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Abstract

We prove that deciding the vanishing of the character of the symmetric group is C=P-complete. We use this
hardness result to prove that the absolute value and also the square of the character are not contained in #P,
unless the polynomial hierarchy collapses to the second level. This rules out the existence of any (unsigned)
combinatorial description for the square of the characters. As a byproduct of our proof we conclude that
deciding positivity of the character is PP-complete under many-one reductions, and hence PH-hard under
Turing-reductions.

1 Introduction

1.1 Motivation Consider the following two classical identities from the representation theory of the symmetric
1
group":

(1.1) n! = Z (X’\(l))Q, and

(1.2) n! = Z (X’\(W))2 for all Ak n.

TES,

Here x* is the irreducible character of the symmetric group &,, of the representation indexed by A, and x*(7) € Z
is its evaluation. Both identities arise in a similar manner, as squared norms of row and column vectors in the
character table of &,,, see §5.4 for the context and generaliztations.

Equalities such as these, are an invitation for combinatorialists to search for natural bijections between the sets
of combinatorial objects counting both sides. In both cases, the LHS is the set &,, of permutations of n symbols.
For (1.1), the RHS is the set of pairs of standard Young tableauz of the same shape with n boxes. The bijection
between the set of permutations and the set of pairs of Young tableaux is the celebrated Robinson—Schensted
correspondence, which is fundamental in Algebraic Combinatorics, see [Sag01, Ch. 3] and [Sta99, §§7.11-14].
This correspondence has numerous generalizations and is studied widely across many areas of mathematics and
applications, see e.g. [And76, BS17, DNV22, KP21, O’Con03, OWO03].

Similarly, for (1.2), one would want to give a bijection between &,, and a set of n! many combinatorial objects

that are partitioned naturally into subsets of sizes (X/\ (77))2. In this paper we prove that this approach would
fail for the fundamental reason that the RHS of (1.2) does not admit such an interpretation. As the following

theorem implies, it is unlikely that there exist “sets of ()(’\(71))2 many combinatorial objects” (see more on this
below).

THEOREM 1.3. Let x? : (\,7) — (XA(F))Q, where A\ - n and m € &,,. If the function x? is contained in the
complezity class #P, then coNP = C_P. Consequently?, if x> € #P, then the polynomial hierarchy collapses to
the second level: PH = X5.

T ¥ University of Warwick.
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IThe characters are the traces of the representation matrices, see e.g. [JK81, Ch. 2].
2Indeed, Tarui ([Tar91], see also [Gre93]) proves that PH C NP®=P. Therefore, if coNP = C_P, then PH C NP®=P = Np<NP — 25,
and hence Zg = PH.
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The assumption PH # X% in the theorem is a widely believed standard complexity theoretic assumption. From a
combinatorial perspective, Equation (1.3) is much stronger than just saying that the character squares are hard
to compute. The theorem rules out that there exists any positive combinatorial interpretation for the character
squares, even if “positive combinatorial interpretation” is interpreted in the widest possible sense. Large parts of
Enumerative and Algebraic Combinatorics deal with finding explicit (positive) combinatorial interpretations of
quantities, while impossibility results such as Equation (1.3) are extremely rare, see §1.3.

Note also how close the upper and lower bounds are. Recall that the character square is in GapP = #P — #P,
is always nonnegative, and yet is not in #P by the theorem unless the polynomial hierarchy collapses. Our proof
goes via showing that deciding the vanishing of x* () is C—P-complete:

THEOREM 1.4. The language {(\, ) | x*(7) = 0} is C_P-complete under many-one reductions.

Equation (1.3) then follows from Equation (1.4) and Equation (3.1). The result in the title is a direct
consequence of the reduction in the proof of Theorem 1.4.

THEOREM 1.5. The language L = {(\,7) | x*(7) > 0} is PP-complete under many-one reductions. Consequently,
L is PH-hard under Turing-reductions.

Indeed, since PH C PPP by [Toda89, Toda91], it immediately follows that L is PH-hard under Turing
Thm. 1.5
reductions: PH C pPP - PPL = PL. This derives the second part of the theorem from the first part.

As a side result we prove that computing the character is strongly GapP-complete, see Theorem 5.1.

1.2 #P, GapP and combinatorial interpretations For a nondeterministic Turing machine M and a word
w € {0,1}* let accp(w) denote the number of accepting computation paths of M on input w. The complexity
class #P is defined as the class of those functions f : {0,1}* — N for which a nondeterministic Turing machine
M exists with Vw € {0,1}* : f(w) = accpr(w).

For example, the famous Littlewood—Richardson rule states that the Littlewood—Richardson (LR) coefficient
cX ., equals the number of LR-tableaux of skew shape v/\ and content p, hence the map (A, p,v) — ¢ , is in
#P. Here we already see an interesting issue: This argument works if the partitions are given as their Young
diagrams, i.e., the partitions are given in unary, because otherwise writing down a single LR-tableau would
require exponential space. The LR-coefficient is in #P for binary inputs, see e.g. [Nar06], which follows from
their interpretation as the number of integer points in a certain polytope, and not the LR-tableaux. From the
perspective of combinatorics, a “combinatorial interpretation” of the Littlewood—Richardson coefficient already
follows from the former result. Equation (1.3) works in unary and hence also in binary.

Let us also remark that #P is the class of positive combinatorial interpretations if “positive combinatorial
interpretation” is used in a very broad and all-encompassing sense. For example, all polynomial time computable
nonnegative functions are in #P, for example the absolute value of the determinant of a binary matrix. Note
that this means that a proof of the non-membership in #P such as Equation (1.3) is a very strong impossibility
result, as it rules out also very complicated tableau constructions, including, e.g., those in [Blal7, TY08].

The complexity class GapP := #P — #P is defined as the class of differences of two #P functions, i.e.,
GapP ={f —g/| f,g € #P}. Let GapP~ denote the subset of nonnegative functions in GapP. Many interesting
functions in algebraic combinatorics are known to be in GapP~, but conjectured to be in #P. See [IP22, Pak19)
for many such functions arising from combinatorial inequalities. The most famous GapPs, functions are the
subject of of Stanley’s survey [Sta00] on positivity problems in algebraic combinatorics, where he asked for
positive combinatorial interpretations of the plethysm, Kronecker, and Schubert coefficients. All these problems
remain unresolved (cf. §5.1).

Closer to the subject of this paper, Stanley considered rows and column sums of the character table of &,,:

(1.6) ay = Zx’\(,u) and by = Zx“()\),

pEn pkn

respectively, see Problem 12 in [Sta00]. Here x*(u) denotes the character value on permutations of cycle type .
Viewed as a functions with unary input, it is easy to see that a) and by are in GapP-,. Stanley notes that
by = |{w €6, |w?= a}|, where o has cycle type A, which implies that b, is in #P. Stanley asked for a positive
combinatorial interpretation of ay, which remains an open problem (cf. §5.1). Equation (1.3) could be seen as a
critical reminder that there is the possibility that the desired combinatorial interpretations might not exist.
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1.3 Related work The amount of work on characters of the symmetric groups is much too large to be reviewed
here, but let us note that they prominently appear in other fields, see e.g. [Dia88, Pau95, Ste94], and have
remarkable applications, see e.g. [EFP11, MRS08]. On the other hand, the asymptotic proportion of zeros in the
character table remains open, see complementary discussions of the same data in [Mill9, §1.2] and [PPV16, §8.5].

Hepler [Hep94] proved that the computation of x*(7) is #P-hard under Turing reductions. He does not study
the vanishing problem of x* (7). The vanishing of the character x*(u) was proved to be NP-hard in [PP17]. It is
noteworthy that the result in [PP17] only holds for the problem where the input (A, ) is encoded in binary, i.e.,
instead of m the second parameter is just the cycle type p in binary. Our results do not have such a restriction.
The relativizing closure properties of #P have been characterized in [HVW95], which can be generalized to prove
non-containment in #P w.r.t. an oracle in several settings, see [IP22].

In the combinatorics literature, the notion of a “positive combinatorial interpretation” is used informally;
these are also called manifestly positive combinatorial formulas, rules, expressions, etc. This is to emphasize
the importance of positivity, as opposed to signed combinatorial formulas, which typically refers to formulas in
(subsets of) GapP. A complexity theoretic approach in this setting was introduced in [Wilf82] (see also [Pak18]).

For characters x* (), the GapP formula is famously given by the Murnaghan-Nakayama rule as the difference
is the number of certain rim hook tableauz, see e.g. [Sag0l, §4.10] and [Sta99, §7.17]. In this context, [Sta84,
Cor. 7.5] gave a simple sufficient condition for the vanishing x*(u) = 0.

For Kronecker coefficients g(A, u,v), the GapP formula is given in in [BIO8] (see also [CDW12, PP17]). For
GapP formulas of plethysm and Schubert coefficients, see [F120] and [PS09, Prop. 17.3], respectively. In the context
of Geometric Complezity Theory (GCT), the importance of being in #P of plethysm and Kronecker coefficients
was discussed in [Mul09]. Kahle and Michalek [KM18] prove that plethysm coefficients are not counting integer
points in polytopes; this is a restricted notion compared to #P of interest both in Algebraic Combinatorics and
GCT.

Stanton and White [SW85] gave a generalization of the Robinson—Schensted correspondence for rim hook
tableaux. This was used in [Whi83, Whi85] to obtain combinatorial proofs of two character identities: first, of a
generalization of (1.1) given in (5.4), and then of (1.2), but both proofs use an explicit involution to cancel the
signs.

Finally, the complexity classes that we study in this paper are all standard and have been studied in numerous
papers. In particular, it is known that C_P = coNQP [FGHP99].

2 Preliminaries

2.1 Notation Let {0,1}* denote the set of finite length sequences of zeros and ones. A subset L C {0,1}* is
called a language. We write L := {0,1}* \ L to denote the complement of L. For a set S let 2 be its powerset,
i.e., the set of all subsets of S. We write (i) for the set of cardinality k subsets of S.

We use N = {0,1,2,...} and [n] = {1,...,n}. We denote by Z; = {1,...,k} the set of integers modulo k.
Let &,, denote the group of permutations of [n].

A weak composition of n is sequence of nonnegative integers whose entries sum up to n, a strong composition
of n is a sequence of positive integers whose entries sum up to n. An integer partition A of n, denoted \ I n, is
a sequence of weakly decreasing nonnegative integers (A1, Az, ...) which sum up to n. We write [A| = >, A;. We
call £(A\) = max{i | A\; > 0} the length of \.

We treat compositions and partitions as vectors with componentwise addition and with the simultaneous
rescaling of all components. We write sort(a) for the tuple that has the same entries as a, but they are permuted
so that they appear in weakly decreasing order. We denote by a’ the sequence (a,a,...,a) with a appearing b
times. We write a = (aq,...,as) and b = (by,...,b,) for compositions and |a| = a; + ... + ag for their sum.

2.2 Representation Theory Let x* € C[&,] be the complex irreducible character of &,, corresponding to
partition A F n, i.e., for 7 € &,, we have that x*(7) equals the trace of the representation matrix corresponding to
7 in the irreducible &,,-representation (the so-called Specht module) of type A. From this definition it immediately
follows that x*(7) = x*(0) if 7 and o are permutations that have the same cycle type p, and we use this fact to
define x*(u) for a partition pu.

For a composition a of n, consider the Young subgroup G, := G,, x &,, X ... of &,,, where &,, permutes
only {1,...,a1}, Sa, permutes only {a; +1,...,a; + as}, etc. The induced trivial representation indg: 1 can be
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defined as the action of &,, on the left cosets of &,,/G,, see [Sta99, §7.18]. This is equivalent to the action of
G,, on words with a; many 1s, as many 2s etc by permuting their positions. Denote by ¢* the character of this
representation, then ¢?(w) = #{u | umr = u}, the number of words fixed by 7. A word w is fixed by 7 if and only
if u; = u; for all 4,5 in the same cycle of . Thus the number of fixed words is equal to the number of ways we
can label the cycles of m with 1,2, ..., so that the total number of elements in the cycles labeled by i is equal to
Q;.

The Frobenius character formula, see e.g. [JK81, Eq. 2.3.8] (equivalent to the Jacobi-Trudi identity, see e.g.
[Sta99, §7.16 and §7.18]), gives

(2.1) XM= ) sign(o)gr T

UGG@(A)

Here id = (1,2,...,¢) € &, is the identity permutation, and (A + o — id) denotes the composition (\; + o1 —
LLAa+o02—2,...,0+0¢—¥{). Also, in (2.1), for a composition a in the summation we let ¢* := 0 if a; < 0 for
some i, p(@0P) .= p@b) and ¢ .= 1.

3 Computational Complexity

3.1 C_P and the Collapse of the Polynomial Hierarchy We will use well-known complexity classes with
oracle access to a language in the standard way, see e.g. [Pap94]. As it is common, the oracle language is written
in the exponent. For a function f : {0,1}* — Z and an integer comparison operator ~ we define the language
[f ~ 0] :={w € {0,1}" | f(w) ~ O}.

For a class Z of functions {0,1}* — Z and an integer comparison operator ~ we define the decision class
[Z ~ 0] C 2101 via: L € [Z ~ 0] if and only if there exists f € Z with the property that for all w € {0,1}*
we have w € L if and only if f(w) ~ 0. Using this notation, we recall that NP = [#P > 0], coNP = [#P = 0],
C_P = [GapP = 0], and coC_P = [GapP # 0]. In particular, coNP C C_P.

Recall that Xf = P, X7, = NP7, and that PH = Uien ZF. Moreover, for a class A € 2{01" recall that the
complement class coA is defined via L € coA if and only if L € A. For a language L we write (L) to be the class
of all languages that are many-one reducible to L, for example NP = (3SAT), where 3SAT is the language of all
satisfiable Boolean formulas in 3CNF. A language L C {0,1}* is called C_P-hard under many-one reductions if
C_P C (L). Our main application is the case where L = [f = 0], where f is a function in GapP.

PROPOSITION 3.1. Given a function f :{0,1}* — Z with the property that [f = 0] is C_P-hard under many-one
reductions. Fiz a function q such that q(0) = 0 and q(x) > 0 for all z > 0, for ezample q(x) = 22 or q(z) = |z|.
If q(f) € #P, then coNP = C_P (and in particular PH = 3.

Proof. Note that coNP C C_P by definition. For the other direction, observe that
q(f)E#P

C_P C {[f = 0]) = col[f # 0)) = col[a(f) # 0)) = colla(f) > 0)) € coNP. O

Since PH C NP“=P (see ([Tar91], and also [Gre93]), we have that if coNP = C_P, then PH C NP“=P =
NP<NP — P and hence £5 = PH. As an aside, we remark that if [f = 0] is C_P-hard under Turing-reductions
only, then ¢(f) € #P also implies PH = X% via

PH C NPC-P c NPPYTY = npl=tl _ platzal TR peone .

3.2 3D- and 4D-matchings Recall the following standard counting problems, see [GJ79].

Problem #CIRCUITSAT:
e Input: A Boolean circuit C' with n inputs.
e Output: The number of w € {0,1}" with C(w) = true.

Problem #3DM:
e Input: A subset £ C Zi.
e Output: The number of M € (f) such that V{(x,y, 2), (¢, v, 2')} € (1\24) we have: x # 2/, y #y' and z # 2.
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Problem #4DM:
e Input: A subset E C Zj.
e Output: The number of M € (f) such that V{(w, z,y, 2), (v, 2’,y',2')} € (1‘2/1) we have: w # w',x # 2,y #
y and z # 2.

We will use a parsimonious polynomial-time reduction R from #CIRCUITSAT to #3DM, defined as
the composition of three known parsimonious polynomial time reductions. First, take the classical Tseytin
transformation (see e.g. Example 8.3 in [Pap94, page 163]), which is a parsimonious polynomial time reduction
from #CIRCUITSAT to #3SAT. Next, take Schaefer’s parsimonious reduction [Sch78] from #3SAT to
#1-IN-3SAT: replace x V y V z by one-in-three(—z,uy,us) A one-in-three(y, us, uz) A one-in-three(—z, us, uyg).
Finally, take Young’s parsimonious reduction from #3DM to #1-IN-3SAT, defined via a promise problem called
14+3DM, see [You20].

3.3 Ordered set partitions Let a = (ay,...,a,) be a positive integer sequence and b = (b1,...,b) be a
nonnegative integer sequence, both with the same total sum: |a| = |b|. An ordered set partition with item sizes a
and bin sizes b is a tuple K = (K7, ..., K/) of pairwise disjoint subsets K7, ..., Ky C [m], such that

(3.2) U K;=[m] and Z a; =b; foralll<i</.
i=1 JEK;

We use P(a,b) to denote the set of ordered set partitions with with item sizes a and bin sizes b, and let
P(a,b) = |P(a,b)|. Here we will assume that a; > 0 for all i and P(a,b) = 0 if b; < 0 for some . All set
partitions considered here will be ordered.

Problem #SETPARTITION:
e Input: (a,b) € N* x N™,
e Output: The number of K that satisfy (3.2).

In other words, #SETPARTITION(a,b) = P(a, b).

4 Main result

In this section we prove Equation (1.4) and Equation (1.5). Combined with Equation (3.1), Equation (1.4)
immediately implies Equation (1.3).

4.1 Characters and set partitions We start by translating our problem from the language of characters of
&,, into the language of ordered set partitions.

LEMMA 4.1. The characters of the induced representation ¢¥ evaluated at a conjugacy class of type o are equal
to the number of ordered set partitions of « into sets of sizes v. That is,

¢"(a) = P(a,v).

Proof. As explained in §2.2, the evaluation ¢”(«) is equal to the number of words w with v; letters ¢ for
i = 1,...,£(v), which are fixed under permuting the positions of their entries by a permutation = of cycle
type a = (@, ..., ;). Thus, the positions (elements of 7) in the same cycle have the same letter. Let the cycles
of m be ci,..., ¢y of lengths a1, ..., oy, respectively. Let K; = {j : ul., = (4,...,7)} be the set of cycles on which
u has value 4. Then (K7, ..., Kg(l,)) is an ordered set partition with item sizes aq, as,... and bin sizes vy, v, ...
Conversely, such a set partition determines the word u uniquely, and so P(a,v) = ¢”(«). O

PROPOSITION 4.2. Let A F n with £(X) < ¢, and let o be a composition of n. Then

Ma) = Z sign(o)P(a, A + o —id).
UEG@(A)
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Proof. This follows directly from equation (2.1) and Lemma 4.1. o

LEMMA 4.3. Let a and b be two positive sequences with equal sums, and let b have ¢ parts. Let p = €+ 1,
A = sort(pb) and o = pa + ey — ea, where e; = (0,...,0,1,0,...) is the i 'th standard basis vector. Then

4 -1
(4.4) XMa) =D P(ab— (a1 +a)e;) — > P(ab—are; —ageirq).
=1 =1

Proof. Without loss of generality, assume b; > by > ... We apply Equation (4.2) with the given partitions.
Consider a set partition of & = (pa; + 1,pas — 1, pas, . ..) into bins of sizes pb; + o; —i for i = 1,..., . Since plo;
for ¢ # 1,2, we must have that at most two of the sum sets are not divisible by p, and so o; = j (mod p) for all
but possibly two values of j corresponding to the bins containing oy and as.

We have two possibilities. In the first case, both ag,as are in the same set (bin), of size A\; + o; — 4 for
some 4. Since a3 + as = p(a; + az) and «; = pa; for all other is, the bin size must be divisible by p. Thus
0=\ +o0;—i=pb;+0; —i (mod p) for all i and so ¢ = id. Choosing in which set the a; + o go gives us the
left big summation in (4.4).

In the second case, a1,y are in two different sets (bins), say ¢ and r, whose sums must then be = 1, —1
(mod p) respectively. Since all other item sizes are divisible by p, we must have \; + 0; —i = pb; + 0, —i =0
(mod p) for i # r,t. Thus o; =i for ¢ # t,r and we must have o = r and o, =t¢. Then \; +7 —t = +1 (mod p)
and A, +t—r = —1 (mod p). Since 1 < r;t < p— 1, we must have r = t + 1, and we arrive in the other big
summation, with a; in set ¢ and as in set ¢ + 1. This completes the proof. 0

PROPOSITION 4.5. Let ¢ and d be two sequences of nonnegative integers, such that |c| = |d| + 6. Then there are
partitions A and « of size O({l|c|) determined in linear time, such that

Ma) = P(c,a) — P(c,?),
where d = (2,4,dy,d>, ...) and d’ = (1,5,d1,ds,...).

Proof. We will use Equation (4.3) with the following construction. Set m := max{ci,...,d1,...} +4. Let
a:= (2,m,m —3,¢1,¢2,...) and b := (m +4,m + 1,dy,ds,...). Now construct A and « as in Equation (4.3).
Note that b; > a1 + a2 = m + 2 only for ¢ = 1, and b; 11 > m = as only for ¢ = 1, so the only nonzero terms in
equation (4.4) are the summands for ¢ = 1.

We thus obtain

Ma) = P((m=3,c1,...),(2,m+1,dy,...)) =P((m —3,c1,...),(m+2,1,d1,...)).

Since m — 3 > d; for all 4, the item of size m — 3 can only go into the bins of sizes m + 1 and m + 2, respectively.
Therefore, we have:

M) = P((c1,...),(2,4,d1,...)) = P((er,...), (5, 1,dy,...)),

and the proof is complete. 0

4.2 The join of two 3D-matchings Let Z; := {1, ..., k} be the set [k] with addition modulo k. In particular,
we have Zj, C Z,, as sets for u > k. We write + or +,, depending on whether we use addition modulo k or u.
Let E C Z}. For u > k define the padding E, C Z2 via E, = E U {(z,z,z) | z > k}. Clearly
#3DM(E) = #3DM(E,,) for every u > k.
Given two subsets E C Z3 and E' C Z3,, let u := 1 + max{k, k'}. We define the join(E, E') := (J, H, H') to
be the following 3-tuple (J, H, H'):

o J = {(SC,I,y,Z) | (I7yaz) € Eu} U {(gj +U 1,I,y72) | (I,y,Z) € E’IIL} g Zﬁ’
o H:= (u,u,u,u),
o H :=(1,u,u,u).
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Figure 1: Two #3DM instances are joined by first padding them and then adding another dimension to each
hyperedge and taking the union of both hypergraphs. The two special hyperedges H and H' are the ones
containing the bottom right vertex. The different shades of gray for the hyperedges are just for illustration.
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Note that H € J and H' € J. Moreover, H and H' are the only hyperedges in J that have u as their last
coordinate. This construction is illustrated in Figure 1.

LEMMA 4.6. Given two subsets E C Z3 and E' C Z3,, let (J,H,H') = join(E,E’). Then #4DM(J \ {H'}) =
#3DM(E) and #4DM(J \ {H}) = #3DM(E").

Proof. Clearly #4DM(J\{H'}) > #3DM(E), because a 3D-matching M C E can be converted to a 4D-matching
by converting each hyperedge (z,y, z) to (x,z,y, z), and adding the special hyperedge (u,u,u,u). Analogously
one shows #4DM(J \ {H}) > #3DM(E’).

The reverse is also true, which can be seen as follows. If (z,z,y, 2) is contained in a 4D-matching M C J,
then M cannot contain a hyperedge with (first,second) coordinate (x4, 1,z), hence M contains a hyperedge with
(first,second) coordinate (z+,, 1,2+, 1). This argument is repeated and we see that for all w € Z,, the hyperedge
in M with first coordinate w has second coordinate w. On the other hand, if (x +, 1,2,y, 2) is contained in a
4D-matching M C J, then M cannot contain a hyperedge with (first,second) coordinate (x +, 1,2+, 1), hence it
contains a hyperedge with (first,second) coordinate (z +,, 2,z +, 1). This argument is repeated and we see that
for all w € Z, the hyperedge in M with first coordinate w +, 1 has second coordinate w. ]

4.3 An auxiliary SetPartition instance We follow the ideas of [GJ79, p. 96] rather closely.

Given two subsets £ C Z3 and E’ C Z3,, with E covering Z3 and E’ covering Z3,, let join(E, E') = (J, H, H')
with J C Z2%. Note that J covers Zi. We now describe how from (J, H, H') one constructs a SETPARTITION
instance (a, b).

We start with some notation. For H € Z% and (i, j) € Z, x Zs we write (i,5) € H if and only if PNI]- =14. For
cach (i, j) € Zy X Zy let mult(i, j) denote the number of H € J with (i, j) € H. Let r := 16- (max{4, u}-5|J] +1),
where the factor 16 will become clear in §4.4.

We use the notation [ay,az, as,...] :== a1r+ asr? +azr3 +... We say that a; is the i-th coefficient. Inside this
notation we use the shorthand 0’ to denote a sequence of j many zeros. We also use the shorthand 77§ to denote
the sequence (0771, 1,0°7) € {0,1}". We write a-n} = (0/~',a,0"7) € {0,a}". Let f(j) :==3+1=4if 1 <j <3
and 8(4):==3-3=0.

Let there be |J| many bins in this SETPARTITION instance, and let the bin size be given by b; :=
[1,1,1,1,1,u, u,u,u, 12], in other words b := (by,b1,...,b1). The items are created as follows.

(S ——

|J| times

e For each (i, ) € Zy x Zy we create an item of size [}, 0,4 -7}, 3].These are called real vertez items.

e For each (i,]) € Zy X Zy we create mult(i, j) — 1 many items of size [}, 0,i-nj, 5(j)]. These are called dummy
vertex items. Here we used that mult(i, j) > 1, which is guaranteed, because .J covers Z2.

e For each hyperedge (w,x,y,2) € J we create an item of size [0%, 1,4 — w,u — x,u — y,u — z,0].These are
called hyperedge items.

This defines a vector a of item sizes. The number of items is exactly 5|J|, which can be seen for example by
pairing each hyperedge item with 4 vertex items corresponding to that hyperedge. Moreover, |a| = |b| = |J| - by,
because the numbers of dummy vertex items for each j € Zy is equal to |J| — u, the number of hyperedges which
are not part of the matching.

The item to (u, 4) (the vertex in the bottom right in Figure 1) is called the special vertex item. By construction,
it has size [0,0,0,1, 0, 0,0,u,0, 3] and is the unique item of this size. The item to hyperedge H = (u,u,u,u)
is called the first special hyperedge item. The item to hyperedge H' = (1,u,u,u) is called the second special
hyperedge item. These two items are also the unique items with their respective sizes.

Note that the value of every coefficient is nonnegative and at most max{4,u}. Let

se=J - [ (oult(i,5) —1)!

(1,) €ZuXZa

LEMMA 4.7. In every K¢ P(a,b), the special vertexr item is put in a bin with either the first special hyperedge
item or the second special hyperedge item, but not with both at the same time. Let P(a,b)g be the subset
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of those K for which the special vertex item is put in a bin with the first special hyperedge item, and let
P(a,b); = P(a,b) \ P(a,b)g. Then

5 [P(ab)o| = #4DM(J\{H'}) and 5 |P(a,b)| = #4DM(J\ {H}).

Proof. Since r is large and the size of the bins is [1,1,1,1, 1, u, u, u, u, 12], a solution K to the instance must place
exactly 5 items in every bin: One hyperedge item and four vertex items for some vertices (i,j) € Z, X Z4, one
for each j € Z4. Moreover, since r is large and since the 10th coefficient of the bin size is 12, in a solution we
must have that in each bin the four vertex items are either all dummy vertex items or all real vertex items (by
the construction of f3).

Now, since the (6th,7th,8th,9th) coordinates of a hyperedge item are (v —w,u — z,u — y,u — z), we conclude
that each hyperedge must be placed together with its corresponding vertex items that constitute the hyperedge
(real or dummy vertex items). From a placement K like this we can create a solution to #4DM(J) by selecting
exactly those hyperedges that are in a bin with real vertex items.

In fact, there are d many different placements K that result in the same 4D-matching: The bins can be
permuted, and for each vertex the durnlrn_y> vertex items can be permuted. And vice versa: From a solution to
#4DM(J) we create 6 many placements K of items by grouping the selected hyperedges together with their real
vertex items, and grouping the unselected hyperedges together with their dummy vertex items.

These operations are inverses of each other, which gives a bijection between the set of 4D-matchings of J and
the set of cardinality ¢ subsets of P(a,b) in which all elements arise from each other by permuting the bins and
the dummy vertices. Now Equation (4.6) implies the result. O

4.4 The Modified SetPartition Instance We modify the item vector a from the construction above, to
obtain a vector c as follows.

e We add four items of sizes 1,2,4,5.

e We increase the size of the special vertex item by 1. We decrease the size of the first special hyperedge item
by 5. We decrease the size of the second special hyperedge item by 2.

W.l.o.g. let the special vertex item, the first special hyperedge item, and the second special hyperedge item
be the first three item sizes in a. Then ¢ := (1,2,4,5,a1 + 1,a2 — 5,a3 — 2,a4,0as,...). Let d := b. We have
lc| = |d|+6. Let d := (2,4,d;,da,...) and d = (1,5,d1,do,...). Finally, denote setpartition(J, H, H') := (c,d, ).
This completes the construction process we started in §4.3.

LEMMA 4.8. 1P(c,d) = #4DM(J\ {H'}) and 1P(c,d) = #4DM(J\ {H}).

Proof. The restrictions in the proof of Equation (4.7) still directly apply, because we only made small changes to
the item sizes and r is large. The new items and the changed sizes give additional constraints.

In P(c,d), the bin of size 2 must be filled with the item of size 2, and thus the bin of size 4 must be filled
with the item left of size 4. The special vertex item and the item of size 1 are placed with the second special
hyperedge (because the item of size 2 has already been placed). The item of size 5 is placed with the first special
hyperedge. The remaining placements of items can be done as in the proof of Equation (4.7).

In P(c,a/), the bin of size 1 must be filled with the item of size 1, and the bin of size 5 must contain a small
(< 5) odd item, but the only such item left is the item of size 5. The parity now implies that the special vertex
item is placed in a bin with the first special hyperedge item. The only two remaining small items of sizes 2 and 4
fill up the bins of the special hyperedge items. The remaining placements of items can be done as in the proof of
Equation (4.7). ad

4.5 Putting the Pieces Together

Proof. [Proof of Equation (1.4) and Equation (1.5)] Recall that C_P = [GapP = 0] and PP = [GapP > 0]. We
prove both theorems simultaneously, so fix a comparison operator ~ € {=,>}.

For every L € C_P there exist F € #P and F’ € #P with w € L if and only if F(w) ~ F'(w). By the
Cook—Levin theorem, there exists a polynomial-time algorithm that on input w outputs a Boolean circuit C,,
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such that F(w) = #CIRCUITSAT(C,,). Analogously, there exists a polynomial-time algorithm that on input w
outputs a Boolean circuit C/, such that F'(w) = #CIRCUITSAT(C)).

Let E := R(Cy) and E' := R(C.,), where R is defined as in §3.2. Let (J,H,H’) := join(E,E’). Let
(c,d,8) := setpartition(J, H, H'). Let d := (2,4,dy,ds,...). Let d = (1,5,d1,da,...). Let A and a be from
Equation (4.5). We have:

F(w) ~ F'(w) <=  #CIRcUITSAT(C,,) ~ #CIRCUITSAT(C.,)
<  #3DM(E) ~ #3DM(E’)
e #4DM<J \ {H'}) ~ #4DM(J \ {H})
P22 1p(e,d) ~ LP(c,d)
— ( ) ~ (c,a’)
Pro. 4.5
&= Ma) ~
This completes the proof of both theorems. 0
Proof. [Proof of Equation (1.3)] Combine Equation (1.4) and Equation (3.1). O

5 Additional Remarks

5.1 Combinatorial interpretations Finding positive combinatorial interpretations for the Kronecker,
plethysm and Schubert coefficients remains a central open problem in Algebraic Combinatorics. Special cases for
the Kronecker coefficients have been studied in [BO05, BOR09, Blal7, IMW17, PP13, RW94], among many others.
Combinatorial interpretations for plethysm coefficients have been even harder to find, see [BBP22, DIP20, FI120]
for some special cases.

For the Schubert coefficients, see [Knul6, KZ17, Man01, MPP14] for positive combinatorial interpretations
in several special cases, and [ARY21] for complexity of a related problem. For the row character sums ay defined
n (1.6), Frumkin [Fru86] proved that ay > 1 for all |[A\| > 1. See also [Sol61] for a generalization to all finite
groups. We refer to [KWO01] for a combinatorial interpretation of an ingredient in the sum in (1.6), and to [Sunl8,
p. 323] for a connection to plethysm coefficients. For the column character sums by, see [Sta99, Exc 7.69] and
references therein.

5.2 Unary vs binary input Our results are independent of the input encoding in the following sense: the
description size of (A, 7) and (A, 1) can differ exponentially if u is provided as a list of integers that are encoded
in binary. Our results hold in both of these settings. It is noteworthy that such results do not exist for other
quantities of interest, for example the Kostka numbers, Littlewood—Richardson and Kronecker coefficients, and
the Schubert structure constants.

Narayanan [Nar06] proved that computing the Kostka coefficients Ky, and the LR-coefficients c/w are #P-
complete when the inputs A, p, v are encoded in binary. It was conjectured in [PP17, Conj. 8.1] that the LR~
coefficients are #P-complete in unary.?

We should note however, that the decision problems [Ky, = 0] and [¢};, = 0] are in P even when the input
is binary. The first one reduces to checking the linear inequalities whether A > g in the dominance order. By
the Knutson-Tao saturation theorem [KT99], the vanishing of LR-coefficients reduces to checking if the Gelfand-
Tsetlin polytope is empty, see [BI13, MNS12, DMO06].

The unary hardness of the counting problems would imply that the Schubert coefficients are also #P-hard
to compute. Indeed, the natural encoding for the Schubert coefficients, when the inputs are permutations, is
in unary. On the other hand, the LR-coefficients are special cases of the Schubert coefficients, but so far #P-
completeness is only known when A, u, v are encoded in binary. Thus, we cannot yet conclude the computational
hardness result.* By contrast, the Kronecker coefficients of the symmetric group g(\, u,v) are #P-hard with
input in unary; this follows form the proof in [IMW17] that vanishing of g(\, i, ) is NP-hard in unary.

3The distinction between unary and binary input was underscored in [GJ78]. Unfortunately, the original naming of “strong” vs.
(the usual) “weak” NP-completeness added to the confusion, and is best to be avoided.
4This argument points out the error in [MQ17, p. 885] which concludes that Schubert coefficients are #P-hard.
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5.3 GapP-completeness and parsimonious reductions To emphasize the difference, consider the following
two problems:

Problem COMPUTECHARUNARY:
e Input: An integer n, and partitions A, u - n, as lists of numbers encoded in unary
e Output: x*(p)

Problem COMPUTECHARBINARY:
e Input: An integer n, and partitions A, i - n, as lists of numbers encoded in binary
e Output: x*(p)

As we mentioned in the introduction, Hepler [Hep94] proved that computing x*(u) is #P-hard in unary, an thus
in binary.® The following result has not been observed before, but follows directly from Equation (4.2):

THEOREM 5.1. The problem COMPUTECHARBINARY is GapP-complete under Turing reductions.

We note that we cannot at this point strengthen the result to parsimonious many-one reductions, because
the reduction from matchings to counting ordered set partitions is itself not parsimonious, having the factor of .

CONJECTURE 5.2. The problem COMPUTECHARBINARY is GapP-complete under many-one reductions.

We should note though that the reduction from #SETPARTITION to COMPUTECHARUNARY is parsimonious
from the following:

PROPOSITION 5.3. Let a and b be two positive sequences with equal sums, and let b have p — 1 many parts. Let
A = psort(b) and a = pa. Then
X’\(a) = P(a,b).

The proof follows directly from applying Proposition 4.2 and observing that since all sizes « are divisible
by p, we must have p|(\; +o; — i) = (pb; + o; —©) for all bin sizes. Then o; = i, and the only nonzero term which
survives is P(a, A\) = P(a,b).

5.4 Combinatorial identities The irreducible characters of a finite group G are orthonormal with respect to

the inner product
1
(x,9) = €] > x(@)g™),

geG

see e.g. [Ser77, §2.3]. Thus, equation (1.2) gives the squared norm of a character x*.
Equation (1.1) for general finite groups is called Burnside’s identity [Burll, §208] and can be generalized as
follows. For every partition p = (1™ ...¢™¢) b n with m; parts of size i, we have:

(5.4) 1m0 =3 (W)
AFn

see e.g. [Sag01, Thm 1.10.3]. When p = (1™) we get (1.1), but in this case finding a natural combinatorial partition
of the objects from the LHS to sets of sizes given by the character squares is unlikely for the same reason as for
(1.2).

It would be interesting to see if (5.4) has a combinatorial interpretation for some classes of u. For example,
when p = (n), the characters x*(u) € {0,41} and there is an easy combinatorial interpretation for the character
squares (XA(/,L))Q. More generally, for 1 = (k"/*), all rim hook tableaux in the Murnaghan Nakayama rule for
x> (i) have the same sign, see e.g. [JK81, §2.7] and [SW85], so again character squares have a combinatorial
interpretation. These “equal cycles” characters also appear in the mysterious identities in [KK98, Thm 3.3]. We
note that they do not have a combinatorial proof except for the first identity which coincides with (5.4).

5In [PP17], the second and third authors made erroneous claims on this point.
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5.5 Other values As discussed e.g. in [PPV16, §8] and [Mil19, Pel20], other values of the character table are
of interest as well, notably the uniqueness and parity of the characters. The corresponding complexity problems
[XA(u) = 1] and [X)‘([IJ) =0 mod 2] are also very interesting and worth studying.
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