Notice that, with this convention:

[
A

[
g1
ϕ1

]
,
[
g2
ϕ2

]]
=

[[
g1
ϕ1

]
,A#

[
g2
ϕ2

]]
, with A# :=

[
A#
22 −A#

12
−A#

21 A#
11

]
.

In particular, we find that

C# = −C,
(
1
2
I ± C

)#
=

(
1
2
I ∓ C

)#

i.e., the transpose of the interior Calderón operator is the exterior one and vice versa. This property
will simplify the analysis of boundary integral formulations for transmission problems as we will see in
section 5.

4. Boundary integral formulations. Impenetrable case

We present in what follows various strategies to derive BIE formulations of scattering problems.
Besides the classical combined field formulations combined field integral equations (CFIE), we derive
regularized formulations that rely on the use of approximations of the DtN operators. The design of the
regularized formulations for elastodynamic scattering and transmission problems follows the blueprint
from the Helmholtz case Boubendir & Turc (2013).

4.1 Dirichlet boundary conditions

Let us consider (+ the exterior of a closed, smooth, simply connect curve !

∣∣∣∣∣∣∣∣

u ∈ H1
loc((+)

∇ · σ (u)+ ω2u = 0, in (+,
γ!u = f!

+ RC

(4.1)

Just like in the Helmholtz case Brakhage & Werner (1965), the classical approach (Chaillat et al.,
2008, 2017; Costabel & Stephan, 1990) in the case of Dirichlet boundary conditions is to look for a
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666 V. DOMÍNGUEZ AND C. TURC

scattered field in the form of a combined field representation

u(x) := (DLϕ)(x) − iηD(SLϕ)(x), x ∈ (+

where the coupling parameter ηD /= 0 and the 2π -periodic function ϕ : R → C2 is the solution of the
combined field integral equation (CFIE)

1
2
ϕ + Kϕ − iηDVϕ = f. (4.2)

(With, as taken throughout this paper, f := f! ◦ x). The question of selecting a value of the coupling
parameter ηD that leads to formulations with superior spectral properties (and thus faster convergence
rates for iterative solver solutions) can be settled via DtN arguments (Chaillat et al., 2017). We begin
with Somigliana’s identities (3.11), which we rewrite considering as u|! as the primary unknown
boundary density and incorporating the DtN operator in the form

u(x) = DL [γu](x) − SL [Y+γu](x), x ∈ (+.

The main idea in constructing regularized formulations is to use easily constructable approximations RD

of the DtN operator Y+ and look for combined field representations in the form

u(x) := (DLg)(x) − (SL [RDg])(x), x ∈ (+ (4.3)

leading to the CFIER

1
2
g+ Kg − VRDg = f on !. (4.4)

We show in what follows that under certain assumptions on the regularizing operator RD, the CFIER is
well posed:

Theorem 4.1. Consider a preconditioner RD that satisfies the following two properties: (a) RD − Y+ :
Hs → Hs is continuous and (b) the non-null condition holds

4〈RDϕ,ϕ〉 /= 0, ϕ /= 0.

Then the CFIER operator 1
2 I + K − V[RD] is an invertible compact perturbation of the identity with

continuous inverse.
In particular, in view of (3.20) and Proposition 3.7, PSκ(Y+) is a valid election.

Proof. Notice that by construction:

1
2
I + K − VRD −

(
1
2
I + αH − β&PS(Y+)

)
: Hs → Hs+1.
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Furthermore, by (3.18)

1
2
I + αH − β& PS(Y+) =

1
2
I + αH+β&

[
β−1&−1

(
1
2
I − αH

)]
= I

Consequently, the operator is a compact perturbation of the identity, and, as such, owing to Fredholm
alternative, it suffices to establish the injectivity in order to complete the proof. To this end, let us assume
that g ∈ Hs is in the kernel of the operator and define

v(x) := (DLg)(x) − (SL [RDg])(x), x ∈ R2 \ !.

Clearly v+ = v|(+ is a radiating solution of the Navier equation in (+ with zero Dirichlet boundary
conditions on !, which implies that v+ is identically zero in (+. Hence,

(
1
2
I + C

)[
g

RDg

]
= 0, and so

(
1
2
I − C

)[
g

RDg

]
=

[
g

RDg

]
.

In other words, v− = v|(− is a solution of the Navier equation in the domain (− that satisfies

γ v− = g, T−v− = RDg

and so

〈RDg, g〉 = 〈Tv−, γ v−〉 ∈ R

by Lemma 3.4. The proof is concluded on the basis of the assumption (b). "
The regularizing operator RD = PSκ(Y+) is a pseudodifferential operator of order 1 whose

numerical evaluation is consequently more involved. Using the high-frequency approximation |κ| → ∞
in the definition of the Fourier multiplier 0−1

κ , we can construct a simple regularizing operator

RD
1 = −2µ(λ + 2µ)

λ + 3µ
iκ ,

which, incidentally, can be interpreted as delivering a quasi-optimal choice for the coupling parameter
ηD in the CFIE formulation

η
opt
D = 2µ(λ + 2µ)

λ + 3µ
ks (4.5)

if we choose κ = ks. We observed in practice that this choice of the coupling constant η
opt
D appears to

deliver consistently superior behavior of iterative solvers for solving the corresponding linear systems
when discretized. We remark that a similar, easily implementable low-order approximation of the DtN
operator was proposed in Chaillat et al. (2017) as a regularizing operator in the Dirichlet case.
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668 V. DOMÍNGUEZ AND C. TURC

4.2 Neumann boundary conditions

In the case of Neumann boundary conditions, i.e.,

∣∣∣∣∣∣∣∣

u ∈ H1
loc((+)

∇ · σ (u)+ ω2u = 0, in (+,
T+,!u = λ!

+ RC

(4.6)

we can look for a scattered field in the form of a Combined Field representation akin to the Burton-
Miller formulation in the Helmholtz case Burton & Miller (1971)

u(x) := −(SLϕ)(x)+ iηN(DLϕ)(x), x ∈ (+

where the coupling parameter ηN /= 0, leading to the CFIE

1
2
ϕ − K#ϕ + iηNWϕ = λ. (4.7)

Here again we start by recasting the Somigliana’s identities looking at Tu as the primary unknown
boundary density and making use of the the NtD operator (which is the inverse of the DtN operator)

u(x) = (DL [Y−1
+ {Tu}])(x) − (SL {Tu})(x), x ∈ (+.

The construction of regularized formulations relies again on available approximations RN of the NtD
operator Y−1 via looking for combined field representations in the form

u(x) := (DL [RNϕ])(x) − (SLϕ)(x), x ∈ (+ (4.8)

leading to the CFIER

1
2
ϕ − K#ϕ +WRNϕ = λ on !. (4.9)

Again here, the choice RN = [PSκ(Y+)]
−1 leads to well posed CFIER formulations, at least in the case

when the boundary ! is smooth enough. Indeed, the following result can be established analogously to
that in Theorem 4.1

Theorem 4.2. Consider a preconditioner RN that satisfies the following two properties: (a) RN −
[Y+]

−1 : Hs → Hs+1 and (b) the non-null condition

4〈RNϕ,ϕ〉 /= 0, ϕ /= 0.

Then the CFIER operator

1
2
I − K# +W[RN]

is an invertible compact perturbation of the identity.
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In particular, RN = (PSκ(Y+))
−1 is a valid choice.

Proof. From

1
2
I − αH + δ&−1

[
δ
(1
2
I + αH

)−1
&−1

]−1

= I

we can easily see that 1
2 I − K# +W[PSκ(Y+)]

−1 is a compact perturbation of the identity.
The unicity follows from a similar argument as in Theorem 4.1: take ϕ in the kernel of the operator,

define

w(x) := (DL [RNϕ])(x) − (SLϕ)(x), x ∈ R2 \ !

and derive next w vanishes in (+. Therefore, with w− = w|(− and g = PSκ(Y+)
−1ϕ

〈PSκ(Y+)g, g〉 = 〈ϕ,RNϕ〉 = 〈Tw−, γw−〉

and the result is consequence of Lemma 3.4 and Proposition 3.7. "
Similarly, using high-frequency approximations we can construct a simple regularizing operator

RN
1 = i

λ + 3µ
2µ(λ + 2µ)

κ−1,

which, delivers a quasi-optimal choice for the coupling parameter ηN in the CFIE formulation

η
opt
N = λ + 3µ

2µ(λ + 2µ)
k−1
s . (4.10)

We remark that similar low-order approximations of NtD operators have been used in Chaillat et al.
(2021) to construct CFIE formulations with superior spectral properties.

Similarly, we can construct direct regularized formulations in the case of Neumann boundary
conditions following the ideas in Anand et al. (2012). Assuming that a smooth incident field uinc

(which is a solution of the Navier equation in the whole R2) impinges on the obstacle (, we will derive
these BIEs in terms of unknown boundary quantity γutot = γ (u+ uinc). We obtain from Somigliana’s
identities by taking into account the fact that Tutot = 0 on !

u(x) = (DL utot)(x), x ∈ (+. (4.11)

Applying the Dirichlet trace on ! to formula (4.11), we obtain

1
2
γutot − Kγutot = γuinc (4.12)
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670 V. DOMÍNGUEZ AND C. TURC

while applying the traction operator to formula (4.11) we get

Wγutot = −Tuinc. (4.13)

We combine BIE (4.12) and a preconditioned (on the left) version of the BIE (4.13) to arrive at the
DCFIER

1
2
γutot(x) − Kγutot + ([RNW]γutot) = γuinc − RNTuinc, (4.14)

We note that the operators on the left hand side of the DCFIER formulation is the transpose of the
operator in the CFIER formulation, a situation that is similar to that in the Helmholtz case (Anand et al.,
2012). Direct formulations can be then used in the case when ( is a Lipschitz domain in order to take
advantage of the increased regularity of γutot.

5. The penetrable case

We consider in this section the penetrable case with transmission conditions, as formulated in (2.6):

∣∣∣∣∣∣∣∣∣∣∣∣

u− ∈ H1((−), u+ ∈ H1
loc((+),

∇ · σ−(u−)+ ω2
−u− = 0, in (−,

∇ · σ+(u+)+ ω2
+u− = 0, in (+,

γu+ − γu− = −γuinc,
T+u+ − T−u− = −T+u

inc,
+ RC.

(5.1)

We present two approaches. In the first one, we analyse two classical formulations, the Costabel-
Stephan (5.2) and Kress-Roach formulation (5.6) and introduce two new ones, extensions of that firstly
introduced in Domínguez et al. (2016) for Helmholtz equation.

In the second subsection, we analyse the OS formulation.

5.1 Regularized formulations

In the first approach, we seek to solve for the Cauchy data (γu±,T±u) and reconstruct the solution via

u± = ±DL±γu± ∓ SL∓T±u,

where the ± notation is used for denoting the corresponding boundary layer potential operators for the
exterior/interior problem. Hence, denoting by

C± :=
[
K± −V±
W± −K#

±

]

we have that
(
1
2
I + C+

) [
γu+
T+u+

]
=

[
γu+
T+u+

]
,

(
1
2
I − C−

) [
γu−
T−u−

]
=

[
γu−
T−u−

]
.
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These last two properties together with the fact that

(
1
2
I + C+

)[
γuinc

T+u
inc

]
= 0

can be combined to derive a system of BIE equations for the solution of penetrable Navier problems

LSC

[
γu−
T−u−

]
:= −(C+ + C−)

[
γu−
T−u−

]
=

[
γuinc

T+u
inc

]
. (5.2)

We refer in what follows to the formulation (5.2) as the Stephan-Costabel as first introduced in cf.
(Costabel & Stephan, 1990), which is in turn the counterpart of the acoustic formulation introduced by
these two authors in Costabel & Stephan (1985).

Besides, since

(
1
2
I + C−

)[
γu−
T−u−

]
= 0

we find also that
(
1
2
I + C− − R#(C+ + C−)

)[
γu−
T−u−

]
= R#

[
γuinc

T+u
inc

]
(5.3)

for any suitable operator

R =
[
R11 R12
R21 R22

] (

recall that R# =
[

R#
22 −R#

12

−R#
21 R#

11

])

.

Alternatively, we can work with the adjoint of the formulation (5.3), in the sense discussed in Section 3.4

(1
2
I − C− + (C+ + C−)R

) [
g
ϕ

]
=

[
γuinc

T+u
inc

]
(5.4)

Clearly, owing to duality arguments, the first formulation (5.3) is uniquely solvable if and only if so is
the second (dual) formulation (5.4). The connection between the boundary densities (g,ϕ) which are
the solution of the adjoint formulation (5.4) and the fields u± is as follows

u+ =
[
DL+ −SL+

]
R

[
g
ϕ

]
= DL+(R11g+ R12ϕ) − SL+(R21g+ R22ϕ)

u− =
[−DL− SL−

]
(R − I)

[
g
ϕ

]
= DL−(g − R11g − R12ϕ) − SL−(ϕ − R21g − R22ϕ). (5.5)

In other words, formulations (5.3) and respectively (5.4) can be viewed as regularized direct and indirect
BIE formulations of elastodynamic transmission problems.
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672 V. DOMÍNGUEZ AND C. TURC

In particular, selectingR = 1
2I in either of the formulations (5.3) or (5.4) we obtain the Kress-Roach

type formulation

LKR

[
γu−
T−u−

]
:= (I + C− − C+)

[
γu−
T−u−

]
= 2

[
γuinc

T+u
inc

]
. (5.6)

This formulation was first introduced, for acoustic problems, by Kress and Roach in Kress & Roach
(1978). We also refer the reader to (Le Louër, 2015, Theorem 2.1) for the analysis of this formulation
in 3D elastodynamics problems. As we will show below, Proposition 5.2 and Theorem 5.3, the well
posedness of (5.2)–(5.6) can be stated in an easier way for 2D problems, obtaining, in addition, crucial
information about the eigenvalues distribution of the associated operator in the complex plane. We stress
that, unlike the Kress-Roach formulations for the Helmholtz transmission problems, the BIE formulation
(5.6) is not a second kind formulation since the double layer BIOs are no longer compact in this setting.

We will establish next that the Stephan-Costabel and the Kress-Roach type formulations are well
posed. The proof follows the ideas used in the seminal work (Costabel & Stephan, 1985; Kress & Roach,
1978) for which the well-posedness of the transmission problem with reversed material properties

∣∣∣∣∣∣∣∣∣∣∣∣

v− ∈ H1((−), v+ ∈ H1
loc((+)

∇ · σ−(v+)+ ω2
−v+ = 0, in (+,

∇ · σ+(v−)+ ω2
+v− = 0, in (−,

γ v+ − γ v− = −uinc,
T+v+ − T−v− = −T+u

inc,
+ RC

(5.7)

will be essential.
Let us introduce (with α± ∈ iR, β± > 0 > δ± as in (3.17)) operators

L0,SC := −(C+,0 + C−,0) = −
[
(α+ + α−)H −(β+ + β−)&
(δ+ + δ−)&

−1 −(α+ + α−)H

]
,

L0,KR := I + C−,0 − C+,0 = I +
[
(α− − α+)H −(β− − β+)&
(δ− − δ+)&

−1 −(α− − α+)H

]

which are simply the principal parts for LSC and LKR.
We can show easily that

L2
0,SC = ρI (5.8)

where

ρ = −(β+ + β−)(δ+ + δ−) − (α+ + α−)
2

= (λ+(µ+ + µ−)+ µ+(µ+ + 3µ−))(λ−(µ+ + µ−)+ µ−(3µ+ + µ−))
4µ+µ−(λ+ + 2µ+)(λ− + 2µ−)

(5.9)

= F(λ+,µ+,
λ−
λ+

,
µ−
µ+

) = F(λ−,µ−,
λ+
λ−

,
µ+
µ−

),
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with

F(x, y, r, s) :=
(
(s+ 1)xy+ (3s+ 1)y2

) (
r(s+ 1)xy+ s(s+ 3)y2

)

4sy2(x+ 2y)(rx+ 2sy)
.

We prove in the next lemma that ρ ≥ 1 with ρ = 1 if and only if µ+ = µ−.

Lemma 5.1. For all (x, y, r, s) ∈ R4
+, F(x, y, r, s) ≥ 1 with F(x, y, r, s) = 1 if and only if s = 1.

Proof. Clearly F(x, y, r, 1) = 1. Besides,

∂rF(x, y, r, s) =
(s − 1)xy(sx+ 3sy+ x+ y)

4(x+ 2y)(rx+ 2sy)2
.

Hence the result follows readily since for (x, y, r, s) ∈ R4
+, ∂rF(x, y, r, s) > 0, respectively

∂rF(x, y, r, s) < 0, if s > 1, respectively s < 1. "

Proposition 5.2. L0,SC,L#
0,KR : Hs × Hs−1 → Hs × Hs−1 are normal and invertible operators.

Moreover, the eigenvalues of L0,SC and L#
0,KR are {±√

ρ} and {1± √
1 − ρ} respectively where ρ > 1

if µ+ /= µ− and 1 otherwise.

Proof. It follows from equation (5.8) that L0,SC is invertible and its eigenvalues are ±√
ρ. The last

claim can be established by considering the matrix operator

Q =
[

εi&
−ε−1i&−1

]
where ε =

(
−β+ + β−

δ+ + δ−

)1/2

> 0

which satisfies

Q−1 = Q, QL0,SCQ = −L0,SC.

Thus, if (λ, g) is an eigenvector of L0,SC associated with the eigenvalue ±√
ρ, then Q(λ, g)# is also an

eigenvector of L0,SC associated with the eigenvalue ∓√
ρ.

Regarding L0,KR, we see first, using (5.8),

L0,KRL
#
0,KR =

(
I − (C−,0 − C+,0)

)(
I + (C−,0 − C+,0)

)
= L2

0,SC = ρ2I

from where the invertibility follows readily. Furthermore, from

(C−,0 − C+,0)
2 = 2C2−,0 + 2C2+,0 − (C−,0 + C+,0)

2 = (1 − ρ)I (5.10)

we conclude that the eigenvalues of L#
0,KR are 1±√

1 − ρ. Using a similar argument to the one applied
above establishes the fact that both signs are actually achieved in the formula for the eigenvalues of the
operator L#

0,KR. "
Next theorem extends this result to LSC and LKR:
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674 V. DOMÍNGUEZ AND C. TURC

Theorem 5.3. The operators LSC,LKR : Hs × Hs−1 → Hs × Hs−1 are invertible.
Furthermore, the eigenvalues of LSC and LKR are clustered around ±√

ρ and 1 ± √
1 − ρ

respectively.

Proof. From the Proposition 5.2 we conclude that LSC and LKR are compact perturbations of invertible
operators. Hence, according to the Fredholm theory, their invertibility follows once we establish their
injectivity, which, in turn, will be proved using the same ideas as for Helmholtz transmission problems.

To this end, take first (g,ϕ) ∈ KerLSC and define the fields in R2 \ !

u± = ±DL±g ∓ SL±ϕ.

Clearly (u+|(+ ,u−|(−) are solutions of the original transmission problem with uinc = 0. Therefore,
u+ = 0 in (+ and u− = 0 in (−. Since

(
1
2
I − C+

) [
g
ϕ

]
=

[
g
ϕ

]
=

(
1
2
I + C−

)[
g
ϕ

]

we conclude that (u−|(+ ,u+|(−) solve the adjoint problem (5.7), again with uinc = 0. Then by
hypothesis, u−|(+ and u−|(+ vanish too. Hence u± = 0 and by the jump properties for the potentials,
we have also (g,ϕ) = 0.

Consider now (g,ϕ) ∈ KerLKR and define in this case

v± = DL∓g − SL∓ϕ
∣∣∣
(±

.

Then, (v−, v+) solves the adjoint problem (5.7), as above with uinc = 0. Thus v± vanish in (±. Hence

(
1
2
I + C−

)[
g
ϕ

]
=

(
−1
2
I + C−

) [
g
ϕ

]
= 0

which implies (g,ϕ) ∈ Ker(LSC) and therefore, (g,ϕ) = 0.
Regarding the eigenvalues distribution, let first (λn)n be the eigenvalues for LSC. Then, {λ2n}n are

eigenvalues for L2
SC = L2

0,SC+K = ρI+K. SinceK when acting fromHs×Hs−1 into itself is compact,
ρ − λ2n can only accumulate at zero, from where this result follows.

The proof for LKR follows similarly. Note, as in (5.10),

(C− − C+)
2 = I − (C− + C+)

2 = I − L2
SC.

Hence, if {µn}n are the eigenvalues for LKR, {(µn − 1)2}n are eigenvalues for I − L2
SC that can only

accumulate at 1 − ρ. Then, {µn}n are clustered around 1± √
1 − ρ. "

We are ready to analyse the CFIER formulation (5.3) and (5.4) under suitable assumptions on the
regularizing operator R. Specifically, we assume

Assumption 1 We assume R =
[
R11 R12
R21 R22

]
satisfies the following properties:
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(a) There exists K : Hs+1 × Hs → Hs+1+7 × Hs+7 with 7 ≥ 1 so that

1
2
I − C− + (C+ + C−)R = A+K, (5.11)

with A : Hs+1 × Hs → Hs+1 × Hs invertible with the eigenvalues clustered around a few
accumulation points.

(b) We have

4
(
〈g,ϕ〉 − 〈g,R22ϕ〉 − 〈R12ϕ,ϕ〉 − 〈g,R21g〉 − 〈R11g,ϕ〉

)
< 0

∀0 /=
(
g,ϕ

)
∈ H1/2 × H−1/2. (5.12)

We establish "

Theorem 5.4. Under the assumptions (a)–(b) stated above, for the following operators

Ldir := 1
2
I + C− − R#(C+ + C−), Lind :=

1
2
I − C− + (C+ + C−)R. (5.13)

there exists K : Hs+1 ×Hs → Hs+3 ×Hs+2 so that Lind = A+K, Ldir = A# +K# and both operators
Ldir and Lind are invertible.

Proof. Clearly, (5.11) implies the decomposition stated in the statement of the theorem. In particular,
both operators Ldir and Lind are also Fredholm, and therefore we just have to prove the invertibility.

Assume then that

Lind

[
g
ϕ

]
= 0,

and define by (5.5) (u+,u−) in all R2 \ !. Proceeding as in the proof of Proposition of 5.3 we can infer
that

v+ =
[−DL− SL−

]
(I − R)

[
g
ϕ

]

v− =
[
DL+ −SL+

]
R

[
g
ϕ

]

which, by unicity of solution for the transmission problem, v+|(− = 0 = v−|(+ . Then

[
γ v+
T+v+

]
= (I − R)

[
g
ϕ

]
,

[
γ v−
T−v−

]
= −R

[
g
ϕ

]
.
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Then, by Lemma 3.4,

〈γ v+,T+v+〉 − 〈γ v−,T−v−〉 = 〈g,ϕ〉 − 〈g,R22ϕ〉 − 〈R12ϕ,ϕ〉 − 〈g,R21g〉 − 〈R11g,ϕ〉 (5.14)

The result follows then by assumption (b). "
Obviously, the optimal choice of the regularizing operator

R = (C+ + C−)
−1

(
1
2
I + C−

)

which makes

Ldir = Lind = I.

However, the definition of the regularizing operator involves operator inversion. We bypass these issues
by resorting to the principal part calculus. Indeed, for a wavenumber κ with 4κ > 0 we consider the
principal part operators (see (3.17))

Cκ
± =

[
α±H −β±&κ

δ±&−1
κ −α±H

]
, α± = iµ±

2(λ± + 2µ±)
, β± = λ± + 3µ±

4µ±(λ± + 2µ±)
, δ± = −µ±(λ± + µ±)

λ± + 2µ±
,

where the Fourier multiplier operator &κ was defined in equation (3.21). Using the result established in
equation (5.8)

(
Cκ
+ + Cκ

−
)2 = ρI, that is,

(
Cκ
+ + Cκ

−
)−1 = 1

ρ

(
Cκ
+ + Cκ

−
)

we define instead the regularizing operators

Rκ = 1
ρ

(
Cκ
+ + Cκ

−
) (

1
2
I + Cκ

−

)
=

[
Rκ
11 Rκ

12
Rκ
21 Rκ

22

]
. (5.15)

The choice of regularizing operators presented in equation (5.15) still renders the operators

Lκ
dir :=

(
1
2
I + C−

)
− R#

κ (C+ + C−) (5.16)

Lκ
ind :=

(
1
2
I − C−

)
+ (C+ + C−)Rκ (5.17)

compact perturbations of the identity. In what follows we will refer to these formulations as Direct
Regularized Combined Field Integral Equations (DCFIER) and respectively Indirect Regularized
Combined Field Integral Equations (ICFIER). Indeed, with Rκ selected as in equation (5.15) above
we have

Lκ
dir = I +K
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with K : Hs+1 × Hs → Hs+3 × Hs+2 so that (a) in Assumption 1 is satisfied with 7 = 2. A careful
computation delivers the explicit form of the four entries of the regularizing operator R where

Rκ
11 = 1

2ρ
(α+ + α−)H − 1

ρ
(α−(α+ + α−)+ δ−(β+ + β−))I

Rκ
12 = − 1

2ρ
(β+ + β−)&κ − 1

ρ
(β−(α+ + α−) − α−(β+ + β−))&κH

= − 1
2ρ

(β+ + β−)&κ − 1
ρ
(β−α+ − α−β+)&κH

= −β+ + β−
ρ

&κ

(
1
2
I + α+β− − α−β+

β+ + β−
H

)

Rκ
21 = 1

2ρ
(δ+ + δ−)&

−1
κ + 1

ρ
(α−(δ+ + δ−) − δ−(α+ + α−))&

−1
κ H

= δ+ + δ−
ρ

&−1
κ

(
1
2
I − α+δ− − α−δ+

δ+ + δ−
H

)

Rκ
22 = − 1

2ρ
(α+ + α−)H − 1

ρ
(α−(α+ + α−)+ β−(δ+ + δ−))I.

Lemma 5.5. There exists c1, c2 > 0 so that for any (ϕ, g) ∈ H1/2 × H−1/2 it holds

− 6〈Rκ
12ϕ,ϕ〉 ≥ c1‖ϕ‖2

H−1/2 − 6〈Rκ
21g, g〉 ≥ c1‖g‖2H1/2 .

and

− 4〈Rκ
12ϕ,ϕ〉 ≥ c1‖ϕ‖2

H−3/2 4〈Rκ
21g, g〉 ≥ c1‖g‖2H−1/2 .

Proof. The proof it is very similar to that of Proposition 3.7. Notice that we can take

&κ = '2
r + i'2

i , &−1
κ = (2

r − i(2
i

where 'r : H
s → Hs−1/2, 'i : H

s → Hs+1/2, (r : H
s → Hs+1/2, (i : H

s → Hs+3/2 are invertible
Fourier multiplier operators that commute with H. Given that 'r and 'i commute with H we have

〈Rκ
12ϕ,ϕ〉 = −β+ + β−

ρ

(〈(
1
2 I − c12iH

)
'rϕ,'rϕ

〉
+ i

〈(
1
2 I − c12iH

)
'iϕ,'iϕ

〉)

〈Rκ
21ϕ,ϕ〉 = δ+ + δ−

ρ

(〈(
1
2 I + c21iH

)
(rϕ,(rϕ

〉
− i

〈(
1
2 I + c21iH

)
(iϕ,(iϕ

〉)
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678 V. DOMÍNGUEZ AND C. TURC

where

c12 :=
α+β− − α−β+

β+ + β−
i, c21 :=

α+δ− − α−δ+
δ+ + δ−

i.

Since −iα± ∈ (0, 1/2) and β± > 0 > δ±, c12, c21 ∈ (−1/2, 1/2). The result is therefore a consequence
of Lemma 3.5. "

Finally, we need an additional result

Lemma 5.6. For any (g,ϕ) ∈ H0 × H0 it holds

〈g,ϕ〉 − 〈g,Rκ
22ϕ〉 − 〈Rκ

11g,ϕ〉 = 0.

Proof. Note that since α± ∈ iR

〈Rκ
11g,ϕ〉 = 1

2ρ
(α+ + α−)〈Hg,ϕ〉 − 1

ρ
(α−(α+ + α−)+ δ−(β+ + β−))〈g,ϕ〉

〈g,Rκ
22ϕ〉 = − 1

2ρ
(α+ + α−)〈Hg,ϕ〉 − 1

ρ
(α−(α+ + α−)+ β−(δ+ + δ−))〈g,ϕ〉.

Therefore

〈g,Rκ
22ϕ〉 + 〈Rκ

11g,ϕ〉 = 〈g,ϕ〉

because, after some calculations, one can show the following identity (cf (3.15))

2α−(α+ + α−)+ δ−(β+ + β−)+ β−(δ+ + δ−)

= (α+ + α−)
2 + (β+ + β−)(δ+ + δ−)+ (α2

− + β−δ− − α2
+ − β+δ+︸ ︷︷ ︸

=0

) = −ρ.

"
We are now in the position to prove the main result on the well posedness of the regularized BIE

formulations for transmission problems

Theorem 5.7. With Rκ defined in (5.15) there exists K : Hs+1 × Hs → Hs+3 × Hs+2 such that the
operators Lκ

ind = I +K, Lκ
dir = I +K# : Hs+1 × Hs → Hs+1 × Hs are both invertible.

Proof. We have already seen that (a) in Assumption 1 is verified with A = I. On the other hand,
condition (b) for (g,ϕ) /= 0 is a consequence of Lemma 5.5, which implies

4〈Rκ
12ϕ,ϕ〉, 4〈g,Rκ

21g〉 < 0,

and Lemma 5.6, which established

〈g,ϕ〉 − 〈g,Rκ
22ϕ〉 − 〈Rκ

11g,ϕ〉 = 0.

D
ow
nloaded from

 https://academ
ic.oup.com

/im
am
at/article/87/4/647/6674490 by guest on 09 N

ovem
ber 2022



BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 679

We invoke the result in Theorem 5.4 to conclude the proof. "
It is relatively straightforward to refine the regularity property of the operators K in Theorem 5.7:

Corollary 5.8. Under the same hypothesis of Theorem 5.7, it holds thatK : Hs×Hs → Hs+1×Hs+1

and the operators Lκ
ind = I +K, Lκ

dir = I +K# : Hs × Hs → Hs × Hs are both invertible.

5.2 Optimized Schwarz Domain Decomposition methods

We finally consider OS Domain Decomposition Methods (Boubendir et al., 2017) for the solution of
the transmission problem whereby we connect the solutions u+ and u− of the exterior and interior time
harmonic problems Navier equations via certain transmission operators ϒ± : H1/2 → H−1/2:

∇ · σ+(u+)+ ω2u+ = 0 in (+

T+[u+ + uinc]+ ϒ+γ [u+ + uinc] = T−u− + ϒ+γu− (5.18)

and

∇ · σ−(u−)+ ω2u− = 0 in (

T−u− + ϒ−γu− = T+[u+ + uinc]+ ϒ−γ [u+ + uinc]. (5.19)

We assume from now on that ϒ± satisfies the following property:

4〈ϒ+g, g〉 > 0 − 4〈ϒ−g, g〉 > 0. (5.20)

Proposition 5.9. Under assumption (5.20), the exterior and interior Navier problems with generalized
Robin conditions

∣∣∣∣∣∣∣∣

u+ ∈ H1
loc((+),

∇ · σ (u+)+ ω2u+ = 0, in (+,
T+u+ + ϒ+γu+ = λ+,

+RC

(5.21a)

and

∣∣∣∣∣∣

u− ∈ H1((−),
∇ · σ (u−)+ ω2u− = 0, in (−,
T−u− + ϒ−γu− = λ−,

(5.21b)

have a unique solution for any λ± ∈ H−1/2(!).
Furthermore, (5.18)–(5.19) are equivalent to the original transmission problem (2.2).

Proof. The unicity of solution, and by ellipticity the existence, follows from standard arguments in
boundary problems for elliptic partial differential equations.
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680 V. DOMÍNGUEZ AND C. TURC

Notice that it suffices ϒ+ − ϒ− to be injective to show the equivalence between (5.18)–(5.19) and
the transmission problem. But, by hypothesis

4〈(ϒ+ − ϒ−)g, g〉 > 0, ∀g /= 0, (5.22)

which implies as byproduct the injectivity. "
The OS system (5.18) and (5.19) is typically recast in terms of generalized elastodynamic Robin

data on !

λ+ := T+u+ + ϒ+γu+, λ− := T−u− + ϒ−γu− (5.23)

in a form that involves the Schwarz iteration operator

[
I −S−

−S+ I

] [
λ+
λ−

]
=

[−
(
Tuinc + ϒ+γuinc

)
(
Tuinc + ϒ−γuinc

)
]
. (5.24)

In equation (5.24) the operators S± are the Robin-to-Robin (RtR) operators associated to Navier
equations with generalized Robin boundary conditions whose precise definition is given by

S+λ+ := T+u+ + ϒ+γu+, (5.25a)

S−λ− := T−u− + ϒ−γu−, (5.25b)

where u± are the solutions of the exterior and interior problems in (5.21) in Proposition 5.9 with data
λ±.

The optimal choice of transmission operators with respect to the iterative solution of the OS
formulation (5.24) is given by ϒ+ = −Y− and ϒ− = −Y+ (that is the DtN operators corresponding to
each domain (±), a ubiquitous pattern in the case of OS methods involving two subdomains (Boubendir
et al., 2017; Nataf, 2002). OS methods employ approximations of the DtN operators in the formulation
above. As such, we use the following transmission operators

ϒ∓ := −PSκ(Y
±) = ± 1

β±
&−1

κ

(
1
2
I ∓ α±H

)
= ∓γ±&−1

κ

(
1
2
I ± α±H

)−1

. (5.26)

The OS algorithm is straightforward to implement as it amounts to the evaluation of S+λ+ operators.
To this end, first we find u+, the solution the generalized Robin problem (5.21a) with data λ+; second
plug T+u+ and γu+ into the formula (5.25a) with (5.26). The evaluation of S−λ− is identical with
problem (5.21b) and (5.25b) instead. RtR maps, on the other hand, can be computed in a stable manner
using boundary integral equations.

We present in what follows: (a) a simple procedure to compute in a robust manner RtR maps, and
therefore to accomplish the evaluation of S±λ± (Theorems 5.10–5.13); (b) a proof of the well-posedness
of (5.24) (Theorem 5.14).
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 681

We start with S−, i.e., the case of the bounded domain (−, as the situation is somewhat simpler.
Hence, given λ− we write the boundary condition in (5.21b) as

[
0 0

−ϒ− −I

] [
γu−
Tu−

]
= −

[
0

λ−

]
.

On the other hand, we use the Calderón projection in the following way

[− 1
2 I − K− V−
W−

1
2 I − K#

−

] [
γu−
Tu−

]
=

[
0
0

]
.

Adding these two matrix equations we derive the following direct BIE formulation of elastodynamic
equations with generalized Robin boundary values:

A−

[
γu−
Tu−

]
:=

[ − 1
2 I − K− V−

−ϒ− +W− − 1
2 I − K#

−

] [
γu−
Tu−

]
= −

[
0

λ−

]
. (5.27)

Notice thatA− : Hs ×Hs+1 → Hs ×Hs+1. For the following results, recall the duality product [·, ·]
cf. (3.28) which makes possible the realisation (Hs × Ht)′ = H−t × H−s.

Theorem 5.10. The matrix operator A− : Hs × Hs−1 → Hs × Hs−1 is a compact perturbation of

PS(A−) =
[ − 1

2 I − α−H β−&

−ϒ− + δ−&−1 − 1
2 I − α−H

]

which is a coercive operator: There exists c > 0 such that

6[PS(A−)(g,ψ), (g,ψ)] ≥ c
[
‖g‖H1/2 + ‖ϕ‖H−1/2

]
.

Furthermore, the operator A− is invertible.

Proof. Clearly, A− − PS(A−) : H
s × Hs−1 → Hs+2 × Hs+1 is continuous. Notice also

[PS(A−)(g,ϕ), (g,ϕ)] = −〈 12g+ α−Hg,ϕ〉 + β−〈&ϕ,ϕ〉
−δ−〈&−1g, g〉 − 〈PSκ(Y+)g, g〉 + 〈 12ϕ + α−Hϕ, g〉

and so

6[PS(A−)(g,ϕ), (g,ϕ)] = β−6〈&ϕ,ϕ〉 − δ−6〈&−1g, g〉 − 6〈PSκ(Y+)g, g〉.

On account of relation (3.16) established in Lemma 3.5 (recall that β− > 0 > δ−) and the result in
Proposition 3.7 we conclude the proof of the first result in the theorem.

Following the Fredholm paradigm, since PS(A−) : H
s × Hs−1 → Hs × Hs−1 is invertible we just

have to show that A− : Hs × Hs−1 → Hs × Hs−1 is injective. Let (g0,ϕ0) ∈ Ker(A−) and define the
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682 V. DOMÍNGUEZ AND C. TURC

field

w(x) := (DL−g0)(x) − (SL−ϕ0)(x), x ∈ R2 \ !.

Clearly w|(+ is a radiating solution of the Navier equation in (+ with zero Dirichlet boundary
conditions on !, and therefore w vanishes in (+. Also, w− = w|(− is a solution of the Navier equation
in (− whose Cauchy boundary data on ! are

γw− = −g0, T−w− = −ϕ0.

However, we derive from its definition that

T−w− = W−g0 +
1
2
ϕ0 − K#

−ϕ0

and thus we obtain

W−g0 =
1
2
ϕ0 + K#

−ϕ0.

Given that (g0,ϕ0) ∈ Ker(A−), we also have that

W−g0 − ϒ−g0 =
1
2
ϕ0 + K#

−ϕ0.

We derive from the last two relations that ϒ−g0 = 0, which, in the light of the coercivity properties
established in Proposition 3.7 implies that g0 = 0. This, in turn, implies that the Cauchy data of w−
vanishes on !, and thus w− = 0 in (−. Consequently, ϕ0 = 0, which completes the proof. "

Regarding S+λ, i.e., the exterior RtR problem, we can derive a similar formulation as in (5.27)
proceeding in the same way, namely

A+

[
γu−
Tu−

]
:=

[ 1
2 I − K+ V+

ϒ+ +W+
1
2 I − K#

+

] [
γu−
Tu−

]
=

[
0

λ+

]
. (5.28)

Theorem 5.11. The matrix operator A+ : Hs × Hs−1 → Hs × Hs−1 is a compact perturbation of

PS(A+) =
[ 1

2 I − α+H β+&

ϒ+ − δ+&−1 1
2 I − α+H

]

which is a coercive operator: There exists c > 0 such that

6[PS(A+)(g,ψ), (g,ψ)] ≥ c
[
‖g‖H1/2 + ‖ϕ‖H−1/2

]
, (g,ψ)# /= 0.

Furthermore, if ω2 is not an eigenvalue of the Dirichlet Navier operator with material parameters
(µ+, λ+) in the domain (−, the operator A+ is invertible.
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 683

Proof. The first part of the theorem follows along the same lines as that in Theorem 5.10. Let (g0,ϕ0) ∈
Ker(A+) and define the field

w(x) := −(DL+g0)(x)+ (SL+ϕ0)(x), x ∈ R2 \ !

and denote w± = w|(± . It follows immediately that γw− = 0 and T+w = ϒ+g0. Given the jump
relations of Navier layer potentials it follows that γw+ = −g0 and thus

T+w+ + ϒ+γw+ = 0 on !.

Now, w+ is a radiating solution of Navier equations in (+, and given that 4〈ϒ+ϕ,ϕ〉 > 0, it follows
that w+ = 0 in w+, and hence g0 = 0. Under the assumption in the theorem, we also have that
w|(− = 0, and thus ϕ0 = T−w− = 0 as well. "

The restriction on ω not being an eigenvalue of the Dirichlet problem can be however overcome, that
is, it is possible to derive BIE formulations to solve exterior Navier equations with generalized Robin
boundary conditions that are uniquely solvable for all frequencies ω. Indeed, let cf. (3.24a)

Ṽ = − 1
δ−

&κ

(
1
2
I − α−H

)
=

(
PSκ(Y−)

)−1 , (5.29)

and consider alternative formulations obtained by adding the regularized boundary condition εṼ(Tu+)+
εṼϒ+u+ = εṼλ+ to the second equation in formulation (5.28)

Aε
+ :=

[ 1
2 I − K+ + εṼϒ+ V+ + εṼ

ϒ+ +W+
1
2 I − K#

+

] [
γu−
Tu−

]
, Aε

+

[
γu−
Tu−

]
=

[
εṼλ+
λ+

]
. (5.30)

We establish

Theorem 5.12. The matrix operator Aε
+ : Hs × Hs−1 → Hs × Hs−1 in the left hand side of equation

(5.30) is a compact perturbation of a coercive operator in the space H1/2 × H−1/2 provided ε > 0 is
small enough. Furthermore, under the same assumption, the operator Aε

+ is invertible.

Proof. Clearly

PS(Aε
+) = PS(A+)+ ε

[
Ṽϒ+ Ṽ
0 0

]

is coervice, in the sense we have stated in previous results, for ε small enough since so is PS(A+).
Now let (g0,ϕ0) ∈ Ker(Aε

+) and define the field

w(x) := −(DL+g0)(x)+ (SL+ϕ0)(x), x ∈ R2 \ !, w± = w|(± .
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684 V. DOMÍNGUEZ AND C. TURC

It follows immediately that γw− = −εṼ(ϒ+g0 + ϕ0) and T−w− = ϒ+g0 + ϕ0. Therefore, w− is a
solution of Navier equations in (− with generalized Robin boundary conditions

T−w− + (εṼ)−1γw− = 0,

and therefore

4〈T−w−, γw−〉 + 4〈(εṼ)−1γw−, γw−〉 = 0.

This implies that w = 0, since by Lemma 3.4 and Proposition 3.7 we have

4〈T−w, γw−〉 = 0, −4〈(εṼ)−1γw−, γw−〉 = −4〈ε−1PSκ(Y−)γw−, γw−〉 > c‖γw−‖2
H1/2 .

Therefore,

ϕ0 = −ϒ+g0.

The jump conditions of Navier layer potentials yield γw+ = −g0 and T+w = −ϕ0 = ϒ+g0.
Consequently, w+ is a radiating solution of Navier equations in (+ with generalized Robin boundary
conditions

T+w+ + ϒ+γw+ = 0.

Thus, from Lemma 3.4

0 = 4〈T+w+, γw+〉 + 4〈ϒ+γw+, γw+〉 ≥ −4〈PSκ(Y−)γw+, γw+〉

from where we infer, Proposition 3.7, that γw+ = 0 and thus ϕ0 = g0 = 0. "
Alternatively, instead of working with a full system of BIEs, it is also possible to construct a single

robust regularized BIE formulations for the solution of exterior Navier equations with generalized Robin
boundary conditions. Defining first the operator

Ros := (PSκ(Y+) − PSκ(Y−))
−1

we look for a radiating solution of the Navier equation in (+ of the form

u+(x) := (DL+[R
osϕ])(x) − (SL+[PSκ(Y+)R

osϕ])(x), x ∈ (+. (5.31)

We have

γu+ =
[(

1
2
+ K+ − V+PSκ(Y+)

)
Ros

]
ϕ

T+u+ =
[(

W+ + 1
2
PSκ(Y+) − K#

+PSκ(Y+)
)
Ros

]
ϕ.
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It follows than that u+ satisfies the boundary condition Tu+ + ϒ+u+ = Tu+ − PSκ(Y−)u+ = λ+ if
and only if ϕ satisfies the BIE

B+ϕ = λ+,

B+ :=
[(

W+ + 1
2
PSκ(Y+) − K#

+PSκ(Y+)
)

− PSκ(Y−)
(
1
2
I + K+ − V+PSκ(Y+)

)]
Ros. (5.32)

Theorem 5.13. The operator B+ : Hs → Hs is a compact perturbation of the identity. Furthermore,
the operator B+ is invertible.

Proof. Notice that

R−1 = −
(

β+ + β−
2β+β−

I − α+β− − α−β+
β−β+

H
)

&−1
κ , (5.33)

that

B+ = B+,0 + K

with K : Hs → Hs+2

B+,0 =
[
δ+0−1

κ −
(
1
2 I − α+H

) 1
β+

&−1
κ

(
1
2 I − α+H

)

− 1
β−

&−1
κ ( 12 I + α−H)

(
1
2 I + α+H − β+&κ

(
− 1

β+

)
&−1

κ

(
1
2 I − α+H

)) ]
R

=
[ (

δ+ − 1
β+

(
1
4 − α2

+
)

− 1
2β−

)
I +

(
α+
β+ − α−

β−

)
H

]
&−1

κ

]
R

But since

δ+ − 1
β+

(
1
4

− α2
+

)
= − 1

2β+

we can conclude

B+,0 = −
[ (

β+ + β−
2β−β+

)
I −

(
α+β− − α−β+

β+β−

)
H

]
&−1

κ R = I

in view of (5.33). Clearly, the invertibility of the operator B+ is then equivalent to its injectivity. Let
ϕ0 ∈ Ker(B+) and define the field

w(x) := (DL+[R
osϕ0])(x) − (SL+[PSκ(Y+)R

osϕ0])(x), x ∈ R2 \ !, w± = w|(± . (5.34)
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It follows that w|(+ is a radiating solution of the Navier equations in (+ with generalized Robin
conditions T+w + ϒ+γw+ = 0 on !, and thus w+ = 0 in (+. Given the jump properties of Navier
layer potentials, we obtain

γw = −Rosϕ0 T−w = −PSκ(Y+)R
osϕ0 = ϒ−R

osϕ0.

We have that w|(− is a solution of the Navier equation with material parameters (µ+, λ+) in ( that
satisfies the generalized Robin boundary condition on !

T−w+ ϒ−γw− = 0.

We derive then that w− = w|(− = 0 in ( which in turn implies that Rosϕ0 = 0 on !. Given that the
operator Ros is invertible, we get that ϕ0 = 0, which was to be proved. "

Having show some different formulations to evaluate S±, we are now in the position to prove the
main result concerning Schwarz iteration operators:

Theorem 5.14. The RtR operators S± : Hs → Hs+2 are continuous, and so compact when viewed
acting in Hs into itself. Furthermore, the operator I − S−S+ : Hs → Hs is invertible with continuous
inverse. As a consequence, the underlying Schwarz iteration operator in the left hand side of equation
(5.24) is a invertible compact perturbation of the identity in Hs × Hs.

Proof. Notice that I − S−S+ is the Schur complement of the matrix operator in the left hand side of
equation (5.24). Hence, the last result stated in the theorem is a consequence of the previous statements.
Let us recall that in view of (5.26) we have

S±f = T±u± − ϒ±γ±u±,

where u± are the solutions of (5.21). The following estimate basically follows from the definition of the
operators involved

‖T±u± − ϒ±γ±u±‖Hs+1 ≤ C‖γ±u±‖Hs

for some C > 0 independent of u±. Besides, from (5.27) and (5.28) (or (5.30)) we derive the estimate

‖γ±u±‖Hs ≤ C′‖λ±‖Hs−1

with C′ > 0 independent of g. Gathering these properties we can conclude that S± : Hs → Hs+2 is
continuous.

In order to establish the invertibility of the operator I − S−S+ it suffices to prove its injectivity.
Assume that ϕ such as ϕ = S−S+ϕ and solve the Navier problem in the exterior domain (+

∇ · σ+(w+)+ ω2w+ = 0 in (+,

T+w+ + ϒ+γw+ = ϕ on ! (5.35)

where w+ is radiating at infinity, so that

S+ϕ =
(
T+w+ + ϒ−γw+

)
.
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We also consider the Navier problem in the bounded domain (

∇ · σ−(w−)+ ω2w− = 0 in (−

T−w− + ϒ−γw− = S+ϕ on !

so that

S−S+ϕ =
(
T−w− + ϒ+γw−

)
. (5.36)

Given that ϕ = S−S+ϕ we obtain

T+w+ + ϒ+γw+ = T−w− + ϒ+γw−. (5.37)

Furthermore, the boundary condition of w− on ! leads to

T+w+ + ϒ−γw = T−w− + ϒ−γw−. (5.38)

We note that it follows from equations (5.37) and (5.38) that

(ϒ+ − ϒ−)[γw+ − γw−] = 0.

which since the operator ϒ+ − ϒ− is injective, in turn implies

γw+ = γw−

and then, from (5.37),

T+w+ = T−w−

which implies

4〈T+w+, γw+〉 = 4〈T−w−, γw−〉 = 0

and hence, by Lemma 3.4, γw+ = 0 = T+w+ which yields, via (5.35), that ϕ = 0 "
Having presented BIE formulations for the various elastodynamic scattering and transmission

problems considered in this paper, we turn next to describing Nyström discretizations of those BIEs.

6. Numerical experiments

6.1 Nyström discretizations

We use Nyström discretizations for the numerical solution of the various elastodynamic BIE that rely
on global trigonometric interpolation with 2n nodes

tj =
jπ
n
, j = 0, 1, . . . , 2n − 1
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onto the space of trigonometric polynomials

Tn =
{

ϕ(t) =
n∑

m=0

am cosmt +
n−1∑

m=1

bm sinmt : am, bm ∈ C
}

.

Our BIE formulations works with two types of operators: (a) BIO and (b) Fourier multipliers. The latter
are discretized in a straightforward manner using trigonometric interpolation and FFTs. With regards
to (a), the majority of the kernels of the BIOs discussed in this paper exhibit a logarithmic singularity
which is resolved via the Kusmaul–Martensen quadrature (Kussmaul, 1969; Martensen, 1963)

1
2π

∫ 2π

0
H(τ , t) log

(
4 sin2

τ − t
2

)
ϕ(t) dt ≈

2n−1∑

m=0

Rm(τ )H(τ , tm)ϕ(tm)

where

Rm(τ ) := −1
n

n−1∑

j=1

1
j
cos j(τ − tm) − 1

2n2
cos n(τ − tm), 0 ≤ m ≤ 2n − 1.

This turns to be equivalent to consider the approximation for the underlying integral operator given by

1
2π

∫ 2π

0
log

(
4 sin2

t − τ

2

)
Pn(H(τ , ·)ϕ)(t) dt

Pn : C[0, 2π ] → Tn appearing above is the trigonometric interpolation operator, since this integral can
be computed analytically.

In the case of smooth integrands in the definition of BIE, we use the trapezoidal rule for their
discretizations. The hypersingular part of the operator W, on the other hand, is treated via the Kress
quadrature Kress (1995) for the evaluation of 2π periodic Hilbert transforms

1
2π

p.v.
∫ 2π

0
cot

t − τ

2
ϕ′(t)dt ≈

2n−1∑

m=0

Tm(τ )ϕ(tm)

where

Tm(τ ) := −1
n

n−1∑

j=1

j cos j(τ − tm) − 1
2
cos n(τ − tm), 0 ≤ m ≤ 2n − 1.

Finally, the discretization of the Cauchy principal value integral that enters the definition of the principal
part of the double layer operators K and K#, requires more care. Indeed, as discussed in Kress (1999),
the use of trigonometric interpolation in the evaluation of Cauchy principal value integrals

1
2π

p.v.
∫ 2π

0
cot

t − τ

2
ϕ(t)dt ≈ 1

2π
p.v.

∫ 2π

0
cot

t − τ

2
[Pnϕ](t)dt
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leads to

1
2π

p.v.
∫ 2π

0
cot

t − τ

2
ϕ(t)dt ≈

2n−1∑

m=0

Qm(t)ϕ(tm)

with

Qm(τ ) :=
1
n

n−1∑

j=1

sin j(τ − tm)+
1
2n

sin n(τ − tm), 0 ≤ m ≤ 2n − 1.

However, cf. (3.12),

1
2π

p.v.
∫ 2π

0
cot

t − τ

2
cos nt dt = sin nτ

and thus the Nyström discretization of the Cauchy principal value operator is not a bijection from Tn to
itself. For these reasons, we use the half-grid size shifted quadrature method (Kress, 1999)

1
2π

p.v.
∫ 2π

0
cot

t − τ

2
ϕ(t)dt ≈ π

n

2n−1∑

m=0

cot
tm+ 1

2
− τ

2
ϕ

(
tm+ 1

2

)
, tm+ 1

2
:= tm + π

2n
.

The evaluation of the density function at the shifted grid points tm+ 1
2
is readily achieved via trigono-

metric interpolation. Given that the Nyström discretizations of the principal parts of the elastodynamic
operators are available in the literature, the main difficulty of the overall collocation schemes resides in
the logarithmic splitting of various kernels. We present in what follows numerical results concerning the
various formulations considered in this paper.

6.2 Numerical results

In this section, we present various results concerning the accuracy of elastodynamic BIE solvers based
on Nyström discretizations as well as the rates of convergence of iterative solvers (e.g. GMRES, for
generalized minimal residual method, cf. (Saad & Schultz, 1986)) for the solution of the linear systems
ensuing from the various BIE formulations considered in this text. With regards to the accuracy of
our discretizations, we present results concerning far field data. For a scattered elastic field u, we can
define the associated longitudinal wave up and the transversal wave us cf. (2.3). The Kupradze radiation
conditions Kupradze et al. (1979) take on the form

up(x) =
eikp|x|√|x|

(
up,∞(x̂)+O

(
1
|x|

))
us(x) =

eiks|x|√|x|

(
us,∞(x̂)+O

(
1
|x|

))

as |x| → ∞ where x̂ = x/|x|. We present in this section the maximum errors ε∞ achieved when
computing the quantities up,∞ and us,∞ evaluated at fine enough meshes (1024 equidistributed points is
typically used) on the unit circle |x̂| = 1. We also report the size n of the 2n dimensional trigonometric
polynomial space Tn. Therefore, in the impenetrable case, the size of the linear systems Nyström
discretization linear systems of the various (vectorial) BIE is (4n) × (4n); in the penetrable case, the
size increases to (8n) × (8n). We consider two types of incident fields: (a) elastodynamic point sources
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690 V. DOMÍNGUEZ AND C. TURC

Fig. 1. Domains for the experiments: from left to right, the unit circle, the starfish domain, and the cavity problem.

(in the method of manufactured solutions); and (b) plane waves. In case (b) the far field errors are
computed with respect to reference solutions produced through the next level of discretization of the
BIEs (that is, the computed values for 2nmax where nmax is highest value of n shown in the numerical
results, are taken as exact solutions.).

We start with an illustration of the accuracy that can be achieved in the far field when the four
elastodynamic BIOs are employed in the solution of elastodynamic BIE.

The domains considered in this numerical section are: (i) the unit circle centered at origin; (ii) the
starfish obstacle (Hao et al., 2014) whose paramaterization is given by

x(t) =
(
1+ 1

4 sin 5t
)
(cos t, sin t), 0 ≤ t < 2π ;

(iii) the cavity-like geometry given by

x(t) = (x1(t), x2(t)), 0 ≤ t < 2π ;

x1(t) = 2
5 (cos(t)+ 2 cos(2t)),

x2(t) = 1
2 sin(t)+ 1

2 sin(2t)+ 1
4 sin(3t)+ 1

48 (4 sin(t) − 7 sin(2t)+ 6 sin(3t) − 2 sin(4t)).

We depict in Figure 1 a sketch of these domains. Notice that the diameters of all of the scatterers
considered in this paper are equal to 2.

6.2.1 The method of manufactured solutions. The method of manufactured solutions is a reliable test
of the accuracy of PDE solvers. In the Dirichlet case, we consider the time-harmonic Navier equation
with boundary value data produced by a point source x0 placed inside the scatter (−

f!(x) = Φ(x, x0), x ∈ !, x0 ∈ (−.

In this case, the radiating solution of the Dirichlet scattering problem in the exterior domain (+ is the
point source itself, that is u(x) = Φ(x, x0) for all x ∈ (+. We look for the solution u in the form of
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Table 1 Errors in the method of manufactured solution for the smooth starfish geometry for different
values of the frequency ω and parameter values λ = 1, µ = 1, at various levels of discretization.

ω n V K W

ε∞ ε∞ ε∞
16 32 3.0 ×10−2 9.9× 10−2 1.3 ×10−1

16 64 7.1 ×10−7 1.1 ×10−3 1.6 ×10−6

16 128 5.5 ×10−14 4.2 ×10−13 1.6 ×10−9

32 64 3.0 ×10−2 2.5 ×10−1 3.4 ×10−1

32 128 2.2 ×10−7 2.4 ×10−4 5.0 ×10−8

32 256 1.0 ×10−15 8.3 ×10−13 5.4 ×10−12

either a single or double layer potential

u(x) = (SLϕ)(x) or u(x) = (DLg)(x), x ∈ (+

and we solve the corresponding BIEs (with, as usual, f = f! ◦ x)

Vϕ = f and
1
2
g+ Kg = f.

Assuming that the frequency ω is selected such as both BIE formulations above are uniquely solvable,
we use Nyström discretizations to solve numerically these BIEs and we compare in the far-field the
computed solutions with the exact point source solution. We repeat the experiments in the case of
Neumann boundary conditions, that is we choose a boundary data in the form

λ!(x) = T!Φ(x, x0), x ∈ !, x0 ∈ (−

and we solve the BIEs

− 1
2
ϕ + K#ϕ = λ and Wg = λ.

Again here, we compare the numerical solutions in the far field against the exact point source solution.
We report errors corresponding to (a) the Dirichlet single layer formulation (under the heading V,

given that we used the single layer V BIO to solve the time-harmonic Navier equation), (b) Dirichlet
double layer formulation (under the heading K), and (c) Neumann double layer formulation (under the
heading W). Given that the BIO K# is the (real) L2 adjoint of the BIO K, its discretization produces
identical levels of accuracy to those of K, and therefore we chose not to present them.

6.2.2 Iterative behavior of BIE formulations in the impenetrable case. We present in this section
various numerical experiments regarding the iterative behavior of the various BIE formulations for the
solution of elastodynamic impenetrable scattering problems. We consider incident plane waves of the
form

uinc(x) = 1
µ
eiksx·d(d × p) × d + 1

λ + 2µ
eikpx·d(d · p)d (6.1)
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Table 2 Numbers of GMRES iterations to reach residuals of 10−8 for various BIE formulations of
Dirichlet elastodynamic scattering problems at high frequencies in the case when ! is a unit circle. The
material parameters are λ = 2 and µ = 1, and the incidence was S-wave. The discretizations used in
these numerical experiments delivered results accurate at the level of 10−7.

ω n
# iter CFIE (4.4)

ηD = 1
# iter CFIE ηD

opt
# iter CFIER
RD = PSκ (Y+)

10 64 31 22 21
20 128 50 27 30
40 256 97 28 38
80 512 231 27 39
160 1024 438 32 43

Table 3 Numbers of GMRES iterations to reach residuals of 10−8 for various BIE formulations of
Dirichlet elastodynamic scattering problems at high frequencies in the case when ! is the starfish
contour. The material parameters are λ = 2 and µ = 1, and the incidence was S-wave. The
discretizations used in these numerical experiments delivered results accurate at the level of 10−7.

ω n
# iter CFIE (4.4)

ηN = 1
# iter CFIE ηD

opt
# iter CFIER
RD = PSκ (Y+)

10 64 41 32 26
20 128 85 39 36
40 256 166 46 56
80 512 353 51 76
160 1024 782 57 100

where the direction d has unit length |d| = 1. If the vector p is chosen such as p = ±d, the incident
plane is a pressure wave or P-wave. In the case when p is orthogonal to the direction of propagation
p, the incident plane wave is referred to as a shear wave or S-wave. We considered plane waves of
direction d =

[
0 −1

]# in all of our numerical experiments; in the case of S-wave incidence we selected

p =
[
1 0

]#. We observed that other choices of the direction d and of the vector p lead to qualitatively
similar results.

Dirichlet boundary conditions
We investigated the iterative behavior of Dirichlet integral solvers based on three formulations: (1)

the CFIE formulation (4.4) with the coupling constant ηD = 1; (2) the CFIE formulation with the
optimal coupling constant ηD given in equation (4.5)—which we refer to by the acronym “CFIE ηD opt”;
and (3) the CFIER formulation (4.4) with the choice RD = PSκ(Y+) with κ = ks + 0.4 i k1/3s —similar
choices were presented in the literature Chaillat et al. (2021). We report the number of GMRES iterations
required by each of these three BIE formulations to reach relative residuals of 10−8 and corresponding
discretizations that deliver results with accuracies at the 10−7 level in the case of smooth scatterers. As
it can be seen from the results presented in Tables 2–4, the CFIE formulation with the optimal coupling
parameter ηD exhibits the best iterative behavior in the high-frequency regime. We note that although
the double layer operator K is not compact, all of the three BIE formulations considered in the numerical
experiments behave like integral equations of the second kind, that is, the numbers of GMRES iterations
required to reach a certain residual do not increase with more refined discretizations. We note that we
considered numerical experiments for which the ration ks/kp = 2; qualitatively similar results were
observed for other aspect ratios between the shear and pressure wavenumbers.
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Table 4 Numbers of GMRES iterations to reach residuals of 10−8 for various BIE formulations of
Dirichlet elastodynamic scattering problems at high frequencies in the case when ! is the cavity contour.
The material parameters are λ = 2 and µ = 1, and the incidence was an S-wave. The discretizations
used in these numerical experiments delivered results accurate at the level of 10−7.

ω n
# iter CFIE (4.4)

ηD = 1
# iter CFIE ηD

opt
# iter CFIER
RD = PSκ (Y+)

10 64 73 50 52
20 128 137 80 89
40 256 263 144 116
80 512 511 185 235
160 1024 1008 320 406

Table 5 Numbers of GMRES iterations to reach residuals of 10−8 for various BIE formulations of
Neumann elastodynamic scattering problems at high frequencies in the case when ! is the starfish
contour. The material parameters are λ = 2 and µ = 1, and the incidence was an S-wave. The
coarser/finer discretizations used in these numerical experiments delivered results accurate at the level
of 10−6 and 10−8 respectively.

ω n
# iter CFIE (4.7)

ηN = 1
# iter CFIE ηN

opt
# iter CFIER

RN = (PSκ (Y+))−1
# iter CFIER

RN = PSκ (Y+))−1
κp ,κs

10 64/128 86/114 49/63 29/29 34/34
20 128/256 166/224 64/81 41/41 46/46
40 256/512 300/407 90/117 63/63 71/71
80 512/1024 646/890 164/223 109/109 113/113
160 1024/2048 1358/3079 319/420 198/198 230/230

Neumann boundary conditions
We present next in Tables 5 and 6 results related to the iterative behavior of the BIE formulations

considered in this paper for the solution of elastodynamic problems with Neumann boundary conditions
in the case of smooth scatterers. Specifically, we consider (a) the classical CFIE formulation (4.7) with
the coupling parameter ηN = 1, (b) the same formulation with the optimal choice of the coupling
constant ηN given in equation (4.10), and (b) the CFIER formulation with the regularizing operatorRN =
(PSκ(Y+))

−1 as well as RN = (PSκp,κs(Y+))
−1 defined in equation (3.27). For the latter regularizer, we

used κp = kp + 0.4iH2/3k1/3p and κs = ks + 0.4iH2/3k1/3s where H is the maximum absolute value of
the curvature of the boundary curve !. We present results for two level of discretizations, a coarser one
that delivers results within the 10−6 range accuracy, and a finer one that produces results in the 10−7

accuracy range. We observe that given that the BIOW is a pseudodifferential operator of order one, the
CFIE formulations require more GMRES iterations to reach the same residual for finer discretizations,
whereas the CFIER formulations appear to behave like an integral equation of the second kind. The use
of an optimized coupling constant ηN is beneficial for CFIE formulations, and the use of the regularizing
operator RN = (PSκ(Y+))

−1 in the CFIER formulations gives rise to savings of a factor of 1.7 in the
numbers of GMRES iterations when finer discretizations are applied. Given the fact that the Fourier
multiplier (PSκ(Y+))

−1 can be effected efficiently with FFTs, the savings in computational times are of
the same magnitude.
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Table 6 Numbers of GMRES iterations to reach residuals of 10−8 for various BIE formulations of
Neumann elastodynamic scattering problems at high frequencies in the case when ! is the cavity
contour. The material parameters are λ = 2 and µ = 1, and the incidence was an S-wave. The
coarser/finer discretizations used in these numerical experiments delivered results accurate at the level
of 10−6 and 10−8 respectively.

ω n
# iter CFIE (4.7)

ηN = 1
# iter CFIE ηN

opt
# iter CFIER

RN = (PSκ (Y+))−1
# iter CFIER

RN = PSκ (Y+))−1
κp ,κs

10 64/128 136/185 84/107 62/62 57/57
20 128/256 239/324 133/170 101/101 86/86
40 256/512 462/629 242/312 181/181 146/146
80 512/1024 864/1177 389/504 294/294 255/255
160 1024/2048 2480/4101 707/914 514/514 453/453

Table 7 Numbers of GMRES iterations of various formulations to reach residuals of 10−6 for various
BIE formulations of transmission elastodynamic problems at high frequencies in the case when ! is
the starfish geometry. The material parameters are λ+ = 2, µ+ = 8 and λ− = 1, µ− = 1, and
the incidence was an P-wave. The discretizations used in these numerical experiments delivered results
accurate at the level of 10−6.

ω n # iter CFIE (5.6) # iter CoSt (5.2)
# iter CFIER

(5.17)
# iter OS (5.24)

PSκ (Y±)
# iter OS (5.24)
PSκ±p ,κ±s (Y

±)

10 64/128 90/62 63/63 44/44 27/27 34/34
20 128/256 146/114 114/116 71/72 36/36 43/43
40 256/512 236/207 213/215 133/133 60/60 66/66
80 512/1024 412/372 377/380 220/220 77/77 74/74
160 1024/2048 647/594 615/617 358/358 106/106 87/87

6.2.3 Transmission problems. We conclude the numerical results section with five experiments
concerning elastodynamic transmission problems involving four BIE formulations, namely (a) the
Kress-Roach type CFIE formulation (5.6); (b) the Costabel-Stephan formulation (5.2); (c) the CFIER
formulation (5.3) that incorporates the regularizing operators defined in equation (5.15); (d) the OS
formulation (5.24) with transmission operators defined in equation (5.26) and (e) the OS formulation
(5.24) with transmission operators ϒ∓ := −PSκ±p ,κ±s (Y

±). These formulations are tested in the starfish
domain and the cavity problem. We observe that they behave in practice like formulations of the second
kind, that is the numbers of GMRES iterations required to reach a certain residual do not grow with
discretization size. As it can be seen from the data presented in Tables 7 and 8, while the CFIER
formulation delivers important reductions in the numbers of GMRES iterations over the CFIE and the
Costabel-Stephan formulation, it is the OS formulation (5.24) that has the best iterative behavior in the
high-frequency high-contrast regime.

This better performance of the OS formulations could (partial and/or empirically) be explained by
the distribution of the eigenvalues of the matrices of the respective linear systems in the complex plane
as can be observed in Figures 2 and 3. Indeed, in these figures the OS formulation seems to be the one
that yields the most compact distribution of the eigenvalues around the accumulation point(s).
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Table 8 Numbers of GMRES iterations of various formulations to reach residuals of 10−6 for various
BIE formulations of transmission elastodynamic problems at high frequencies in the case when ! is the
cavity geometry. The material parameters are λ+ = 2, µ+ = 8 and λ− = 1, µ− = 1, and the incidence
was an P-wave. The discretizations used in these numerical experiments delivered results accurate at
the level of 10−5.

ω n # iter CFIE (5.6) # iter CoSt (5.2)
# iter CFIER

(5.17)
# iter OS (5.24)

PSκ (Y±)
# iter OS (5.24)
PSκ±p ,κ±s (Y

±)

10 64/128 122/122 125/125 79/80 34/ 34 46 /46
20 128/256 212/212 219/219 132/134 48/ 48 58 /58
40 256/512 342/345 355/355 203/204 64/ 64 75 /75
80 512/1024 598/609 623/623 336/342 91/ 91 99 /99
160 1024/2048 1000/1005 1041/1041 493/491 108/108 125/125

Fig. 2. Eigenvalue distributions in the complex plane for the matrix of the Kress-Roach, Costabel-Stephan (top, from left to
right) and CFIER and Schwarz (below) formulations with (5.26) for ω = 20, λ+ = 2, µ+ = 8, λ− = µ− = 1. According to
Theorem 5.3, and since ρ = 901/432, the eigenvalues accumulate at 1± 1.04i in case of the Kress-Roach formulation, at ±1.44
in the case of the Costabel-Stephan formulation and at 1 for the CFIER and Schwarz formulations, respectively. Notice that the
eigenvalues are clustered closely to 1 for the OS formulations that could explain the faster convergence of GMRES in this case.
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696 V. DOMÍNGUEZ AND C. TURC

Fig. 3. Eigenvalue distributions in the complex plane for the matrix of the Kress-Roach, Costabel-Stephan (top, from left to
right) and CFIER and Schwarz (below) formulations with (5.26) for ω = 40, λ+ = 2, µ+ = 8, λ− = µ− = 1. According to
Theorem 5.3, and since ρ = 901/432, the eigenvalues accumulate at 1± 1.04i in case of the Kress-Roach formulation, at ±1.44
in the case of the Costabel-Stephan formulation and at 1 for the CFIER and Schwarz formulations respectively. Notice that the
eigenvalues are clustered closely to 1 for the OS formulations that could explain the faster convergence of GMRES in this case.

7. Conclusions

We analysed various boundary integral formulations of elastodynamic scattering and transmission
problems in smooth two dimensional domains, including regularized formulations and OS methods that
rely on approximations of DtN operators. We presented a singularity splitting based high-order Nyström
framework for the discretization of the four boundary integral operators associated with time-harmonic
Navier equations in two dimensions. We provided extensive numerical evidence that the regularized
formulations lead to faster convergence rates when iterative solvers such as GMRES are used for the
solution of the numerical solution of the linear systems that result from the Nyström discretization
of elastodynamic scattering and transmission problems. Extensions to Lipschitz domains and three
dimensional configurations are currently underway. With regards to 3D extensions, the authors plan
to use the kernel independent density interpolation strategy recently introduced in Faria et al. (2021),
which resolves weakly singular, singular and strongly singular kernels encountered in the elastodynamic
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BIOs. The implementation of the Fourier principal calculus in the case of surfaces in 3D, on the other
hand, is subject of current research investigation.
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A. Appendix: Detailed factorization of the kernels of the elastodynamic boundary integral
operators

We show in this section explicit factorizations of the kernels of the BIOs for elastodynamic. The aim
is twofold. First, it supports the implementation of the Nyström method sketched in Section 5, and,
secondly, provides justification of the derivation of the principal part of the operators.

For these purposes, let us assume that ! is parameterized, such as it has been assumed throughout
this paper, by a smooth 2π−periodic parameterization x. Recall that

r := r(τ , t) = x(τ ) − x(t), r = r(τ , t) = |r|.

The fundamental solution of the Navier equations

Φ(x, y) := 1
µ

φ0(ks|x − y|)I2 +
1
ω2∇x∇#

x (φ0(ks|x − y|) − φ0(kp|x − y|))

can be factorized as

Φ(x, y) = Φ1(|x − y|)I2 + Φ2(|x − y|)G(x − y)

where I2 is the identity matrix of order 2,

Φ1(z) := k2s
ω2φ0(ksz) − 1

ω2ψ(z)

Φ2(z) := 1
ω2

(
k2pφ0(kpz) − k2sφ0(ksz)

)
+ 2

ω2ψ(z)

ψ(z) :=
[

k2s
φ1(ksz)
ksz

− k2p
φ1(kpz)

kpz

]

G(x) := 1
|x|2 xx

# = 1

x21 + x22

[
x21 x1x2
x1x2 x22

]
.

where

φj(z) := i
4
H(1)
j (z)

k2p = ω2

λ + 2µ
, k2s = ω2

µ
.

By definition

φj =
i
4

(
Jj + i Yj

)

where Jj,Yj are the Bessel functions of first and second kind and order j. Moreover cf. (NIST Digital
Library of Mathematical Functions, 2021, §10.6)

d
dz

[
φ0(kz)

]
= −kφ1(kz),

d
dz

[
φ1(kz)
kz

]
= kzφ0(kz) − 2φ1(kz)

kz2
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700 V. DOMÍNGUEZ AND C. TURC

and (NIST Digital Library of Mathematical Functions, 2021, §10.8)

φr(kz) = − 1
2π

Jr(kz) log z+ zrCr,k(z)+






0, r = 0,

1
2πkz

, r = 1,

1
πk2z2

+ 1
4π

, r = 2,

4
πk3z3

+ 1
2πkz

+ kz
16π

, r = 3,

with Cr,k(z) smooth functions as z ≥ 0.
We are ready to state the first result for the kernel of the single layer operator:
Lemma A.1. Let V be the kernel of the (parameterized) single layer operator (3.10a). Then

V(τ , t) = V0(τ , t)+ a(2)log(r)r
2 log r I2 + a(3)log(r)r

2 log r G(r)+ a(4)reg(r)I2 + a(5)reg(r)r
2G(r)

where

a(2)log(z) := 1
2πz2ω2

(

−k2p
J1(kpz)

kpz
− k2s J0(ksz)+ k2s

J1(ksz)
ksz

+
k2s + k2p

2

)

a(3)log(z) := 1
2πz2ω2

(

−k2pJ0(kpz)+ 2k2p
J1(kpz)

kpz
+ k2s J0(ksz) − 2k2s

J1(ksz)
ksz

)

a(4)reg(z) := 1
ω2

(
kpC1,kp(z)+ k2s C0,ks(z) − ksC1,ks(z)

)

a(5)reg(z) := 1
ω2z2

(
k2pC0,kp(z) − 2kpC1,kp(z) − k2s C0,ks(z)+ 2ksC1,ks(z)+

1
4π

(k2p − k2s )
)

and

V0(τ , t) := V0(r) = − λ + 3µ
µ(λ + 2µ)

1
4π

log r I2 +
λ + µ

µ(λ + 2µ)
1
4π

G(r).

Furthermore,

a(2)log(z) = 1
32πω2

(
k4p + 3k4s

)
+O(z2)

a(3)log(z) = 1
16πω2

(
k4p − k4s

)
+O(z2)

a(4)reg(z) =
(1 − 2E + iπ)k2p − 2k2p log

(
kp
2

)
+ (−1 − 2E + iπ)k2s − 2k2s log

(
ks
2

)

8πω2 +O(z2).

a(5)reg(z) =
(−3+ 4E − 2π i)

(
k4p − k4s

)
+ 4k4p log

(
kp
2

)
− 4k4s log

(
ks
2

)

64πω2 +O(z2)

where E ≈ 0.5772 is the Euler-Mascheroni constant.
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For the double layer operator (3.10b), we need the following vector fields (we follow the notation
from Chapko et al. (2000)):

U1(t, τ ) = λν(t) r# + µr ν(t)# + µ(ν(t) · r)I2
U2(t, τ ) = (λ + 2µ)ν(t) r# + µr ν(t)# + µ(ν(t) · r)(I2 − 4G(r)).

(Recall that ν(t) = (x′
2(t),−x′

1(t)) = n ◦ x(t)|x′(t)| the non-normalized vector field given by the
parameterization.) Using the identities (recall the definition of the normal stress tensor in (2.1) and
its parameterized version in (3.6))

T(fF) = T(fI2)F + f T(F), for any pair f and F of scalar and matrix functions

[Tt(f (r) I2)](r) = − f ′(r)
r

U1(t, τ ), [TtG](r) = − 1
r2
U2(t, τ ) (A.1)

it is possible to prove
Lemma A.2. Let K(τ , t) the kernel of the double layer operator (3.10b). Then

K(τ , t) = K0(τ , t)

+
[
b(2)log(r)U

#
1 (τ , t)+ b(3)log(r)U

#
1 (τ , t)G(r)+ b(4)log(r)U

#
2 (τ , t)

]
log r

+ b(5)reg(r)U
#
1 (τ , t)+ b(6)reg(r)U

#
1 (τ , t)G(r)+ b(7)reg(r)U

#
2 (τ , t)

where the functions

b(2)log(z) := 1
2πω2

(

−k4p
J2(kpz)

(kpz)2
− k4s

J1(ksz)
ksz

+ k4s
J2(ksz)
(ksz)2

)

b(3)log(z) := 1
2πω2

(

−k4p
J1(kpz)

kpz
+ 2k4p

J2(kpz)

(kpz)2
+ k4s

J1(ksz)
ksz

− 2k4s
J2(ksz)
(ksz)2

)

b(4)log(z) := −a(3)log(z) = − 1
2πω2z2

(

−k2pJ0(kpz)+ 2k2p
J1(kpz)

kpz
+ k2s J0(ksz) − 2k2s

J1(ksz)
ksz

)

b(5)reg(z) := − 1
ω2

(
−k3s C1,ks(z)+ k2s C2,ks(z) − k2pC2,kp(z)

)

b(6)reg(z) := − 1
ω2

(
k3s C1,ks(z) − 2k2s C2,ks(z) − k3pC1,kp(z)+ 2k2pC2,kp(z)

)

b(7)reg(z) := −a(5)reg(z) = − 1
ω2z2

(
k2pC0,kp(z) − 2kpC1,kp(z) − k2s C0,ks(z)+ 2ksC1,ks(z)+

1
4π

(k2p − k2s )
)

are smooth for r ≥ 0 and

K0(τ , t) =
µ

λ + 2µ

(
∂

∂t
1
2π

log r
) [ −1

1

]
+ 1

2πr2
(ν(t) · r)

(
µ

λ + 2µ
I2 + 2

λ + µ

λ + 2µ
G(r)

)
.

D
ow
nloaded from

 https://academ
ic.oup.com

/im
am
at/article/87/4/647/6674490 by guest on 09 N

ovem
ber 2022



702 V. DOMÍNGUEZ AND C. TURC

Furthermore,

b(2)log(z) = − 1
16πω2 (k

4
p + 3k4s )+O

(
z2

)

b(3)log(z) = 1
8πω2 (k

4
s − k4p)+O

(
z2

)

b(4)log(z) = − 1
16πω2 (k

4
p − k4s )+O

(
z2

)

b(5)reg(z) =
(3 − 4E + 2π i)k4p − 4k4p log

(
kp
2

)
+ (5 − 12E + 6π i)k4s − 12k4s log

(
ks
2

)

64πω2 +O
(
z2

)

b(6)reg(z) = −
(−1+ 4E − 2π i)

(
k4p − k4s

)
+ 4k4p log

(
kp
2

)
− 4k4s log

(
ks
2

)

32πω2 +O
(
z2

)

b(7)reg(z) = −
(−3+ 4E − 2π i)

(
k4p − k4s

)
+ 4k4p log

(
kp
2

)
− 4k4s log

(
ks
2

)

64πω2 +O
(
z2

)

The hypersingular kernel requires to consider the action of operator Ts on U#
1 (τ , t) and U#

2 (τ , t).
Hence, we use that with

R1(τ , t) := 2λ(λ + 2µ)ν(τ ) ν#(t)+ 2µ2
(
ν(t) ν#(τ )+ (ν(τ ) · ν(t))I2

)

R2(τ , t) := 2(λ + 2µ)(λ + µ)ν(τ ) ν#(t)

+2µ
(
µν(t)ν#(τ )+ λν(τ )ν#(t)+ µ(ν(τ ) · ν(t))I

)
(I − 2G(r))

+4µ(r · ν(t)) 1
r2
U2(t, τ )

R3(τ , t) := 2λ(λ + µ)ν(τ )ν#(t)

+2µ
(
µν(t) ν#(τ )+ λν(τ ) ν#(t)+ µ(ν(τ ) · ν(t))I

)
G(r)

−2µ(r · ν(t)) 1
r2
U2(t, τ )

it holds

Ts[U
#
1 (τ , t)] = R1(τ , t), Ts[U

#
2 (τ , t)] = R2(τ , t), Ts

(
G(r)U#

1 (τ , t)
)
= R3(τ , t)

Lemma A.3. Let W(τ , t) the kernel of the hypersingular operator (3.10d). Then

W(τ , t) = W0(τ , t)

+
[
c(1)log(r)

1
r2
U1(t, τ )U

#
1 (τ , t)+ c(2)log(r)R1(τ , t)+ c(3)log(r)

1
r2
U1(t, τ )G(r)U

#
1 (τ , t)

+c(4)log(r)R3(τ , t)+ c(5)log(r)
1
r2
U1(t, τ )U

#
2 (τ , t)+ c(6)log(r)R2(τ , t)

]
log r
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+
[
c(7)reg(r)

1
r2
U1(t, τ )U

#
1 (τ , t)+ c(8)reg(r)R1(τ , t)+ c(9)reg(r)

1
r2
U1(t, τ )G(r)U

#
1 (τ , t)

+c(10)reg (r)R3(τ , t)+ c(11)reg (r)
1
r2
U1(t, τ )U

#
2 (τ , t)+ c(12)reg (r)R2(τ , t)

]

where the functions

c(1)log(z) := − z2

2πω2

(

k6p
J3(kpz)

(kpz)3
+ k6s

J2(ksz)
(ksz)2

− k6s
J3(ksz)
(ksz)3

)

c(2)log(z) := −b(2)log(z) = − 1
2πω2

(

−k4p
J2(kpz)

(kpz)2
− k4s

J1(ksz)
ksz

+ k4s
J2(ksz)
(ksz)2

)

c(3)log(z) := − z2

2πω2

(

k6p
J2(kpz)

(kpz)2
− 2k6p

J3(kpz)

(kpz)3
− k6s

J2(ksz)
(ksz)2

+ 2k6s
J3(ksz)
(kpz)3

)

c(4)log(z) := −b(3)log(z) = − 1
2πω2

(

−k4p
J1(kpz)

kpz
+ 2k4p

J2(kpz)

(kpz)2
+ k4s

J1(ksz)
ksz

− 2k4s
J2(ksz)
(ksz)2

)

c(5)log(z) := − 1
2πω2z2

(
− 2k2pJ0(kpz) − k3prJ1(kpz)+ 4k2p

J1(kpz)

kpz
− 2k2pJ2(kpz)

+2k2s J0(ksz)+ k3s rJ1(ksz) − 4k2s
J1(ksz)
ksz

− 2k2s J2(ksr)
)

c(6)log(z) := −b(4)log(z) = − 1
2πω2z2

(

k2pJ0(kpz) − 2k2p
J1(kpz)

kpz
− k2s J0(ksz)+ 2k2s

J1(ksz)
ksz

)

c(7)reg(z) := 1
16πω2 (3k

4
s + k4p)+

z2

ω2 (k
3
pC3,kp(z)+ k4s C2,ks(z) − k3s C3,ks(z))

c(8)reg(z) := −b(5)reg(z) =
1
ω2

(
−k3s C1,ks(z)+ k2s C2,ks(z) − k2pC2,kp(z)

)

c(9)reg(z) := − z2

ω2 (2k
3
pC3,kp(z) − k4pC2,kp(z) − 2k3s C3,ks(z)+ k4s C2,ks(z))+

k4p − k4s
8πω2 ;

c(10)reg (z) := −b(6)reg(z) =
1
ω2

(
k3s C1,ks(z) − 2k2s C2,ks(z) − k3pC1,kp(z)+ 2k2pC2,kp(z)

)

c(11)reg (z) := 1
z2ω2

(
− k3pz

2C1,kp(z)+ 2k2pz
2C2,kp(z) − 2k2pC0,kp(z)+ 4kpC1,kp(z)

+k3s z
2C1,ks(z) − 2k2s z

2C2,ks(z)+ 2k2s C0,ks(z) − 4ksC1,ks(z)

−
z2

(
k4p − k4s

)

16π
−

k2p − k2s
2π

)
+

k4p − k4s
16πω2

c(12)reg (z) := −b(7)log(z) =
1

z2ω2

(

k2pC0,kp(z) − 2kpC1,kp(z) − k2s C0,ks(z)+ 2ksC1,ks(z)+
k2p − k2s
4π

)
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704 V. DOMÍNGUEZ AND C. TURC

are smooth for r ≥ 0 and

W0(τ , t) = −µ(λ + µ)

λ + 2µ
∂2

∂τ∂t
1
π

(
− log r I2 + G(r)

)
.

Furthermore,

c(1)log(z) = O
(
z2

)

c(2)log(z) = 1
16πω2 (k

4
p + 3k4s )+O

(
z2

)

c(3)log(z) = O
(
z2

)

c(4)log(z) = − 1
8πω2 (k

4
s − k4p)+O

(
z2

)

c(5)log(z) = O
(
z2

)

c(6)log(z) = − 1
16πω2 (−k4p + k4s )+O

(
z2

)

c(7)reg(z) =
k4p + 3k2s
16πω2 +O

(
z2

)

c(8)reg(z) =

−
−4k4p log kp + k4p(3 − 4E + 2π i+ log(16)) − 12k4s log ks + k4s (5 − 12E + 6π i+ log(4096))

64πω2

+O
(
z2

)

c(9)reg(z) =
k4p − k4s
8πω2 +O

(
z2

)

c(10)reg (z) = −
(−1+ 4E − 2π i − 4 log(2))

(
k4p − k4s

)
+ 4k4p log kp − 4k4s log ks

32πω2 +O
(
z2

)

c(11)reg (z) =
k4p − k4s
16πω2 +O

(
z2

)

c(12)reg (z) =
(−3+ 4E − 2π i − 4 log(2))

(
k4p − k4s

)
+ 4k4p log kp − 4k4s log ks

64πω2 +O
(
z2

)

Remark A.4. The functions V0(τ , t), K0(τ , t), K
#
0 (t, τ ) yW0(τ , t) are the kernel of the single layer,

double layer, adjoint double layer and hypersingular operator for elasticity operator. It can be easily
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seen, from Lemmas A.1-A.3, that

V(τ , t) = − λ + 3µ
4µ(λ + 2µ)

1
2π

log
(
4e−1 sin2

τ − t
2

)
I2 + A(τ , t) sin2

τ − t
2

log sin2
τ − t
2

+ B(τ , t)

K(τ , t) = µ

λ + 2µ

(
∂

∂t
1
4π

log sin2
τ − t
2

) [ −1
1

]
+ C(τ , t) sin(τ − t) log sin2

τ − t
2

+ D(τ , t)

W(τ , t) = −2µ(λ + µ)

λ + 2µ
∂2

∂τ∂t

(
− 1
2π

log sin2
τ − t
2

)
I2 + E(τ , t) log sin2

τ − t
2

+ F(τ , t)

= µ(λ + µ)

λ + 2µ
csc2

(
τ − t
2

)
I2 + E(τ , t) log sin2

τ − t
2

+ F(τ , t).

with A,B,C,D,E and F smooth biperiodic functions.
Indeed, for the single layer operator the result follows from the fact that

r2

sin2(τ − t)/2

is a smooth non-vanishing function. For K(τ , t) we just have to start from Lemma A.2 and notice that

U1(τ , t),U2(τ , t) = O(τ − t), as τ − t → 0

from where one derives easily that, for ψ a smooth cut-off function with support, say, in [−π/3,π/3]
and ψ(τ ) = 1 for s ∈ [−π/4,π/4], the functions

1
sin(τ − t)

ψ(τ − t)U1(τ , t),
1

sin(τ − t)
ψ(τ − t)U2(τ , t)

are smooth and 2π−periodic. For W the result follows from similar ideas.
Furthermore, it is a well established result, see for instance the excellent textbook Saranen &

Vainikko (2002), that the integral operators

V1ϕ :=
∫ 2π

0
A(·, t) sin(· − t) log sin2

· − t
2

ϕ(t)dt

V2ϕ :=
∫ 2π

0
B(·, t) sin2 · − t

2
log sin2

· − t
2

ϕ(t)dt,

with A,B above being smooth 2π−periodic functions in both variables, can be extended to define
continuous pseudodifferential operators V1 : Hr → Hr+2 and V2 : Hr → Hr+3 where Hr is the
2π−periodic Sobolev space of order r. In other words, with

& =
[
0

0

]
, &−1 =

[
0−1

0−1

]
, H =

[ −H
H

]
= H#

where

0ϕ = − 1
2π

∫ 2π

0
log

(
4e−1 sin2

· − t
2

)
ϕ(t) dt

Hg = −i0g′ + ĝ(0) = p.v.
1
2π i

∫ 2π

0
cot

t − ·
2

g(t) dt + 1
2π

∫ 2π

0
g(t) dt,
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and noticing that

0−1g = f. p.
1
4π

∫ 2π

0
csc2

( · − t
2

)
g(t) dt +

∫ 2π

0
g(t) dt

we can conclude that for any r ∈ R

K − αH : Hr × Hr → Hr+2 × Hr+2 V − β& : Hr × Hr → Hr+3 × Hr+3

W − δ&−1 : Hr × Hr → Hr+1 × Hr+1 K# − αH : Hr × Hr → Hr+2 × Hr+2

where

α = iµ
2(λ + 2µ)

, β = λ + 3µ
4µ(λ + 2µ)

, δ = −µ(λ + µ)

λ + 2µ
.
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