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We introduce and analyse various regularized combined field integral equations (CFIER) formulations
of time-harmonic Navier equations in media with piece-wise constant material properties. These
formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-
to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within
which the well posedness of CIER formulations can be established. We also use the DtN approximations
to derive and analyse OS methods for the solution of elastodynamics transmission problems. The
pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels
of Navier boundary integral operators, which is also the basis of high-order Nystrom quadratures for
their discretizations. Based on these high-order discretizations we investigate the rate of convergence of
iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We
present a variety of numerical results that illustrate that the CFIER methodology leads to important
computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of
the ensuing discretized boundary integral equations. Finally, we show that the OS methods are competitive
in the high-frequency high-contrast regime.

Keywords: time-harmonic Navier scattering and transmission problems; boundary integral equations;
preconditioners; domain decomposition methods.
AMS subject classifications: 65N38; 35J05; 65T40; 65F08.

1. Introduction

Numerical solutions of elastodynamics scattering and transmission problems based on boundary integral
equation (BIE) formulations enjoy certain attractive features over their volumetric counterparts, mainly
on account of the dimensional reduction and the explicit enforcement of radiation conditions at infinity.
Robust BIE formulations of elastodynamics scattering and transmission problems can be derived via
the combined field strategy. Furthermore, in the case of impenetrable scattering problems, alternative
robust regularized formulations can be constructed based on the incorporation of approximations of
Dirichlet-to-Neumann (DtN) operators (Chaillat ef al., 2015, 2021; Darbas & Le Louér, 2015). These
formulations are intrinsically more suitable for iterative solvers in the high-frequency regime, where
they lead to important computational savings over the classical combined field formulations.
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648 V. DOMINGUEZ AND C. TURC

We pursue in this paper the construction of regularized BIE formulations of both penetrable and
impenetrable elastodynamics scattering problems in two dimensions. While for the impenetrable case
we use similar ideas to construct regularized formulations as those introduced in Chaillat et al. (2015,
2021), in the penetrable case we follow the blueprint introduced in Boubendir ez al. (2015) for Helmholtz
problems. In a nutshell, we use principal symbols of periodic pseudodifferential operators to construct
approximations of DtN operators that are then readily incorporated in a scheme to construct well-posed
BIE formulations of scattering and transmission elastodynamic problems. The DtN approximations we
use are square-root Fourier multipliers, and they have the distinct advantage that (a) their implementation
is straightforward in the trigonometric interpolation framework and (b) the analysis of both impenetrable
and penetrable regularized formulations can be performed in the same vein. In addition, we explore
these DtN approximations to formulate Optimized Schwarz (OS) methods for a domain decomposition
approach for transmission elastodynamics problems. Just like in the Helmholtz case (Boubendir et al.,
2017), we establish rigorously that the Schwarz iteration operators are compact perturbations of the
identity in the case of smooth interfaces of material discontinuity, which allows us to prove the well
posedness of the OS approach.

While the big picture does not differ a great deal from the elastodynamics to the Helmholtz case
with respect to the well posedness of regularized formulations of scattering and transmission problem:s,
the details are considerably more involved in the elastodynamics case, notwithstanding the fact that
one has to deal with vector (as opposed to scalar) quantities. A first notable difference is encountered
in the double layer boundary integral operators (BIOs), which are no longer compact operators in
the elastodynamics case, not even for smooth boundaries. Consequently, the DtN pseudodifferential
principal symbol calculus is more complicated in elastodynamics, as the contributions arising from the
double layer BIOs cannot be any longer ignored. We use in this paper the periodic pseudodifferential
calculus (Hsiao & Wendland, 2008), which in conjunction with logarithmic singularity splittings for the
kernels of the four elastodynamics BIOs allows us to compute their principal symbols in the sense of
pseudodifferential operators. These calculations are the basis on which we construct our approximations
of the DtN operators. However, these kernel logarithmic singularity splittings are quite cumbersome
(Chapko et al., 2000), significantly more so than their Helmholtz counterparts. Owing to these additional
complications, we chose to present the full details of these calculations in an appendix to this paper.

We employ Nystrom discretizations for the numerical solution of the various BIEs derived in
this paper. We pursue the classical Nystrom method based on trigonometric interpolation, logarithmic
kernel singularity splittings and the classical Kussmaul and Martensen (Kussmaul, 1969; Martensen,
1963) quadratures for the analytic resolution of periodized logarithmic singularities. This discretization
strategy leads to high-order BIE solvers for elastodynamics scattering and transmission problems in
the case of smooth boundaries. However, since the Kussmaul-Martensen discretizations rely on global
interpolation, they are not compatible with fast methods such as the fast multipole methods (Hao e al.,
2014), which may limit their appeal. Other high-order discretization strategies that rely on use of panels
(e.g. Alpert quadratures (Alpert, 1999)) and which are compatible with fast methods are currently being
explored. One distinct advantage of the use of trigonometric interpolation is facilitating a straightforward
implementation of Fourier multipliers, and thus of the DtN approximations we construct on the basis
of the periodic pseudodifferential calculus. We follow here the common practice in the community of
using square-root Fourier multiplier approximations of DtN operators (Antoine & Darbas, 2005, 2007;
Darbas & Le Louér, 2015), which tend to deliver the best results in the high-frequency regime on account
of their nearly optimal treatment of modes in the Fourier space transition regime from propagating to
evanescent modes. The implementation of those nonlocal operators is significantly more challenging
when panel discretizations are used, and the prevalent strategy resorts to Padé approximations of square
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BOUNDARY INTEGRAL EQUATION METHODS FOR THE SOLUTION 649

roots (Antoine & Darbas, 2005, 2007), which, in turn, requires solutions of certain elliptical problems
on the boundary. The latter feature Laplace-Beltrami operators in the case of surfaces in 3D, and as such,
they are challenging to solve in the context of Nystrom discretizations and are the subject of ongoing
research.

The paper is organized as follows: in Section 2, we introduce the Navier equations that govern
elastodynamics waves in two dimensions; in Section 3, we present the boundary layer potentials and
integral operators associated with the Navier equations and we construct their principal parts in the
sense of pseudodifferential operators. An essential part of this construction are detailed calculations of
the kernels of the BIOs involved, with a special emphasis being given to their splitting into regular
and singular parts. An exhaustive account of these factorizations is presented in the Appendix. In
Sections 4 and 5, we construct and analyse regularized BIE formulations for both penetrable and
impenetrable scattering problems; Nystrom discretizations of the elastodynamics BIOs as well as a
variety of numerical results that illustrate the high-order convergence of these methods and the iterative
behavior of the various formulations considered in this paper are presented in Section 6.

2. Navier equations and boundary integral operators

In this section, we present the Navier equations and their associated four BIOs. We will pay special
attentions to the kernels of such operators for two reasons: (a) to derive the principal part (in the
pseudodifferential sense) of the underlying operators; and (b) to describe precisely a factorization of
these kernels into regular and singular parts, which is subsequently exploited by spectral Kress Nystrém
methods. Although the latter methods were introduced in the 1980s for the Helmholtz equation and then
extended in the 1990s for the elastodynamic equations, the complexity of the functions involved makes
the splitting technique quite difficult in the elastodynamics case, and many details are unfortunately
missing from the literature. Some references can be found in Chapko et al. (2000) and Dominguez et
al. (2015, Section 4). In the former paper, the emphasis is placed on the hypersingular operator, and we
actually follow some of the notations introduced in that work. On the other hand, we find in the second
paper a brief description of all four of the BIO kernels but the regular and singular factorizations of the
kernels is omitted. Our main objective is to write in an appropriate framework a certain integration by
parts formula for the hypersingular Navier BIO, which is an essential piece in the numerical method
object of this paper.

2.1 Navier equation

Let us introduce first some notation for geometric quantities. We will use the following notation for
points x = (x;,x,) € R2. Any vector is understood to be a column vector, in such a way that

£1Y1 X2
X =X:-y=Xx +x , X = .
Yy Yy 1)1 2Y2 Yy |:x1y2 X2y2:|

We will also denote
ri=x-—y, r:=|rl=|x—y|.

For any sufficiently regular curve I' (Lipschitz is enough), the unit outward pointing vector is well
defined and will be denoted henceforth by n = (n,n,). Consider also ¢ = (—n,, n;) the unit tangent
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650 V. DOMINGUEZ AND C. TURC

vector obtained by rotating n clockwise by 90 degrees. The curve I' will be assumed to be simply
connected unless we state otherwise.

Letu = (uy,u,) : R? — R? be a vector function. For a linear isotropic and homogeneous elastic
medium with Lamé constants A and p such that A > —u, the strain and the stress tensor are defined as

1 1
G(u) = _(Vu + (Vu)T) — |:1 axlul 1) <ax1 M2 + ale/ll)]
2 2 (8)6] U + 8)62”1) 8x2u2

ak’u(u) =2pe(m) +A(V-wl,

where I, is the identity matrix of order 2. The time-harmonic elastic wave (Navier) equation is given by

V'GM(U)+0)2U= pAu+ A+ WV(V-u) + o’u =0

where the frequency w € R™ and the divergence operator “V-” is applied row-wise (here we assume the
density p is equal to 1). We often alleviate the notation and will simply write o for the stress tensor if
the context make clear which values for the Lamé constants are being considered.

The trace operator on I' is denoted by y-u whereas the normal stress tensor, or traction operator, is
given by

Tru:=oc(wn=A(V-wn+2um-Viu— u(V xu) [1 _1] n. 2.1)

Let then 2_ and 2, = R?\ Q . be the interior and exterior of I'. We will study in this paper BIE
formulations for the following boundary value problems:

(a) Solution of the exterior Dirichlet/Neumann, unpenetrable domain, time-harmonic Navier
equation:

ue HIIOC(Q+) = Hll()C(Q+) X HIIOC(Q+)’
V.o(w+o?u=0 inQ,,
DC/NConT,

+RC.

2.2)

Here HIIOC(Q ) is the space of functions which are locally in the Sobolev space H (Y ), DC
stands for Dirichlet condition, i.e.,

yru=f,
and NC, for Neumann condition,

Finally, RC stands for the radiation condition, or Kupradze condition, at infinity cf. (Kupradze
et al., 1979) or (Ammari et al., 2009, Ch. 2). Hence, if u, and u, are the longitudinal and
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transversal wave defined as

1
u, = ——ZVV-u u =u-—u, (2.3)
ky
with
2 2
K= @ , ks2 = a)—, 2.4)
P+ 2u 7
the associated wave numbers, we require that uniformly in x, with ¥ := x/|x|,
ou ] ou ) _
S0 = ik, (), 2 00) — iy, () = 0 (|x| 1/2). (2.52)
An equivalent formulation is given by
o (W) () ¥ = ik, (0 + 200, @), o)) F - ikpu =o (172, @5b)
which in turns implies
0,0 - U, (@)@ - @)D =o (k™). (2.50)

We refer to (Kupradze et al., 1979, Ch. 111, §2) for a proof of these results in ]R3, which can be
easily adapted to our two-dimensional case.

Both problems are uniquely solvable (see, for 2D and 3D problems, (Bramble & Pasciak, 2008),
(Kupradze et al., 1979, Ch. 3) or (Ammari et al., 2009, Ch. 2)).

Transmission problems: For different material properties (A, ) in 2, and (A_,u_) in Q_
we seek a solution of

uw_ecH(Q)), u, eH  (Q,),
V.o_u_)+e’u_=0 inQ_,
Voo, (u)+eiu_=0 inQ,,

. 2.6
VFu-i— —yru_ = _yrumc’ . ( )
T+,ru+ - T_’Fll_ = _T+’Fulnc,
+ RC.

We have used above the =+ signs in the normal stress tensor (7 ) to clarify the domain from
which it is applied, be it the exterior/interior domain with respect to I' (that is, €2, or 2_). We
will keep using this notation whenever the context is not clear enough to resolve this aspect.
We also implicitly assumed that the densities o, = 1 in both media.

On the other hand, the function u,. appearing in the right-hand-side above is a solution of the
exterior Navier problem in a neighborhood of © . (typically a shear or a pressure plane wave).
This problem is known to be uniquely solvable. We refer the reader to (Costabel & Stephan,

1990, Corolary 2.7), (Ammari et al., 2009, Ch. 2) or (Kupradze et al., 1979, Chapter I1I).
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652 V. DOMINGUEZ AND C. TURC

We finish this section by introducing the exterior/interior DtN operator, which will play an essential
role in this work: for g : I' — C sufficiently smooth (we will give detailed conditions later) we define

Y rg=T, ru,, Y pg:=T_ru_. (2.7)

where u n satisfies the RC and

o, (uy)+ a)_%cujE =0, yrup=g.

Let us emphasize that the exterior DIN operator Y, - is well defined for all frequencies w, unlike the

interior DtN operator Y_ -, which fails to be properly defined whenever w? is an eigenvalue for the

Dirichlet problem of the Navier differential operator in the bounded domain €2_. Notice that the second
transmission condition can be rewritten now as

_ inc
Y, ryruy =Y _pyru_=-T, ru

assuming that the inner DtN operator is properly defined.

3. Boundary integral operators for elastodynamics
3.1  Fundamental solution. Boundary layer potentials and integral operators

We briefly summarize the more relevant results of the Calderdn calculus associated with layer potentials
and boundary integral operators for two-dimensional elastodynamics. We refer the reader to Costabel
& Stephan (1990), (Kupradze et al., 1979, Ch. 2), (Ammari et al., 2009, §2.4) and Dominguez et al.
(2015) for exhaustive studies on this topic. While the first three references deal only with the 3D case,
we point out that all of the results established in those works can be easily adapted to the 2D case.

The fundamental solution of the time-harmonic elastic wave equation is given by the 2 x 2 matrix
function

1 1
P (x,y) := ;¢0(ks’”)12 + EVxVI(%(kSV) — ¢o(k,r)),  r=I|x—y|

where

4 = 71 0. (3.1

In the expression above, H;l) denotes the Hankel function of order j and first kind, so that for the
particular case j = 0, ¢ (kr) is just the fundamental solution of the Helmholtz equation A + k2.

Using the fundamental solution @ (x,y) of the Navier equation we can define the single and double
layer potentials. Specifically, for a given density (vector) function A defined on I', the single layer
potential is defined as

(SL :Ap) () :=/F@(z,y)kr(y)dy, zeR?\T. (3.2)
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Analogously, for a given density (vector) function g defined on I', the double layer potential is defined
as

]
OLrgr@ = [ [1,r0@n] oty zeRT (33)

where Ty’r<1§(z,y) is the normal stress tensor applied column-wise to @(z,y) with respect to the y
variable.
We then have the following representation formula which is referred to as the Somigliana identity

for any u, solution of the homogeneous Navier equation in €2 satisfying additionally the radiation
condition in the exterior domain.

The single layer potential is continuous in R?, and thus, assuming that z = x + en(x), x € I' and
taking the limit as ¢ — 0 in equation (3.2) we can define the single layer operator

(VrAp)(x) :=/F<I>(x,y)kr(y) dy, xel. 3.5

The application of the traction operator T to the single layer potential SL A gives rise to jump
discontinuities

lir% T (SL pAp)(x £ en(x)) = FAp(x) + (K;XF)(x), xerl
E—>
where the adjoint double layer operator is defined as

(K;lr)(x) ‘= p.V. /1" Tx’rd5(x,y)lr(y) dy.

The integral above is singular and it has to be understood in the sense of Cauchy principal value (which
is what p.v. stands for). The double layer potential DL - undergoes a jump discontinuity across I" so
that

lim (DL g) (x + en(x) — lim (DL ) (x — en(x)) = gr@), x €T,
and
gi_%(DL r&r)(x + en(x)) + sli_l)r%)(DL r&r)(x —en(x)) = 2(Kpgr)(x), xeTl

where the double layer operator is defined explicitly as

]
Krgr) ) =pv. [ [1,-0@0)] gro)dy
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654 V. DOMINGUEZ AND C. TURC

Finally, applying the traction operator 7 to the double layer potential DL g we obtain the
hypersingular operator

eh—IR)(TFDL r&r)(x ten(x)) = (Wrgr)(x), xeTl

where the BIO W is defined as
-
(Wrgr)(x) :=f.p. / Tor[T,r®@™] gr)dy.
r

The kernel of the operator defined above is strongly singular (that is it behaves like O(|x — y|_2) as
y — Xx), and as such the integral in its definition must be interpreted in a Hadamard finite part sense
(which it is what “f.p.” stands for in the expression above).

REMARK 3.1. It is a well-established result that the matrix BIO

e | Fr :V$ tHY2(T) x H V2T — HY2(D) < HV2(D)
WF Kl"

is continuous. Here H*!/ 2(F) = HTY2(") x H¥/2(I") are the standard Sobolev spaces in which
Dirichlet and Neumann traces on the boundary are considered. Furthermore Chaillat ez al. (2021),

where 7 = [I :| is the identity operator in H*(I") x H'(I"). This makes the operators

1

1
ST£Cr

projections in the space in H'/2(I") x H~'/2(I"), known in the literature as the exterior/interior Calderén

operators. Since
Yruy
Trug

1
u, =+DL g FSLAr & (EZ:ECF) [ir]
r

we have

1 yrus | _ | VrUs - 1
(EI:& CF) [Trui] = [Tl‘ui , or equivalently (yru,,Truy) € Ker (jI:F CF) .

Let us end this remark by stating the convention we have followed so far: We will use boldface
roman letters (as f or g) for functions that naturally belong to H'/ 2(F), whereas Greek letters will be
used to represent functions (or distributions) in HY 2(l") —without excluding the possibility that for
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Navier problems with regular enough boundary data the functions involved also turn out to be more
regular even though I is only Lipschitz.

3.2 Parameterized operators and functional spaces

In this section, we introduce parameterized versions of the kernels of the Navier layer potentials and
their associated BIOs. We will assume from now on that there exists a 2w —periodic smooth regular
parameterization of the closed curve I', x : R — I'. We then denote

V(1) = (% (0), =X (1) = mox)(D X' (1)1,

the parameterized normal tangent field to I'.
We will adopt the following convention:

H'/2() xHV2() 3 (gp,Ap)  ~  (g.A) :=(grox, Apox)|x'|) e H/Z x HT/2,
Here,
H :=H xH, H:={pecD®) ¢(-+21) =9, ¢l < oo}

with

27
lel; = @O + D> In*lgml*,  @n) = /0 @ (1) exp(—int) dr.
n#0

We extend actually such identification for any s > O:
H'T)>gr ~ g:=grox el H*T) 3¢ ~ ¢ :=(prox) : x| eH".

When s = 0, i.e. L(I") := L3(I") x L*(I") we can choose between either of the two identifications above
depending on what is most appropriate for our purposes.
Notice that with this convention

2
/Fgr'lr=/0 g-L=:(8.9), g=grox, A=(QRpox) x|

For any u : Q, — C? sufficiently smooth we follow this convention and thus define the
2w —periodic vector fields:

yu:=uox, Tu:= Truox)|x|=(o(u)ox)y (3.6)
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656 V. DOMINGUEZ AND C. TURC

which are the (parameterized) trace and normal stress tensor. With these notations in hand, we then
introduce the parameterized version of the Navier layer potentials

21
(SL1)(2) :=/ @z, x())AD)dr, zeR>\T, (3.7)
0
2 T
(DLg)(z) := [T, @@ x1)] g®)dt, zeR*\T, (3.8)
0
where
T,®(.x(t) == T, - & (- y))y:x(t) X (1)), (3.9)

and their associated four BIOs

2w 2
(VO)(@) = / V(t,H)A(t)dt = / @ (x(7),x())A(2) dt, (3.10a)
0 0

2 2 T

(Kg)(t) :=p.v. /0 K(t,ng)dt =p.v A [th§(x(t),x(t))] g(Hde, (3.10b)
27 27
(KTX) () :=p.v. KT(t, T)A()dr = p.v/ T, ®(x(t),x(r)) A(r)dr, (3.10¢)
0 0
27 2 T

(Wg)(z) :=f.p. A W(r,H) gt dt =f.p. /O T [T,®(x()x(1)] g dr. (3.10d)

(Here, and similarly to (3.9), T, ¥ (x(7),-) := T, ¥ (x,") ‘ x=x(1) |’ ()], for any 2 x 2 matrix function
W : T x I' - C?*2). Observe that with these definitions, K and K are effectively transpose of each
other:

(Kg,\) = (g, K")), VgeH’ VAeH™".

As in Remark 3.1 the (parameterized) version

K =V g2 a2 12 yq—1/2
C'[W—KT]'H x H — H'/“ xH

can be shown to satisfy the related properties:

02—11 ilz+cz—ilz+c
4 2 T2
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and that a similar relation can be established between functional densities defined on I' and boundary
traces of their associated combined field layer potentials. Indeed, if we define

u, =+DLg FSLA inQ,,

we have

1 yeuf | yeu . 1
(EI + C) [Tiu] = [Tiu , or equivalently (y u, T u) € Ker (EI F C) .

In particular, the Somigliana identity cf. (3.4) looks similar in this framework:

3.3 Principal symbol pseudodifferential calculus

Our next result establishes the fact that the difference between the kernels of the four parametrized BIOs
associated with the time harmonic Navier equations (i.e. elastodynamics) and their static counterparts
(i.e. elasticity) exhibit integrable singularities only, and the nature of the latter can be made explicit:

ProrosiTION 3.2. There exist smooth 27 —periodic 2 x 2 matrix functions

Apg: A B Ciog» D

reg’ reg’ reg

so that
V(t,n) =Vy(t,0) —|—Alog(t, 1) sin logr —|—Areg(r, 1),
K(z,t) = Ky(t,1) + Blog(t, t)sin(t — ¢) logr + Breg(‘t, 1),
W, 1) = Wo(t,1) + Ciog (T, D) log r + Dy (T, 1),

where
A+3 A

Vo(r,1) = Ao logrl, + iG(r),
Ar (L +2u)u dr (A +2u)pn

% a1 -1 1 % At
Ky(z,1) = 2 — oo (—t—1,+2 G ),
om0 = o (8t27'r Ogr) [1 :|+27'rr2 @ r)(x+2u 2 o (r))

p+p 9% 1
Wyat,t) i=m ——-—"———— (=1 1 G
o(®.0) A+2u otdtm ( ogriz+ (r))

1 2
ri=x(t) —x(0), r:=r|=x()—x@®)|, G = r—zrrTz [rgz r;?]
2

Proof. 'We refer the reader to Appendix and Remark A .4. O
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658 V. DOMINGUEZ AND C. TURC

Notice that in the previous results we have used the same symbols r and r to represent different but very

closely related quantities. We believe that this similarity justifies this slight abuse of notation.

Let us stress some consequences of the previous result. The (matrix) functions V{,(z, 1), K (¢, 7),
KOT (t,7) and W, (z,7) are the kernels of the corresponding BIOs (single layer, double layer, adjoint
double layer and hypersingular operator) for the elasticity layer operators. Hence, if we introduce the

integral operators

1 2

St
Ap = 5= log (46_1 sin? —)qo(t) dr,
T Jo 2

o 1 2 f— . 1 2
Hg := —iAg +¢(0) =p.v. — cot ——g(H) dr + — g(r) de,
2mi 0 2 27 0

which are actually Fourier multiplier operators whose action is explicitly given by

Ag=30)+ > —gmexp(in), Hg=—> gn)explin-)+ > g(n)exp(in-),

1
n#0|n| n<0 n>0

together with the matrix operators

I P I A

the following regularity results can be easily established, cf. Remark A.4

K —aH : H* — H?, V — BA : H* — H*"?,
W—SA"" B — H*H, K' —aH : H® — H*t?,
where
j A+3 A
T iR, B: +on . 8= _M< 0.

o:=———¢€ =
20+ 2w) 4 (A +2w) A42u

We note in passing that

5 1
o+ p5+ =0,

On the other hand, using the 2D Giinther derivative cf. (Hsiao & Wendland, 2008, §2.2)

. —g/z]
Dg =
# [ g
it holds that

H=AD, A~'=DTAD.

(3.12)

(3.13)

(3.14)

(3.15)
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Besides, it is straightforward to derive the following coercivity relations

(A7'g.8) > gl (A0, @) = llol . (3.16)

Having introduced these notations, set

_[aH —BA] [aH —BA
Co = [(SAI —ozHT]_ [aAl —ozH]' (3.17)

ProrosiTION 3.3. Forany s € R, C, : H® I« H¥ - H*T! x H' is continuous. Moreover,
y 0
C—CO:HS les—>Hs 3xHS 2.

Besides,

1 1 2 1
2
= -7 +-7 =+-7 .

Proof. The first assumption as well as the mapping properties for C — C, are consequence of the
definition of C, and (3.14). Notice also that

H? = 1

which with the expressions for «, 8 and §, see (3.15), proves that c? = }LI. The last result is
straightforward. 0

For a pseudodifferential operator A of order m (i.e. A : H® — H*™™) we will denote by PS(A)
its principal symbol, that is we require that (i) PS(A) is a Fourier multiplier and (ii) A — PS(A) is a
pseudodifferential operator of order m — 1, i.e. A — PSA) : H® — H " (the principal symbol
operators are not uniquely defined, and we will use in what follows various such operators depending
on the circumstances). This notation is readily extended to matrix operators, and, in view of previous
result Proposition 3.3, we have

A key ingredient in deriving alternative BIE formulations of scattering and transmission Navier
problems is the incorporation of principal symbols of DtN operators. Let us define Y as the usual
parameterization of the DtN operators Y, - introduced in (2.7). It is easy to derive from classical results

that Y, : H'/? — H1/2,
LEMMA 3.4. For any H'/2 5 g + 0 it holds
S(Y_g.g) =0, 3I(Y, g2 >0.

Proof. The proof uses the same arguments, and follow the same lines, as in the Helmholtz equation cf.
Colton & Kress (1983). We present the proof here just for the sake of completeness.
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Giveng € H'/2(I),letv_ e H(Q_), v 4 € HIIOC(Q ) be the solutions of the Dirichlet problem for
Navier equations in interior (£2_) and exterior (€2, ) domain. Therefore

yve=¢ T,vy=Y,yv,=Y,g

For the interior DtN operator the result is consequence of the first Green identity since

7o Ty = [T v
r

=/ 2ue(v_) (V) + AV -v_|> — 602/ v_|* eR.

6,9

(We have denoted above by “:” the Frobenius matrix inner product).
The proof for the exterior DtN operator is only slightly different. First, take B, a the ball centered at
origin and sufficiently large radius R. Then

(Vv Tovy) = /r vy Tr vy
N _/ 2ue(v) se(V) —MV-v_I wz/ v-r +/ YoseV+ " Topg Va4
Q4yNBgr Q_NBg JBR

Recall that v, satisfies the radiation condition at infinity (2.5). This condition implies, by (2.5b)-(2.5¢),

lim Ve Vo Tap .V, = lim ik (A +2 v |2+ lim ik v |? ciRt,
em BBRVBBR + LoBp+V+ = M (A + M)/BBR| bl +R_)OO SM/BBR| |

with v, and v, being the longitudinal and transversal wave components of v. Thus,
_ . 2 . 2
SV Tv,) = lim k(420 /3 . 1%l lim /8 =0

Furthermore, v, and v, are solutions of (vector) Helmholtz equations in €2, with their corresponding
Helmholtz (Sommeferld) radiation conditions at infinity cf. (2.5a). Then

(V.. T,v,)=0 ifandonlyif lim v,I* = lim v,2=0
()/ —+ —+ 47> )/ R 00 8I;R | l)| R— o0 al;R | Ijl
which implies that v, and v, and so v, = v, + v, vanish. The second result is now proven. U

We are now ready to compute the principal symbols PS(Y ). If w? is not an eigenvalue for
the Dirichlet problem for the Navier operator in the interior domain €2_, which is equivalent to the
invertibility of single layer BIO v, cf. Remark 3.1, we derive

1
Tiu=-V~! (51 — K) yu.
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Similarly, if w? is not an eigenvalue for the Neumann problem, which in turn renders the operator %I +K
invertible, we obtain the alternative formula

1 _1
T ,u= (§I+K) Wyu.

Since w? cannot be simultaneously a Neumann and a Dirichlet eigenvalue in the bounded domain

Q_, we use either of the formulas above for the exterior DtN operator ¥ ,u = T, u (which is a
pseudodifferential operator of order 1, ie., ¥, : H® — H*~!) together with the principal symbol
formulas for the BIOs involved in those equations and we derive a formula for its principal symbol

—1
PS(Y,)=—p"'A"" (%1 — aH) =3 (%I—l—aH) AL (3.18)

Assuming that the Dirichlet interior problem is well posed, we can proceed in the same way for the
interior DtN operator Y _, and we get

-1
PS(Y_)=g"'A"! (%1 + aH) -5 (%1 - aH) AL (3.19)

We note that the matrix operators H and A commute, and furthermore the two choices provided in the
right hand sides of equations (3.18) and respectively (3.19) for the calculation of the principal symbol
operators do produce the same result (this can be verified using equation (3.15)). Finally, it can be easily
seen that

PS(Y,) - Y, :H — H (3.20)

We present next some straightforward results that will enable us to establish certain coercivity
properties that the operators PS(Y ) enjoy.

LEmma 3.5. It holds,
(Ho,g) = —(p,Hg), Vo cH™’, geH’
Therefore,
% (Hp,9) =0, V¢ cH’.

Besides, if ¢ € (—1/2,1/2) then

1 _ _ 1 )
A+ cH)e.0) =\ 5 —c]lelp
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Proof. The first result follows from the definition of H which, in addition, implies trivially the second

result. Finally,
1 ) _ 1 2
ST+ ciH )@, 9) =\ 5 — lcl Hllgo_ g0 )@l
2 2 —_—

=1

and the result is proven. O

As consequence of the above lemma we can easily derive the following coercivity result that will be
useful in what follows:

ProrosiTION 3.6. It holds

(PS(Y_)g.g) = B (1 — laDlgllsz:  —(PS(Y,)g.8) = B (1 — laD) gl e

-1/2

Proof. Since A~! is positive definite we use its square root A defined explicitly as

B A-1/2 - R "
A ”2=[ A—I/Z]’ A2 =30 + 3 1nl 2R,
n#0

1/2

which turns out to be an isometry from H® into H*~!/2 It can easily be checked that A~ /< commutes

with H and hence

i/ s 7 et (] -
% (PS(Y_)g.g) =B 1m<(51+aH)A g, A 1/2g>2ﬂ 1(§—|oz|) 1A~ gl

/(1
=B (5 - |a|) lglzi2-

The second result follows similarly. O

We will also use an alternative form of the principal symbol operator PS(Y ) that relies on
complexified square roots. To this end, we select a complex wavenumber « with ik, I« > 0 and
we introduce a complexified version of the Fourier multiplier operator defined in equation (3.12) in the
following form

Ac= D =k 77g(n) exp(in-) (3.21)

n=—0oo

and then we define the matrix operators A, := [A" A ] and A;l accordingly. We mention that
K

the square roots in formula (3.21) are selected so that J(m? —k2)~Y2 = 0. The incorporation of
these alternative Fourier multipliers in the DtN calculus in connection to BIE has been originally
proposed in Antoine & Darbas (2005), and has been adopted in the community because these operators
provide improved approximations of the Fourier modes in the transition region between propagating
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and evanescent modes (that is frequencies such that |n| ~ k). Clearly, A, : H® — HSH, and, besides,
by construction

NA2. ) = clollf 1 WAL 0.9 = clgllf (3.22)
and
3(A9.0) = clol}sn —S(A'9,8) = clgli i (3.23)
The newly defined operators A, enjoy the following regularity properties
A, —A:H - B, AL -AT H S HPL

We can thus define complexified principal symbol DtN operators in the following manner

1 1 -

PS (Y ):=p'A]! (51 + aH) =4 (51 — aH) AL (3.24a)
1 1 -

PS,(Y,) :=—p A" (51 —~ ocH) =3 (51 + aH) Al (3.24b)

We establish that the complexified operators defined above are indeed principal symbol DtN operators
that enjoy the same coercivity properties as the DtN operators themselves

PROPOSITION 3.7. It holds PS(Y,) — PS, (Y,) : H® — H*"!. Furthermore, there exist ¢, > 0 and,
provided that NR(n? —«2) £0, ¢, > 0 so that

S(PS, (Y, )g.8) = c;ligllf 1o —3(PS, (Y_)g.8) = cllgll7 12

—R(PS, (Y,)g.8) = csllgl2 e N(PS, (¥ _)g.8) = c,llgl -

Proof. Using that

(n2 —/(2)1/2 :a,% —ibﬁ, a,,b,>0,a,~n, b, %n_l, asn — 0o,

we can easily show that
Al = 0% —ie?
with
0 (00)
©,8:= > agmexp(in-), ©g:= > bgnexp(in-).
n=—oo n=—0oo

Clearly ©; : H® — HST1/2 and, provided that §R(n2 — /cz) #0,0,: H — H~1/2 are continuous
invertible operators.
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We then define the matrix operators ©, := |:®r o :| and ©; = |:®i :| accordingly and we
r

®.

l
notice that

1 1
PS_(Y,) = 78~ '@? (51 ¥ aH) +ip~1@? (51 == cxH)

so that
(PS . (Y,)g.8) = FB EI FaH ) 0O,8,0.8)+if EI FaH)0O,g,0.).
The result follows now from Lemma 3.5. ]

REmaRrk 3.8. Slightly different pseudodifferential approximations of the Navier boundary layer
operators were proposed by Chaillat et all in (Chaillat e al., 2015). Their approach is based on use
of tubular neighborhoods of I" that enables a pseudodifferential calculus in the (¢, n) framework (here #
denotes the unit vector tangent field oriented counterclockwise on I') leading in our bidimensional case
to the following principal symbol Fourier multipliers

1 |:I’l2(l’l2 . KI%)—I/Z . (I’l2 . KSZ)I/Z

PSK,,,KS(V)(n) = 702 n2(n? — k2~ — (n? — K}%)uz] (3.25)

and respectively

: i
PSKP,KAY(K)(’/L) = S A~ —I’l(I’L2 _ KSZ)—I/Z

20+ 2w) (3.26)

n(n?® — KIE)—W]

with 3k, > 0, Jk; > 0. The precise definition of the Fourier multiplier operator PS k «, (V) 1s given
below, and it requires the use of the tangent and normal fields on I"

o0 T o~
P, (Vg:i= > [,ZT]PSKP,KS<V><n> [(p’(n)]exp(im) pi=9-1. ¢, =¢-n.

6

(Here we assume that the length of the curve is 27 and that an arc length parameterization is being
used; the required modification for curves of any length is straightforward). The principal symbols
defined in equations (3.25) and (3.26) lead via the Somigliana’s identities to alternative principal symbol
approximations PS, . (¥ ) of DN operators

1
PS, (Y1) () = F(PS, . (V)(m))™" (51 FPS, . (K) (n)) : (3.27)

3.4 Duality in product spaces

In this short subsection we present certain properties of matrix operators in connection to duality in
product spaces. We are interested in deriving an explicit formula for the dual of the Calderén operators
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C : "' x H? — H’' x H* with an emphasis on the case where s; = 1/2 = —s,. To this end, for
general matrix operators

A: |:311 312] : ' x H? — H"' x H?, (that iS’Aij CHY — Hti)
21 22

we work with the non-standard representation: (H® x H')’ = H™' x H™* via the non-standard duality
product

[(€1,91), (82, 9:)] = (g1, 9,) — (g2, 91)- (3.28)

Notice that, with this convention:

A, —A].
DB [ ]
|: |:‘P1 (%) ?1 (%] s _A;—l Airl

In particular, we find that

¢l =-¢ lIj:cT— lz cT
- 2 AV

i.e., the transpose of the interior Calderén operator is the exterior one and vice versa. This property
will simplify the analysis of boundary integral formulations for transmission problems as we will see in
section 5.

4. Boundary integral formulations. Impenetrable case

We present in what follows various strategies to derive BIE formulations of scattering problems.
Besides the classical combined field formulations combined field integral equations (CFIE), we derive
regularized formulations that rely on the use of approximations of the DtN operators. The design of the
regularized formulations for elastodynamic scattering and transmission problems follows the blueprint
from the Helmholtz case Boubendir & Turc (2013).

4.1 Dirichlet boundary conditions

Let us consider 2 4 the exterior of a closed, smooth, simply connect curve I'

ue Hlloc(Q-i-)
V.o(w)+o?u=0, inQ,,

(4.1)
yru = fr

+ RC

Just like in the Helmholtz case Brakhage & Werner (1965), the classical approach (Chaillat et al.,
2008, 2017; Costabel & Stephan, 1990) in the case of Dirichlet boundary conditions is to look for a
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scattered field in the form of a combined field representation
u(x) := (DL @)(x) — inp(SLe)(x), x €,

where the coupling parameter 1, # 0 and the 27 -periodic function ¢ : R — C? is the solution of the
combined field integral equation (CFIE)

1
E(p +Ko —inpVe =1. 4.2)

(With, as taken throughout this paper, f := f- o x). The question of selecting a value of the coupling
parameter 7, that leads to formulations with superior spectral properties (and thus faster convergence
rates for iterative solver solutions) can be settled via DtN arguments (Chaillat et al., 2017). We begin

with Somigliana’s identities (3.11), which we rewrite considering as u| as the primary unknown
boundary density and incorporating the DtN operator in the form

u(x) = DL [yu](x) — SL[Y yu](x), xe€£,.

The main idea in constructing regularized formulations is to use easily constructable approximations R
of the DtN operator Y, and look for combined field representations in the form

u(x) := (DLg)(x) — (SL[RPg)(x), x ¢ Q, 4.3)

leading to the CFIER
1 D
—g+Kg—VR"g=f onT. 4.4

We show in what follows that under certain assumptions on the regularizing operator R®, the CFIER is
well posed:

THEOREM 4.1. Consider a preconditioner RP that satisfies the following two properties: (a) R° — Y I
H* — H° is continuous and (b) the non-null condition holds

(R0, 9) #0, ¢ #0.

Then the CFIER operator %I + K — V[RP] is an invertible compact perturbation of the identity with
continuous inverse.
In particular, in view of (3.20) and Proposition 3.7, PS, (Y ) is a valid election.

Proof. Notice that by construction:

1 1
SI+K- VRP — (51 +oH — ,3APS(Y+)) ‘H' — B
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Furthermore, by (3.18)
§I+aH—ﬂAPS(Y+):§I+cxH+,BA BTA El—oeH =]

Consequently, the operator is a compact perturbation of the identity, and, as such, owing to Fredholm
alternative, it suffices to establish the injectivity in order to complete the proof. To this end, let us assume
that g € H’ is in the kernel of the operator and define

v(x) := (DLg)(x) — (SLIR gD (x), x € R*\T.

Clearly v, = v|Q+ is a radiating solution of the Navier equation in €2, with zero Dirichlet boundary
conditions on I', which implies that v _is identically zero in €2 . Hence,

1 8 1 g g
(EI + C) |:RDg] =0, andso (EI - C) |:RDgi| = |:RDg] .
In other words, v_ = v|g is a solution of the Navier equation in the domain €2_ that satisfies

yYv_=2§, T_V_ =RDg

and so
(R°g.8) = (Iv_.7v_) €R
by Lemma 3.4. The proof is concluded on the basis of the assumption (b). O
The regularizing operator R® = PS,(Y,) is a pseudodifferential operator of order 1 whose

numerical evaluation is consequently more involved. Using the high-frequency approximation |« | — oo
in the definition of the Fourier multiplier A;l , We can construct a simple regularizing operator

2u(A+2
RV = — p(A M)iK’
A+3u
which, incidentally, can be interpreted as delivering a quasi-optimal choice for the coupling parameter
np in the CFIE formulation

ngpt _ 2 +2u) k, (4.5)
A+3u

if we choose k = k,. We observed in practice that this choice of the coupling constant nlo)pt appears to

deliver consistently superior behavior of iterative solvers for solving the corresponding linear systems

when discretized. We remark that a similar, easily implementable low-order approximation of the DtN

operator was proposed in Chaillat et al. (2017) as a regularizing operator in the Dirichlet case.
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4.2  Neumann boundary conditions

In the case of Neumann boundary conditions, i.e.,

uc Hlloc(Q-i-)
V-ou)+o’u=0, inQ,,

(4.6)
Tiru=Ap

+RC

we can look for a scattered field in the form of a Combined Field representation akin to the Burton-
Miller formulation in the Helmholtz case Burton & Miller (1971)

u(x) := —(SL¢)(x) +iny(DL@)(x), x €,

where the coupling parameter 1, # 0, leading to the CFIE

1 .
9= K o +inyWe = 1. 4.7

Here again we start by recasting the Somigliana’s identities looking at 7u as the primary unknown
boundary density and making use of the the NtD operator (which is the inverse of the DtN operator)

u(x) = (DL[Y; {Tu})(x) — SL{Tu)(x), x€Q,.

The construction of regularized formulations relies again on available approximations R™ of the NtD
operator Y ~! via looking for combined field representations in the form

u(x) := (DL[RN¢))(x) — (SL@)(x), x € Q, (4.8)

leading to the CFIER

1 T N
§¢_K ¢ +WR =LA onTl. 4.9)

Again here, the choice RN = [PS, (Y Jr)]_1 leads to well posed CFIER formulations, at least in the case
when the boundary I" is smooth enough. Indeed, the following result can be established analogously to
that in Theorem 4.1

THEOREM 4.2. Consider a preconditioner RN that satisfies the following two properties: (a) RN —
Y +]_1 - H® — H**! and (b) the non-null condition

3(RNg,9) #0, ¢ #0.
Then the CFIER operator
1
51 — K" + W[RN]

is an invertible compact perturbation of the identity.
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In particular, RN = (PS, (Y Jr))_l is a valid choice.
Proof. From

1 1 —1 -1
SI- «H + SA”! |:8<§I—|—ozH) A‘l] 1

we can easily see that %I —K" + W[PS, (Y +)]*l is a compact perturbation of the identity.
The unicity follows from a similar argument as in Theorem 4.1: take ¢ in the kernel of the operator,
define

w(x) := (DL[R"¢])(x) — (SL@)(x), x € R*\T

and derive next w vanishes in € . Therefore, withw_ = w|, and g = PSK(Y+)_1(p

(PS (Y, )g.8) = (9. RN@) = (Tw_,7W_)

and the result is consequence of Lemma 3.4 and Proposition 3.7. O

Similarly, using high-frequency approximations we can construct a simple regularizing operator

A+3
Rll\lzi—+ i !
2 +2p)

]

which, delivers a quasi-optimal choice for the coupling parameter 7, in the CFIE formulation

gt = A (4.10)
2u(h +2u)

We remark that similar low-order approximations of NtD operators have been used in Chaillat et al.

(2021) to construct CFIE formulations with superior spectral properties.

Similarly, we can construct direct regularized formulations in the case of Neumann boundary
conditions following the ideas in Anand er al. (2012). Assuming that a smooth incident field ui"
(which is a solution of the Navier equation in the whole R?) impinges on the obstacle €2, we will derive
these BIEs in terms of unknown boundary quantity yu'® = y (u + ui™). We obtain from Somigliana’s
identities by taking into account the fact that 7u'® = 0 on I'

u(x) = DLu)(x), x€Q,. 4.11)

Applying the Dirichlet trace on I' to formula (4.11), we obtain

1 .
Eyutot _ Kyu[Ot — yulnC (4.12)
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while applying the traction operator to formula (4.11) we get
Wyu = —Tu'™. (4.13)

We combine BIE (4.12) and a preconditioned (on the left) version of the BIE (4.13) to arrive at the
DCFIER

1 . .
Eyutot(x) _ Kyutot + ([RNW]]/utOt) — yumc _ RNTumC, (414)
We note that the operators on the left hand side of the DCFIER formulation is the transpose of the
operator in the CFIER formulation, a situation that is similar to that in the Helmholtz case (Anand et al.,
2012). Direct formulations can be then used in the case when 2 is a Lipschitz domain in order to take

advantage of the increased regularity of yu®t.

5. The penetrable case

We consider in this section the penetrable case with transmission conditions, as formulated in (2.6):

1 1
u_cH(Q), u, eH (2,),
V.o_(u)+w’u_ =0, inQ_,
V-a+(u+)—|—w%ru_ =0, inQ_P

yu, —yu_ = —)/ll“_‘c,

T.u, —T u_=-T,u",
+ RC.

5.1

We present two approaches. In the first one, we analyse two classical formulations, the Costabel-
Stephan (5.2) and Kress-Roach formulation (5.6) and introduce two new ones, extensions of that firstly
introduced in Dominguez et al. (2016) for Helmholtz equation.

In the second subsection, we analyse the OS formulation.

5.1 Regularized formulations

In the first approach, we seek to solve for the Cauchy data (yu_, 7, u) and reconstruct the solution via

where the & notation is used for denoting the corresponding boundary layer potential operators for the
exterior/interior problem. Hence, denoting by

C. = Ki _Vi
=Wy K]

) Gl

we have that

(7 ve) 173 )
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These last two properties together with the fact that

1 uinc
() 73]

can be combined to derive a system of BIE equations for the solution of penetrable Navier problems

Lo [Tw;—_] = —(C, +C) [Ty} _ m ] | 5.2)

We refer in what follows to the formulation (5.2) as the Stephan-Costabel as first introduced in cf.
(Costabel & Stephan, 1990), which is in turn the counterpart of the acoustic formulation introduced by
these two authors in Costabel & Stephan (1985).

Besides, since
Lrie )| re-12o
2 “J | T u_|

1 u_ uinc
(51 +C_ —RT(C, + c_)) [T”_u_} =RT |:7)”/+uinc:| (5.3)

for any suitable operator

R], —R/
R = |:R“ R12:| recall that RT = 22 12 .
R, Ry —~R), R,

Alternatively, we can work with the adjoint of the formulation (5.3), in the sense discussed in Section 3.4

we find also that

yuinc

1 g
(51 —C_+(C, +COR) M = [T+uinc] (5.4)

Clearly, owing to duality arguments, the first formulation (5.3) is uniquely solvable if and only if so is
the second (dual) formulation (5.4). The connection between the boundary densities (g, ¢) which are
the solution of the adjoint formulation (5.4) and the fields u__is as follows

u, =[DL, —SL,|R [ﬂ =DL (Ry g+ R\2¢) — SL { (Ry1g8 +R¢)

u_ = [—DL_ SL_] (R-1) [ii| =DL_(g—R,1g—R;,p) —SL _(¢ —R,18 —Ry9). (5.5)

In other words, formulations (5.3) and respectively (5.4) can be viewed as regularized direct and indirect
BIE formulations of elastodynamic transmission problems.
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In particular, selecting R = %I in either of the formulations (5.3) or (5.4) we obtain the Kress-Roach
type formulation

Lxr [T”_‘L—_] = (T +C_—-C,) [T”_‘L—_} =2 [T”;im] . (5.6)

This formulation was first introduced, for acoustic problems, by Kress and Roach in Kress & Roach
(1978). We also refer the reader to (Le Louér, 2015, Theorem 2.1) for the analysis of this formulation
in 3D elastodynamics problems. As we will show below, Proposition 5.2 and Theorem 5.3, the well
posedness of (5.2)—(5.6) can be stated in an easier way for 2D problems, obtaining, in addition, crucial
information about the eigenvalues distribution of the associated operator in the complex plane. We stress
that, unlike the Kress-Roach formulations for the Helmholtz transmission problems, the BIE formulation
(5.6) is not a second kind formulation since the double layer BIOs are no longer compact in this setting.
We will establish next that the Stephan-Costabel and the Kress-Roach type formulations are well
posed. The proof follows the ideas used in the seminal work (Costabel & Stephan, 1985; Kress & Roach,
1978) for which the well-posedness of the transmission problem with reversed material properties

v_eHY(Q), v, eH (2,
V'O’_(V+)+(X)Z_V+:0, inQ+s
V-a+(v_)—|—a)%rv_ =0, inQ_,

~ 5.7
YV, —yvV_ = _ulnc’. ( )
T.v, —T_ v_=-T,u",
+RC
will be essential.
Let us introduce (with o € iR, B, > 0 > § as in (3.17)) operators
= — _ | eyt )H —(B, +B)A
Losc = —(Cio+C_p) = [(3+ +8 )A! —(a, +a )H|’
_ L (a_ —a)H —(B_—B)A
‘CO,KR =1+ C—,O C+,0 =1+ |:(5_ _ 5+)A_1 —(o_ — Ol+)H
which are simply the principal parts for Lg- and Lig.
We can show easily that
Lisc = rT (5.8)
where
p = —(B+B )06, +6.)— (o, +a_)?
Ayt )t (g 30 Ny ) +p_Guy + 1)) (5.9)

4M+M_()\+ + 2M+)()¥_ +2u1_)

_ M_ Ayl WU
= F()‘+9M+s )\'_s_) :F()"_’/JL_’ A,_+’_+ )

+ My - M
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with

((s + Dxy + Bs + Dy?) (r(s + Daxy + s(s + 3)y?)
4sy? (x + 2y) (rx + 2sy) '

F(x,y,r,s) =
We prove in the next lemma that p > 1 with p = lifand only if u, = p_.
LemMma 5.1. Forall (x,y,r,s) € R%, Fx,y,r,s) > 1 with F(x,y,r,s) = 1 if and only if s = 1.
Proof. Clearly F(x,y,r,1) = 1. Besides,

(s — Dxy(sx+3sy+x+y)
4(x + 2y) (rx + 2sy)?

0.F(x,y,r,s) =
Hence the result follows readily since for (x,y,r,s) € R4 , 0.F(x,y,r,s) > 0, respectively
0.F(x,y,r,s) <O0,if s > 1, respectively s < 1. O

PROPOSITION 5.2. Lygc, Loxr @ H x ™! — H' x H*™! are normal and invertible operators.

Moreover, the eigenvalues of £ gc and /J(I kr are {£,/p} and {1 £ /1 — p} respectively where p > 1
if u, # wu_ and 1 otherwise.

Proof. 1t follows from equation (5.8) that £, g¢ is invertible and its eigenvalues are £,/p. The last
claim can be established by considering the matrix operator

. LB\
Q= oAl eif where ¢ = Pt >0

which satisfies
Q9 '=09, QLyscQ = —Loysc-

Thus, if (A, g) is an eigenvector of £0’SC associated with the eigenvalue :I:ﬁ, then O(A, g)T is also an
eigenvector of £ g¢ associated with the eigenvalue F,/p.
Regarding EO’KR, we see first, using (5.8),

T 2 2
LoxrLoxr =T —C_g=CL )T+ (C_g=Cyp)) =Logc =T
from where the invertibility follows readily. Furthermore, from

(C_g—Cro)? =202 +2C1)— (C_y+Crp)*=U0—pI (5.10)

we conclude that the eigenvalues of EJ kr are 1 = 4/1 — p. Using a similar argument to the one applied
above establishes the fact that both signs are actually achieved in the formula for the eigenvalues of the
operator ﬁg KR* U

Next theorem extends this result to Ly and Lgg:
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THEOREM 5.3. The operators Lgc, Lyg @ HS x H™! — H* x H*™! are invertible.
Furthermore, the eigenvalues of Lg- and Lygg are clustered around 4.,/p and 1 & /1 —p
respectively.

Proof. From the Proposition 5.2 we conclude that Lq- and Lgg are compact perturbations of invertible

operators. Hence, according to the Fredholm theory, their invertibility follows once we establish their

injectivity, which, in turn, will be proved using the same ideas as for Helmholtz transmission problems.
To this end, take first (g, ¢) € Ker Ly and define the fields in RZ\T

Clearly (u +|Q+,u_|97) are solutions of the original transmission problem with u'™ = . Therefore,
u, =0inQ2, andu_ =01in 2_. Since

1 g g 1 g
-7-C = =|=Z+C
(7= ) o] - (6] - Ge) 3
we conclude that (u_lg,,uilg ) solve the adjoint problem (5.7), again with u™ = 0. Then by

hypothesis, u_[g and u_|g  vanish too. Hence u® = 0 and by the jump properties for the potentials,
we have also (g, ¢) = 0.
Consider now (g, ¢) € Ker Lgy and define in this case

+ _
v-=DL_g—-SL_¢

Qy

Then, (v_, v, ) solves the adjoint problem (5.7), as above with uine

(1) )= (e ]

which implies (g, ¢) € Ker(Lgc) and therefore, (g, ) = 0.
Regarding the eigenvalues distribution, let first (,), be the eigenvalues for Lqc. Then, {A2} are
eigenvalues for ﬁgc = ﬁ%’sc +K = pI+K. Since K when acting from H* x H*~! into itself is compact,

= 0. Thus v, vanish in €2 . Hence

0 — k,% can only accumulate at zero, from where this result follows.
The proof for Lgg follows similarly. Note, as in (5.10),

C_.—C)*=T—(C_+C)* =T~ L3.

Hence, if {1, }, are the eigenvalues for Lyg, {(, — 1)?}, are eigenvalues for Z — £§C that can only
accumulate at 1 — p. Then, {u,}, are clustered around 1 £ /1 — p. ]

We are ready to analyse the CFIER formulation (5.3) and (5.4) under suitable assumptions on the
regularizing operator R. Specifically, we assume

R, R
ASSUMPTION I We assume R = [ 1 12

] satisfies the following properties:
Ry Ry
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(a) There exists K : H*t! x H® — H!1H x H with ¢ > 1 so that

1
EI—C_—I—(C++C_)R:A+IC, (5.11)

with A : HF! x H® — H*"! x H® invertible with the eigenvalues clustered around a few
accumulation points.
(b) We have

3((g.9) — (&8 Rypo) — (R10,9) — (8. Ry 8) — (R)18,9)) <O
V0 # (g,9) e H'/2 x H™!/2, (5.12)

We establish O
THEOREM 5.4. Under the assumptions (a)—(b) stated above, for the following operators
1 T 1
Ly, = EI +C_—R (CL+C), Ljg:= EI —C_+ (. +CHR. (5.13)

there exists K : H*T! x H® — H" x H**2 so that £, y = A+ K, L4, = AT + KT and both operators
Ly, and L, 4 are invertible.

Proof. Clearly, (5.11) implies the decomposition stated in the statement of the theorem. In particular,
both operators L ;. and £, are also Fredholm, and therefore we just have to prove the invertibility.

Assume then that
g
ﬁind |:¢:| = 0’

and define by (5.5) (u,,u_) in all R2 \ I'. Proceeding as in the proof of Proposition of 5.3 we can infer
that

oo g
v. = [DL, —SL+]R[i]

which, by unicity of solution for the transmission problem, v | =0 =v_|g . Then

B Ll R P
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Then, by Lemma 3.4,

(v T v —(yv_,T_v_) = (£.0) — (g.Rpe) — (R1,0.9) — (&.R,8) — (R 18.9) (5.14)

The result follows then by assumption (b). U

Obviously, the optimal choice of the regularizing operator
(1
R=(C, +C) §I+C_
which makes
Lgiy = Ling = 1.

However, the definition of the regularizing operator involves operator inversion. We bypass these issues
by resorting to the principal part calculus. Indeed, for a wavenumber « with S« > 0 we consider the
principal part operators (see (3.17))

« a H —B.A, it Ay +3my Py gy + i)
Ci= -1 s oy = ——, B = =
S A —o H 200y +2py) (g +2py) Ap 20y

where the Fourier multiplier operator A, was defined in equation (3.21). Using the result established in
equation (5.8)

- 1
(CY +C)* = pZ, thatis, (C< +C<) " == (C¥ +C¥)
P
we define instead the regularizing operators

1 1 RK RK
R,=—(CL+CE (—I—I—Cf) = |: 11 12:|. (5.15)
Jo (©: ) 2 Ry R,

The choice of regularizing operators presented in equation (5.15) still renders the operators

1

dir = (EI + C_) — R (Cy+C) (5.16)
1

nd = (EI — C_) + (. +COR, (5.17)

compact perturbations of the identity. In what follows we will refer to these formulations as Direct
Regularized Combined Field Integral Equations (DCFIER) and respectively Indirect Regularized
Combined Field Integral Equations (ICFIER). Indeed, with R, selected as in equation (5.15) above
we have

gir:I+K:
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with £ : Ht! x H® — H*F x H**? 50 that (a) in Assumption 1 is satisfied with £ = 2. A careful
computation delivers the explicit form of the four entries of the regularizing operator R where

1 1
R, = Z(oz+ +a_)H — ;(a_(a+ +a )+ (By+ BN
1 1
RY, = _%(m +B)A, — ;(,3_(05+ +oa_)—a_ (B +B_)AH

1 1
= —5, B tPIA (B oy —a fOAH

_'B++'B—AK (ll+a+'8—_a—13+H)
p 2 B+ B

1 L _
= 5,0 5 )AL+ S, +8) =8 (@, +a A, 'H

8, +6_ 1 a6 —a_$
- +—AK—1 - -+
0 2 8+—|-5_

by = —%(cx+ +a_)H — %(oc_(our +a )+ B (6, +5 )L
LEmMMA 5.5. There exists ¢, ¢, > 0 so that for any (¢, g) € H!/2 x H /2 it holds
—R(R},0.9) = cilloly,  — RRE2.E) = ciliglz .
and
— 3(R,0.9) = c|llolf s, S(RS2.8) = cllglhie-
Proof. The proof it is very similar to that of Proposition 3.7. Notice that we can take
A, =02+i@7, A;'=92 - i@}

where ©, : H' — B2, @, : H' -» B2, @ : H' — H"/2 @, : H' — H*™/? are invertible
Fourier multiplier operators that commute with H. Given that ®, and ®,; commute with H we have

(R,0.0) = —¥ (<(%I - ClziH) ®r¢’9_r<0> + i<<%1 - ClziH) 91"/’7@_1'(0»
(R30,0) = %+ 0 (<(%I + CZIiH> SZ,(p,SZ_rgo> — i<(%l + CZIiH) SZi(p,SZ_i(p»

0
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where

Cp = —oe+,3_ — a_'B+i Cyp = —a+3_ L i.

Since —ioy € (0,1/2) and B > 0 > &, ¢y, € (—1/2,1/2). The result is therefore a consequence
of Lemma 3.5. O

Finally, we need an additional result

LEmMMA 5.6. For any (g, ¢) € H° x HO it holds
(8.9) — (g.R5,0) — (R,2.9) =0.

Proof. Note that since o € iR

_ 1 _ 1 _
(R},8.90) = Z(oq +a_)(Hg, @) — ;(a_(oq +a_)+3d (B +B.))(Eg @)
— 1 _ 1 _
(8. Ry»9) = —%(Our +a_)(Hg, ) — ;(Oé_(oq t+a_)+B_(6,+3.))(g @)
Therefore
(g.RY,0) + (R,8.0) = (8.9)
because, after some calculations, one can show the following identity (cf (3.15))

200 (o, +a )+8_(By +B)+B (8, +5)
=(ay +a )+ B +B )G, +8 )+ (@ +B5_—af —B,8,)=—p.

=0

O

We are now in the position to prove the main result on the well posedness of the regularized BIE
formulations for transmission problems

THEOREM 5.7. With R, defined in (5.15) there exists K : H'! x H* — H*T x H"? such that the
operators L& =1+ K, LS =1+ KT : H*"! x H* — H*"! x H’ are both invertible.

Proof. We have already seen that (a) in Assumption 1 is verified with A = Z. On the other hand,
condition (b) for (g, ) # 0 is a consequence of Lemma 5.5, which implies

(R0, 9), S(g.R38) <0,

and Lemma 5.6, which established
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We invoke the result in Theorem 5.4 to conclude the proof. O
It is relatively straightforward to refine the regularity property of the operators K in Theorem 5.7:

COROLLARY 5.8. Under the same hypothesis of Theorem 5.7, it holds that K : H® x H® — H*t! x H**!
and the operators L 4 =1+ I, L =1 + KT :H x H* — H* x H® are both invertible.

5.2 Optimized Schwarz Domain Decomposition methods

We finally consider OS Domain Decomposition Methods (Boubendir et al., 2017) for the solution of
the transmission problem whereby we connect the solutions u, and u_ of the exterior and interior time

harmonic problems Navier equations via certain transmission operators Y | : H'/? - H /2
Voo, (u)+o’u, =0 inQ,
T+[u++uinc]+T+y[u++ui“°] =T u_+7Y yu_ (5.18)
and
V.o_(u)+wu_ =0 inQ
T_u_+7Y_yu_ = T [u, +u™]+7Y_ylu, +u™]. (5.19)
We assume from now on that Y satisfies the following property:
J(Y, g.8) >0 —3J(Y_g,g) > 0. (5.20)

ProOPOSITION 5.9. Under assumption (5.20), the exterior and interior Navier problems with generalized
Robin conditions

u, € Hlloc(Q-l—)’
V-o(u,) +o’u, =0, inQ,,

(5.21a)
T\u, +Y yu, =1,
+RC
and
u_c H(Q)),
V-oou)+o*u_=0, inQ_, (5.21b)

T u_+Y_yu_=»xr_,

have a unique solution for any A, € H/2().
Furthermore, (5.18)—(5.19) are equivalent to the original transmission problem (2.2).

Proof. The unicity of solution, and by ellipticity the existence, follows from standard arguments in
boundary problems for elliptic partial differential equations.
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Notice that it suffices Y, — Y _ to be injective to show the equivalence between (5.18)—(5.19) and
the transmission problem. But, by hypothesis

J((C, —Y_)g.8) >0, Vg#0, (5.22)

which implies as byproduct the injectivity. ([l

The OS system (5.18) and (5.19) is typically recast in terms of generalized elastodynamic Robin
dataon I’

A, =T, u, + Y, yu,, A_=T u +Y_yu_ (5.23)

in a form that involves the Schwarz iteration operator
_ _ inc inc
A o Y i e A (5.24)
=S, I A (Tu™ + Y _yu'™)

In equation (5.24) the operators S, are the Robin-to-Robin (RtR) operators associated to Navier
equations with generalized Robin boundary conditions whose precise definition is given by

S A, =T,u, +Y, yu,, (5.25a)
S A_ =T u_+Y_vyu_, (5.25b)

where u_ are the solutions of the exterior and interior problems in (5.21) in Proposition 5.9 with data
A,

The optimal choice of transmission operators with respect to the iterative solution of the OS
formulation (5.24) is givenby Y, = —Y_and Y_ = —Y, (that is the DtN operators corresponding to
each domain €2 ), a ubiquitous pattern in the case of OS methods involving two subdomains (Boubendir
et al., 2017; Nataf, 2002). OS methods employ approximations of the DtN operators in the formulation
above. As such, we use the following transmission operators

1 (1 (1 -
Y. := —PS (¥%) = :tﬂ—AK1 (51 T aiH) =Ty A (51 + aiH) . (5.26)
+

The OS algorithm is straightforward to implement as it amounts to the evaluation of S, A | operators.
To this end, first we find u 1 the solution the generalized Robin problem (5.21a) with data A 4 second
plug T, u, and yu,_ into the formula (5.25a) with (5.26). The evaluation of S_A_ is identical with
problem (5.21b) and (5.25b) instead. RtR maps, on the other hand, can be computed in a stable manner
using boundary integral equations.

We present in what follows: (a) a simple procedure to compute in a robust manner RtR maps, and
therefore to accomplish the evaluation of S A, (Theorems 5.10-5.13); (b) a proof of the well-posedness
of (5.24) (Theorem 5.14).
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We start with S_, i.e., the case of the bounded domain €2_, as the situation is somewhat simpler.
Hence, given A_ we write the boundary condition in (5.21b) as

L Sl

On the other hand, we use the Calderdn projection in the following way

el =)

Adding these two matrix equations we derive the following direct BIE formulation of elastodynamic
equations with generalized Robin boundary values:

1
ya_| —xI —K_ V_ yu_| B 0
A [T“—] o [—f_ +W_ - —KI] [Tu_] = [x_] : (5.27)

Notice that A_ : H® x H**! — H* x H**!. For the following results, recall the duality product [, -]
cf. (3.28) which makes possible the realisation (H® x H) = H™" x H™*.

THEOREM 5.10. The matrix operator A_ : H® x H*™! — H* x H*~! is a compact perturbation of

PS(A_):[ e B_A }

~Y_+8_ A" —I-a H
which is a coercive operator: There exists ¢ > 0 such that

RIPS(A_)(g. ¥). (8. )] = c[llglg 2 + l@lg-12].

Furthermore, the operator .4 _ is invertible.

Proof. Clearly, A_ —PS(A_) : H* x H*~! — H**? x H**! is continuous. Notice also

[PS(A)(g.9). & 9)] = —(38+o_Hg.9) + B_(Ap. D)
—~8_(A"'g.®) — (PS,(Y,)g.8) + (3¢ + a_Hg.8)

and so

RIPS(A_) (g, 9). (&, 9)] = B_R(Ap,0) —5_R(A"'g,8) —N(PS, (Y, )g.8).

On account of relation (3.16) established in Lemma 3.5 (recall that 8_ > 0 > §_) and the result in
Proposition 3.7 we conclude the proof of the first result in the theorem.

Following the Fredholm paradigm, since PS(A_) : H® x H*~! — H* x H*~! is invertible we just
have to show that A_ : H® x H*™! — H® x H ! is injective. Let (g, ¢,) € Ker(A_) and define the
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field
w(x) := (DL _gy)(x) — (SL _@)(x), x e R*\T.

Clearly w|g, is a radiating solution of the Navier equation in €2, with zero Dirichlet boundary
conditions on I', and therefore w vanishes in €2, . Also, w_ = w|g is a solution of the Navier equation
in Q_ whose Cauchy boundary data on I" are

YW_ = _go, T_W_ - _(00

However, we derive from its definition that

1
T w_=W_g,+ E(po — Kj(po

and thus we obtain

1
W_80= 5% +KLg,.

Given that (g, ¢,) € Ker(A_), we also have that

1
W_gy—Y_gy= 5(00 ‘|‘K1—‘Po-

We derive from the last two relations that Y _g, = 0, which, in the light of the coercivity properties
established in Proposition 3.7 implies that g, = 0. This, in turn, implies that the Cauchy data of w_
vanishes on I', and thus w_ = 0 in Q_. Consequently, ¢, = 0, which completes the proof. ]

Regarding S +X, i.e., the exterior RtR problem, we can derive a similar formulation as in (5.27)
proceeding in the same way, namely

1
ya_| _ | 3L -K, vV, yu_| | O 598
A+[Tu]'_[T++W+ -kl |[Tu |~ A | (5:28)
THEOREM 5.11. The matrix operator A, : H® x H'~! - H* x H*~! is a compact perturbation of

s = [ e, pA

-1 1
Y, -6 A" ;I—ao H
which is a coercive operator: There exists ¢ > 0 such that
RPS(A (@& ¥). €. W] = c[lglg2 + lollg-12]. €)' #0.

Furthermore, if w? is not an eigenvalue of the Dirichlet Navier operator with material parameters
(4, A ) in the domain 2_, the operator A is invertible.
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Proof. The first part of the theorem follows along the same lines as that in Theorem 5.10. Let (g, @) €
Ker(A, ) and define the field

w(x) := —(DL . g))(®) + (SL  9y)(x), x € R*\T

and denote w, = w|g_ . It follows immediately that yw_ = 0 and T, w = Y g,. Given the jump
relations of Navier layer potentials it follows that yw, = —g and thus

T w,+Y,yw, =0 onl.

Now, w, is a radiating solution of Navier equations in €2, and given that I(Y, ¢, @) > 0, it follows
that w L= 0inw 1 and hence g, = 0. Under the assumption in the theorem, we also have that
w|q =0, and thus ¢ =7_w_ = 0 as well. O

The restriction on w not being an eigenvalue of the Dirichlet problem can be however overcome, that
is, it is possible to derive BIE formulations to solve exterior Navier equations with generalized Robin
boundary conditions that are uniquely solvable for all frequencies w. Indeed, let cf. (3.24a)

~ 1 1 -1
V=—A (51 - a_H) = (PS,(Y_)) ., (5.29)

and consider alternative formulations obtained by adding the regularized boundary condition eV(Tu D+
eVY u, =¢eVA, tothe second equation in formulation (5.28)

' ~ ~ ~
sSI—K, +eVY, V,_ +4+¢eV]|yu_ yu_ eVA
e . |2 + + Y+ € — +

At [ T, +W, 3l - KI] [T“—} S [T“—] [ Ay ] ' 30
We establish

THEOREM 5.12. The matrix operator A% : H® x H°~! — H* x H*"! in the left hand side of equation
(5.30) is a compact perturbation of a coercive operator in the space H'/? x H™!/? provided ¢ > 0 is
small enough. Furthermore, under the same assumption, the operator A, is invertible.

Proof. Clearly

PS(A%) = PS(A,) + ¢ [Vg+ g]

is coervice, in the sense we have stated in previous results, for & small enough since so is PS(A_).
Now let (g, @) € Ker(A?%) and define the field

w(x) := —(DL . g))(x) + (SL . 9y)(x), x € R*\T, W =wg,.
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It follows immediately that yw_ = —SV(T+g0 +ogand T_w_ = Y _ g, + ¢,. Therefore, w_ is a
solution of Navier equations in €2_ with generalized Robin boundary conditions

T _w_+ (sf/)_]yw_ =0,
and therefore
T_w_,7w_) + (V) lyw_,yw_) = 0.
This implies that w = 0, since by Lemma 3.4 and Proposition 3.7 we have
AT_wyw_) =0, =3(V) " yw_,yWo) = (™ 'PS (Y )yw_,7W_) > cllyw_llg o

Therefore,

0o =-Y",8-

The jump conditions of Navier layer potentials yield yw, = —g, and T,w = —¢, = Y, g.
Consequently, w, is a radiating solution of Navier equations in €2, with generalized Robin boundary
conditions

T .w, +Y, yw, =0.
Thus, from Lemma 3.4

0=3T W, yw,)+I(T yw, ,yW,) > =3(PS (Y_)yw,,yw,)

from where we infer, Proposition 3.7, that yw, = 0 and thus ¢, = g, = 0. g

Alternatively, instead of working with a full system of BIEs, it is also possible to construct a single
robust regularized BIE formulations for the solution of exterior Navier equations with generalized Robin
boundary conditions. Defining first the operator

R := (PS,(Y,) —PS (Y_))~!
we look for a radiating solution of the Navier equation in €2, of the form

u_ (x) := (DL _[R*®@])(x) — (SL _[PS, (Y )R%p])(x), x e Q. (5.31)

We have
1 oS
yu, = §+K+—V+PSK(Y+) R | ¢

1
T,u, = [(W+ + 3PS (V) - KIPSK(Y+)) ROS] 0.
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It follows than that u, satisfies the boundary condition Tu, + Y, u, = Tu, —PS (Y_)u, =4, if
and only if ¢ satisfies the BIE

B, = [(W+ 1 %PSK(YJF) - KIPSK(Y+)) —PS (Y_) (%1 +K, — V+PSK(Y+))] R>. (5.32)

THEOREM 5.13. The operator B, : H® — H’ is a compact perturbation of the identity. Furthermore,
the operator B, is invertible.

Proof. Notice that

R =—(‘3++’3—1—“+ﬂ—_“—ﬁ+1{) A (5.33)

28, B_ B_B. €

that
B, =B, +K

with K : H® — H*+2

1
-1 1 —-1(1
B+,0 = |:8+AK — (EI—(X+H) EAK (zl—a_’_H)

- [ () o) (-5

1
——— A AT a_H) (%I to, H—B,A, (—i) AL (%1 . a+H)) :|R
But since

we can conclude

By + :3—) (0‘+ﬂ— _0‘—/8+) -1
B, =—| (=) r— (==t )H|A'R=1
0 [( 28_B, BB ] «

in view of (5.33). Clearly, the invertibility of the operator B, is then equivalent to its injectivity. Let
¢, € Ker(B, ) and define the field

w(x) := (DL _[R%@,])(x) — (SL ,[PS, (Y ) )R®po))(x), x € R2\T, w_.=wlg . (534
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It follows that w|g is a radiating solution of the Navier equations in €2, with generalized Robin
conditions 7, w + Y, yw, = Oon I', and thus w, = 0 in 2. Given the jump properties of Navier
layer potentials, we obtain

yw = —R%¢, T_w=—PS, (Y, )R”¢p, = Y_R%¢,.

We have that w|_is a solution of the Navier equation with material parameters (u,, A ) in €2 that
satisfies the generalized Robin boundary condition on I

T w+Y_yw_=0.
We derive then that w_ = w|, = 0 in € which in turn implies that R®*¢, = 0 on I'. Given that the
operator R is invertible, we get that ¢, = 0, which was to be proved. (]

Having show some different formulations to evaluate S, we are now in the position to prove the
main result concerning Schwarz iteration operators:

THEOREM 5.14. The RtR operators S, : H® — H**? are continuous, and so compact when viewed
acting in H* into itself. Furthermore, the operator / — S_S_, : H® — H’ is invertible with continuous
inverse. As a consequence, the underlying Schwarz iteration operator in the left hand side of equation
(5.24) is a invertible compact perturbation of the identity in H® x H?’.

Proof. Notice that I — S_S is the Schur complement of the matrix operator in the left hand side of
equation (5.24). Hence, the last result stated in the theorem is a consequence of the previous statements.
Let us recall that in view of (5.26) we have

Sif=Tiug —Y oy ug,
where u are the solutions of (5.21). The following estimate basically follows from the definition of the
operators involved
1Tiuy = Yoyiug g < Cllysug |lgs
for some C > 0 independent of u_ . Besides, from (5.27) and (5.28) (or (5.30)) we derive the estimate

/
lyrugllgs < ClAL[lgs—

with C" > 0 independent of g. Gathering these properties we can conclude that S, : H® — H'*? is
continuous.

In order to establish the invertibility of the operator I — S_S, it suffices to prove its injectivity.
Assume that ¢ such as ¢ = S_S_ ¢ and solve the Navier problem in the exterior domain €2

V-O’+(W+)+a)2W+:0 inQ,,

T,w,+Y,yw, =¢ onTl (5.35)

where w,_is radiating at infinity, so that

S, =(T,w,+Y_yw,).
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We also consider the Navier problem in the bounded domain €2

VoW )+o’w_ =0 inSQ_
Tw +Y_ yw_ =S8,¢ onl

so that

S S.o=(T_w_+Y_yw_). (5.36)

Given that 9 = §_S§, ¢ we obtain

T w, +Y, yw, =T w_+7Y, yw_. (5.37)

Furthermore, the boundary condition of w_ on I" leads to

T w, +Y yw=T w_+Y_yw_. (5.38)

We note that it follows from equations (5.37) and (5.38) that

Yy =Y )lyw, —yw_]=0.

which since the operator Y, — Y _ is injective, in turn implies

YW, =YW_
and then, from (5.37),
Tw, =T w_

which implies

(T, W, 7w, ) =T_w_,yWw_) =0

and hence, by Lemma 3.4, yw, = 0 = T, w, which yields, via (5.35), that ¢ = 0 ]

Having presented BIE formulations for the various elastodynamic scattering and transmission
problems considered in this paper, we turn next to describing Nystrom discretizations of those BIEs.

6. Numerical experiments
6.1 Nystrom discretizations

We use Nystrom discretizations for the numerical solution of the various elastodynamic BIE that rely
on global trigonometric interpolation with 2n nodes
T
p="" j=01,... 20— 1
n
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onto the space of trigonometric polynomials

n n—1
T, = [<p(t) = ZamcosmH— mesinmt: a,,b, € (C] .

m=0 m=1

Our BIE formulations works with two types of operators: (a) BIO and (b) Fourier multipliers. The latter
are discretized in a straightforward manner using trigonometric interpolation and FFTs. With regards
to (a), the majority of the kernels of the BIOs discussed in this paper exhibit a logarithmic singularity
which is resolved via the Kusmaul-Martensen quadrature (Kussmaul, 1969; Martensen, 1963)

2n—1

1 [ L, T —t
— H(z, 1) log ( 4sin e dt~ D" R, (DH(T.1,)0(t,)
27‘[ 0 2 =0

where
= 1
R, (7) = —;j_zlj—_COS](‘L' —t,) — ﬁcosn(t —1,),0<m=<2n-—1.

This turns to be equivalent to consider the approximation for the underlying integral operator given by

2 —1

log (4 sin? ) P, (H(t,)p) (1) dt

2n Jo

P, : C[0,2mr] — T, appearing above is the trigonometric interpolation operator, since this integral can
be computed analytically.

In the case of smooth integrands in the definition of BIE, we use the trapezoidal rule for their
discretizations. The hypersingular part of the operator W, on the other hand, is treated via the Kress
quadrature Kress (1995) for the evaluation of 27 periodic Hilbert transforms

2n—1

—1 v /2 cott ¢’ (t)dt E T (t)e(t,)
V. ~
2.71 p 0 2 0 n mn

where

n—1

1 1
T,(r):= - ZjCOSj(‘C —t,) — Ecosn(t —t,),0<m=<2n-—1.
j=1

Finally, the discretization of the Cauchy principal value integral that enters the definition of the principal
part of the double layer operators K and KT, requires more care. Indeed, as discussed in Kress (1999),
the use of trigonometric interpolation in the evaluation of Cauchy principal value integrals

! /2” ¢ T e A /2” TP ol
—DPp.V. CO ~ —D.V. CO
2PV 2 ¥ 2PV y U
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leads to
2n—1

p(r)dt ~ Z 0, (D¢ (t,,)

1 LA
—DPp.V. cot
2w P /0

1] 1
0,(t) = p Zl:sinj(r —t.)+ > sinn(z —1,), 0 <m <2n—1.
J:

with

However, cf. (3.12),

1 2 -7
—p.V. / cot cosntdt = sinnt
21 0 2

and thus the Nystrom discretization of the Cauchy principal value operator is not a bijection from T, to
itself. For these reasons, we use the half-grid size shifted quadrature method (Kress, 1999)

1 2T t—‘[ 2}’! 1 —T T
Epv/0 cot 5 p(t)dr = Zcot (p(thr%), tm+% ?=tm+ﬂ~

The evaluation of the density function at the shifted grid points 7, 1 is readily achieved via trigono-
metric interpolation. Given that the Nystrom discretizations of the principal parts of the elastodynamic
operators are available in the literature, the main difficulty of the overall collocation schemes resides in
the logarithmic splitting of various kernels. We present in what follows numerical results concerning the
various formulations considered in this paper.

6.2 Numerical results

In this section, we present various results concerning the accuracy of elastodynamic BIE solvers based
on Nystrom discretizations as well as the rates of convergence of iterative solvers (e.g. GMRES, for
generalized minimal residual method, cf. (Saad & Schultz, 1986)) for the solution of the linear systems
ensuing from the various BIE formulations considered in this text. With regards to the accuracy of
our discretizations, we present results concerning far field data. For a scattered elastic field u, we can
define the associated longitudinal wave u,, and the transversal wave u cf. (2.3). The Kupradze radiation
conditions Kupradze et al. (1979) take on the form

eikplx| o 1 elkslx| o 1
% = ( oo @) F (| |)) = e ( M0 () (I |))

as |x| — oo where x = x/|x|. We present in this section the maximum errors e,, achieved when
computing the quantities u,, ., and uy ., evaluated at fine enough meshes (1024 equidistributed points is
typically used) on the unit circle |x| = 1. We also report the size n of the 2n dimensional trigonometric
polynomial space T,. Therefore, in the impenetrable case, the size of the linear systems Nystrom
discretization linear systems of the various (vectorial) BIE is (4n) x (4n); in the penetrable case, the
size increases to (8n) x (8n). We consider two types of incident fields: (a) elastodynamic point sources
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1 1 1

0 0 0

-1 —~1 ~1
-1 0 1 . 0 1 -1 0 1

FI1G. 1. Domains for the experiments: from left to right, the unit circle, the starfish domain, and the cavity problem.

(in the method of manufactured solutions); and (b) plane waves. In case (b) the far field errors are
computed with respect to reference solutions produced through the next level of discretization of the
BIEs (that is, the computed values for 2n_ . where n . is highest value of n shown in the numerical
results, are taken as exact solutions.).

We start with an illustration of the accuracy that can be achieved in the far field when the four
elastodynamic BIOs are employed in the solution of elastodynamic BIE.

The domains considered in this numerical section are: (i) the unit circle centered at origin; (ii) the
starfish obstacle (Hao et al., 2014) whose paramaterization is given by

max

x(t) = (1 + % sin St) (cost,sint), 0 <t < 2m;
(iii) the cavity-like geometry given by

x(1) = (x1(1),x,(1)), 0<t<2m,
X1 (1) = %(cos(t) +2cos(21)),
X1 = % sin(?) + % sin(2¢) + A—It sin(31) + %(4 sin(?) — 7 sin(2¢) + 6sin(3¢) — 2 sin(4¢)).

We depict in Figure 1 a sketch of these domains. Notice that the diameters of all of the scatterers
considered in this paper are equal to 2.

6.2.1 The method of manufactured solutions. 'The method of manufactured solutions is a reliable test
of the accuracy of PDE solvers. In the Dirichlet case, we consider the time-harmonic Navier equation
with boundary value data produced by a point source x, placed inside the scatter £2_

fr(x) =®x,xp), xel,x,ecQ_.

In this case, the radiating solution of the Dirichlet scattering problem in the exterior domain €2, is the
point source itself, that is u(x) = @(x,x,) for all x € Q. We look for the solution u in the form of
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Errors in the method of manufactured solution for the smooth starfish geometry for different

values of the frequency w and parameter values A = 1, u = 1, at various levels of discretization.

w n Vv K w

€50 Eso €50
16 32 3.0 x1072 9.9%x 1072 1.3 x107!
16 64 7.1 x1077 1.1 x1073 1.6 x10~°
16 128 55 x10714 4.2 x10713 1.6 x107°
32 64 3.0 x1072 2.5 x1071 3.4 x1071
32 128 2.2 x1077 2.4 x1074 5.0 x10~8
32 256 1.0 x10715 8.3 x10713 54 x10712

either a single or double layer potential
u(x) = (SLe)(x) or u(x)=(DLg)(x), x € Q2
and we solve the corresponding BIEs (with, as usual, f = f- o x)
Vo =f and %g-l—Kg:f.

Assuming that the frequency w is selected such as both BIE formulations above are uniquely solvable,
we use Nystrom discretizations to solve numerically these BIEs and we compare in the far-field the
computed solutions with the exact point source solution. We repeat the experiments in the case of
Neumann boundary conditions, that is we choose a boundary data in the form

Ar(x) =TpP(x,x), xel', xyeQ_

and we solve the BIEs

1
—5(0+KT¢:A and Wg=A.

Again here, we compare the numerical solutions in the far field against the exact point source solution.

We report errors corresponding to (a) the Dirichlet single layer formulation (under the heading V,
given that we used the single layer V BIO to solve the time-harmonic Navier equation), (b) Dirichlet
double layer formulation (under the heading K), and (c) Neumann double layer formulation (under the

heading W). Given that the BIO K" is the (real) L? adjoint of the BIO K, its discretization produces
identical levels of accuracy to those of K, and therefore we chose not to present them.

6.2.2 Iterative behavior of BIE formulations in the impenetrable case. We present in this section
various numerical experiments regarding the iterative behavior of the various BIE formulations for the
solution of elastodynamic impenetrable scattering problems. We consider incident plane waves of the
form

. 1 . 1 ,
u(x) = ;elk”‘"’u x p) x d+ me’k""'d(d p)d 6.1)
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TABLE 2 Numbers of GMRES iterations to reach residuals of 1078 for various BIE formulations of
Dirichlet elastodynamic scattering problems at high frequencies in the case when U is a unit circle. The
material parameters are . = 2 and = 1, and the incidence was S-wave. The discretizations used in
these numerical experiments delivered results accurate at the level of 107

# iter CFIE (4.4) # iter CFIE np # iter CFIER
w n np =1 opt RP = PS, (Y,)
10 64 31 22 21
20 128 50 27 30
40 256 97 28 38
80 512 231 27 39
160 1024 438 32 43

TABLE 3 Numbers of GMRES iterations to reach residuals of 1078 for various BIE formulations of
Dirichlet elastodynamic scattering problems at high frequencies in the case when I is the starfish
contour. The material parameters are A = 2 and u = 1, and the incidence was S-wave. The
discretizations used in these numerical experiments delivered results accurate at the level of 107,

# iter CFIE (4.4) # iter CFIE np # iter CFIER
w n ny =1 opt R =PS, (Y,)
10 64 41 32 26
20 128 85 39 36
40 256 166 46 56
80 512 353 51 76
160 1024 782 57 100

where the direction d has unit length |d| = 1. If the vector p is chosen such as p = =+d, the incident
plane is a pressure wave or P-wave. In the case when p is orthogonal to the direction of propagation
p, the incident plane wave is referred to as a shear wave or S-wave. We considered plane waves of

directiond = [O — 1] in all of our numerical experiments; in the case of S-wave incidence we selected

p= [1 O]T. We observed that other choices of the direction d and of the vector p lead to qualitatively
similar results.

Dirichlet boundary conditions

We investigated the iterative behavior of Dirichlet integral solvers based on three formulations: (1)
the CFIE formulation (4.4) with the coupling constant n,, = 1; (2) the CFIE formulation with the
optimal coupling constant 1, given in equation (4.5)—which we refer to by the acronym “CFIE n, opt™;

and (3) the CFIER formulation (4.4) with the choice R® = PS, (Y., ) with x = k, + 0.4 i ky/*—similar
choices were presented in the literature Chaillat ef al. (2021). We report the number of GMRES iterations
required by each of these three BIE formulations to reach relative residuals of 10~8 and corresponding
discretizations that deliver results with accuracies at the 10~ level in the case of smooth scatterers. As
it can be seen from the results presented in Tables 2—4, the CFIE formulation with the optimal coupling
parameter 7, exhibits the best iterative behavior in the high-frequency regime. We note that although
the double layer operator K is not compact, all of the three BIE formulations considered in the numerical
experiments behave like integral equations of the second kind, that is, the numbers of GMRES iterations
required to reach a certain residual do not increase with more refined discretizations. We note that we
considered numerical experiments for which the ration k /k, = 2; qualitatively similar results were
observed for other aspect ratios between the shear and pressure wavenumbers.
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TABLE 4 Numbers of GMRES iterations to reach residuals of 10™8 for various BIE formulations of
Dirichlet elastodynamic scattering problems at high frequencies in the case when I is the cavity contour.
The material parameters are A = 2 and u = 1, and the incidence was an S-wave. The discretizations
used in these numerical experiments delivered results accurate at the level of 1077,

#iter CFIE (4.4) #iter CFIE np #iter CFIER
w n np =1 opt RP = PS,(Y,)
10 64 73 50 52
20 128 137 80 89
40 256 263 144 116
80 512 511 185 235
160 1024 1008 320 406

TABLE 5 Numbers of GMRES iterations to reach residuals of 1078 for various BIE formulations of
Neumann elastodynamic scattering problems at high frequencies in the case when U is the starfish
contour. The material parameters are . = 2 and nu = 1, and the incidence was an S-wave. The
coarser/finer discretizations used in these numerical experiments delivered results accurate at the level
of 1076 and 1078 respectively.

# iter CFIE (4.7) # iter CFIE ny # iter CFIER # iter CFIER
w n ny =1 opt RN = (PS,(Y,)™! RN = PSK(Y+));F{KS
10 64/128 86/114 49/63 29/29 34/34
20 128/256 166/224 64/81 41/41 46/46
40 256/512 300/407 90/117 63/63 71/71
80 512/1024 646/890 164/223 109/109 113/113
160 1024/2048 1358/3079 319/420 198/198 230/230

Neumann boundary conditions
We present next in Tables 5 and 6 results related to the iterative behavior of the BIE formulations
considered in this paper for the solution of elastodynamic problems with Neumann boundary conditions
in the case of smooth scatterers. Specifically, we consider (a) the classical CFIE formulation (4.7) with
the coupling parameter n,, = 1, (b) the same formulation with the optimal choice of the coupling
constant 7,y given in equation (4.10), and (b) the CFIER formulation with the regularizing operator RN =
(PS, (Y +))_1 as well as RN = (PS p ks Y Jr))_l defined in equation (3.27). For the latter regularizer, we

used k, = k, + 0.4iH?/ 3k11,/ 3 and K, = k, + 0.4iH?/ 3k;/> where H is the maximum absolute value of
the curvature of the boundary curve I". We present results for two level of discretizations, a coarser one
that delivers results within the 10~® range accuracy, and a finer one that produces results in the 1077
accuracy range. We observe that given that the BIO W is a pseudodifferential operator of order one, the
CFIE formulations require more GMRES iterations to reach the same residual for finer discretizations,
whereas the CFIER formulations appear to behave like an integral equation of the second kind. The use
of an optimized coupling constant 1, is beneficial for CFIE formulations, and the use of the regularizing
operator RN = (PS, (Y Jr))_1 in the CFIER formulations gives rise to savings of a factor of 1.7 in the
numbers of GMRES iterations when finer discretizations are applied. Given the fact that the Fourier
multiplier (PS, (Y Jr))_1 can be effected efficiently with FFTs, the savings in computational times are of
the same magnitude.
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TABLE 6  Numbers of GMRES iterations to reach residuals of 1078 for various BIE formulations of
Neumann elastodynamic scattering problems at high frequencies in the case when I is the cavity
contour. The material parameters are .. = 2 and pu = 1, and the incidence was an S-wave. The
coarser/finer discretizations used in these numerical experiments delivered results accurate at the level
of 1076 and 1073 respectively.

# iter CFIE (4.7) # iter CFIE ny # iter CFIER # iter CFIER
2 n v =1 opt RN = (PS,(Y;))™! RN =PS (Y1),
10 64/128 136/185 84/107 62/62 57/57
20 128/256 239/324 133/170 101/101 86/86
40 256/512 462/629 242/312 181/181 146/146
80 512/1024 864/1177 389/504 294/294 255/255
160 1024/2048 2480/4101 707/914 514/514 453/453

TABLE 7 Numbers of GMRES iterations of various formulations to reach residuals of 10~ for various
BIE formulations of transmission elastodynamic problems at high frequencies in the case when I" is
the starfish geometry. The material parameters are ., = 2, u, = 8and A_ = 1, u_ =1, and
the incidence was an P-wave. The discretizations used in these numerical experiments delivered results
accurate at the level of 107°.

#iter CFIER  #iter OS (5.24) # iter OS (5.24)

w n # iter CFIE (5.6) # iter CoSt (5.2) (5.17) PS, (Y¥%) PSKpiYKXi (r%)
10 64/128 90/62 63/63 44/44 27127 34/34
20 128/256 146/114 114/116 71/72 36/36 43/43
40 256/512 236/207 213/215 133/133 60/60 66/66
80 512/1024 412/372 377/380 220/220 777 74174
160  1024/2048 647/594 615/617 358/358 106/106 87/87

6.2.3 Transmission problems. We conclude the numerical results section with five experiments
concerning elastodynamic transmission problems involving four BIE formulations, namely (a) the
Kress-Roach type CFIE formulation (5.6); (b) the Costabel-Stephan formulation (5.2); (c) the CFIER
formulation (5.3) that incorporates the regularizing operators defined in equation (5.15); (d) the OS
formulation (5.24) with transmission operators defined in equation (5.26) and (e) the OS formulation
(5.24) with transmission operators TJF = —PS E ik (YT). These formulations are tested in the starfish
domain and the cavity problem. We observe that they behave in practice like formulations of the second
kind, that is the numbers of GMRES iterations required to reach a certain residual do not grow with
discretization size. As it can be seen from the data presented in Tables 7 and 8, while the CFIER
formulation delivers important reductions in the numbers of GMRES iterations over the CFIE and the
Costabel-Stephan formulation, it is the OS formulation (5.24) that has the best iterative behavior in the
high-frequency high-contrast regime.

This better performance of the OS formulations could (partial and/or empirically) be explained by
the distribution of the eigenvalues of the matrices of the respective linear systems in the complex plane
as can be observed in Figures 2 and 3. Indeed, in these figures the OS formulation seems to be the one
that yields the most compact distribution of the eigenvalues around the accumulation point(s).
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TABLE 8 Numbers of GMRES iterations of various formulations to reach residuals of 10~ for various
BIE formulations of transmission elastodynamic problems at high frequencies in the case when I is the
cavity geometry. The material parameters are A, =2, u, =8and _ =1, u_ =1, and the incidence
was an P-wave. The discretizations used in these numerical experiments delivered results accurate at
the level of 107°.

# iter CFIER #iter OS (5.24)  #iter OS (5.24)
w n #iter CFIE (5.6) #iter CoSt (5.2) (5.17) PS.(Y%) PS, o (r%)
10 64/128 122/122 125/125 79/80 34/ 34 46 /46
20 128/256 212/212 219/219 132/134 48/ 48 58 /58
40 256/512 342/345 355/355 203/204 64/ 64 75175
80 512/1024 598/609 623/623 336/342 91/91 99 /99
160 1024/2048 1000/1005 1041/1041 493/491 108/108 125/125
2 ‘ 15
15l & w° e g
* ¥ % * 1 w T * ¥
Lo f * :% o " * "
* * ®k ¥ ) 05} * K 5 * * %
05} *; o . * W . 3 . **ﬁ? r
0r ai**** . **: ** *; . 0 Ma«% * *;*#‘*
| Wh ottt W T P “ "
1 * * . Fx * i * ;i*
* %’ i * ¥ * 1 e g ¥
2 il 15
0.5 0 0.5 1 15 2 25 3 2 1 0 1 2 3
15 : 15
5 . ** . * 1 N *
. ’ %* *1 . * 0.5 **;* »e LA Yoo *
05+ % * ok x . ¥ - i # % ****% ;i* o
I* ****** * %* M *** **** **
He ***: ****3& i ' .)f * % 051 % % * * % * *
05F * L, W N ** ** i * . % 4 . *
N 1 - 15 : . ‘ ‘
0 0.5 1 1.5 2 25 02 04 06 08 1 12 14 16 1.8

FiG. 2. Eigenvalue distributions in the complex plane for the matrix of the Kress-Roach, Costabel-Stephan (top, from left to
right) and CFIER and Schwarz (below) formulations with (5.26) for ® = 20, Ay = 2, uy = 8, A = pu— = 1. According to
Theorem 5.3, and since p = 901/432, the eigenvalues accumulate at 1 &£ 1.04i in case of the Kress-Roach formulation, at £1.44
in the case of the Costabel-Stephan formulation and at 1 for the CFIER and Schwarz formulations, respectively. Notice that the
eigenvalues are clustered closely to 1 for the OS formulations that could explain the faster convergence of GMRES in this case.
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FiG. 3. Eigenvalue distributions in the complex plane for the matrix of the Kress-Roach, Costabel-Stephan (top, from left to
right) and CFIER and Schwarz (below) formulations with (5.26) for w = 40, A4 = 2, uy = 8, A = pu— = 1. According to
Theorem 5.3, and since p = 901/432, the eigenvalues accumulate at 1 & 1.04i in case of the Kress-Roach formulation, at +1.44
in the case of the Costabel-Stephan formulation and at 1 for the CFIER and Schwarz formulations respectively. Notice that the
eigenvalues are clustered closely to 1 for the OS formulations that could explain the faster convergence of GMRES in this case.

7. Conclusions

We analysed various boundary integral formulations of elastodynamic scattering and transmission
problems in smooth two dimensional domains, including regularized formulations and OS methods that
rely on approximations of DtN operators. We presented a singularity splitting based high-order Nystrém
framework for the discretization of the four boundary integral operators associated with time-harmonic
Navier equations in two dimensions. We provided extensive numerical evidence that the regularized
formulations lead to faster convergence rates when iterative solvers such as GMRES are used for the
solution of the numerical solution of the linear systems that result from the Nystrom discretization
of elastodynamic scattering and transmission problems. Extensions to Lipschitz domains and three
dimensional configurations are currently underway. With regards to 3D extensions, the authors plan
to use the kernel independent density interpolation strategy recently introduced in Faria et al. (2021),
which resolves weakly singular, singular and strongly singular kernels encountered in the elastodynamic
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BIOs. The implementation of the Fourier principal calculus in the case of surfaces in 3D, on the other
hand, is subject of current research investigation.
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A. Appendix: Detailed factorization of the kernels of the elastodynamic boundary integral
operators

We show in this section explicit factorizations of the kernels of the BIOs for elastodynamic. The aim
is twofold. First, it supports the implementation of the Nystrom method sketched in Section 5, and,
secondly, provides justification of the derivation of the principal part of the operators.

For these purposes, let us assume that I" is parameterized, such as it has been assumed throughout
this paper, by a smooth 2w —periodic parameterization x. Recall that

r:=r(t,t) =x(t) —x(), r=r(r,t)=]|r|.
The fundamental solution of the Navier equations
1 1 T
P(x,y) = ;cbo(kslx YD+ 5V Ve (o (kglx — 1) — ¢k, |x — y1))
can be factorized as

D (x,y) = @1(Ix —yDI, + P, (Ix —yG(x —y)

where I, is the identity matrix of order 2,

k? 1
P,(@) = —5¢okd) — ¥ (@)

: L2 2 2
22 = — (o2 — Kdy(k,)) + — V@)

o 2¢](ksz) . 2¢1 (kpZ)
V() = |:ks s K s

= L T _ 1 X% x1x2:|
Gx) = |x|2xx e [x]xz 2|

where

i

9@ = JH'@

By definition

i .
¢ =3 +iY)

where J;, Y; are the Bessel functions of first and second kind and order j. Moreover cf. (NIST Digital
Library of Mathematical Functions, 2021, §10.6)

d [¢1 (kz)] _ kzpy(kz) — 26 (kz)
dz kz o k72

d
© [¢o(ka)] = —kep, (k2),
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and (NIST Digital Library of Mathematical Functions, 2021, §10.8)

0, r=20,
1
1 2wkz’ r=1
¢, (kz) = —ng(kz) logz+2"C, () + 1 | |
A A ) = 2’
wk2z2 + 4 "
4 n 1 n kz 3
b r = b
| 7k373  2mkz 167

with Cr’k(z) smooth functions as z > 0.
We are ready to state the first result for the kernel of the single layer operator:
LemMMA A.1. Let V be the kernel of the (parameterized) single layer operator (3.10a). Then
V(t,0) = Vy(r,0) + a2 log r I + ajn (r? log r Gr) + al (1, + aSy(r)r G(r)

reg reg

where
1 Jy(ky2) k) k2 + k2
(2) 271 2 2/ P
= —— =k — ki Jo(k kg
Cllo (Z) 27TZ2(1)2 ( 14 kpZ 0( ) + kSZ 2
1 (k,2) J (ksz)
3 2 1 2 2 J1\Ks2)
) !
aH@ = — (k Cys, () +KCo (@) — kC kr(z))
e 1 2 2 _
and
A+3 1 A+
Vo(T.1) 1= Vo(r) = ————0—logrl, + A 1.
U +2n) 4 WA +2w) 4
Furthermore,
1
) 4 4 2
dn@ = 55— (kp +3ks) + 0@
1
3) 4 4 2
alog(z) = Tena? (kp - ks) + O0(2)
(1= 2E +im)k; — 22 log (%) + (—1 = 26+ im)k? — 22 log (&)
alal(z) = +0@).
g 8T w?
_ 14 14 4 kY 44 ks
" (=3+4E — 27i) (K = k) + 4kt log (%) — 4k} log (&) i

where E ~ 0.5772 is the Euler-Mascheroni constant.
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For the double layer operator (3.10b), we need the following vector fields (we follow the notation
from Chapko et al. (2000)):

Uit,t) = rv(®) rl o+ ur v(t)T +u () -ri,
Us(t,7) = o420 1" +urv@)" 4+ p@) -, —4Gr)).
(Recall that v(r) = (x,(1), —x|(t)) = n o x(t)|x'(¢)| the non-normalized vector field given by the

parameterization.) Using the identities (recall the definition of the normal stress tensor in (2.1) and
its parameterized version in (3.6))

T(fF) = T(fl,)F +fT(F), forany pairf and F of scalar and matrix functions

G 1
[T DE) = =—=Ui@ 1), [T6)r) = ——5U(0) (A1)

r

it is possible to prove
LEmMA A.2. Let K(7,1) the kernel of the double layer operator (3.10b). Then

K(z,1) = Ky(t,1)

+ [bf(f;(r) Ul (e, ) + b2

D U] (@.0GE) + b (U] (x., z)] log r

+bQ)

reg

(NU{ (x,0) + QU (r,0G@) + b D (MU, (z,1)

reg reg

where the functions

oe me?\ T k) ka7 (k)
b(3) (Z) — 1 —k4 Jl (kpZ) +2 4']2 (kI’Z) k4 Jl (ksz) . 2k4 JZ(ksZ)

log R V) 14 kpZ 14 (kpz)z s kz s (ksz)z

4 3 1 Jy(k,z) J, (kyz)
by = —aj(2) = 5 —I2Jo (k) + 2k,§k—fz’ + k2T (k,2) — 2kfk—;"

14 s

S - 1 3 2 2

bR = == (K14, +ECy, @) — K oy, )
1
blggé(Z) = —E (kg Cl,ks (Z) — 2k52‘C2,ks (Z) - kSCLkp (Z) + 2k]%C2,kp (Z))
1 1

bQ@) = —aQl) = ——3 (k,%co,kp (2) = 2k,Cy g (2) — K2 Co, (2) + 2K,Cy 4 (2) + E(k,% — kf))

are smooth for » > 0 and

W (o1 -
Ky(z,0) = g
0T = (8t27r Ogr) [1 ]+

1 1% A4
R I, +2 G .
212 w@-r) (A + 21 2+ A+2u (r))
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Furthermore,
b2@) = — (K} +3kH + O (£
g l6rw? P
|
bor@ = =3 = k) +0 (2)
20 = gt —sh+0 (2
(3 — 4E + 2mi)kt — 4k log ( ) +(5— 12E + 6mik* — 12k log ("7)
bSOz = Lo (Zz)
reg 647 2
. 4 4 k 4 ks
o (—1 + 4E — 27i) (kg _ ks) + 4k log (jﬂ) — 4k log (7) i
Pree@ = = 327 0? +0(?)
. 4 4 k 4 ks
; (=3+4E — 2mi) (k3 — k) + 4k} log (%) — 4k?og (&) i
b = - +0(2)
reg 647 w?

The hypersingular kernel requires to consider the action of operator T, on U IT (tr,t) and U2T (t,1).

Hence, we use that with

R(T,0) 1= 22(A +20)v(7) " () + 24> (v(t) v (1) + (v(7) - v(r))[z)

Ry(1,0) = 20 4+ 2)(h + wv(0) v (1)
+2u (uv(t)v%) + 2@ (1) + 1@ O ) (= 26@)
+4u(r - v(t)) 5 Uy (1, 7)

Ry(t,0) = 2A(r +M)v(t)vT(t)
+2u (1w (@) v (@) + A0(2) v () + p (D) - vADI) Gr)
—2u(r- v(t)) S U, (1,7)

it holds
T,[U] (t,0] =Ry (z,1), T,U, (r,0] = Ry(z,1), T, (G@)U (z,0) = Ry(z,1)

LEmMA A.3. Let W(r, 1) the kernel of the hypersingular operator (3.10d). Then
W(r,1) = Wy(r,1)

[cb;m U (. DU (2.0) + (PR (x, t)—l—clog(r)—Ul(t DGHU (x,1)

+c10)(r)R3(r ) +cl(§i,(r)—U1 (t,1)U; (z,1) +cl(0)(r)R2(r r)] log r
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[ (7) (r)—U1 t, U] (7,0 + B PR, (z,0) + (r)rl—ZUl (t, )G (z,1)

Creg reg reg

+c0Q (R (1,1 + i (1) 72 Uy (6, D)U; (z,0) + 2 (MR, (x, t)]

where the functions

Clog)g (Z)

clo)(z) =
cloé(z) :
clo)(z) :

clo) (@)

Clop(2) :
Claa(@)
Cop(@)
9 .
Crop(@)
10 .
Cleg (@)

11 .
Cheg ()

g () 1=

2 (k6J3(kpZ) 4 o2k k6J3(ksZ))

m? P k2 Y (2 (k)P
1 Jr(k,2) J, (k Jy(k.z
b2 = 5 (KL — K TED G
g 27w (k,2) kz (ks2)
2 (k6J2(kpZ) _ 2k6J3(kpZ) _ o2k Jr2,(613(’%2))
N S
210? \ ' (k)2 P (k)3 (k,2)? (ky2)3
1 Jy (kyz) Jo (k,z) J(k.2) J,(k,2)
_b(3) —_ _ k4 2k4 k4 1\ 2k4 2
1og(Z) 27.[0)2 ( k 14 (k )2 s ks (k Z)Z
BT (k2 — o (ko) + 42 ) o
g (= 2l o )+ 4T =200
T, (k
12T (k,2) + 1T, (ky2) — 428D 2y (ksr))

s

S

1 Jy(k,z) J,(k.2)
4) 2 291\ 2 2J1
bl (@) = —m("ﬂo("ﬂ) T Rk T2

6#+#H— qu@+kqh@ k) Cs4,(2))

167
_bgé(z) ( —K3C1 (@) + K2Cy (@) = K2Cyy ()
z* 3 4 3 4 k2 B k?
_2(2kpc3,kp (Z) - kpCZ,kp (Z) - 2ks C3,ks (Z) + ks C2,ks (Z)) + 87'[0)2 5
50 = (k3 C (@) = 2K2Cyp (D) —K3Cy (@) + 2K2Cy (z))

1 3.2 2.2 2
207 ( — k2" Cy (D) + 2k,27 Cr . (2) — 2K, Co ., (2) + 4k, C g (2)

2 C (2) = 222 Co  (2) + 2K Co , (2) — 4k, C g ()

2(14 14
k) e-ry K-k
167 2

167 w?

S

2 2
_bl((Z;(Z) (kZCOk (Z) kacl’kp (Z) — k?C(),ks (Z) + stclyks (Z) + P )

VN 4
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are smooth for r > 0 and

p+p) 9% 1
Wy(t,t) = -2 T (Llogrl, + Gr)).
0(%:) *+ 21 Gear 7 (l08rh+Gm)
Furthermore,
@ = 0(2)
@) 1 4 45402
@ = 15k +3k) + (?)
@ = 0(2)
1
@ =~k =KD+ 0 (?)
con@ = 0(2)
1
@ = —T—5(k + k) + 0 (?)
kb + 3k2
) = L—+0(?
g 167 w?
Clp(@) =
—4ks logk, + k(3 — 4E 4 27i + 10g(16)) — 12k logk, + kJ (5 — 12E + 67i + 10g(4096))
B 647 w?
+0 (zz)
ke — k4
Oy
0 - S50 (2
o (—1 +4E — 27 — 41og(2)) (k;j - k;‘) + k4 logk, — 4k log k, i
reg (Z) = - 327_[602 +0 (Z )
ket — ki
W@ = L—+0(?)
o (=3 +4E — 27 — 41og(2)) (k; - kf) + 4k log k, — 4k log k, )
reg (Z) = 647 w? +0 (Z )

REMARK A.4. The functions V (7, 1), Ky(7,1), KOT (t,7) y Wy(t,1) are the kernel of the single layer,
double layer, adjoint double layer and hypersingular operator for elasticity operator. It can be easily
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seen, from Lemmas A.1-A.3, that

V(r,r) = —Milog 4e! sinzf_ I, —I—A(r,t)sinzr—_tlogsinZT_t—i—B(r,t)
(A +2p) 2 2
ke = — (2 Liogsin2 T20) | 7 4 e nsing - pytogsin T+ De.
T,1) = — — log sin 7,1) sin(t — 1) log sin T,
A+2p \0tdr 8 2 1 &
2uh 4+ ) 92 1  ,T—t L, T—t
W(,t) = — ron avar —Elogsm > I, + E(t,1)logsin + F(t,t)
A —t —t
- Mx(+—+2;lj)cscz (TT) L + E(z,1) logsin> *—' + F(z, ).

with A, B, C, D, E and F smooth biperiodic functions.
Indeed, for the single layer operator the result follows from the fact that

72

sin®(t — 1) /2
is a smooth non-vanishing function. For K(z, ) we just have to start from Lemma A.2 and notice that

Ui(t,),Uy(t,) =0(t —1), ast—t—0
from where one derives easily that, for ¢ a smooth cut-off function with support, say, in [—r /3, 7/3]
and Y (r) = 1 for s € [—m /4, w /4], the functions

Yt — DU (7,1), Y(t —U,(T,1)

1
sin(t — ¢)
are smooth and 27 —periodic. For W the result follows from similar ideas.

Furthermore, it is a well established result, see for instance the excellent textbook Saranen &
Vainikko (2002), that the integral operators

sin(t — t)

27
St
Vip = / A(-, 1) sin(- — 1) log sin’ - o(t)dt
0

m L=t St
) )
Vo = / B(-,1) sin® —— log sin~ —— @(¢)dt,
0 2 2

with A, B above being smooth 27 —periodic functions in both variables, can be extended to define
continuous pseudodifferential operators V|, : H" — H" +2 and V, tH — H" +3 where H" is the
27 —periodic Sobolev space of order r. In other words, with

O e A P

1 2

L=t
A = — [ log (4e—1sin2 —)(p(t)dt
2 0 2

where

t— - 1 [
Hdt+ — 1) dt,
> g() +2n/0 g(1)

1 2
Hg = —iAg +78(0) =p.v. —/ cot
2mi 0
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and noticing that

1 2 . 2
A lg=1.p. 4—/ csc? (—) g(ndr +/ g(r dr
7 Jo 2 0

we can conclude that for any r € R

K—oH:H xH — H™? x H*? V—BA:H xH — H* x g
W—86A':H xH — Ht! x g’t! K' —aqH:H x H — H™? x g'+?
where
o in = A+3un _ kA +w
2 +2u)’ Au(h+2w)’ A4+20
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