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Abstract

Many selection processes such as finding patients
qualifying for a medical trial or retrieval pipelines
in search engines consist of multiple stages, where
an initial screening stage focuses the resources on
shortlisting the most promising candidates. In this
paper, we investigate what guarantees a screening
classifier can provide, independently of whether
it is constructed manually or trained. We find that
current solutions do not enjoy distribution-free
theoretical guarantees and we show that, in gen-
eral, even for a perfectly calibrated classifier, there
always exist specific pools of candidates for which
its shortlist is suboptimal. Then, we develop a
distribution-free screening algorithm—called Cal-
ibrated Subset Selection (CSS)—that, given any
classifier and some amount of calibration data,
finds near-optimal shortlists of candidates that
contain a desired number of qualified candidates
in expectation. Moreover, we show that a variant
of CSS that calibrates a given classifier multiple
times across specific groups can create shortlists
with provable diversity guarantees. Experiments
on US Census survey data validate our theoretical
results and show that the shortlists provided by
our algorithm are superior to those provided by
several competitive baselines.

1. Introduction

Screening is an essential part of many selection processes
where an often intractable number of candidates is reduced
to a shortlist of the most promising candidates for detailed—
and more resource intensive—evaluation. Screening thus
enables an allocation of resources that improves the overall
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quality of the decisions under limited resources. Exam-
ples of such screening problems are: finding patients in
a large database of electronic health records to manually
evaluate for qualification to take part in a medical trial (Liu
et al., 2021); the first stage of a multi-stage retrieval pipeline
of a search engine (Covington et al., 2016; Geyik et al.,
2019); or which people to reach out to with a personal-
ized invitation to apply to a specific job posting (Raghavan
et al., 2020). In each of these examples, there is signif-
icant pressure to make high-quality, unbiased screening
decisions quickly and efficiently, often about thousands or
even millions of candidates under limited resources and
additional diversity requirements (Bendick Jr et al., 1997;
Bertrand & Mullainathan, 2004; Johnson et al., 2016; Cov-
ington et al., 2016). While these screening decisions have
been made manually or through manually constructed rules
in the past, automated predictive tools for optimizing screen-
ing decisions are becoming more prevalent (Cowgill, 2018;
Chamorro-Premuzic & Akhtar, 2019; Raghavan et al., 2020;
Sanchez-Monedero et al., 2020).

Algorithmic screening has been typically studied together
with other high-stakes decision making problems as a super-
vised learning problem (Corbett-Davies et al., 2017; Kilber-
tus et al., 2020; Sahoo et al., 2021). Under this perspective,
algorithmic screening reduces to: (i) training a classifier that
estimates the probability that a candidate is qualified given
a set of observable features; (ii) designing a deterministic
threshold rule that shortlists candidates by thresholding the
candidates’ probability values estimated by the classifier.
Here, the classifier and the threshold rule aim to maximize
a measure of average accuracy and average utility, respec-
tively, possibly subject to diversity constraints. Only very
recently, it has been argued that the classifier must also
satisfy threshold calibration, a specific type of group cali-
bration, to be able to accurately estimate the average utility
of the threshold rule (Sahoo et al., 2021).

Unfortunately, the above screening algorithms do not enjoy
distribution-free guarantees' on the quality of the short-
listed candidates. As a result, they may not always hold
their promise of increasing the efficiency of a selection

'"We refer to distribution-free guarantees as finite-sample
distribution-free guarantees, since we never have infinite amount
of data in practice.
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process without decreasing the quality of the screening deci-
sions. The results in this paper bridge this gap. In particular,
we focus on developing screening algorithms that, without
making any distributional assumptions on the candidates,
provide the smallest shortlists of candidates, among those
in a given pool, containing a desired expected number of
qualified candidates with high probability.”

Our Contributions. We first show that, even if a classifier
is perfectly calibrated, in general, there always exist specific
pools of candidates for which the shortlist created by a pol-
icy that makes decisions based on the probability predictions
from the classifier will be significantly suboptimal, both in
terms of size and expected number of qualified candidates.
Then, we develop a distribution-free screening algorithm—
called Calibrated Subset Selection (CSS)—that calibrates
any given classifier using calibration data in a way such
that the shortlist of candidates created by thresholding the
candidates’ probability values estimated by the calibrated
classifier is near-optimal in terms of expected size and it
provably contains, in expectation across all potential pools
of candidates, a desired number of qualified candidates with
high probability. Moreover, we theoretically characterize
how the accuracy of the classifier and the amount of cali-
bration data affect the expected size of the shortlists CSS
provides. In addition, motivated by the Rooney rule (Collins,
2007), which requires that, when hiring for a given position,
at least one candidate from the underrepresented group be
interviewed, we demonstrate that a variant of CSS that ca-
librates the given classifier multiple times across different
groups can be used to create a shortlist with provable di-
versity guarantees—namely that this shortlist contains, in
expectation across all potential pools of candidates, a de-
sired number of qualified candidates from each group with
high probability.

Finally, we validate CSS on simulated screening processes
created using US Census survey data (Ding et al., 2021).
The results show that, compared to several competitive base-
lines, CSS consistently selects the shortest shortlists of can-
didates among those methods that select enough qualified
candidates. Moreover, the results also demonstrate that the
amount of human effort CSS helps reduce—the difference
in size between the pools of candidates and the shortlists it
provides—depends on the accuracy of the classifier it relies
upon as well as the amount of calibration data. However,
the expected quality of the shortlists—the expected number
of qualified candidates in the shortlists—never decreases be-
low the user-specified requirement. Our code is accessible
at https://github.com/LequnWang/Improve-Screening-via-
Calibrated-Subset-Selection.

2If the overall pool of candidates does not contain the desired

number of qualified candidates with high probability, the algo-
rithms should also determine that.

Further Related Work. Our work builds upon prior litera-
ture on distribution-free uncertainty quantification, which
includes calibration and conformal prediction.

Calibration (Brier et al., 1950; Dawid, 1982; Platt et al.,
1999; Zadrozny & Elkan, 2001; Gneiting et al., 2007; Gupta
et al., 2020) measures the accuracy of the probability out-
puts from predictive models. Many notions of calibration
have been proposed to measure the accuracy of the proba-
bility outputs from a classifier (Platt et al., 1999; Guo et al.,
2017) or a regression model (Gneiting et al., 2007; Kuleshov
etal., 2018). Arguably, the most commonly used notion is
marginal (or average) calibration (Gupta et al., 2020; Zhao
et al., 2020; Gneiting et al., 2007; Kuleshov et al., 2018) for
both classifiers and regression models, which requires the
probability outputs be marginally calibrated on the whole
population. Our definition of perfectly calibrated classifier
inherits from the marginal calibration definition for classi-
fiers in prior works (Gupta et al., 2020). We also show how
CSS produces an approximately calibrated regression model
under average calibration definition in regression (Gneiting
et al., 2007; Kuleshov et al., 2018). In the other extreme,
individual calibration (Zhao et al., 2020) refers to a classifier
that predicts the probability distribution for each example.
We refer to classifiers with such properties the omniscient
classifiers in this paper. Many recent works (Chouldechova,
2017; Kleinberg et al., 2017; Pleiss et al., 2017) discuss
the relationship between calibration and fairness in binary
classification, and show that marginal calibration is incom-
patible with many fairness definitions in machine learning.
Motivated by multicalibration (Hébert-Johnson et al., 2018;
Jung et al., 2021), which requires the predictive models be
calibrated on multiple groups of candidates, we propose a
variant of CSS that selects calibrated subsets within each
group to ensure diversity in the final selected shortlists. Very
recently, some works (Sahoo et al., 2021; Zhao et al., 2021;
Straitouri et al., 2022; Wang & Joachims, 2022) realize
that we can design calibration algorithms (and calibration
definitions) well-suited for different downstream tasks to
achieve better performance. CSS is specifically designed
for screening processes so that it provides near-optimal
shortlists in terms of the expected size among those hav-
ing distribution-free guarantees on the expected number of
qualified candidates.

Conformal prediction (Vovk et al., 1999; 2005; Shafer &
Vovk, 2008; Romano et al., 2019; Balasubramanian et al.,
2014; Gupta et al., 2020; Angelopoulos & Bates, 2021;
Chzhen et al., 2021) aims to build confidence intervals on
the probability outputs from predictive models. Within this
literature, the work most closely related to ours is arguably
the work by Bates et al. (2021), which has focused on gen-
erating set-valued predictions from a black-box predictor
that controls the expected loss on future test points at a user-
specified level. While one can view our problem from the
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perspective of set-valued predictions, applying their metho-
dology to find near-optimal solutions in our problem is not
straightforward, and one would need to assume to have ac-
cess to qualification labels for all the candidates in multiple
pools, something we view as rather impractical.

Moreover, our work also builds on work in budget-
constrained decision making, where one needs to first select
a set of candidates to screen and then, given the result of
that screening process, determine to whom to allocate the re-
sources (Cai et al., 2020; Bakker et al., 2021). This contrasts
with our work where all candidates undergo screening.

Many large-scale recommender systems adopt multi-stage
pipelines (Bendick Jr & Nunes, 2013). Existing works on
multi-stage recommender systems (Ma et al., 2020; Hron
etal., 2021) focus on learning accurate classifiers in different
stages. Complementary to these works, we assume the
classifiers are already given and provide distribution-free
and finite-sample guarantees on the quality of the shortlists.

2. Problem Formulation

Given a candidate with a feature vector x € X', we assume
the candidate can be either qualified (y = 1) or unquali-
fied (y = 0) for the selection objective3. Moreover, let
f+ X —[0,1] be a classifier that maps a candidate’s fea-
ture vector x to a quality score* f(x). The higher the quality
score f(x), the more the classifier believes the candidate
is qualified. Given a pool of m candidates with feature
vectors * = {x;};c[m], an algorithmic screening policy
m : [0,1]™ — P({0,1}") maps the candidates’ quality
scores { f(z;)}ic[m) to a probability distribution over short-
listing decisions s = {s;};c[m]. Here, each shortlisting
decision s; specifies whether the corresponding candidate
is shortlisted (s; = 1) or is not shortlisted (s; = 0). For
brevity, we will write S ~ 7w whenever there is no ambigu-
ity. Furthermore, we use 7 to indicate that a policy makes
shortlisting decisions based on the quality scores from clas-
sifier f. This implies that for any pool of candidates « and
any two candidates 4, j € [m] in the pool, if f(z;) = f(z;),
then Pr(S; = 1) = Pr(S; = 1). We denote the set of all
possible policies 7y as IT.

For any screening process, we would ideally like a screening
policy 7 that shortlists only candidates who are qualified
(y = 1). Unfortunately, as long as there is no deterministic
mapping between x and y, such a perfect screening policy

3In practice, one needs to measure qualification using proxy
variables and these proxy variables need to be chosen carefully
to not perpetuate historical biases (Bogen & Rieke, 2018; Garr &
Jackson, 2019; Tambe et al., 2019).

*Our theory and algorithms apply to any classifier with a
bounded range, by scaling the scores to [0, 1].

>We use upper case letters to denote random variables, and
lower case letters to denote realizations of random variables.

7 does not exist in general. Instead, our goal is to find a
screening policy 7 that shortlists a small set of candidates
that provably contains enough qualified candidates, with-
out making any assumptions about the data distribution.
These shortlisted candidates will then move forward in the
selection process and will be evaluated in detail, possibly
multiple times, until one or more qualified candidates are
selected.

More specifically, let each candidate’s feature vector z
and label y be sampled from a data distribution Py y =
Px x Py|x. Then, for a pool of m candidates® with
feature vectors X = {X,}ic[m and unobserved labels
Y = {Yilicpm]. Wwhere X; ~ Px,Y; ~ Pyx, for all
i € [m], we will investigate to what extent it is possible to
find screening policies 7 with near-optimal guarantees with
respect to two different oracle policies. In particular:

(i) an oracle policy 7* that, for any set of candidates
x € X'™, shortlists the smallest set of candidates that
contains, in expectation with respect to Py | x, more
than k qualified candidates, i.e., V& € X™,

m* € argmin Eg Z Si| s (D
mell i€[m]

where

M= Esuny~p | D SYi| >k

i€[m]

(i1) an oracle policy 7** that shortlists the smallest set of
candidates that contains, in expectation with respect
to Px y, more than k qualified candidates, i.e.,

7 € argmin Ex.p sr Z Sil, @

well i€[m]

where

=<7 Ex y)~PS~r Z SiYi| >k

1€[m)]

In the language of distribution-free uncertainty quantifica-
tion (Balasubramanian et al., 2014), the optimality guaran-
tees with respect to the first and the second oracle policy
can be viewed as individual and marginal guarantees respec-
tively.

SFor ease of presentation, we assume a constant pool size m in
the main paper. However, all the theoretical results and algorithms

can be easily adapted to settings where the pool size changes across
selection processes. Refer to Appendix A.1 for more details.
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3. Impossibility of Screening with Individual
Guarantees

If we had access to an omniscient classifier f*(x) =
Pr(Y = 1| X = x) for all z € X, then we could recover
the oracle policy 7* defined by Eq. 1 just by thresholding
the quality scores of each candidate in the pool. More speci-
fically, we have the following theorem’:

Theorem 3.1. The screening policy 5. that, given any

pool of m candidates with feature vectors x € X™, takes
shortlisting decisions as

1 if f*(x;) > t*,
s; = § Bernoulli(6*) if f*(z;) = t*, 3)
0 otherwise,
where
t=supQt e (0,1]| > T{f () = thf () > k
i€[m]
and

o — k=3 icpm W (i) > 73 f*(2)
Zie[m] I{f* (i) = t*}f* (i)

is a solution (if there is one) to the constrained minimization
problem defined in Eq. 1.

Unfortunately, without distributional assumptions about
Px vy, finding the omniscient classifier f* from data is im-
possible, even asymptotically, if the distribution Py (x)
induced by Px y is nonatomic, as recently shown by Bar-
ber (2020) and Gupta et al. (2020). Alternatively, one may
think whether there exist other classifiers h allowing for
near-optimal screening policies 7;, with individual guaran-
tees. In this context, a natural alternative is a perfectly
calibrated classifier h other than the omniscient classifier
f*. A classifier h is perfectly calibrated if and only if

Pr(Y =1|h(X)=a)=a Va € Range(h). 4)

However, the following theorem shows that there exist data
distributions Px y for which there is no perfectly calibrated
classifier h # f* allowing for a screening policy 7, with
individual guarantees of optimality.
Proposition 3.2. Ler X = {a,b}, Pr(Y = 1| X =a) =
LPr(Y =1|X =b) = 7—’;, and f* be the omniscient
classifier. Then, for any screening policy m, using any
perfectly calibrated classifier h # f*, there exists a pool of
candidates © = {xi};c,, € X™ such that
m—k
2 )

Esnmystmy, | D (Si=SP)| |2

i1€[m]

7 All proofs can be found in Appendix C.

and a pool of candidates x' = {x}}, .\, € X™ such that

i€[m

. k(&
EYNP,Swwh,S*Nw}* Z(Sifsi Yill > 2<1) .

m
1€[m]

The above result reveals that, if m >> k, for any screening
policy 7, using a calibrated classifier h # f*, there are
always scenarios in which 7, provides shortlists that are %
apart from those provided by the oracle policy 7* in size or
g apart in terms of the number of qualified candidates. In
particular, the second part of Proposition 3.2 directly implies
that there is no policy m € IIj, that satisfies the individual
guarantee. This negative result motivates us to look for

screening policies with marginal guarantees of optimality.

4. Screening Algorithms with Marginal
Guarantees

To investigate to what extent it is possible to find screening
policies with near-optimal guarantees with respect to the
oracle policy 7** defined in Eq. 2, we focus on perfectly ca-
librated classifiers h with finite range, i.e., |Range(h)|< oc.
The reason is that, similarly as in the case of the omniscient
classifier f*, it is impossible to find nonatomic perfectly
calibrated classifiers h from data, even asymptotically (Bar-
ber, 2020; Gupta et al., 2020). We will first introduce the
optimal algorithm assuming we have access to a perfectly
calibrated classifier, and discuss how the accuracy of the
classifier affects the performance of the optimal algorithm.
Then, we will introduce the proposed CSS algorithm that,
given a classifier and some amount of calibration data, se-
lects shortlists that are near-optimal in terms of the expected
size, while ensuring that the expected number of qualified
candidates in the shortlists is above the desired threshold.

An Optimal Calibration Algorithm with Perfectly Ca-
librated Classifiers. Let h be a perfectly calibrated
classifier with Range(h) = {us}pe(p], and denote p, =
Ex~p[Il{h(X) = up}]. First, note that the classifier h
induces a sample-space partition of X into B regions or
bins {X}}ycp], where pip, = Pr(Y = 1/X € &) and
pp = Pr(X € A3). Then, the following theorem shows that
the optimal screening policy 7} that shortlists the smallest
set of candidates within the set of policies II;,, which con-
tain, in expectation with respect to Px y, more than k qual-
ified candidates, is given by a threshold decision rule.

Theorem 4.1. The screening policy m;, that takes shortlist-
ing decisions as

1 if h(z;) > tp,
s; = ¢ Bernoulli(6y,) ifh(xz;) = th,
0 otherwise,
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where

k
th=sup{ i€ {mtoermy | Y ml{m > plpy > p.
be[B]

and
kfm =3 ey el >t}

0, =
" > overn) Pol{pe = tatps

is a solution (if there is one) to the constrained minimization
problem defined in Eq. 2 over the set of policies 11},

However, it is important to realize that the expected size
of the shortlists provided by 7}, for different perfectly cali-
brated classifiers h may differ. To put it differently, not all
screening policies 7}, (and classifiers h) will help reduce the
downstream effort by the same amount. To characterize this
difference, we introduce a notion of dominance between
perfectly calibrated classifiers.

Definition 4.2. Let h and I/ be perfectly calibrated clas-
sifiers. We say that h dominates h' if, for any v1, 15 € X
such that h(z1) = h(xs), it holds that h'(x1) = W' (z2).

Equipped with this notion, we now characterize the diffe-
rence in size between shortlists provided by different per-
fectly calibrated classifiers using the following corollary,
which follows from Theorem 4.1.

Corollary 4.3. Let h and I/ be perfectly calibrated classi-
fiers. If h dominates h/, then

Ex~psamy sims, | Y, (Si—8))| <0.

1€[m)]

This notion of dominance relates to the notion of sharp-
ness (Gneiting et al., 2007; Kuleshov et al., 2018), which
links the accuracy of a calibrated classifier to how fine-
grained the calibration is within the sample-space. In par-
ticular, if 4 dominates %/, it can be readily shown that h is
sharper than h’. However, existing works have not studied
the effect of the sharpness of a classifier on its performance
on screening tasks.

A Near-Optimal Screening Algorithm with Calibration
Data. Until here, we have assumed that a perfectly cali-
brated classifier A with finite range, as well as the size of
each bin p;, are given. However, using finite amounts of
calibration data, we can only hope to find approximately
calibrated classifiers. Next, we will develop an algorithm
that, rather than training an approximately calibrated classi-
fier from scratch, it approximately calibrates a given classi-
fier f, e.g., a deep neural network, using a calibration set
Dear = {(xf,Y§) }icn)» Which are independently sampled
from Px y 8. In doing so, the algorithm will find the optimal

8Superscript ¢ is used to differentiate between candidates in
the calibration set and candidates in the pool at test time.

sample-space partition and decision rule that minimize the
expected size of the provided shortlists among those ensu-
ring that an empirical lower bound on the expected number
of qualified candidates is greater than k.

From now on, we will assume that the given classifier f is
nonatomic’ and satisfies a natural monotonicity property'®
with respect to the data distribution Py y, a significantly
weaker assumption than calibration.

Definition 4.4. A classifier [ is monotone with respect to
a data distribution Px vy if, for any a,b € Range(f) such
that a < b, it holds that

Pr{Y = 1| f(X) = a} < Pr{Y = 1| f(X) = b}.

Under this assumption'!, we can first show that the solution
(if there is one) to the constrained minimization problem in
Eq. 2 over Il is a threshold decision rule 7 £t with some
threshold % € [0, 1] that takes shortlisting decisions as

1 if f(x;) > t%,
.= () 5)
0 otherwise.

More specifically, we have the following theorem.

Theorem 4.5. Let f be a monotone classifier with respect
to Pxy and the distribution Py x) induced by Px y is
nonatomic. Then, for any 7y € Il;, there always exists
a threshold decision rule w;, € 11y with some threshold
t € [0, 1] such that

EXNP,SNﬂ'f,S’Nﬂ'f,t Z (S’L - S’Z) >0

i€[m]

and

E(x y)~P,S~r;, 8 ~mp Z Yi(Si = S;)| <0.

i1€[m]

The theorem directly implies there exists a threshold deci-
sion policy 7y 4« that is optimal in the constraint minimiza-
tion problem defined in Eq. 2 (if there is a solution).

“We can add arbitrarily small noise to break atoms.

10The monotonicity property we consider is different from that
considered in the literature on monotonic classification (Cano et al.,
2019).

"There is empirical evidence that well-performing classifiers
learned from data are (approximately) monotone (Guo et al., 2017;
Kuleshov et al., 2018; Gupta et al., 2020). In this context, we
would like to emphasize that the monotone property is only ne-
cessary to prove that the expected size of the shortlists provided by
our algorithm is near-optimal. However, the distribution-free gua-
rantees on the expected number of qualified shortlisted candidates
holds even for non-monotone classifiers.
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As aresult, we focus our attention on finding a near-optimal
threshold decision policy. We first notice that each thres-
hold decision policy 7 ; induces a sample space partition
of X into two bins X,; = {z € X|f(z) > t} and
Xio = {x € X| f(x) < t}. Thus, it is sufficient to an-
alyze the calibration errors of the family of approximately
calibrated classifiers h; with the two bins. In Appendix A.3,
we show that using the calibration errors of calibrated classi-
fiers that partition the sample-space into more bins will only
worsen the performance guarantees of threshold policies. At
this point, one may think of applying conventional distribu-
tion-free calibration methods to bound the calibration errors
of each classifier h; with high probability. However, prior
distribution-free calibration methods can only bound cali-
bration errors on the mean values p;, for each bin b, but not
the bin sizes pp. To make things worse, to find the threshold
value £ + with optimal guarantees, we need to bound the
calibration errors of all classifiers h;, simultaneously with
high probability. Unfortunately, since ¢ € [0, 1], there are
infinitely many of them and we cannot naively apply a union
bound on the bounds derived separately for each classifier.

To overcome the above issues, we will now leverage the
Dvoretzky—Kiefer—Wolfowitz—Massart (DKWM) inequali-
ty (Dvoretzky et al., 1956; Massart, 1990), which bounds
how close an empirical cumulative distribution function
(CDF) is to the cumulative distribution function of the distri-
bution from which the empirical samples are sampled. More
specifically, let 6; 1 := E(x y)~p[I{f(X) >t} Y] and

Zﬂ{f

7,6 [n]

St,l = ) > thys

be an empirical estimator of J; ; using samples from the
calibration set D.,. Then, we can use the DKWM inequality
to bound the calibration errors |5t’1 —d;,1| across all approxi-
mately calibrated classifiers h; with high probability:

Proposition 4.6. For any o € (0,1), with probability at
least 1 — a (in f and D.y), it holds that

Or1 — 51‘,,1‘ <

In(2/a) /(2n) =

e(a,n)

simultaneously for all t € [0, 1].

In Appendix B, we show that based on the above error
guarantees, we can build a regression model that achieves
average calibration in regression (Gneiting et al., 2007;
Kuleshov et al., 2018), if we regard the binary classifica-
tion problem as a regression problem. Further, building on
the above proposition, we can derive an empirical lower
bound on the expected number of qualified candidates in the
shortlists provided by all the threshold decision rules 7 ;.

Corollary 4.7. For any o € (0, 1), with probability at least

Algorithm 1 Calibrated Subset Selection (CSS)
1: input: k, m, Dea, f, @, @

2: initialize: s =0

3: tp = sup {t € [0,1) 3t71 > k/m+ e(a,n)}
4: for i=1,...,m do

5. if f(z;) > t; then

6: =1

7:  endif

8: end for

9: return s

1 — «a(in f and D.y), it holds that

Ex y)~P.5~r;, Z YiSi| <m (&,1 + 6(04”))

i€[m]
simultaneously for all ¢ € [0, 1].

Now, to find the decision threshold rule = £iis that provides,
in expectation, the smallest shortlists of candidates subject
to a constraint on the lower bound on the expected number
of qualified candidates in the provided shortlists, i.e.,

tf—argmln Ex~ps~r;, Z S; (6)

i€[m)]

where T = {t € [0,1]|m (St,l - e(a,n)) > k), we re-
sort to the following theorem.

Theorem 4.8. The threshold value

t; = sup {t € [0,1]

St,l >k/m+ e(a,n)}. @)

is a solution (if there is one) to the constrained minimization
problem defined in Eq. 6.

Algorithm 1 summarizes our resulting CSS algorithm,
whose complexity is O(nlog(n)).

Finally, we can show that the expected size of the shortlists
provided by CSS is near-optimal and we can also derive a
lower bound on the worst-case size of the provided shortlists.
More specifically, the following propositions show that the
difference in expected number of qualified candidates be-
tween the shortlists provided by 7, ; and 7y ;» decreases at

arate 1/,/n and the worst-case size is on the order of v/k.
Proposition 4.9. Let f be a monotone classifier with respect

to Pxy and assume that the distribution Py x) induced
by Pxy is nonatomic. Then, for any oo € (0,1), with
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probability at least 1 — «, it holds that

ExX Y)~P.S~ry s Snmy > (SIS,

i€[m]

< % +my/2In(2/a)/n.

Proposition 4.10. For any oy € (0,1),a3 € (e7 5% 1)
such that oy + ao < 1, the CSS algorithm with parameter

o = oy guarantees that, with probability at least 1 —og — o
(li’l f; Dcal: and X7 Y),

ZY;SZ- > k— % In(Yag)— % \/lng(l/az)—l—lSk In(Lag).

i€[m]

Finally, note that we can use the above worse-case guarantee
to ensure that the worst-case size of the shortlists provided
by CSS is greater than a target tyo by setting k to be
slightly larger than Ky

k = Eworst + é In(1/a9) — %\/ln2(1/0¢2) + 18k In(1/a).
By doing so, CSS will satisfy the constraints defined in
Eq. 1 with high probability with respect to the test pool of
candidates. However, CSS might not be optimal in terms of
expected or worst-case shortlist size among those satisfying
the above constrains. How to design screening algorithms
that are optimal in terms of expected or worst-case shortlist
size while satisfying that each individual shortlist contains
enough qualified candidates with high probability is an in-
teresting problem to explore in future work.

5. Increasing the Diversity of Screening

Our theoretical results have shown that CSS is robust to
the accuracy of the classifier and the amount of calibration
data. However, CSS does not account for the potential diffe-
rences in accuracy or in the amount of calibration data across
demographic groups. As a result, qualified candidates in
minority groups may be unfairly underrepresented in the
shortlists provided by CSS.

To tackle the above problem and increase the diversity of
the shortlists, we design a variant of CSS, which we name
CSS (Diversity), motivated by the Rooney rule (Collins,
2007) and multicalibration (Hébert-Johnson et al., 2018)
(refer to Appendix A.2). CSS (Diversity) quantifies the
uncertainty in the estimation of the number of qualified
candidates separately for each demographic group, so that
we have distribution-free guarantees for each demographic
group. This means that CSS (Diversity) will include more
candidates in the shortlist for groups with higher uncertainty
to ensure a sufficient number of qualified candidates from
each group. Effectively, CSS (Diversity) shifts the cost of

uncertainty from minority candidates to the decision maker,
since it creates a potentially longer shortlist. This provides
an economic incentive for the decision maker to both build
classifiers that perform well across demographic groups and
collect more calibration data about minority groups.

6. Empirical Evaluation Using Survey Data

In this section, we compare CSS against several competitive
baselines on multiple instances of a simulated screening
process created using US Census survey data.

Experiment Setup. We create a simulated screening pro-
cess using a dataset comprised of employment information
for ~3.2 million individuals from the US Census (Ding
et al., 2021). For each individual, we have sixteen fea-
tures € R'6 (e.g., education, marital status) and a label
y € {0, 1} that indicates whether the individual is employed
(y = 1) or unemployed (y = 0). Race is among the features,
which we use as the protected attribute as suggested by Ding
et al. (2021). We treat white as the majority group gm,j and
all other races as the minority group gmin. To ensure that
there is a limited number of qualified candidates (~20%)
in each of the simulated screening processes, we randomly
downsample the dataset'?. After downsampling, the dataset
contains ~2.2 million individuals.

For the experiments, we randomly split the dataset into
two equally-sized and disjoint subsets. We use one of the
subsets to create a training set of 10,000 individuals, as well
as calibration sets with varying sizes n. We use the other
subset to simulate pools of candidates for testing. To get a
screening classifier, we train a logistic regression fi g on the
training set to predict the probability fig(x) that a candidate
is qualified. Here, we vary the accuracy of the classifier by
replacing, with probability rpeise, €ach of its predictions with
some noise 8 ~ Beta(1,4), i.e., f = v8+(1—~) fLr, where
~ ~ Bernoulli(7yise ) and Tyoise 18 the classifier noise ratio.

In each simulated screening process, we set the size of
the test pool of candidates to m = 100, the desired ex-
pected number of qualified candidates to k = 5, and
the success probability to 1 — o = 0.9. For the diver-
sity experiments, we set the desired expected number of
qualified candidates kp,j and ki, so that the equal oppor-
tunity constraint,i.e., kmgj/(mE(x v) [YI{X € gmyj}]) =
Emin/ (ME(x,y [YI{X € gmin}]) is satisfied (Hardt et al.,
2016) subject to ki + kmin = 5.

Methods. In our experiments, we compare CSS with
several baselines. Since no prior screening algorithms
with distribution-free guarantees exist, we introduce a
simple screening algorithm based on uniform mass bin-
ning (Zadrozny & Elkan, 2001) (UBM B Bins), which

2For the diversity experiments, we downsample the majority
and minority groups independently.
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Figure 1. Analysis of CSS and baselines when varying the classifier noise ratio rneise (i.e., accuracy) and calibration set sizes n. The first
and third plots show the empirical probability that each algorithm provides enough qualified candidates (EQ) from 100 runs with standard
error bars (higher is better). The second and fourth plots show the average, among 100 runs with one standard deviation as shaded regions,
expected size (SS) of the shortlists (lower is better). We do not plot SS for algorithms that fail the quality requirement in terms of EQ. In
the left two plots, the size of the calibration set is n = 10, 000. In the right two plots, the classifier noise ratio is 7poise = 0.
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Figure 2. Analysis of diversity guarantees of CSS (Diversity) and several baselines when varying the classifier noise ratio 7oise (i.e.,
accuracy) for individuals in the minority group. For individuals in the majority group, the classifier noise ratio is 7noise = 0. The first and
third plots focus on the majority group and the second and fourth plots focus on the minority group.

also enjoys distribution-free guarantees on the expected
number of qualified candidates. The algorithm bounds the
calibration error of a classifier that is calibrated on B bins
of roughly equal size and selects the candidates from top-
scored bins to low-scored bins (and possibly at random from
the last bin it selects candidates from) until a lower bound
on the expected number of qualified candidates is no smaller
than k. Refer to Appendix A.3 for more details about this
baseline algorithm.

We also compare CSS with three other baselines that do
not provide distribution-free guarantees. The first is called
Uncalibrated, and it applies the optimal decision rule for
omniscient classifiers as if f were the omniscient classi-
fier defined in Eq. 3. The second is called Platt, since
it first calibrates f using Platt scaling (Platt et al., 1999)
and then proceeds like Uncalibrated with the calibrated
classifier. The third is called Isotronic. It treats the clas-
sifier f as a regression model from z to y, and then em-
ploys Isotonic regression calibration (Kuleshov et al., 2018)
to produce a calibrated regression model h that estimates
h(t) E[(YI{f(x) > t}]. It then selects the largest
threshold ¢ such that mh(t) > k for shortlisting.

~
~

Metrics. To compare the screening algorithms, we run
the experiments 100 times for each algorithm and setting.

For each run, we estimate whether each algorithm provides
shortlists that contain a large enough expected number of

qualified candidates EQ = T{E |Y,(,,) YiSi| > &}, and

its expected shortlist size SS = 1) [Zie[m] SZ} ,using 1,000
independent pools of candidates sampled at random from
the test set. We then compare the algorithms in terms of
the percentage of times, along with standard errors, they
provide enough qualified candidates. We also compare the
average shortlist size, along with standard deviations.

How does the accuracy of the classifier affect different
screening algorithms? The left two plots in Figure 1 show
how CSS compares to the baselines for classifiers of vary-
ing accuracy (i.e., varying rpeise). The results show that the
shortlists provided by the algorithms with distribution-free
guarantees (i.e., CSS and UMB) do contain enough quali-
fied candidates, while the others fail. Moreover, CSS and
UMB are robust to the accuracy of the classifier they use, as
they compensate for decreased accuracy with longer short-
lists to maintain their guarantees. In addition, we find that
the shortlists provided by these algorithms contain enough
qualified candidates more frequently than suggested by the
worst-case theoretical guarantee of 1 — a = 0.9. Compared
to all UMB variants, CSS provides smaller shortlists except
for the pure-noise case. Note that this exception does not
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violate the optimality of CSS among deterministic thresh-
old policies using the empirical lower bound as shown in
Theorem 5, since UMB algorithms are allowed to randomly
select candidates in the last bin they select candidates from,
as discussed previously and in Appendix A.3 in detail.

What is the effect of different amounts of calibration
data on the screening algorithms? The right two plots in
Figure 1 show how the screening algorithms perform for
increasing amounts of calibration data n. We see that CSS
and UMB are robust to the amount of calibration data, and
can effectively account for less data by increasing the short-
list size to maintain their guarantees. In terms of shortlist
size, CSS is more effective over the whole range of n, since
it provides smaller shortlists than all of the UMB variants.

How does the accuracy of the classifier affect different
groups of candidates? Figure 2 shows how CSS (Diver-
sity) and the baselines perform on the majority and minority
groups as we decrease the accuracy of the classifier for in-
dividuals in the minority group (i.e., we increase rypise Only
for individuals in the minority group). Here, CSS (No Di-
versity) refers to naively applying CSS on the entire pool
of candidates, without diversity requirements. We allow
all other algorithms to select candidates from the majority
group and the minority group separately. The results show
that, as the accuracy of the classifier for individuals in the
minority group decreases, the shortlists provided by CSS
(No Diversity) contain more and more (fewer and fewer)
candidates from the majority (minority) group. This su-
ggests that we should explicitly account for diversity in
the screening process, especially when the accuracy of the
classifier differs across groups. While Uncalibrated, Platt
and Isotonic select candidates across groups separately, the
shortlists they provide contain fewer qualified candidates
from the minority group as the accuracy worsens (Uncali-
brated) or do not contain enough qualified candidates from
both groups (Platt, Isotonic). In contrast, CSS (Diversity)
adapts to the loss in accuracy of the classifier for individuals
in the minority group and the shortlists it provides contain
enough qualified candidates from both groups. We found
similar results also when we varied the number of indivi-
duals from each group in the calibration data, instead of the
classifier accuracy.

7. Conclusions

In this work, we initiated the development of screening algo-
rithms that provide distribution-free guarantees on the quali-
ty of the shortlisted candidates. In particular, we proposed
the CSS algorithm, which can be applied to any screening
classifier. We show that for any amount of calibration data,
CSS selects near-optimal shortlists of candidates, in terms
of the expected shortlist size, while ensuring that the ex-
pected number of qualified candidates is above a desired
target with high probability. Moreover, we showed how the

CSS (Diversity) variant, which shortlists different groups of
candidates separately, can ensure diversity of the shortlists
with similar guarantees. Both the theoretical analysis and
the empirical evaluation confirm that CSS and CSS (Diver-
sity) are robust to the accuracy of the given classifier and
the amount of calibration data.

Our work opens up many interesting avenues for future
work. For example, we have assumed that candidates do not
present themselves strategically to the screening algorithms
and that the data distribution at calibration and test time is
the same. It would thus be interesting to develop screening
algorithms that are robust to strategic behaviors (Tsirtsis &
Gomez Rodriguez, 2020) and distribution shifts (Podkopaev
& Ramdas, 2021). Moreover, it is crucial to fully under-
stand how screening algorithms can most effectively and
most fairly augment (biased) human decision making in real
selection processes.
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Algorithm 2 CSS (Dynamic Pool Size)
1: input: k, E [M], Dea, f, o, @

2: initialize: s = ()

3: t; = sup {t €[0,1]| b1 > k/E[M] + e(a,n)}
4: for x € x do

5. if f(x) > i then

6: addx to s

7:  endif

8: end for

9: return s

A. Additional Algorithms
A.1. Calibrated Screening Algorithm under the Dynamic Pool Size Setting

In reality, the size of the pool of candidates might be different across times. Here, we derive an algorithm CSS (Dynamic
Pool Size) illustrated in Algorithm 2 that allows for dynamic size of the pool of applicants. we overload the use of notation
s to denote the set of the selected candidates rather than a vector, for ease of presentation, especially for the screening
algorithm to ensure diversity as we will discuss in the next subsection. CSS (Dynamic Pool Size) requires that the expected
size E [M] is given, which can be estimated from past pools. We show that all our theoretical results naturally generalize to
the dynamic pool size setting.

In the dynamic pool size setting, instead of assuming that the size of the pool of candidates m is constant, we assume the
size is a random variable M ~ Py that follows some distribution Py, with mean E [M| = E/p,, [M]. Thus, the data
generation process for the pool of candidates becomes M, X,Y ~ Py x P,

For the individual guarantees, Theorem 3.1 naturally holds for all m € R*, and thus for the dynamic size setting; the
impossibility results in Proposition 3.2 still hold in the dynamic pool size setting, since the constant size setting is a special
case of the dynamic pool size setting.

So we focus on showing that the theoretical results in the marginal guarantees still hold here, by showing that there is a
family of policies that are oblivious to the size of the pools while representative enough. We call this family of policies
pool-independent policies.

Definition A.1 (Pool-Independent Policies). Given a classifier f, a policy w¢ € 11t is pool-independent if there is a mapping
pr, : Range(f) — [0, 1], such that for any candidate x; in any pool T of any size m, the probability that the candidate is
selected under 7y is Pr (S; = 1) = pr, (f(21)).

This family of policies have the nice property that their expected number of qualified candidates in the shortlist and the
expected shortlist size depend on Py, only through E [A]. Formally speaking, for a pool-independent policy 77 and its
selection probability mapping pr,,

E x,v)~P,S~r, Z SiYi| =E[M]E(t(x),y)~P;x) v (o, (f(X))Y]
i€[M]

and

Er,x)~pser; | D Si| =E[M]Efx)mp, i [Pr, (F(X)] .
1€[M]

We show in the following proposition that the family of pool-independent policies are representative enough in the dynamic
pool size setting, in a sense that for any given classifier f and any policy 7 € II¢, we can always find a pool-independent
policy in II; that achieves the same expected number of qualified candidates in the shortlists and the same expected size of
the shortlists as 7.

Proposition A.2. Given a classifier f, for any policy my € 11y, there exists a pool-independent policy ﬂ'} € II; such that
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Algorithm 3 CSS (Diversity)

1: input: g, {E [M]g}geg, {ko}yege {DLY g /o (g} e
for g€ G do

84 = CSS (Dynamic Pool Size) (k,, E [M], DY foa/|G
end for
return Ugcgs,

» Xg)

they have the same expected number of qualified candidates

E,x,v)~P,S~r ZYéSi =E,x,Y)~P,S~m Z YiS;
i€[M] ie[M]

and the same expected shortlist size

B, x)~pser | O Si| =Earx)opser | 3 Si
i€[M] i€[M]

This implies that it is sufficient to find optimal/near-optimal solutions within this family of pool-independent policies
to achieve global optimal/near-optimal guarantees. In fact, all the optimal/near-optimal policies in all the theorems,
propositions, corollaries are all pool-independent policies. They all can be translated to the dynamic pool size setting by
setting m = [E [M] in the policy design.

A.2. Calibrated Subset Selection Algorithm to Ensure Diversity

CSS (Diversity) (Algorithm 3) selects calibrated shortlists of candidates for each demographic group independently. CSS
(Diversity) requires inputs of the groups G, the expected pool size of each group {E [M] g} x the target expected number
ge

of qualified candidates for each group {ky} _, the calibration data for each group {D?,} _ ., and the pool of candidates
9€g calf geG

from each group {a:g}g cg- Note that the groups can have overlap, i.e., each candidate might belong to multiple groups. The

guarantees on the expected number of qualified candidates from CSS (Dynamic Pool Size) directly apply to each group. The

near-optimality guarantees of CSS (Dynamic Pool Size) only apply for every group when each candidate belongs to exactly

one group, since otherwise it is possible that we select more-than-enough candidates from a particular group to satisfy the

guarantees for the other groups.

A.3. Calibrated Screening Algorithms with Multiple Bins

We develop algorithms that can ensure distribution-free guarantees on the expected number of qualified candidates in the
shortlists, when we partition the sample-space into multiple bins by the prediction scores from a given classifier f. For ease
of notation and presentation of the proof, we illustrate the theory and the algorithm in the constant pool size setting. But
they can be similarly adapted to the dynamic pool size setting as described in Appendix A.1.

Let tp = 1,...,tp = 0 be the thresholds on the prediction scores from f in decreasing order, which partition the
sample-space X into B bins: {z € X |ty < f(z) <t1}, {xr € X |t1 < f(x) <ta2}, ..., {xr € X|tp_1 < f(z) < tp}.
Let B : X — [B] be the bin identity function, which maps a candidate z to the bin it belongs to B(z). Let §, =
E(x,y)~pPxy I{B(X) = b} Y], and oy = 1 > ien) Y T{B(X{)} be an empirical estimate of it from the calibration data
Dea- There exist many concentration inequalities to bound the calibration errors. But they generally require sample-splitting,
i.e., to split the calibration data into two sets, one set for selecting the sample-space partition, and the other set for estimating
the calibration error. A recent work (Gupta & Ramdas, 2021) on distribution-free calibration without sample-splitting does
not apply here, since their proposed method can only bound the calibration errors of 1, = E(x y)~py y [Yi | B(X) = 0],
rather than ;. To avoid sample-splitting while still bounding the calibration errors of §; on sample-space partitions with
thresholds {¢,} be[B-1] chosen in a data dependent way (e.g., uniform mass binning (Zadrozny & Elkan, 2001)), we again
use the DKWM inequality to bound the calibration error of §; on any bin b that corresponds to an interval on the scores
predict by f, by the following proposition.
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Algorithm 4 Calibrated Subset Selection with Multiple Bins
1: input: k, m, B, B, {55} ,e(ayn),
be[B]

2: initialize: s = ()
b = inf {a € [B] ‘ et (Sb - 26(04,71)) > k/m}

~ k/m—zbe h1 op—2€(a,mn)
40= 5,;[—26](51,71) )
5: for x €  do

6:  if B(z) < bthen
7.

8

9

o

addz to s
else if B(x) = b then
: add z to s with probability 6
10:  end if
11: end for
12: return s

Proposition A.3. For any o € (0,1), with probability at least 1 — « (in f and Dey), it holds that for any bin
{z € X|ty—1 < f(x) < tp} indexed by b and parameterized by 0 < tp,_1 <t <1,

‘&,fﬁb’ < /2In(2/a)/n = 2¢(a, n).

With this calibration error guarantee that holds for any bin, and motivated by the monotone property of f, we derive an
empirical lower bound on the expected number of qualified candidates similarly as Corollary 4.7 using a family of threshold
decision policies that select candidates from the top-scored bins to lower-scored bins, possibly at random for the candidates
in the last bin it selects candidates from. Any policy s 4 ¢ given a classifier f in this family makes decisions based on the
following decision rule

1 lfB(l‘l) < a,
s; = < Bernoulli(f) if B(x;) = a,
0 otherwise.

An empirical lower bound on the expected number of qualified candidates in the shortlists can be derived as follows

E(x y)~P,S~mjas Z SiYi | = mEB(x),v)~Pax) vy ¥ I{B(X) < a} +01{B(X) = a})]

i€[m]

=m Y 6 (I{b<a}+00{b=a})

be[B]

>m Z (&—26(04,71)) (I{b<a}+00{b=a}).

be[B]

We solve the optimization problem with this empirical lower bound similarly as in Eq. 7:

ZALQA = argmin Exp sz, , Z Si @®)
b,0€0 ' ic[m]

where © = {a € [B],0 € [0,1) |m Sy (0 — 2€(a,n) ) (1{b < a} + 01 {b = a}) = k}.

And it turns out that there is a closed form solution

b=inf{ a € [B]

Z (35 — 2e(a,n)> >k/m

be(al
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and
i k/m =3 e (6b - Qe(a,n))
55 —2¢(a,m) .

We summarize the algorithm using this decision policy in Algorithm 4. It guarantees that the expected number of qualified
candidates is greater than k£ with probability 1 — « as shown in the empirical lower bound. And, it also satisfies the
near-optimality guarantees on the expected size of the shortlist among this extended family of threshold decision policies
given a fixed sample-space partition similarly as Calibrated Subset Selection does in Proposition 4.9. We omit the proof
since it can be simply adapted from the proof of Proposition 4.9.

The disadvantage of Algorithm 4 is that it requires a given sample-space partition and finds near-optimal policy only among
the policies using this fixed sample-space partition, while CSS directly optimizes the sample-space partition and the policy
jointly. To also optimize over sample-space partitions, i.e., the number of bins and the thresholds, is computationally
intractable and hard to identify which one is actually optimal. CSS solves this problem by considering a smaller policy
space (no random selection from the last bin) and the sample-space partition space (only two bins), so that it is easy to find
the optimal sample-space partition and the optimal policy simultaneously. We now show that among deterministic threshold
decision rules, sample-space partitions with two bins are optimal.

Calibration on More Bins Worsens the Performance of Threshold Policies. When we consider deterministic threshold
decision rules, Algorithm 4 becomes selecting the candidates in bin b with probability 1 instead of with probability 6, to
ensure distribution-free guarantees on the expected number of qualified candidates in the shortlists. This is equivalent to
finding the largest threshold # among {t;} pe[p) tO ensure enough qualified candidates

t=supqte{tilyery | O T{te >t} (0 — 2¢(d,n)) >k
be[B]

This is essentially solving the optimization problem using the empirical lower bound on the expected number of qualified

candidates .
D T{ty >t} (9 — 2¢(6,n)),
be[B]

over a subset of thresholds in [0, 1]. This empirical lower bound is looser compared to the bound used in CSS, which also
optimizes over the entire threshold space [0, 1], as shown in the following

Z T{ty >t} (& — 2€(6,n)) = dyy1 — 2 Z I{t, >t} e(a,n) > &y, 1 — €(c, ).

be[B] be[B]
So it is clear that CSS which uses a tighter bound over a larger space of thresholds achieves shorter shortlists in expectation.

UMB B Bins Algorithms. In the empirical evaluation, the UBM B Bins algorithms correspond to selecting the thresholds
such that the calibration data D, are partitioned evenly into B bins, and running Algorithm 4 with the sample-space
partition characterized by these thresholds.

B. Calibration Error Bounds Imply Distribution-Free Average Calibration in Regression

If we regard the given classifier f as a regression model from z to ¥, then the calibration error bounds in Proposition 4.6
directly imply a classifier that (approximately) achieves average calibration for any interval (Gneiting et al., 2007; Kuleshov
et al., 2018). Translating average calibration in regression to our setting, where the range of the regression model has only
two values {0, 1}, a classifier h is average-calibrated if for any 0 <t < 1

E(XvY)NPX,Y [Y]I {h(X) > t}} =1-t

From the calibration error guarantees in Proposition 4.6, we know that for any ¢ € (0, 1), with probability 1 — d, for any
t€[0,1],

E(X’Y)pr,y YI{f(X)>1t}] - 8@1 <ela,n).
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Let g(t) = b, +,1, which is a monotonically decreasing function. Let ¢ = g~*(1 — ¢') in the above inequalities, we get for any

€ [0,1],
E(xy)mpsy YI{f(X)> g7 (1—#)}] = (1—t)| < e(a,n).
Since g is monotone, we can get that for any ¢ € [0, 1],

[E(xyv)~pey [YT{(g0 /)(X) 21 —1}] = (1 = )] < e(a,n).

Let h = go f, his approximately calibrated in a sense that with probability 1 — «, for any ¢ € [0, 1],

1—t—€(a,0) < Exyyopy y [Yﬂ {E(X) > tH <1—t+e(o,d).

C. Proofs
C.1. Proof of Theorem 3.1

We first show that for any & € X'™, the constraint in the minimization problem in Eq. 1 is satisfied with equality under ﬂ;*,

ESNW}*’YNP Z SlY; - E{Yi}ie[m]NHie[ Py|x=a,; ’SNW({f }76 Z SY

i€[m] 1€[m]

DoPr(Y =1 X =a) (U{f(z:) > "} + T{f(a;) = 1} 6")

i€[m]
= Z fla) (U{f (@) > ¢} + T{f(z:) =7} 6")
i€[m]

=k.

The last equality is by the definition of t* and 6*. Next, we will show that it is an optimal solution for any € X™ by
contradiction.

The objective in Eq. 1 using 7}, is

Esnms, | D Si| = ZH{Pr =1|X =) >t} +0T{Pr(Y =1| X =a;) =t*}.

Li€lm] | i1€[m)]

Suppose a policy 7’ achieves smaller objective than W;* for some x € X", i.e

€.,

Bty | 20 51| = Bor(@) < ST PV =1 X =) > £} + 0 T{Pr (Y = 1| X =) = '},

Li€[lm] | i€[m]

We will show that the constraint in the optimization problem in Eq. 1 for  is not satisfied using 7. Let

ti=supQte(0,1]: Y I{Pr(Y =1|X =) >t} > Ru(x)

i€[m]

and
Re(@) = 2 i I{Pr (Y =1 | X =2;) >t}

/.
s S P =1 X =) =11

Note that t* < ¢’ since
STIPr(Y =1[X =) > '}
1€[m]

> I{Pr(Y =1[X =) >t} +0I{Pr(Y =1| X = ;) =t} > R ().

i€[m]
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Now, we can show that the constraint is not satisfied using 7’. The left hand side of the constraint using 7’ can be bounded as

Eg~r Z YiS:| = E{E}ie[m]wnie[m] Py |x—¢,,S~m' Z Y;S;

i€[m] i€[m]

=Eger | Y Pr(Y =1|X =1;)S;

i€[m)]

S Pr(Y =1 X =) ([{Pr(Y = 1| X =) >t} + I{Pr(Y = 1 | X = ;) =t} 0),

1€[m]

where the last inequality is by the definition of R,/ (x), t' and 6'. When t* < t/,

Z PriV =1 X=z)I{Pr(Y=1|X=xz;)>t'}+I{Pr (Y =1| X =1;) =t'}6)

i1€[m]
<SPV =1X=a)[{Pr(Y =1| X =a;) > '} + I{Pr]Y = 1| X = ;] = "} 0*) = &
1€[m]
When t* = t/,
0/ _ R7r/ _Zze[m]H{Pr(Y =1 ‘ X :xl) > t*} < 9*
ZiG[m]H{Pr (Y =1|X=u;) =t} .
Thus

D Pr(Y=1]X=a)([[{Pr(Y =1| X =2;) >t} + {Pr (Y =1 | X = ;) =t} ¢

i€[m]
=3 Pr(Y=1[X=a)[[{Pr(Y =1|X =2;) >t'} + [{Pr (Y = 1 | X = 2;) =t} §/)
i€[m]

<Y Pr(Y=1|X=a)[{Pr(Y=1|X =a)) > '} + I{Pr (Y = 1| X = ;) = "} §") = k

i€[m]

This shows that for any & € X™, for any policy 7’ that achieves smaller objective than i 7’ does not satisfy the constraint,
which concludes the proof.

C.2. Proof of Proposition 3.2

We construct two pools of candidates such that any policy will fail on at least one them.

The two pools of candidates are all as and all bs, x = {a,a,...,a} and ' = {b,d,...,b}. And also note that in this kind
of candidate distribution, the only perfectly calibrated predictor that is not the omniscient predictor is the predictor that
predicts A(z) = Pr(Y = 1) for all x € X, since there are only two possible candidate feature vectors. For any policy 7,
that makes decisions S based purely on the quality scores by predicted by £, the distribution of S will be the same for the
two pools of candidates, since they have the same predictions from h.

Thus the expectation on the size of the shortlist for the two pools of candidates are the same

ESNW” ({h(ml Z S = ESN‘IUL({h J/ Z S = Cmp

1€[m] 1€[m]

On the other hand, for the optimal policy 7%., we know that

Esoms. (i) | 2o 51| =

i1€[m]
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and

ES””*({f*(Ié)}ie[m]) ZS’;‘ =m.

1€[m]

The sum of the differences on the two pools of candidates is

B (h(eo) e ;& Bt (@ cp) ;]Si
il i€

B ((=)},00) Y Si| —Egy . (s Z Si|| = lem, — k| + |cx, —m| > m — k.

Li[m] 16[”” i€[m]

So for any policy 7y, there exists a pool of candidates (either & or x’) such that the difference is at least mT_k

For the expected number of qualified candidates in the shortlists, for any policy 73, we have

E

o) ZSY = Cp,,

i€[m]

Y ~P,S~mn ({h(z:)}

and

k
EY~PS~7rh({h( )}7e[m] Z SY - Ecﬂ'h'

i€[m]

On the other hand, for the optimal policy w;* , we know that

Eypsmns, (1 bie) | 2o 5| = By ipisns, ({7 (D)} ) > SYi| =k
i€[m

i€[m]

The sum of differences on the two pools of candidates is

Ey o psmm, ((he)}ep) | 2 SiYi By psam (7@ ie ) Z SiYi

1€[m] 1€[m]

E S;Y;| — E S;Y;
By (1)), ) | 22 versr (1060 ) | 22
= |, — k|+‘kcmlk‘2k<1k),
m

where the equality is achieved when ¢ = k. So for any policy 7y, there exist a set of candidates (either « or &) such that
the difference is at least £ (1 — £).
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C.3. Proof of Theorem 4.1

First, we show that the constraint in the minimization problem in (2) is satisfied with equality:

Ex,y)~psem | O YiSi| =Eqgix vy,

1€[m]

e[m] Ph(X) Yy SN”’h({h (Xi)}ier m] Z YS

B (X0 bretmi~ iy St (10X bic i) ‘Z S;Pr(Y =1 h(X,))

{h(X )}le[m]NPh(X) S~mp ({h(X )}ze[m]) Z Slh(X)

= E{n(xobieim~Piy, > I{AX) > tn} h(Xs) + T{A(X;) = tn} h(X;)0h]

1€[m]
= mEp(x)~p, ) [TH{X) > tp} M(X) + T{A(X) =t} h(X)6)]
=k,

where the last equality is by the definition of ¢;, and 6j,.

Next, we will show that it is an optimal solution by contradiction. The objective in (2) using 7}, is

Ex~p,S~r; Z Si| =Ex~p | Y ([{A(X;) > ta} + OpT{h(X;) = t5})

1€[m] i€[m)]

- E{h(Xi)}ie[m]NP{[Z'X) Z (I{A(X;) > tn} + ORI {N(X;) = tn})

i€[m)]
= mEh(X)NPh(X) []I{h(X) > th} + Hh]l{h(X) = th}}

=m Y oy (U{g > tn} + 01 {p} = tn}).
be[B]

For any policy 7, that achieves smaller objective than 7},

Ex~p s~ Z Si| =Ry <m Z Py (L{ps > tn} + Onl{py = ta}),
i€[m] be[B]

we will show that the constraint is not satisfied using 7;,. Let

th=supQt€[0,1]: > ppl{ps >t} > Rer /m o,
be([B]

and .
Rﬂ;l/m - Ebe[B] pyI{py >t'}

0 =
Zbe[B] pyl{py =1}

Note that ¢;, < t’ since

S iy >t} > 3 o (g > tu} + 04 {5 = th}) > Ray /.
be[B] be[B]
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Now we can show that the constraint is not satisfied using 7;,. The left hand side of the constraint using 7}, can be bounded
as

E(x,v)~p,s~m, Z YiSil = Bl h(x),vi) betmm Pl v oSl ({h(X )| D YiSs

h(X),Y"
i1€[m]

= B0} ey~ Pl S~ (16X i) ZSPY =1[h(Xy))

Li€[m]

= E{h(Xi)}z:e[ ~Plxy SN”h({h( i)}ietm ]) Z Si h

Li€[m]

< MBh(X)~ Py ) [PX) (T{R(X) > 17} + 0,1 {A(X) = £3,})]

=m > ppuy (W >t} + 0,1 {pi = 13,}) .
be[B]

The inequality is by the definition of R, ¢}, and 0. When t;, <},

m > ppuy Wy >t} + 0,1 {us =t ) m > phus (T{pp > tn} + Onl{u; = tn}) = k.

be[B] velD]
When ), = t},,
Y e S ) p
- * * h-
" > overp Po MG =th}
Thus

m > ppus W{ps >t} + 0T {ws = t,}) =m > ppui (T{pi > ta} + 0,1 {pp = tr})
be[B] be[B]

<m Y ppug (T{py > tn} + OnT {1y = th})
be[B]

=k.

This shows that no policy in ITj, can achieve smaller objective than 7}, while satisfying the constraint. So 7, is a solution to
the minimization problem among IIj,.

C.4. Proof of Corollary 4.3

By the definition of IIj,, it is easy to see that the policy space of using i’ is a subset of that of h IIj,» C IIj,, the corollary
directly follows from Theorem 4.1.

C.5. Proof of Theorem 4.5

The proof constructs a policy ¢ ; for any policy 7y such that the two inequalities in the theorem hold. For any policy 7y, let

kry =Ex y)~P,S~m; Z SiYi

1€[m]

be the expected number of qualified candidates selected by 7¢, p1f(-) = Pr(Y = 1] f(X) = -) denote the conditional
probability that a candidate is qualified given a prediction quality score from f. We construct the the threshold in policy 7 ¢
as

t = sup {u € 10,1] : mE(x)mp, o, Ip (FXNLF(X) 2 u}] 2 kﬂf} .
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The expected number of qualified candidates using 7 ; is

Eox y)~psemre | 2o YiSi| = B(rx) v commPii, s Smr (10 i) | 2o Vi

1€[m] i€[m]

= B (X0 ietm~Pliy D up(FXNI{f(X) > t}
1€[m]

=mEpx)py oy, Iy (F(X))IH{F(X) = t}]
= kn,

This shows that the expected number of qualified candidates selected by 7 ; is no smaller than 7. Now we only need to
show the expected size of the shortlist using 7y ; is no larger than that of using 7. The expected size of the shortlist using
Tft is

Ex~ps~n;, Z Si| = Er(X0Yicim~Prix, Z I{f(Xi) 2 t}| = mEsx)~py iy, L{f(X) > t}]

i€[m] i€[m]

=mPr(f(X)>1t).

We will show that 7 achieves no smaller expected size of the shortlists by using contradiction. Suppose 7 achieves smaller
expected size of the shortlist than 7 ¢

Ex~ps~r, Z Si| = Ry, <mPr(f(X) >1),

i€[m]

we will show that under this assumption, we will arrive at a contradiction that the expected number of qualified candidates
selected by 7 is smaller than k. Let

t' =sup{ue[0,1] :mPr(f(X)>u)> Ry, }.

Note that ¢ < ¢ since
mPr(f(X)>1) > Ry,

Then, the expected number of qualified candidates using 7 can be bounded as

IE(X,Y)NP,SNTI'f Z Y;S; :E{f(X'i)}ig[m]Nan(ny‘SNﬂ—f({f(Xi)}iG[M] Z Nf

i€[m] i1€[m)]

= E{f(X )}1€[m]NPf(x)vS~7Tf f’({f (X)}igr m] Z Mf

= By o (SO (X) > 1]
< gx)py e, Uit (PO > )]
= kn,

The inequality is by monotone property of f. This arrives at a contradiction with the definition that the expected size of
shortlist using 7¢ is kr,. So, we get

Ex~psmn, | . Si| 2Exepsen,, | Y. Si|:

i€[m] i€[m]

which concludes the proof.
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C.6. Proof of Proposition 4.6

Before introducing the proof of the proposition, we first introduce the DKWM inequality (Dvoretzky et al., 1956; Massart,
1990) as a lemma.

Lemma C.1 (DKWM inequality (Dvoretzky et al., 1956; Massart, 1990)). Given a natural number n, let Z, Zs,. .., Z, be
real-valued independent and identically distributed random variables with cumulative distribution function F(-). Let F,,
denote the associated empirical distribution function defined by

Fn(z):%ZH{Zigz} z eR.

i€[n]

For any a € (0, 1), with probability 1 — «

sup |F(x) — Fp(2)] < ln(jﬁ.
z€R n

Equipped with this lemma, we provide the proof for Proposition 4.6 as follows.

Let
Z0 = —YEF(XE) Vi€ [n)

They are real-valued independent and identically distributed random variables. Let F°(-) denote the cumulative distribution

function of Z% and
1
Fi(z) == T{—Y f(X°) < vz € R.
(2) nE (=Y f(XP) <z} Vze

i€[n]

Applying the DKWM inequality, we can get that for any « € (0, 1), with probability at least 1 — «, for any z € R,

In(2/ca)
Fo(z) = F(2)| < .
[F3() = P(2)| <4 2ot
Note that

Fg(t) = _5t,17
and

F(s(t) = _6t717

which concludes the proof.

C.7. Proof of Corollary 4.7

When the event in Proposition 4.6 holds,

E(X’Y)~P7SN7Tf=t Z SiYi| = ]E{(f(Xi)aYi)}le[m]NP;'(LX),Y’SNWJ”J({f(xi)}ie[m]) Z SiYs

i€[m] i€[m]

= B0 o~ Py v | Do YLUA(X0) > 1)

i€[m]
= mE(f(X%Y)NPf(x),y [Y]I {f(X) > t}]

= mét,l.

By Proposition 4.6, this corollary holds, which concludes the proof.
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C.8. Proof of Theorem 4.8

‘We can see that

Ex~ps~r;, | > Si

i€[m]

is a non-increasing function of . So to solve the constraint minimization problem, we only need to select the largest ¢ that
satisfies the constraint, which is Eq. 7. This concludes the proof.

C.9. Proof of Proposition 4.9

For the optimal policy 7 Fitss the constraint is active (otherwise we can randomly select the candidates selected by 7 fu5 10
derive a better policy, which contradicts that 7 £t is optimal)

E(X,Y)NP,SNﬂ'f’t} ZSiYi =k.

1€[m]

Since the distribution of f(X) is nonatomic, all the candidates have different prediction scores almost surely. Thus, by the
definition of ¥ £, we know that

0,1 — €la,n) <k/m+1/n
almost surely. By Proposition 4.6 and the proof in Corollary 4.7, we have that for any « € (0, 1), with probability at least
1—oa,

E(Xy)Np’SNﬂfif Z YiSi| =mé;, ; <m <3£f71 + e(a,n)) < k+2me(a,n) + m/n.
i€[m]

This concludes the proof.

C.10. Proof of Proposition 4.10

Let Q; = S;Y; for all i € [m] be the random variables of whether a candidate i is qualified and selected in the pool of
candidates. Note that

E(X,Y)wP,Srwrf‘,gf [Qs] = 65, 1-

By Theorem 4.8, we know that for any oy € (0, 1) with probability at least 1 — 1,

Ex.¥)~PSen, s, | D @i| =mb; 1 2 k.

1€[m)]

By applying Bernstein’s inequality to these m independent and identically distributed random variables, we have that, for
any as € (0, 1), with probability at least 1 — o

Z Qi = md;, 1 — %111(1/042) - \/1/91n2(1/a2) +2md;, 1 In(1/az).

i€[m]

The right hand side of the above inequality is an increasing function of md; , when md; ; > 4/9In(1/az). When
k > 4/91n(1/az), we can apply the union bound to the above two events to get that, with probability at least 1 — vy — cva,

1 1 1
z[:] Qi > méff,l_g 111(1/a2)—\/1/91n2(1/a2) +2md;,  In(1/02) = k_§ ln(l/ag)—g\/lnz(l/ag) + 18k In(1/cg).
i€lm

This concludes the proof.
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C.11. Proof of Proposition A.2

We prove the proposition for f that has a discrete range, and the proof for classifiers with continuous range can be derived
similarly. For any 7, we construct a pool-independent policy 7’ by constructing Pr, € Range(f) — [0,1] as

ErPar {£(X0)} s cpany~ P Sy [Zie[M]H{f(Xi) =v}S;
E[M]Ef(x)~p; o {T{f(X) = v}}

Let 7r} be the policy using Pr - The expected number of qualified candidates for policy w} equals that of 7

pﬂ'} (’U) =

E(a,x,¥)~P S~ > Vs

1€[M]
- ]EMNPAI5{f(X7:)}i€[]\/I]NPJ{}(IX)’SNT‘- ({f(X )}15[1\4 Z S Pr =1 | f(XZ))
1€[M]
= ]EMNPM1{f(Xi)}ie[M] f(X) Z pﬂ' (Y =1 | f(XZ))

€[ M]
— B [M] Eypup, s, [pw} () Pr(Y =1 |v)]

F(x)S~Ts [ZiE[M] I{f(X;) = v} Si] Pr(Y =1]v)
v~ Py (x) Ef(X)NPf(X) {I{f(X) =v}}

& IEMNPM {f(X)}ie M]NP

= B P (F(X0 b~ Sy (K0 cpy) | 2o SiPT(Y =11 (X))

1€[M]

=Ew,x y)~P S~r; Z YiSi|,
1€[M)]

and the expected size of the shortlist equals that of 7 ¢

]E(JMX Y ~P, SNTr Z YS = ]EMNPM,{JC(Xi)}ig[M f(x)szTr ({f(X )}76 M Z S
i€[M] i€[M]

= EMNPM,{f(X,i)}iE[M]NPJ{V(’X) Z D, (f(X3))
i€[M]

=E[M] IEv~Pf(X) [ T (U)]

. EpinPas {£(X0)} s pay~ PM Sy [Z@M] I{f(Xi) = v} Sz}
= Loy~ P
oo Ef(X)NPf(X) {H {f(X) = U}}

= ]EMNPMy{f(Xi)}ig[M]NP%x)>SN7Tf({f(X1)}i€[M]) [Z S’L
i€

=Ew,x,y)~P S~ Z YiSi
ie[M)
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C.12. Proof of Proposition A.3

From the proof of Proposition 4.6, we know that with probability at least 1 — «

Eox, )y VTS 2 0] = = ST VEA{S(XD) 2 8} < elan)

i€[n]

forall ¢ € [0, 1]. So, with probability at least 1 — «, forany 0 < ¢, < t, <1,

E(xvympny VTt < SX) S 0}] = 37 Vi {ta < f(XF) < 1)

i€[n]

< [Exypen V@) 2 )] =+ 7 YE{F(XD) > )

i€[n]

#[Boeyyer WO 2 6] = = 37 VLX) 2 )] < 2e(asm).

i€[n]

This concludes the proof.



