
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA

978-1-939133-31-1

Open access to the Proceedings of the

31st USENIX Security Symposium is

sponsored by USENIX.

OpenVPN is Open to VPN Fingerprinting
Diwen Xue, Reethika Ramesh, and Arham Jain, University of Michigan;

Michalis Kallitsis, Merit Network, Inc.; J. Alex Halderman, University of Michigan;

Jedidiah R. Crandall, Arizona State University/Breakpointing Bad; Roya Ensafi,

University of Michigan

https://www.usenix.org/conference/usenixsecurity22/presentation/xue-diwen

OpenVPN is Open to VPN Fingerprinting

Diwen Xue∗ Reethika Ramesh∗ Arham Jain∗ Michalis Kallitsis†

J. Alex Halderman∗ Jedidiah R. Crandall‡ Roya Ensafi∗

∗University of Michigan †Merit Network, Inc.
‡ Arizona State University/Breakpointing Bad

Abstract

VPN adoption has seen steady growth over the past decade

due to increased public awareness of privacy and surveillance

threats. In response, certain governments are attempting to

restrict VPN access by identifying connections using “dual

use” DPI technology. To investigate the potential for VPN

blocking, we develop mechanisms for accurately fingerprint-

ing connections using OpenVPN, the most popular protocol

for commercial VPN services. We identify three fingerprints

based on protocol features such as byte pattern, packet size,

and server response. Playing the role of an attacker who con-

trols the network, we design a two-phase framework that per-

forms passive fingerprinting and active probing in sequence.

We evaluate our framework in partnership with a million-

user ISP and find that we identify over 85% of OpenVPN

flows with only negligible false positives, suggesting that

OpenVPN-based services can be effectively blocked with

little collateral damage. Although some commercial VPNs

implement countermeasures to avoid detection, our frame-

work successfully identified connections to 34 out of 41 “ob-

fuscated” VPN configurations. We discuss the implications

of the VPN fingerprintability for different threat models and

propose short-term defenses. In the longer term, we urge

commercial VPN providers to be more transparent about their

obfuscation approaches and to adopt more principled detec-

tion countermeasures, such as those developed in censorship

circumvention research.

1 Introduction

ISPs, advertisers, and national governments are increas-

ingly disrupting, manipulating, and monitoring Internet traf-

fic [16, 22, 27, 47, 69]. As a result, virtual private network

(VPN) adoption has been growing rapidly, not only among

activists and journalists with heightened threat models but

also among average users, who employ VPNs for reasons

ranging from protecting their privacy on untrusted networks

to circumventing censorship. As a recent example, with the

passage of Hong Kong’s new national security law, popular

VPN providers observed a 120-fold surge in downloads due

to fears of escalating surveillance and censorship [62].

In response to the growing popularity of VPNs, numer-

ous ISPs and governments are now seeking to track or block

VPN traffic in order to maintain visibility and control over

the traffic within their jurisdictions. Binxing Fang, the de-

signer of the Great Firewall of China (GFW) said there is

an “eternal war” between the Firewall and VPNs, and the

country has ordered ISPs to report and block personal VPN

usage [60,61]. More recently, Russia and India have proposed

to block VPN services in their countries, both labeling VPNs

a national cybersecurity threat [44, 59]. Commercial ISPs are

also motivated to track VPN connections. For example, in

early 2021, a large ISP in South Africa, Rain, Ltd., started

throttling VPN connections by over 90 percent in order to

enforce quality-of-service restrictions in their data plans [64].

ISPs and censors are known to employ a variety of simple

anti-VPN techniques, such as tracking connections based on

IP reputation, blocking VPN provider (provider from hereon)

websites, and enacting laws or terms of service forbidding

VPN usage [46,53,60]. Yet, these methods are not robust; mo-

tivated users find ways to access VPN services in spite of them.

However, even less-powerful ISPs and censors now have ac-

cess to technologies such as carrier-grade deep packet inspec-

tion (DPI) with which they can implement more sophisticated

modes of detection based on protocol semantics [43, 48].

In this paper, we explore the implications of DPI for VPN

detection and blocking by studying the fingerprintability of

OpenVPN (the most popular protocol for commercial VPN

services [6]) from the perspective of an adversarial ISP. We

seek to answer two research questions: (1) can ISPs and

governments identify traffic flows as OpenVPN connections

in real time? and (2) can they do so at-scale without in-

curring significant collateral damage from false positives?

Answering these questions requires more than just identifying

fingerprinting vulnerabilities; although challenging, we need

to demonstrate practical exploits under the constraints of how

ISPs and nation-state censors operate in the real world.

We build a detection framework that is inspired by the ar-

chitecture of the Great Firewall [1,11,71], consisting of Filter

and Prober components. A Filter performs passive filtering

over passing network traffic in real time, exploiting protocol

quirks we identified in OpenVPN’s handshake stage. After a

flow is flagged by a Filter, the destination address is passed

USENIX Association 31st USENIX Security Symposium 483

Figure 1: OpenVPN Session Establishment (TLS mode).

to a Prober that performs active probing as confirmation. By

sending probes carefully designed to elicit protocol-specific

behaviors, the Prober is able to identify an OpenVPN server

using side channels even if the server enables OpenVPN’s

optional defense against active probing. Our two-phase frame-

work is capable of processing ISP-scale traffic at line-speed

with an extremely low false positive rate.

In addition to core or “vanilla” OpenVPN, we also in-

clude commercial “obfuscated” VPN services in this study.

In response to increasing interference from ISPs and cen-

sors, obfuscated VPN services have started to gain traction,

especially from users in countries with heavy censorship or

laws against the personal usage of VPNs. Obfuscated VPN

services, whose operators often tout them as “invisible” and

“unblockable” [5, 49, 54], typically use OpenVPN with an

additional obfuscation layer to avoid detection [2, 66].

Partnering with Merit (a mid-size regional ISP that serves

a population of 1 million users), we deploy our framework at

a monitor server that observes 20 Gbps of ingress and egress

traffic mirrored from a major Merit point-of-presence. (Refer

to § 5 for ethical considerations.) We use PF_RING [38] in

zero-copy mode for fast packet processing by parallelized

Filters. In our tests, we are able to identify 1718 out of

2000 flows originating from a control client machine residing

within the network, corresponding to 39 out of 40 unique

“vanilla” OpenVPN configurations.

More strikingly, we also successfully identify over two-

thirds of obfuscated OpenVPN flows. Eight out of the top

10 providers offer obfuscated services, yet all of them are

flagged by our Filter. Despite providers’ lofty unobservability

claims (such as “. . . even your Internet provider can’t tell that

you’re using a VPN” [49]), we find most implementations of

obfuscated services resemble OpenVPN masked with the sim-

ple XOR-Patch [36], which is easily fingerprintable. Lack of

random padding at the obfuscation layer and co-location with

vanilla OpenVPN servers also make the obfuscated services

more vulnerable to detection.

In a typical day, our single-server setup analyzes 15 TB

of traffic and 2 billion flows. Over an eight-day evaluation,

our framework flagged 3,638 flows as OpenVPN connections.

Among these, we are able to find evidence that supports our

detection results for 3,245 flows, suggesting an upper-bound

false-positive rate three orders of magnitude lower than

previous ML-based approaches [3, 14, 26].

We conclude that tracking and blocking the use of Open-

VPN, even with most current obfuscation methods, is straight-

forward and within the reach of any ISP or network operator,

as well as nation-state adversaries. Unlike circumvention

tools such as Tor or Refraction Networking [8, 74], which

employ sophisticated strategies to avoid detection, robust ob-

fuscation techniques have been conspicuously absent from

OpenVPN and the broader VPN ecosystem. For average users,

this means that they may face blocking or throttling from ISPs,

but for high-profile, sensitive users, this fingerprintability may

lead to follow-up attacks that aim to compromise the security

of OpenVPN tunnels [40, 51]. We warn users with height-

ened threat models not to expect that their VPN usage will be

unobservable, even when connected to obfuscated services.

While we propose several short-term defenses for the finger-

printing exploits described in this paper, we fear that, in the

long term, a cat-and-mouse game similar to the one between

the Great Firewall and Tor is imminent in the VPN ecosys-

tem as well. We implore VPN developers and providers to

develop, standardize, and adopt robust, well-validated obfus-

cation strategies and to adapt them as the threats posed by

adversaries continue to evolve.

2 Background & Related Work

VPN tools create private networks across the public Internet

through encrypted tunneling. Although many VPN protocols

are being used, such as IPSec and WireGuard, OpenVPN

remains the most supported and trusted protocol among com-

mercial VPN providers [6]. Due to its versatility and open-

source nature, OpenVPN has been used as the underlying

protocol in numerous VPN products, which often advertise

the protocol for its proven security [66]. In addition, Open-

VPN’s popularity continues to rise with the trend of users

choosing to self-host open-source VPN tools [65].

OpenVPN Protocol. OpenVPN was first released in 2002

with the aim of creating a tunneling protocol focusing on

security, while also being free and fast over the standard TCP

and UDP [34]. When the OpenVPN tunnel is active, raw IP

packets being sent to or from the tunnel to the final destination

are encapsulated inside OpenVPN packets. To achieve secure

communication, OpenVPN leverages the OpenSSL library

as its cryptographic layer. Two methods for authentication

and key exchange are provided to establish trust with peers:

either pre-shared static key(s) or TLS-based negotiations. The

latter has been adopted by the majority of commercial VPN

484 31st USENIX Security Symposium USENIX Association

services. Two separate channels are used for key exchange

and data transfer, both sharing a single multiplexed TCP/UDP

stream. In the control channel, the client and server engage in

a TLS-style exchange of key materials. As TLS is designed

to operate over a reliable transport, OpenVPN provides its

control channel with a sequential, reliable layer based on an

explicit acknowledgement and re-transmission mechanism.

The negotiated key from the control channel will be used to

encrypt packets transferred in the data channel, which does

not provide any reliability guarantee. Figure 1 presents a

typical initialization sequence of OpenVPN packets leading

to a fully encrypted data channel.

Tor, Proxy, and VPN Detection. The ongoing arms-race

between the GFW and Tor has been extensively studied and

is most representative of the conflict between censorship &

surveillance and circumvention tools [9, 11, 12, 55, 56, 71].

Censors started by blocking Tor’s website and public relays,

which Tor responded to by deploying website mirrors and pri-

vate, unpublished bridges. Next, censors moved to blocking

with DPI by fingerprinting Tor’s TLS handshake, e.g. ci-

pher suites. Tor used Pluggable Transports (PT) obfuscators,

such as Obfsproxy and meek [39], to mask the handshake.

In response, censors deployed active probing to complement

DPI-based fingerprinting to detect Tor and certain obfuscators.

There is limited previous work focusing on VPN traffic

detection. Hoogstraaten [19] explored server-side VPN de-

tection methods, ranging from using existing information

databases (e.g. WHOIS, rDNS) to fingerprinting TCP options

(e.g. advertised MSS). Webb et al. [70] proposed detect-

ing proxies and VPNs based on traffic timing and latency.

Their approach relied on the hypothesis that when a service

is accessed through a proxy, the RTT measurement will be

different from the RTT of a direct connection. Another class

of previous work uses computational and machine learning

models to passively detect VPN traffic [3,14,15,17,24,26,68],

leveraging flow-level statistics such as connection duration

and packet interval. Most of this work uses the same synthetic

ISCXVPN2016 dataset [17]—which contains a balanced mix-

ture of VPN and non-VPN traffic—to train and test a variety

of machine learning and neural network classifiers in an of-

fline, lab-setting. In contrast, our work primarily focuses on

whether ISP-level adversaries can identify OpenVPN flows

in near real time, and whether they can do so at scale, un-

der practical constraints, and with minimal collateral damage.

For this reason, we omit a full analysis of ML-based work,

and only compare them with our approach in terms of false

positives (falsely blocking legitimate traffic).

Obfuscated (Open)VPN. Various traffic obfuscation tech-

niques have been examined in previous work. Wang et al.

examined the detectability of Obfsproxy, FTE, and meek [67].

Using attacks based on protocol semantics, packet entropy,

and timing-related features, they concluded that a deter-

mined censor could detect all three obfuscators reliably.

Houmansadr et al. demonstrated that popular mimicry-based

obfuscation tools failed to achieve unobservability because

seamlessly simulating another protocol is extremely challeng-

ing [20]. Previous studies have suggested censors can use

active probing to detect proxies that obfuscate traffic [1,11,71].

In response, “probe-resistant” proxies were developed, which

remain silent when being probed by an unauthenticated adver-

sary. However, researchers have demonstrated that carefully

designed probes could still identify these proxies [13].

There is a marked demand for an emerging class of services

called “stealth” or “obfuscated” VPN, especially from users

in countries with heavy censorship or laws against personal

VPN usage [60, 63]. Most obfuscated VPN services use

OpenVPN as the underlying protocol for security and routing,

with an obfuscation layer overlaid to avoid detection [2, 66] 1.

OpenVPN’s core developers prefer that obfuscation remains a

separate project operating alongside the vanilla/core protocol,

as they “do not want to play the cat-and-mouse game [as

Tor]” [35]. The absence of a standardized obfuscation solu-

tion has led to a plethora of obfuscators implemented by dif-

ferent VPN providers, who often claim that their obfuscated

services can remain undetected by ISPs and censors alike.

For example, TorGuard introduces their obfuscated VPN

service as “Engineered from the ground up to be impossible

to detect” [54]. BolehVPN claims that their VPN obfuscation

“. . .keeps you out of trouble, even in China” [5]. Common

obfuscation strategies adopted by commercial VPNs include

employing XOR-based scramblers, wrapping OpenVPN

inside encrypted tunnels, or using proprietary protocols.

OpenVPN XOR Patch: Originally developed by Clayface

as a patch for vanilla OpenVPN, the XOR patch scrambles a

packet by either xor-ing bytes with a pre-shared key, reversing

the order of the bytes, xor-ing each byte with its position, or

a combination of these steps [36]. Notably, OpenVPN devel-

opers discourage its use due to the lack of code audit [57].

OpenVPN over Encrypted Tunnels: Some VPN services

wrap OpenVPN traffic inside encrypted tunnels to prevent

DPI fingerprinting. Some of the adopted obfuscation tunnels

are Obfsproxy (obfs{2/3/4}), Stunnel, Websocket Tunnel, and

encrypted proxies (shadowsocks, V2Ray).

Proprietary Protocols: A few VPN providers have devel-

oped proprietary obfuscated protocols, some of which are

built on top of OpenVPN with a proprietary obfuscation layer

added, such as VyprVPN or Astrill [2, 66].

To the best of our knowledge, we are the first to explore the

fingerprintability of commercial and/or obfuscated OpenVPN

services on real traffic. Our unique study highlights the prac-

ticality of such fingerprinting, which has profound real-world

security implications on end-users expecting certain privacy

and anonymity guarantees from using these services.

1There are discussions on obfuscating WireGuard [72, 73], but to the best

of our knowledge, they have yet to be deployed by any commercial VPNs

USENIX Association 31st USENIX Security Symposium 485

Figure 2: Framework Deployment on Merit Steps: (1) Client connects to VPN servers. (2) VPN connections, along with passing traffic, are

being mirrored to the Filter. (3) Filter forwards server IP of suspected connections to the probing system. (4) Targets are sent to each dedicated

Probers. (5) Probers send probes asynchronously. (6) Connections confirmed by probing are logged.

3 Challenges in Real-world VPN Detection

Effective investigation of fingerprintability requires in-

corporating perspectives of how ISPs and censors oper-

ate in practice. It is not enough to simply identify finger-

printing vulnerabilities, we need to demonstrate realistic ex-

ploits to illustrate the practicality of exploiting the vulnera-

bility, while taking into consideration the ISP and censors’

capabilities and constraints [56]. For instance, previous aca-

demic works considered using flow-level features to train ML

classifiers for VPN detection [3, 14, 17, 24, 26, 68]. Yet, it

remains unclear how practical these detection approaches are

for ISPs and censors, and we know of no rigorous studies

that examine real-world deployment of an ML-based censor-

ship system [56]. Furthermore, previous works test on the

ISCXVPN2016 dataset [17] with balanced OpenVPN and non-

VPN traffic. However, we note that due to the low base rate of

VPN traffic in the wild, even the best-performing ML system

has false positive rates that can be economically impractical

for real-world censors sensitive to collateral damage [67].

However, investigations adopting the viewpoint of ISPs

and censors can be challenging. First, such investigation

requires collaboration with real-world ISPs and access to

their network traffic. We need to install monitors inside an

ISP’s network, while ensuring our analysis will not affect

ISP’s normal routing operations. Furthermore, analyzing

traffic from real users raises ethical concerns. Processing raw

network data may violate the privacy of users, in particular

VPN users who often have a heightened threat model. Finally,

deploying a system that performs ad-hoc traffic analysis in

real time poses significant engineering challenges. We need

to ensure the entire analysis framework (including processing

and logging) keeps pace with the packet arrival rate and take

into consideration the effect of potential asymmetric routing

or packet loss on the analysis and results.

4 Adversary Model and Deployment

We assume a realistic censor (ISP) capability model based

on knowledge from previous measurement studies on the

arms race between censors and circumventors [1, 11, 56, 71].

We outline a censor-controlled on-path filter that passively

observes and examines passing network traffic. The filter is

stateful, but has limited resources and can maintain a limited

amount of per-connection states for a short time. The filter is

also constrained by long-term data storage and computational

resources. In addition to filters installed inside the monitored

networks, we assume the censor also operates measurement

machines that can send protocol-specific probes to further

confirm the detection result. Such two-phase systems have

already been adopted by real-world censors such as the GFW

against Tor and Shadowsocks [1, 71]. Finally, we expect the

censor is familiar with the protocol of interest and has access

to the different obfuscators deployed by VPN providers (e.g.,

as a paid customer). We emphasize that this threat model

corresponds to censor’s capabilities as observed in practice

today, rather than future capabilities.

To investigate the fingerprintability of OpenVPN and

existing obfuscated solutions, we set up a two-phase

detection framework in order to answer our key questions:

1) whether real-world censors are capable of performing

such detection, and 2) whether it is economical to do this

at scale. Figure 2 shows an overview of our framework

deployment. Partnering with Merit, we instantiate a Filter

on a Monitoring Station overseeing mirrored traffic from

a router that handles 20% of the ISP’s traffic. The Filter

performs passive fingerprinting over raw packets, exploiting

traffic features unique to OpenVPN. IP and port information

of flows flagged by the Filter are forwarded to a probing

system and then distributed to dedicated Probers. The

Probers send a set of pre-defined probes specifically designed

to fingerprint an OpenVPN server. Finally, probed servers

that are confirmed as OpenVPN are logged for manual

analysis. Such a two-phase framework resembles how

486 31st USENIX Security Symposium USENIX Association

real-world censors operate: lightweight filtering followed up

by more expensive, but also more accurate, active probing.

This framework is capable of processing massive traffic in

real-time while also preventing excessive collateral damage.

5 Ethics, Privacy, and Responsible Disclosure

Raw network traffic that contains real users’ data is highly sen-

sitive, and this is especially true for traffic related to privacy-

oriented services such as VPNs. Here we describe how we

consider the security and privacy risks and ethical issues

raised by our work, and we detail the procedural and technical

steps we take to mitigate the risks.

Foremost among the ethical concerns associated with this

work is our Filter deployment inside Merit’s network to ana-

lyze user traffic. Merit, which has extensive previous expe-

rience collaborating with universities and has well-defined

ethics and privacy rules to govern such projects, supervised

the deployment. We also cleared our research plan with our

university legal counsel and IRB. Although the IRB deter-

mined that the work is not regulated, we take extensive mea-

sures to minimize potential risks for end-users.

Our framework is fine-tuned on both real and lab-generated

traffic data, and it is evaluated on live ISP traffic. For con-

trolled fine-tuning, a small traffic snapshot (the ISP Dataset

in section 7) was used to calibrate parameters, e.g., the size

of observation window. The traffic snapshot, sampling 1/30

of all flows for 45 minutes on July 28, 2021, was generated

and analyzed entirely on Merit systems, with security mecha-

nisms limiting access to select members of the team. As with

the design described in Section 6, Filter analyzed only the

first payload byte, completely ignoring the remainder of the

payload, and it recorded only the observed degree of variation.

The raw snapshot was never inspected by humans and was

deleted after the fine-tuning concluded.

For deployment and evaluation on live ISP traffic, the Fil-

ter architecture is designed to minimize risks of disrupting

or modifying user traffic. The Monitoring Station only re-

ceives a copy of the traffic, so even if our software were to

malfunction, network service would be unaffected. In ad-

dition, to reduce privacy risks, the Filter collects only the

minimum information necessary for the subsequent probing

operation. It records only the server IP addresses and ports

of matching connections, which are bucketed into 5-minute

internals to inhibit time correlation. These logs are stored

and analyzed on a server that is securely maintained by Merit

and is accessible only to a few members of our research team

on a least-privilege basis. Merit reviewed our source code

prior to deploying it on their network. During deployment

and evaluation, no packet payloads or client IP addresses are

ever recorded to disk or inspected by humans.

Based on the Filter log, the Probers send probes to candi-

date VPN servers. To minimize the risk of disrupting server

operations, we design the probes to be non-invasive and make

Figure 3: OpenVPN Header in TCP and UDP modes. (TLS only)

information available to assist operators in debugging any

problems we inadvertently cause. Each server receives only 2–

10 innocuous connection attempts, similar to those commonly

used in Internet measurement tools like Nmap. The probes

originate from two dedicated machines that we provisioned

with web pages that explain the nature of the experiment and

provide our contact information. We did not receive any in-

quiries, complaints, or problem reports. Since the server IP

addresses themselves may sometimes be non-public, we only

report aggregate statistics (e.g., the false positive rate) and

will not publish any of the addresses that we collect. Any data

requests will be referred to Merit.

As with all attack-oriented research, there is a risk that

our work developing VPN fingerprinting techniques will be

adopted by real attackers. To minimize this risk, we are in

the process of responsibly disclosing our findings to the VPN

operators whose obfuscated servers we successfully identi-

fied in our evaluation. We believe that the security of the

VPN ecosystem is best advanced by having these problems

surfaced by responsible researchers. Our work will help ac-

curately inform users about the VPN services they rely on,

and we hope it will enable more robust countermeasures to

be developed and deployed.

6 Identifying Fingerprintable Features

In this section, we identify three features that fingerprint

OpenVPN, exploiting byte pattern, packet length, and server

behaviors, respectively.

6.1 Opcode-based Fingerprinting

As shown in Figure 3, each OpenVPN packet has a header

of 24 bits in TCP mode or 8 bits in UDP mode, which is not

part of the encrypted payload. Each OpenVPN header starts

with an opcode that specifies the message type of the current

packet and a key ID that refers to a (new) TLS session. The

opcode field can take over 10 defined values, corresponding

to message types transmitted during different communication

stages. A typical OpenVPN session starts with the client send-

ing a Client Reset packet. The server then responds with a

Server Reset packet, and a TLS handshake follows. Open-

VPN packets that carry TLS ciphertexts have P_Control as

their message type. Since OpenVPN can run over UDP but

has to provide a reliable channel for TLS, each P_Control

packet is explicitly acknowledged by P_ACK packets. Finally,

USENIX Association 31st USENIX Security Symposium 487

Algorithm 1 Opcode Fingerprinting Logic

Require: N ≥ 0

OCSet←{}, CR← Opcode[0], SR← Opcode[1]
i← 2

while i 6= N & i < |Opcode| do

if Opcode[i] ∈CR,SR & |OCSet | ≥ 4 then

Return False

end if

OCSet += Opcode[i]
i← i+1

end while

Return i == N & 4≤ |OCSet | ≤ 10

#At least 4 different Opcodes needed to complete hand-

shake. In total 10 Opcodes defined by the protocol.

Figure 4: XOR-Patch that leaves first byte un-reversed

actual payloads are transmitted as P_Data packets. Figure 1

illustrates this packet exchange with opcode annotations.

A packet field taking a fixed number of values can be easy

to fingerprint and has been exploited before against other pro-

tocols [1]. We fingerprint OpenVPN’s handshake sequence

by analyzing each opcode byte for the first N packets of a

flow (the threshold N is explored in Section 7.2). Algorithm 1

shows the process of opcode fingerprinting, with Opcode re-

ferring to the sequence of N opcode values found in the first

N packets of a given flow. Briefly, the filter flags a flow if

the number of different opcodes observed accords with the

protocol and the Client and Server Resets are not seen

once the handshake is completed.

Previous work and existing open-source DPIs [23, 29, 37,

75] considered statically matching opcode values and packet

sizes based on the protocol specification. In contrast, we pro-

pose to dynamically capture the variation in opcode values

that reflects the establishment of OpenVPN sessions. Notably,

our heuristics do not require exact matching of opcode values

or packet length (e.g., do not require the third byte of the

first packet to be 0x38), thereby ensuring it works effectively

against XOR-obfuscated flows. The XOR obfuscation masks

packet payloads to ensure that the opcode bytes are altered.

Notably, according to the specification [36], when it reverses

the packet as one of the obfuscation steps, it excludes the

first character of the buffer (where the opcode byte is located)

from reversal, as shown in Figure 4. As such, the opcode byte

is always XOR-ed with the same byte of the XOR key, and

the same opcodes would be mapped to the same value after

obfuscation. This behavior is preserved when Tunnelblick (a

popular OpenVPN client on macOS) adopts the patch [57],

and has been used in multiple mobile apps [76]. By consid-

ering only the number of unique opcodes seen so far, our

heuristics are more flexible and target various XOR-based

obfuscations of OpenVPN.

6.2 ACK-based Fingerprinting

OpenVPN engages in a TLS-style handshake with its peer

over the control channel. Since TLS is designed to oper-

ate over a reliable layer, OpenVPN implements an explicit

acknowledgement and re-transmission mechanism for its

control channel messages [30]. Specifically, incoming P_-

Control packets are acknowledged by P_ACK packets, which

do not carry any TLS payloads and are uniform in size (Note

these ACK packets are carried over by TCP as payload and

are not the same as TCP ACK flags). Moreover, these ACK

packets are seen mostly only in the early stage of a flow, dur-

ing the handshake phase, and are not used in the actual data

transfer channel, which can run over an unreliable layer.

To our knowledge, we are the first to devise fingerprinting

attempts based on the distinct protocol-layer ACKs against

OpenVPN. Previously, the unique timing pattern in meek’s

TCP-level ACK traffic has rendered the obfuscation tool vul-

nerable to detection [67]. For OpenVPN, the presence of

explicit ACK packets, uniform in size and only seen in some

parts of a session, provides another fingerprintable feature.

Specifically, we first identify a likely ACK packet of a ses-

sion by locating an initial packet exchange sequence of C-

>S (Client-Reset), S->C (Server-Reset), C->S (ACK), C->S

(Control), as illustrated in Figure 1. For vanilla OpenVPN

and XOR-based obfuscation, the first ACK packet usually

appears as the third (data) packet transmitted in a session. For

tunnels or obfuscators that have their own handshake or key

exchange process (e.g., Stunnel, SSH tunnel, or Obfsproxy),

this counting is offset by the number of tunnel handshake

packets. Next, we group packets into 10-packet bins, and

we derive the ACK fingerprint for each flow by counting the

number of packets in each bin that have the same size as the

identified ACK packet. For OpenVPN flows, we expect to

observe a high number of ACK packets in early bins and an

absence of them in later bins. (Later in the session, Control

and ACK packets can be exchanged again to transfer random

key materials, but it is not expected to be observed within our

observation window N.) This approach proves effective to

fingerprint vanilla OpenVPN as well as obfuscated services

running over encrypted tunnels that lack random padding. We

quantify exact fingerprinting thresholds in Section 7.1.

6.3 Active Server Fingerprinting

We explore the feasibility of identifying an OpenVPN server

through active probing. Typically, OpenVPN servers respond

to a client reset with an explicit server reset, thereby giving

488 31st USENIX Security Symposium USENIX Association

Figure 5: OpenVPN TCP new packet processing routines

away their identity. However, most commercial providers now

have adopted tls-auth or tls-crypt options [50]. These options

add an additional HMAC signature—signed by a pre-shared

key—to every control channel packet for integrity verification,

including the initial reset packets. With either of these options

enabled, an OpenVPN server would not respond to an unau-

thenticated client reset with a server reset, but would instead

drop such packets without further processing. The presence

of such HMAC mechanism increases the complexity of do-

ing active probing: it effectively makes OpenVPN servers

“probe-resistant” [13] by remaining silent when probed by an

unauthenticated client.

In fact, similar HMAC mechanisms are used by more pop-

ular “probe-resistant” proxies, such as obfs4 [33]. However,

unlike obfs4 which waits for a server-specific random delay

before dropping an unauthenticated connection, OpenVPN

always immediately closes the connection if a valid HMAC

cannot be located. We design our probes to leverage this

protocol-specific behavior, and as a result, we manage to

fingerprint OpenVPN servers even if they do not respond

throughout our probing cycles. The key concept is that al-

though the application may not respond to probing, an attacker

may still be able to fingerprint application-specific thresholds

at the TCP level, such as timeouts or RST thresholds, as

demonstrated by Frolov et al. [13].

We use two datasets in this section to help with design-

ing probes. ZMap Set: to construct a realistic non-VPN

endpoints dataset, we use ZMap to scan each of the 65,535

TCP ports over the entire IPv4 space, limiting results for each

port to 200 endpoints (with the specific port open), result-

ing in over 13 million endpoints. Censys Set: We query the

Censys.io [10] database for hosts with TCP port 1194/Open-

VPN open. Next, we probe each endpoint with a typical

OpenVPN Client Reset and group endpoints that respond

with explicit Server Resets. This results in 180,858 hosts

known to be OpenVPN endpoints (with “tls-auth” disabled).

6.3.1 Base Probes

We design probes exploiting a behavior associated with how

OpenVPN packetizes TCP streams. When OpenVPN oper-

ates over TCP, it needs to split the continuous stream into

ProbeName Probe Content Expected Behavior

BaseProbe 1 x00x0ex38.{8}x00x00x00x00x00 Explicit ServerRe-

set or Short Close

BaseProbe 2 x00x0ex38.{8}x00x00x00x00 Long Close

TCP Generic x0dx0ax0dx0a Short Close

One Zero x00 Long Close

Two Zero x00x00 Short Close

Epmd x00x01x6e Short Close

SSH SSH-2.0-OpenSSH_8.1/r/n Short Close

HTTP-GET GET/HTTP/1.0 /r /n /r /n Short Close

TLS Typical Client Hello by Chromium Short Close

2K-Random Random 2000 Bytes Short Close & RST

Table 1: Summary of Probes and the expected behaviors from

an OpenVPN server.

discrete OpenVPN packets. Figure 5 presents a high-level ab-

straction of this process. The most relevant parts are: a buffer

is allocated in memory to reassemble fragments of OpenVPN

packets encapsulated in TCP streams. The length N for the

next OpenVPN packet is extracted from the first two bytes of

the header (see Figure 3), and the routine keeps reading N ad-

ditional bytes before it returns the reassembled packet to the

caller. This means that an OpenVPN packet will not be parsed

and checked for syntax and encryption errors until all its parts

arrive at the server. Based on this behavior, we design two

sequential probes to trigger an OpenVPN server into different

code paths—which result in different connection timeouts—

and measure the time elapsed before the server responds or

terminates the connection. As shown in Table 1, Base Probe

1 carries a typical 16-byte OpenVPN Client Reset, while

Base Probe 2 has the same payload with the last byte stripped

off. The assumption is since our two probes only differ in

one byte, most non-OpenVPN servers will respond to our

probes in a similar way. However, for an OpenVPN server

with HMAC enabled, the connection sending the first probe

will be dropped immediately because the OpenVPN packet

is reassembled and a valid HMAC cannot be located. The

second probe will not receive an immediate response, as the

server will wait for an additional byte to arrive for reassembly.

The connection will stay idle until a server specific hand-

shake timeout has passed, after which the connection will

be dropped. As such, the first probe will be dropped at the

decryption routine, while the second probe will be dropped at

the packet reassembly routine, both labeled red in Figure 5.

6.3.2 Additional Probes

The two probes, although useful, are limited and there may

be other protocols with behaviors similar to OpenVPN. After

using both to probe the ZMap Set, we still identify a handful of

services that respond similarly to OpenVPN servers, such as

Microsoft WBT Server (3389), Microsoft Message Queuing

(1801), and Erlang Port Mapper Daemon (4369).

We design additional probes based on the fact that Open-

VPN validates packet length and will drop connections send-

ing invalid length without waiting for the next packet to be

USENIX Association 31st USENIX Security Symposium 489

Figure 6: RST thresholds for OpenVPN and random endpoints.

reassembled. Here, packet length refers to the length declared

by the first two bytes of an OpenVPN header (see Figure 3),

rather than the TCP packet length. A “valid” length is in

the range of [1, max_len], where max_len is derived from

the server’s MTU configurations. For instance, default TUN

MTU of 1500 bytes, combined with overheads (crypto IV,

packet length, etc.), results in a max_len of 1627 bytes. In

this case, probes whose first two bytes have a decimal value

greater than 1627 (0x06,0x5B) will be dropped immediately.

We also design probes leveraging the way a Linux server

closes a TCP connection. When a TCP connection terminates,

the operating systems at both ends typically complete a FIN

4-way handshake. However, previous work has found that

if a connection is closed with unread bytes in buffer, Linux

will send a RST packet [13]. A server’s “RST Threshold” is

defined as the minimum number of bytes needed to send to

the server to trigger a RST. We determine the RST threshold

distribution for both ZMap Set and Censys Set. As shown in

Figure 6, the vast majority of OpenVPN servers have a RST

threshold around 1550-1660 bytes, corresponding to buffers

allocated with typical MTU configurations. In contrast, over

97% of random ZMap endpoints have a RST threshold less

than 500 or greater than 4000. We therefore construct an

additional probe with 2,000 random bytes, which we expect

over 98% of legitimate OpenVPN servers and less than 3%

of random servers to respond to with RST packets.

Complication from Port Sharing OpenVPN provides na-

tive support for another application to share the same port.

This is accomplished by checking whether the first incoming

packet has a valid OpenVPN-conforming length field. If not,

the OpenVPN server will forward the packet to the other ser-

vice sharing the port. This means that most of our additional

probes will be forwarded to and responded by the other appli-

cation due to invalid packet length. To account for this, we

observe that when an OpenVPN shares a port, it is usually

shared with a HTTP, TLS, or SSH service. Thus, we send

probes targeting these three protocols after our base probes,

and we stop further probing if we get an explicit response for

any of these probes.

It is worth noting that the majority of “typical” HTTP, TLS,

and SSH servers have already been filtered out by our base

probes, so endpoints that respond at this stage are likely shar-

ing the port with another service, thus warranting manual

analysis (e.g., checking TLS certificate). While these three

services are what we commonly observed, there may be in-

stances where other services are running along with Open-

VPN. This could lead to false negatives.

Table 1 lists all probes and the expected behaviors from

an OpenVPN server. An evaluation process is shown in Ap-

pendix Figure 11.

6.4 Constructing Filters and Probers

Our Filter performs both opcode and ACK-based fingerprint-

ing, flagging a flow if at least one fingerprint matches. This is

because the opcode and ACK fingerprints are designed to be

complementary: both are effective against vanilla OpenVPN

and they each target a specific subset of obfuscations. The

former works against XOR-based obfuscations that work like

Vigenère ciphers, i.e. they always encrypt the same plaintext

opcodes at the same position to the same ciphertext bytes.

The latter targets tunneling-based obfuscation that lacks ran-

dom padding and preserves the 1:1 correspondence between

the original and obfuscated packet streams. Combining the

two features maximizes our fingerprinting coverage, as we

discovered that even within the same provider, obfuscating

strategies can vary a lot (§ 9). Table 5 in Appendix shows the

effectiveness of each feature against each commercial VPN

service we tested. Following Filter’s result, the Prober per-

forms the active probing scheme to further lower potential

false positives.

We implement the Filter in Zeek [75], an open-source net-

work monitoring tool. We note that the evaluation processes

for opcode and ACK-based fingerprinting are quite simple:

both only require several dozen integer comparisons (limited

by the observation window) while maintaining a small num-

ber of per-flow states. We implement the Prober in Nim [31].

We believe that both components can be easily deployed by

any ISP or censor.

7 Fine-tuning for Deployment

So far, we have described features that render OpenVPN vul-

nerable to fingerprinting. We still need to quantify detection

thresholds (e.g. ACK fingerprints) for implementation. Fur-

thermore, there are metrics that can affect the system perfor-

mance, such as packet loss or observation window choice. We

seek to fine-tune our system by quantifying these parameters.

We use two datasets here. ISP Dataset: we collected a

snapshot of network traffic going through a server installed

within Merit. Over 45 minutes on July 28, 2021, we sam-

pled 1/30 of all flows passing through the server, resulting

in 461 GB of traffic that corresponds to 221,534 flows with

490 31st USENIX Security Symposium USENIX Association

Figure 7: ACK fingerprint DT from the ISP and VPN datasets.

Bin Number Threshold

1 1≤ Bin[1]≤ 3

2 2≤ Bin[2]≤ 5

For i in range [3,5] Bin[i]≤ 5

For i in range [6,N/10] Bin[i]≤ 1

Table 2: Set of thresholds for ACK Filtering.

full packet payloads. Refer to § 5 for details on how this

data was handled to limit privacy risks. VPN Dataset: we

collected traces from 20 commercial VPN providers as well

as 2 self-hosted OpenVPN services (Streisand, OpenVPN

Access Server) following the automated process described in

Section 8. Note the 20 VPN providers do not overlap with

the providers used in evaluation. For each provider, we re-

peated the trace collection process 50 times each in TCP and

UDP mode, resulting in a 7.65 GB dataset comprised of 2,200

vanilla OpenVPN traces.

7.1 ACK Fingerprint Thresholds

We quantify the exact ACK fingerprint based on the ISP and

VPN Dataset. We only include flows with at least 150 data

packets (15 bins), which leaves us with 24,069 ISP flows and

2,200 VPN flows. A classification decision tree is constructed

based on the two labeled sets with weights applied to account

for the imbalanced data size. Figure 7 shows the constructed

tree (depth and leaf limited, a complete graph can be found

in Appendix Figure 12). The ACK fingerprint is a sequence

of thresholds based on the derived decision tree, as shown in

Table 2. (Bin[i] refers to the number of ACK-size packets for

ith Bin.)

7.2 Choice of Observation Window N

Previous works attempt to identify VPN traffic only after the

flow terminates, making use of aggregated statistics such as

connection duration [17, 24, 26]. However, detecting disal-

lowed traffic only after the flow is finished may be of limited

interest to a real-world censor [4]. We therefore have two

objectives for our Filter: to reduce probing targets by being

as selective as possible, and to detect OpenVPN as soon as

possible within a flow.

Inspired by [4, 67], we consider the windowing strategy of

limiting the inspection to only the first N data packets of a

flow. We tested N from [10, 20, 30, 200] on the ISP and

VPN Dataset. As shown in Figure 8 (a), the number of ISP

flows that are flagged by the Filter declines from over 62,000

to 322 as we increase the observation window. However, we

note that a window size of 100 packets has already achieved

a precision within 2% of the best performing (200 packets).

Detection Speed and Potential Impact on Blocking A

smaller window size can sever a connection at an earlier stage,

thereby reducing transfer of data to a censored endpoint, while

a more conservative windowing strategy excels at accuracy.

In our deployment, we use 100 packets as the window size

to balance detection speed and accuracy. To put this choice

into perspective, we note that the Great Firewall of China

(GFW) was previously observed to send confirmation probes

to suspected endpoints in 15-minute intervals, and it has only

recently moved to near real-time operation [11]. Recent work

on how it detects Shadowsocks shows the median delay be-

tween the beginning of a connection and probing is about a

minute, with probes being replayed for up to 47 times for con-

firmation [1]. In comparison, our deployment with a window

size of 100 packets gives a median time of 7.9 seconds for

the filter to flag an OpenVPN connection. We believe even

with this delay, our system is still useful for censors who are

interested in blocking OpenVPN connections. In addition, we

note that a motivated adversary can further optimize this delay

and speed the detection by tuning window size and probing

rate, but with some potential loss of accuracy.

7.3 Effects of Packet Loss

We investigate the effects of packet loss on the performance of

the Filter. An adversary analyzing traffic on a busy network

needs to keep pace with the packet arrival rate, or otherwise

packet drops will start to occur due to a CPU bottleneck. For

the opcode and ACK fingerprinting, we need to inspect the

raw contents of each reassembled packet until the observation

window is reached, for all flows. This means all traffic must

be passed on to Zeek’s scripting layer, which may lead to

a CPU bottleneck. In addition, the Network Interface Card

(NIC) may also become an upstream bottleneck and lead to

end-to-end packet loss. We therefore explore what to expect

from the Filter when packet loss is inevitable.

We configure Zeek to ignore events signaling new packets

with different probabilities in order to simulate random packet

loss. We test loss rates from 1% up to 80%. The experiment

is repeated three times, and the average result is reported in

Figure 8 (b). We find that packet loss starts to have noticeable

effects on the Filter’s outputs once the loss rate surpasses

10%. Notably, when packet loss starts to affect the detection

USENIX Association 31st USENIX Security Symposium 491

Figure 8: Effects of (a) observation window and (b) average

packet loss rate on Filter’s performance

accuracy, both opcode and ACK fingerprint vulnerabilities

always produce underblocking instead of overblocking, which

is favoured by real-world censors [56]. Still, in order to mini-

mize the effects of packet loss, we always configure the Moni-

toring Station to sample flows with a given rate (adjusted with

CPU resources and traffic volume) for our online evaluation.

7.4 Server Churn for Asynchronous Probing

After the Filter generates a list of probing targets, the Prober

can either send probes synchronously as soon as a target

is emitted, or asynchronously, waiting for a pre-configured

interval before sending probes to targets in batches. Sending

probes synchronously has the advantage of obtaining the most

accurate results before the server IP is churned. However,

this requires the probing system to be online the whole time.

In contrast, sending probes in batches is more efficient and

easier to manage, but the server IP may be churned if the

interval between the filtering phase and the probing phase

is excessively long. We explore a probing frequency that

achieves efficiency and accounts for possible server IP churn.

To do this, we monitor the 180,858 known OpenVPN servers

from the Censys Set described in 6.3. Starting from August

2nd, 18:00 EDT, we probe the servers every 3 hours for a

week and record their responses.

As shown in Figure 9, even after a week, only 2.39% of

OpenVPN servers either are not in the listening state or have

been replaced by a different service. This suggests that the

majority of OpenVPN servers are not churned frequently. In

Figure 9: OpenVPN server churns over time.

our online evaluation, we choose to probe targets in batches

on a daily basis to balance between efficiency and potential

IP churn. Based on the result of this test, approximately 0.9%

of servers may be churned within 24 hours.

7.5 Probe UDP and Obfuscated OpenVPN Servers

The active probing scheme in the previous section primar-

ily targets vanilla OpenVPN TCP servers, as it exploits the

header length field that is unique to TCP mode that requires

packetization. In addition, it works effectively against XOR-

obfuscated servers because the length field is prefixed after

the XOR encryption is applied to an OpenVPN packet. This

construction allows us to probe XOR-obfuscated servers in

the same way as if they had no obfuscation at all.

For UDP or other obfuscated servers, our probes are no

longer effective because the length field is either not present

(UDP) or encrypted (tunnel-based obfuscation). However, a

critical observation is that most commercial VPN providers

usually offer vanilla TCP servers along with UDP and/or

obfuscated variants. This is expected as commercial VPN

providers attempt to optimize their VPN’s performance as

well as reliability, since tunnel-based obfuscation adds over-

head and UDP traffic may encounter more problems than TCP

in a firewalled network. Furthermore, the vanilla TCP service

is often co-located with the UDP or obfuscated OpenVPN ser-

vices, presumably due to lower hosting and maintenance cost.

They could be on the same host by listening on different ports,

or they could be located in adjacent IPs in the same VPN

provider subnet. In other words, probing adjacent netblocks

of a suspected UDP or obfuscated endpoint may reveal nearby

vanilla TCP servers, whose existence corroborates the Filter

results. For our Prober deployment on two dedicated mea-

surement machines, we limit our probing to the /29 subnet the

target IP belongs to over all TCP ports. This specific subnet

size is chosen primarily due to probing resources limitation,

and a more well-resourced adversary may expand the probing

to larger subnets. With only two measurement machines, the

parallelized /29 Prober is able to probe targets generated by a

Filter monitoring a 5 Gbps network interface.

492 31st USENIX Security Symposium USENIX Association

8 Real-world Deployment Setup

We set out to explore if an ISP or censor can fingerprint Open-

VPN connections at scale, without significant collateral dam-

age. Adopting the viewpoint of an adversarial ISP, we deploy

our framework inside Merit, as shown in Figure 2. Our evalu-

ation is two-fold: we generate control vanilla and obfuscated

flows with commercial VPN providers and attempt to identify

them as a network intermediary; we also process other traffic

passing through our Monitoring Station in order to estimate

the false positive rate of our framework.

We set up our framework on a 16-core server (Monitoring

Station) inside Merit with two mirroring interfaces that have

an aggregated 20 Gbps bandwidth. Due to the large traffic vol-

ume, we optimize our deployment with PF_RING [38] in or-

der to improve the packet processing speed. We employ PF_-

RING in zero-copy mode and spread the traffic load across a

Zeek cluster of 15 workers. Nonetheless, due to limited CPU

resources, we only sample 12.5% of all TCP and UDP flows

arriving at the network interfaces in order to minimize the

effect of packet loss. The sampling is based on IP pairs so that

all bi-directional traffic of a flow will be selected/dropped to-

gether. With these settings, we are able to operate with an end-

to-end packet loss rate under 3%. Even though we process

only a fraction of all traffic, our Filter still handles over 15 Ter-

abytes of traffic from over 2 billion flows on an average day

on a single server. In addition, processing all traffic without

sampling is feasible through parallelism or using faster CPUs.

Next, we set up Probers on two dedicated measurement ma-

chines, each provisioned with 10 IPv4 and 1 IPv6 addresses.

By the end of each day during the evaluation, the Probers

fetch filtering logs from the Monitoring Station. For each

target, we run a Masscan [25] to the /29 subnet the IP belongs

to over all TCP ports (1-65535). We follow up each discov-

ered open port by running our probing scheme, and endpoints

confirmed through probing are recorded for manual analysis.

To select VPN services for evaluation, we first generate a

list of “top” VPN services ranked by popularity. We com-

bine 80 providers, most of which are paid premium VPN

services, from top VPN recommendation sites based on previ-

ous work [42], listed in Appendix Table 4. Next, we visit the

websites of these VPN providers searching for “Obfuscation”,

“Stealth”, or “Camouflage Mode” etc., and include providers

that offer at least one obfuscated VPN configuration. In total,

we find 24 providers offering obfuscated services. We test

all obfuscation configurations if more than one is offered as

well as vanilla OpenVPN for each provider. If TCP and UDP

modes are both available, we test them separately. In total,

we have 81 configurations, 41 of which are obfuscated ones.

We configure the Client Station inside Merit to act as a

VPN client. Both upstream and downstream traffic of the

Client Station go through the router that mirrors traffic to

the Monitoring Station. In addition, we exclude this server

from our random sampling so that all traffic to/from this

Control Flows Overall Recall 3141/4120 (76.24%)

Filter Recall 3635/4020 (90.42%)

Prober Recall 3186/3635 (87.65%)

Vanilla Recall 1718/2000 (85.90%)

Obfuscated Recall 1468/2020 (72.67%)

All Flows Flow Count 23183039736

Bytes Processed 124.67 Terabyte

Flows ≥ Observation Window 10070994

Filter Outputs 75850

Probing Outputs 3638

Confirmed OpenVPN Flows 3245

Remaining Unclassified 393 (0.0039%)%

Table 3: High-level evaluation statistics on Merit.

server will be analyzed. On the client, we run an automated

script to generate control traffic for our evaluation. For each

iteration, we start the VPN client application and connect to

the “default / recommended” server using Pywinauto [41].

After a random wait of 20 to 180 seconds, we confirm that the

VPN tunnel is active and generate random browsing traffic

with Selenium [45] by sending requests to a random website

from the Alexa top 500. Finally, we disconnect from the VPN

server and wait for 180 seconds before proceeding to the next

iteration. For each VPN configuration, we repeat the process

50 times and collect packet captures for reference.

9 Evaluation & Findings

We started the evaluation on August 13, 2021, and kept the

monitor running for a week until August 20. Table 3 contains

high-level statistics of the evaluation. A more detailed result

that breaks down statistics by each control VPN configuration

can be found in Appendix Table 5.

9.1 Results for control VPN flows

Overall, we are able to identify 1,718 out of 2,000 vanilla

flows, corresponding to 39 out of 40 unique configurations.

This suggests the majority of OpenVPN traffic and servers

are vulnerable to passive filtering and active probing, respec-

tively. The few exceptions correspond to VPN providers that

only offer UDP-based services or hide their servers behind

IDS [7], which thwarts our probing attempts. Surprisingly,

we also identify over two-thirds of all obfuscated flows, cor-

responding to 34 out of 41 obfuscated configurations. This

result is mostly due to obfuscated services using OpenVPN as

their backbone protocol and insufficient obfuscation failing to

mask OpenVPN’s fingerprints. Alarmingly, out of the “top 10”

VPN providers ranked by top10vpn.com [52], eight provide

obfuscation services of some sort, suggesting that being unde-

tectable is within the providers’ threat model for their clients.

Yet, all of them are flagged as suspect flows due to either

insufficient encryption (Opcode) or insufficient obfuscation

over packet length (ACK). Considering that these obfuscated

USENIX Association 31st USENIX Security Symposium 493

VPN services usually claim to be “undetectable” or claim that

the obfuscation “keeps you out of trouble” [5, 54], this result

is alarming as users who use these services may have a false

sense of privacy and “unobservability”.

4 out of the “top 5” VPN providers use XOR-based

obfuscation, which is easily fingerprintable. We find that

among the “top 5” VPN providers [52], four offer obfuscated

services, all of which nonetheless are flagged as OpenVPN

flows by our Filter over 90% of the time. A closer look at the

raw packet capture suggests that all of them employ obfus-

cations that are almost identical to the unofficial XOR patch,

thereby making them vulnerable to fingerprinting. Alarm-

ingly, the XOR-based obfuscation—despite being rejected

by OpenVPN developers [57]—appears to be a major obfus-

cation strategy adopted by the majority of VPN providers

we test, who often praise the patch for its simplicity and low

overhead. Although the patch can bypass some of the most

basic filters adopted by existing open-source DPI tools, we

have demonstrated that even a slightly more sophisticated

filter will be able to reliably and accurately detect them.

Wrapping OpenVPN inside encrypted tunnels is a pop-

ular obfuscation strategy, yet some flows are still recog-

nizable due to a lack of random padding. Another popular

class of obfuscation strategies is tunnel-based, which wraps

OpenVPN traffic inside an encrypted tunnel to frustrate any

analysis over packet payloads. Examples include Stunnel,

SSH tunnel, Shadowsocks, obfs{2/3/4}, and V2Ray(VMess).

Overall, we find 20 obfuscated configurations deployed by 14

VPN providers that are tunnel-based. However, most of these

tunnels do not add random padding to the payload being tun-

neled, with the only exceptions being obfs4 and VMess which

can draw packet sizes from certain distributions. Among

the 20 tunnel-based obfuscated services, only three of them

deploy obfs4 and only one deploys VMess, leaving the re-

maining 16 vulnerable to ACK fingerprinting. We note that

this does not mean these tunneling tools do not work, but

rather that protection against traffic analysis is not among the

design goals. For example, the threat model of obfs3, which

is deployed by Perfect Privacy VPN, states that the obfus-

cator “does not try to protect against non-content protocol

fingerprints, like the packet size or timing” [32]. Yet, we have

demonstrated that for applications with distinct signature over

packet length, such as OpenVPN, even the simplest threshold-

based detection can identify them with reasonable accuracy.

UDP and obfuscated servers often share infrastructure

with vanilla TCP servers, leaving them “guilty by associ-

ation”. We discover that the majority of UDP and obfus-

cated OpenVPN services are co-located with vanilla TCP

servers. For example, TorGuard hosts vanilla and stunnel-

obfuscated OpenVPN instances on the same host but different

ports, whereas Perfect Privacy hosts them in neighboring IPs

(*.*.193.26 for vanilla, *.*.193.27 for Stunnel, *.*.193.28 for

SSH, and *.*.193.29 for obfs3). We find that for 34 out of

41 obfuscated services, at least one vanilla OpenVPN TCP

server can be found within the server’s /29 subnet. Similarly,

we were able to actively probe 18 out of 20 UDP configura-

tions due to their co-location with TCP servers. In addition,

we also find five providers sharing infrastructures used by

their obfuscated services. For example, one IP (23.95.*.*)

hosts Cryptostorm’s SSH-obfuscated service as well as Se-

cureVPN’s vanilla servers. This result is only a lower bound

as we did not connect to every single server available from

each provider. Obfuscated services using shared infrastruc-

tures may be easier for adversaries to identify and block.

On the positive side, some deployed services successfully

evade our detection. Some providers deploy randomizers

such as obfs4, v2ray, or proprietary protocols with random

padding, which stopped us at the filtering stage (e.g. Tunnel-

bear). In addition, some providers deploy their obfuscated

servers behind a firewall or IDS, which would respond with

SYN-ACKs to every arriving SYN packet on almost all TCP

ports [13,21]. Since we limit probe targets to 2,000 open ports

per IP for practical considerations, this leads to false nega-

tives when none of the probes hit an OpenVPN-listening port.

Moreover, some VPN providers do not host vanilla Open-

VPN TCP servers at all, such as VyprVPN, which currently

only supports UDP as transport. For these providers, even

though our Filter flags their flows as suspected OpenVPN, we

were not able to confirm with subsequent probing. Finally,

some providers host UDP or obfuscated servers outside the

/29 probing range of the vanilla TCP ones, and we miss them

due to probing resource constraints.

9.2 Results for all flows

Figure 10 shows an hour-level breakdown of the evaluation

statistics, excluding control flows. Overall, both the Filter and

Prober are able to reduce the number of suspected flows by

several orders of magnitude, which when combined flagged

3,638 flows as OpenVPN connections. We manually analyze

these flows to confirm our detection results.

Among the 3,638 flows, the destination servers for 469 of

them respond to our Base Probe #1 with an explicit server

reset, indicating the presence of a legitimate OpenVPN server

not configured with HMAC protection. For the remaining

3,169 flows, we first noticed that 2,580 of them are between a

single IP pair. Based on our log, the client initiates a connec-

tion every 4 minutes to the server on port 1194 (assigned to

OpenVPN). Reverse DNS lookup associates the client IP with

the “lib-locker” subdomain under a private university in the

US. Furthermore, the server runs a TLS service listening on

port 443, which sends a certificate belonging to a smart locker

company with subject and issuer CN as “vpn._COMPANY_-

.com”. Based on these evidence, we believe the captured

flows correspond to the secure communications between a

deployed smart locker and the infrastructure that controls it.

This also suggests that the fingerprintability of OpenVPN may

494 31st USENIX Security Symposium USENIX Association

Figure 10: Merit evaluation results over days, excluding Control VPN flows.

not only be a problem concerning censorship circumvention,

but it may also be used for reconnaissance to identify and

target IoT devices that communicate to their servers over an

OpenVPN channel. Finally, we attempt to further character-

ize the remaining 589 flows based on circumstantial evidence

about the destination endpoint.

Co-location with TLS In practice, TLS is the most com-

mon application we have seen that is co-located with an Open-

VPN instance. For each of the remaining flows, we probe

its destination endpoint with a TLS Client Hello and analyze

the certificate and web page returned. Endpoints of 40 flows

return certificates whose subject or issuer CN suggest VPN ac-

tivity, such as *.vpn.ipvanish.com, *.vpn.wlvpn.com,

*.virtualshield.org, and OpenVPN Web CA. In addi-

tion, 16 endpoints serve OpenVPN web interfaces over TLS.

WHOIS, DNS PTR, ISP Name We look up the WHOIS

and DNS PTR records of the destination endpoints. 11 server

IPs of 41 flows contain WHOIS records that can be linked

back to a VPN provider, such as protonvpn-*, PRIVADO-*,

and secureconnectivity-*. In addition, 2 servers have

DNS PTR records as *.strong.blackoakcomputers.com

and fosvpncluster.fos.*.com.

IP Context Service Several online platforms claim to offer

VPN IP database or IP context services. We found 124 flows

that can be linked to a commercial VPN server IP by the

lookup service hosted on spur.us. However, these services

do not disclose their specific methodology and their accuracy

has not been systematically evaluated.

Our 7-day evaluation flagged 3,638 flows that are identified

as “OpenVPN” from over 10 million flows that exceed our

observation window. Among these, we are able find evidence

that supports our detection result for 3,245 flows. The major-

ity of the remaining 393 flows have server IPs belonging to

cloud hosting services, and we are not able to further classify

them. Conservatively, we can upper bound the false positive

rate to 0.0039%, which is three orders of magnitude lower

than previous ML-based approaches (1.4%-5.5%) [3, 14, 26]

10 Discussion and Mitigations

ISPs and government censors are motivated to detect Open-

VPN flows in order to enforce traffic policies and information

controls. We demonstrate that tracking and blocking the use

of OpenVPN, even with most deployed obfuscation methods,

is practical at scale and with minimal collateral damage. We

note that many VPN providers’ claims that their obfuscated

services are unobservable appear to be misleading and po-

tentially dangerous, especially to users from countries where

personal VPN usage is illegal. In light of our findings, users

should not expect complete unobservability even when con-

nected to “obfuscated” OpenVPN-based services.

Putting the human danger aside, the ease of fingerprinting

makes OpenVPN more susceptible to throttling or block-

ing from ISPs and governments. Previous research suggests

that some censors already use two-stage pipelines, which are

highly similar to our deployment, to detect other protocols

such as Tor or Shadowsocks [1, 71]. These adversaries can

quickly adapt such infrastructure to detect OpenVPN traffic

by simply adding protocol-specific fingerprints and probes.

Furthermore, while we focus on OpenVPN due to its over-

whelming popularity among commercial VPNs, it is possible

to extend our two-stage framework to other VPN protocols

(e.g., WireGuard and StrongSwan) by analyzing their commu-

nication patterns and server behaviors. Governments can also

quickly adopt these fingerprints to track and block VPN usage

during sensitive times, like political upheavals, when VPN

USENIX Association 31st USENIX Security Symposium 495

connections are most vital to the free flow of information.

Short-Term Mitigation There are several defensive strate-

gies to achieve near-term protection from the fingerprint-

ing attack we describe. First, VPN providers offering both

vanilla and obfuscated OpenVPN services should avoid co-

locating them. Ideally, obfuscation servers should be well

separated from OpenVPN instances in the network address

space and operate as “bridge servers” that forward client traf-

fic to VPN servers elsewhere. For example, Mullvad VPN

offers a Shadowsocks-based obfuscator service as a dedicated

bridge, separating the VPN servers from the obfuscation [28].

Second, VPN providers should switch from static to ran-

dom padding for their obfuscated services. As we have

shown, for protocols with a stable and distinctive handshake

phase, even the most basic threshold-based detector is able

to fingerprint them by packet sizes. Ideally, the obfuscation

layer should be able to send zero-length packets (packets

whose payloads are all padding) to break the one-to-one cor-

respondence between the unobfuscated and obfuscated packet

streams [72]. Yet it is worth noting that previous work has

shown that even fully randomized obfuscators (e.g., obfs4)

can themselves be vulnerable to entropy-based fingerprinting

attacks [67].

Third, we suggest that the OpenVPN developers follow

recommendations from previous work with regard to how

servers respond to failed handshake attempts. Servers closing

failed connections immediately or in a predictable manner

has enabled active probing attacks against a variety of other

protocols [1, 13, 58]. In response, these protocols have imple-

mented either unlimited timeouts (reading from the buffer in-

definitely) or diversified close behaviors (in which each server

instance closes failed connections in a different manner).

Long-Term Defenses In the long term, we fear that the cat-

and-mouse game between censors and circumvention tools,

such as the Great Firewall and Tor, will occur in the VPN

ecosystem as well, and developers and providers will have

to adapt their obfuscation strategies to the evolving adver-

saries. We urge commercial VPN providers to adopt more

standardized obfuscation solutions, such as Pluggable Trans-

ports [39], and to be more transparent about the techniques

used by their obfuscated services. This transparency will help

foster development of stronger obfuscation methods and en-

courage developers to design better techniques to overcome

the progress of information control technologies. Additional

future work is needed to characterize the performance costs

of different approaches to VPN obfuscation and to help users

with varying threat models make appropriate trade-offs be-

tween performance and resilient unobservability.

11 Conclusion

We have demonstrated that OpenVPN, even with widely ap-

plied obfuscation techniques, can be reliably detected and

blocked at-scale by network-based adversaries. Inspired by

previous real-world censorship events, we designed a two-

phase system that performs passive filtering followed by ac-

tive probing to fingerprint OpenVPN flows. We evaluated the

practicality of our approach in partnership with a mid-size

ISP, and we were able to identify the majority of vanilla and

obfuscated OpenVPN flows with only negligible false posi-

tives, which supports that the techniques we describe would

be practical even for adversaries averse to collateral damage.

Users worldwide rely on VPNs to protect their security

and privacy and to escape Internet censorship, yet the ease of

fingerprinting OpenVPN traffic and the commodification of

DPI technologies bring monitoring and blocking of popular

VPN services within reach for almost any network opera-

tor. We propose several short-term mitigations that can help

defend against these threats, but in the long term, we urge

VPN providers to adopt more resilient and better standardized

obfuscation approaches.

12 Acknowledgement

The authors are grateful to Matthew Wright for shepherding

the paper, and to the anonymous reviewers for their construc-

tive feedback. This material is based upon work supported by

the National Science Foundation under Grant No.1518888,

1823192, 2007741, 2042795, 2120400.

References

[1] Alice, Bob, Carol, J. Beznazwy, and A. Houmansadr.

How China Detects and Blocks Shadowsocks. In ACM

Internet Measurement Conference (IMC), 2020.

[2] Stealth VPN - Astrill VPN. https://www.astrill.com/

features/vpn-protocols/stealth-vpn.

[3] S. Bagui, X. Fang, E. Kalaimannan, S. C. Bagui, and

J. Sheehan. Comparison of machine-learning algo-

rithms for classification of vpn network traffic flow us-

ing time-related features. In Journal of Cyber Security

Technology, 2017.

[4] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, and

K. Salamatian. Traffic classification on the fly. In

Computer Communication Review, Association for Com-

puting Machinery, 2006.

[5] BolehVPN Traffic Obfuscation Keeps You out of Trou-

ble. https://www.vpnmentor.com/blog/bolehvpn-traffic-

obfuscation-keeps-you-out-of-trouble/.

[6] E. Crist and J. Keijser. Mastering OpenVPN. Packt

Publishing, 2015.

496 31st USENIX Security Symposium USENIX Association

[7] Cryptostorm - Port Stripping v2. https://cryptostorm.is/

blog/port-striping-v2.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor:

The second-generation onion router. In 13th USENIX

Security Symposium (USENIX Security 04).

[9] A. Dunna, C. O’Brien, and P. Gill. Analyzing china’s

blocking of unpublished tor bridges. In 8th USENIX

Workshop on Free and Open Communications on the

Internet (FOCI 18).

[10] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A.

Halderman. A search engine backed by Internet-wide

scanning. In 22nd ACM Conference on Computer and

Communications Security, 2015.

[11] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver,

and V. Paxson. Examining How the Great Firewall Dis-

covers Hidden Circumvention Servers. In Proceedings

of the 2015 Internet Measurement Conference.

[12] R. Ensafi, P. Winter, A. Mueen, and J. Crandall. Ana-

lyzing the great firewall of china over space and time.

Proceedings on Privacy Enhancing Technologies, 2015.

[13] S. Frolov, J. Wampler, and E. Wustrow. Detecting

Probe-resistant Proxies. In Network and Distributed

System Security, 2020.

[14] P. Fu, C. Liu, Q. Yang, Z. Li, G. Gou, G. Xiong, and

Z. Li. A NetFlow Sequence Attention Network for Vir-

tual Private Network Traffic Detection. In International

Conference on Web Information Systems Engineering.

[15] P. Gao, G. Li, Y. Shi, and Y. Wang. VPN Traffic Classi-

fication Based on Payload Length Sequence. In 2020

International Conference on Networking and Network

Applications (NaNA).

[16] T. Garrett, L. E. Setenareski, L. M. Peres, L. C. Bona,

and E. P. Duarte. Monitoring network neutrality: A

survey on traffic differentiation detection. IEEE Com-

munications Surveys & Tutorials, 2018.

[17] G. D. Gil, A. H. Lashkari, M. Mamun, and A. A. Ghor-

bani. Characterization of Encrypted and VPN Traffic

Using Time-Related Features. In the 2nd International

Conference on Information Systems Security and Pri-

vacy(ICISSP), 2016.

[18] Hide.me: Security Hardened OpenVPN Config with

Traffic Obfuscation. https://hide.me/en/blog/security-

hardened-openvpn-config-with-traffic-obfuscation/.

[19] H. Hoogstraaten. Evaluating server-side internet proxy

detection methods (MSc thesis). 2018.

[20] A. Houmansadr, C. Brubaker, and V. Shmatikov. The

Parrot Is Dead: Observing Unobservable Network Com-

munications. In 2013 IEEE S&P.

[21] L. Izhikevich, R. Teixeira, and Z. Durumeric. LZR:

Identifying unexpected internet services. In 30th

USENIX Security Symposium (USENIX Security 21).

[22] F. Li, A. A. Niaki, D. Choffnes, P. Gill, and A. Mislove.

A large-scale analysis of deployed traffic differentiation

practices. In Proceedings of the ACM Special Interest

Group on Data Communication. SIGCOMM, 2019.

[23] libprotoident: Library for application protocol identifi-

cation. https://github.com/wanduow/libprotoident.

[24] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and

M. Saberian. Deep packet: a novel approach for en-

crypted traffic classification using deep learning. In Soft

Comput 24, 2019.

[25] MASSCAN: Mass IP port scanner. https://github.com/

robertdavidgraham/masscan.

[26] S. Miller, K. Curran, and T. Lunney. Multilayer Percep-

tron Neural Network for Detection of Encrypted VPN

Network Traffic. In 2018 International Conference

On Cyber Situational Awareness, Data Analytics And

Assessment (Cyber SA).

[27] A. Molavi Kakhki, A. Razaghpanah, A. Li, H. Koo,

R. Golani, D. Choffnes, P. Gill, and A. Mislove. Iden-

tifying traffic differentiation in mobile networks. In

IMC’15.

[28] MullvadVPN: Intro to Shadowsocks. https://mullvad.

net/en/help/intro-shadowsocks/.

[29] nDPI: Open Deep Packet Inspection Library. https://

www.ntop.org/products/deep-packet-inspection/ndpi/.

[30] OpenVPN Reliability Layer module. http://build.

openvpn.net/doxygen/group__reliable.html#details.

[31] Nim Programming Language. https://nim-lang.org/.

[32] Obfs3 threat model. https://gitweb.torproject.org/

pluggable-transports/obfsproxy.git/tree/doc/obfs3.

[33] Learning more about the GFW’s active probing sys-

tem. https://blog.torproject.org/learning-more-about-

gfws-active-probing-system.

[34] The History of OpenVPN. https://openvpn.net/blog/

the-history-of-openvpn/.

[35] Question about tls-crypt and port 443 firewall duck-

ing. https://sourceforge.net/p/openvpn/mailman/

message/35560747/.

[36] OpenVPN_XORPatch. https://github.com/clayface/

openvpn_xorpatch.

[37] Y. Pang, S. Jin, S. Li, J. Li, and H. Ren. OpenVPN

Traffic Identification Using Traffic Fingerprints and Sta-

tistical Characteristics. In Internation Conference on

Trustworthy Computing and Services, 2012.

[38] PF_RING ZC (Zero Copy). https://www.ntop.org/

products/packet-capture/pf_ring/pf_ring-zc-zero-

copy/.

[39] Pluggable transports. https://pluggabletransports.info/.

[40] Port shadows via network alchemy. https://

breakpointingbad.com/2021/09/08/Port-Shadows-

via-Network-Alchemy.html.

USENIX Association 31st USENIX Security Symposium 497

[41] Pywinauto. https://github.com/pywinauto/pywinauto.

[42] R. Ramesh, L. Evdokimov, D. Xue, and R. Ensafi. VPN-

alyzer: Systematic Investigation of the VPN Ecosystem.

In Network and Distributed System Security, 2022.

[43] R. Ramesh, R. S. Raman, M. Bernhard, V. Ongkowijaya,

L. Evdokimov, A. Edmundson, S. Sprecher, M. Ikram,

and R. Ensafi. Decentralized Control: A Case Study

of Russia. In Network and Distributed System Security,

2020.

[44] Attention to companies using vpn services in operation.

https://rkn.gov.ru/news/rsoc/news73628.htm.

[45] Selenium. https://www.selenium.dev/.

[46] W. Seltzer. Infrastructures of censorship and lessons

from copyright resistance. In Workshop on Free and

Open Communications on the Internet (FOCI), 2011.

[47] R. Sundara Raman, L. Evdokimov, E. Wurstrow, J. A.

Halderman, and R. Ensafi. Investigating Large Scale

HTTPS Interception in Kazakhstan. In Proceedings of

the 2020 ACM Internet Measurement Conference.

[48] R. Sundara Raman, A. Stoll, J. Dalek, R. Ramesh,

W. Scott, and R. Ensafi. Measuring the Deployment of

Network Censorship Filters at Global Scale. In Network

and Distributed System Security, 2020.

[49] Surfshark camouflage. https://surfshark.com/features.

[50] Hardening OpenVPN Security. https://openvpn.net/

community-resources/hardening-openvpn-security/.

[51] W. J. Tolley, B. Kujath, M. T. Khan, N. Vallina-

Rodriguez, and J. R. Crandall. Blind In/On-Path At-

tacks and Applications to VPNs. In 30th USENIX

Security Symposium (USENIX Security 21).

[52] Top10VPN: VPN Reviews. https://www.top10vpn.

com/.

[53] Tor In China – The Onion Router. http://

www.mediafactory.org.au/2015-media6-deepweb/

2015/10/01/tor-in-china/.

[54] Stealth VPN Unblock Websites, Firewalls and VPN

Blocks. https://torguard.net/stealth-vpn.php.

[55] GFW probes based on Tor’s SSL cipher list. https://

gitlab.torproject.org/legacy/trac/-/issues/4744.

[56] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson.

SoK: Towards Grounding Censorship Circumvention in

Empiricism. In 2016 IEEE Symposium on Security and

Privacy (SP).

[57] Tunnelblick and openvpn_xorpatch. https://tunnelblick.

net/cOpenvpn_xorpatch.html.

[58] Summary on Recently Discovered V2Ray Weaknesses.

https://gfw.report/blog/v2ray_weaknesses/en/.

[59] Indian Parliamentary Committee Wants To Ban VPN

Services In India. https://www.indiatimes.com/

technology/news/vpn-ban-indian-govt-vpn-services-

in-india-548493.html.

[60] Chinese government orders ISPs to block personal

VPN use. https://privateinternetaccess.com/blog/

great-firewall-china-chinese-government-orders-isps-

block-personal-vpn-use-february-1st/.

[61] China’s firewall technology upgrades virtual pri-

vate network management and control tighten-

ing. https://www.rfa.org/mandarin/yataibaodao/

cyl-12212012155229.html.

[62] VPN Downloads surge in response to Hong Kong Secu-

rity Law. https://www.bloomberg.com/news/articles/

2020-05-22/vpn-downloads-surge-in-response-to-

hong-kong-security-law.

[63] PTA sets deadline for VPN users to register by

June 30th. https://privateinternetaccess.com/blog/

the-coming-pakistan-vpn-ban-pta-sets-deadline-for-

vpn-users-to-register-by-june-30th/.

[64] Rain throttles Internet speeds for customers on VPNs.

https://mybroadband.co.za/news/internet/384642-rain-

throttles-internet-speeds-for-customers-on-vpns.html.

[65] Biggest VPN Trends for 2020: Possibilities and Dan-

gers. https://openvpn.net/blog/biggest-vpn-trends-for-

2020-possibilities-and-dangers/.

[66] How Chameleon Defeats VPN Blocking. https://www.

vyprvpn.com/features/chameleon.

[67] L. Wang, K. Dyer, A. Akella, T. Ristenpart, and T. E.

Shrimpton. Seeing through network-protocol obfusca-

tion. In Proceedings of the 22nd ACM SIGSAC Confer-

ence on Computer and Communications Security, 2015.

[68] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang.

End-to-end encrypted traffic classification with one-

dimensional convolution neural networks. In 2017 IEEE

International Conference on Intelligence and Security

Informatics (ISI).

[69] N. Weaver, C. Kreibich, and V. Paxson. Redirecting

DNS for Ads and Profit. In USENIX Workshop on Free

and Open Communicationson the Internet, 2011.

[70] A. T. Webb and A. N. Reddy. Finding proxy users

at the service using anomaly detection. In 2016 IEEE

Conference on Communications and Network Security

(CNS). IEEE.

[71] P. Winter and S. Lindskog. How the great firewall of

china is blocking tor. In 2nd USENIX Workshop on Free

and Open Communications on the Internet (FOCI 12),

Bellevue, WA, Aug. USENIX Association.

[72] WireGuard with obfuscation support. https://github.

com/net4people/bbs/issues/88.

[73] WireGuard - Let’s talk about obfuscation again.

https://lists.zx2c4.com/pipermail/wireguard/

2018-September/003289.html.

[74] E. Wustrow, C. M. Swanson, and J. A. Halder-

man. Tapdance: End-to-middle anticensorship without

498 31st USENIX Security Symposium USENIX Association

flow blocking. In 23rd USENIX Security Symposium

(USENIX Security 14). USENIX Association.

[75] The Zeek Network Security Monitor. https://zeek.org/.

[76] Q. Zhang, J. Li, Y. Zhang, H. Wang, and D. Gu. Oh-

Pwn-VPN! Security Analysis of OpenVPN-Based An-

droid Apps. In CANS, 2017.

A Appendix

Figure 11: Evaluation Process for Active Server Fingerprinting.

Figure 12: Decision tree derived from ISP and VPN datasets.

VPN Recommendation Sites Used

https://www.security.org/vpn/best/

https://www.techradar.com/vpn/best-vpn

https://www.cnet.com/news/best-vpn/

https://www.tomsguide.com/best-picks/best-vpn

https://www.pcmag.com/picks/the-best-vpn-services

https://thebestvpn.com/

https://www.wired.co.uk/article/best-vpn

https://www.zdnet.com/article/best-vpn/

https://www.cloudwards.net/best-vpn/

https://www.internetsecurity.org/compare/usa

https://www.top10vpn.com/best-vpn-for-usa/v/d/?bsid=c33se1kw011

https://bestvaluevpn.com/usd/best-vpn/?utm_campaign=ggls-en-usa-gen

https://www.nytimes.com/wirecutter/reviews/best-vpn-service/

https://cybernews.com/best-vpn/

https://vpnoverview.com/best-vpn/top-5-best-vpn/

https://www.guru99.com/best-vpn-usa.html

https://www.crazyegg.com/blog/best-vpn-services/

https://www.forbes.com/advisor/business/software/best-vpn/

https://blog.flashrouters.com/vpn/

https://vpnpro.com/best-vpn-services/

https://bestvpn.org/best-vpns-for-the-usa/

https://www.safetydetectives.com/best-vpns (formerly thatoneprivacyguy)

https://www.tomsguide.com/best-picks/best-free-vpn

https://www.top50vpn.com/best-vpn

https://www.top10vpn.com/best-vpn/

Table 4: Recommendation Websites Used

USENIX Association 31st USENIX Security Symposium 499

VPN Provider Name Transport Variant Collection Size Filter Filter Rate Opcode/ACK Prober Overall Rate

AirVPN TCP SSL Tunnel 50 49 0.98 0/49 49 0.98

AirVPN TCP SSH Tunnel 50 16 0.32 0/16 16 0.32

AirVPN TCP Vanilla 50 48 0.96 48/48 37 0.74

AirVPN UDP Vanilla 50 49 0.98 49/49 49 0.98

Astrill TCP Proprietary 50 47 0.94 0/47 9 0.18

Astrill UDP Proprietory/XOR* 50 50 1 50/6 0 0

Astrill UDP Vanilla 50 49 0.98 49/7 4 0.08

BolehVPN TCP XOR* 50 50 1 50/50 50 1

BolehVPN UDP XOR* 50 49 0.98 49/46 49 0.98

BolehVPN TCP Vanilla 50 50 1 50/50 50 1

BolehVPN UDP Vanilla 50 50 1 50/49 50 1

CactusVPN TCP Obfsproxy 50 0 0 0/0 0 0

CactusVPN TCP Vanilla 50 50 1 48/50 50 1

CactusVPN UDP Vanilla 50 50 1 50/50 50 1

Cryptostorm TCP HTTPS Tunnel 50 48 0.96 0/48 19 0.38

Cryptostorm TCP SSH Tunnel 50 27 0.54 0/27 7 0.14

Cryptostorm TCP Vanilla 50 48 0.96 48/48 13 0.26

Cryptostorm UDP Vanilla 50 49 0.98 49/49 16 0.32

ExpressVPN TCP/UDP XOR* 20 20 1 20/4 16 0.8

ExpressVPN TCP Vanilla 50 49 0.98 49/49 29 0.58

ExpressVPN UDP Vanilla 50 50 1 50/50 32 0.64

Hide.me TCP Vanilla 50 49 0.98 49/49 49 0.98

Hide.me UDP Vanilla 50 45 0.9 45/45 41 0.82

IPVanish TCP XOR* 50 49 0.98 49/49 49 0.98

IPVanish UDP XOR* 50 50 1 50/50 50 1

IPVanish TCP Vanilla 50 50 1 50/50 50 1

IPVanish UDP Vanilla 50 47 0.94 47/47 47 0.94

IVPN TCP Obfsproxy 50 0 0 0/0 0 0

IVPN TCP Vanilla 50 50 1 50/50 50 1

IVPN UDP Vanilla 50 50 1 50/50 50 1

KeepSolid/Unlimited TCP Proprietory/XOR* 50 50 1 50/50 50 1

KeepSolid/Unlimited UDP Proprietory/XOR* 50 50 1 50/50 50 1

KeepSolid/Unlimited TCP Vanilla 50 50 1 50/50 50 1

Mullvad TCP Shadowsocks 50 39 0.78 0/39 0 0

Mullvad TCP Vanilla 50 47 0.94 47/47 47 0.94

Mullvad UDP Vanilla 50 49 0.98 49/49 49 0.98

NordVPN TCP/UDP XOR* 50 50 1 50/50 50 1

NordVPN TCP Vanilla 50 50 1 48/50 50 1

NordVPN UDP Vanilla 50 50 1 50/50 50 1

PerfectPrivacy TCP Stunnel 50 47 0.94 0/47 47 0.94

PerfectPrivacy TCP SSH 50 39 0.78 0/39 39 0.78

PerfectPrivacy TCP Obfsproxy3 50 42 0.84 0/42 42 0.84

PerfectPrivacy TCP Vanilla 50 50 1 50/50 50 1

PerfectPrivacy UDP Vanilla 50 49 0.98 49/49 49 0.98

PrivateInternetAccess TCP Shadowsocks 50 50 1 0/50 50 1

PrivateInternetAccess TCP Vanilla 50 50 1 50/50 50 1

PrivateInternetAccess UDP Vanilla 50 50 1 50/50 50 1

PrivateVPN TCP Shadowsocks 50 50 1 0/50 50 1

PrivateVPN TCP Vanilla 50 50 1 49/50 50 1

PrivateVPN UDP Vanilla 50 50 1 50/49 50 1

SecureVPN TCP SSH Tunnel 50 50 1 0/50 50 1

SecureVPN TCP SSL Tunnel 50 49 0.98 0/49 49 0.98

SecureVPN TCP Vanilla 50 50 1 50/50 50 1

SecureVPN UDP Vanilla 50 49 0.98 48/49 49 0.98

StrongVPN TCP XOR 50 50 1 50/50 50 1

StrongVPN UDP XOR 50 50 1 50/50 50 1

StrongVPN TCP Vanilla 50 49 0.98 49/49 49 0.98

StrongVPN UDP Vanilla 50 49 0.98 49/49 49 0.98

SurfShark TCP Proprietary/XOR* 50 50 1 50/50 50 1

SurfShark UDP Proprietary/XOR* 50 50 1 50/50 45 0.9

TorGuard TCP XOR* 50 50 1 49/50 50 1

TorGuard UDP XOR* 50 50 1 50/50 50 1

TorGuard TCP SSL Tunnel 50 44 0.88 0/44 44 0.88

TorGuard TCP Vanilla 50 50 1 50/50 50 1

TorGuard UDP Vanilla 50 49 0.98 49/48 49 0.98

TunnelBear TCP Obfsproxy 50 0 0 0/0 0 0

TunnelBear TCP Vanilla 50 50 1 50/50 50 1

VPN.AC TCP XOR 50 50 1 50/50 50 1

VPN.AC UDP XOR 50 50 1 50/50 50 1

VPN.AC TCP V2Ray 50 0 0 0/0 0 0

VPN.AC TCP Vanilla 50 50 1 50/50 50 1

VPN.AC UDP Vanilla 50 50 1 50/50 50 1

VPNArea TCP Stunnel 50 49 0.98 0/49 49 0.98

VPNArea TCP Vanilla 50 50 1 50/50 50 1

VPNArea UDP Vanilla 50 50 1 50/49 50 1

VyprVPN UDP Proprietory 50 0 0 0/0 0 0

VyprVPN UDP Vanilla 50 50 1 50/50 0 0

Windscribe TCP TLS Tunnel 50 49 0.98 0/49 25 0.5

Windscribe TCP WebSocket Tunnel 50 48 0.96 0/48 24 0.48

Windscribe TCP Vanilla 50 50 1 50/50 50 1

Windscribe UDP Vanilla 50 50 1 50/50 50 1

Table 5: Evaluation results on Merit, breakdown by configuration. Highlighted rows are “obfuscated” configurations. Variants marked

with stars mean that the VPN provider does not disclose which obfuscation technique is used and we can only infer the variant type based on

packet captures. Note Hide.me claims the tls-crypt option alone is enough to “obfuscate entire traffic” [18]. However, this option only encrypts

control channel payloads but not the OpenVPN packer headers.

500 31st USENIX Security Symposium USENIX Association

	Introduction
	Background & Related Work
	Challenges in Real-world VPN Detection
	Adversary Model and Deployment
	Ethics, Privacy, and Responsible Disclosure
	Identifying Fingerprintable Features
	Opcode-based Fingerprinting
	ACK-based Fingerprinting
	Active Server Fingerprinting
	Base Probes
	Additional Probes

	Constructing Filters and Probers

	Fine-tuning for Deployment
	ACK Fingerprint Thresholds
	Choice of Observation Window N
	Effects of Packet Loss
	Server Churn for Asynchronous Probing
	Probe UDP and Obfuscated OpenVPN Servers

	Real-world Deployment Setup
	Evaluation & Findings
	Results for control VPN flows
	Results for all flows

	Discussion and Mitigations
	Conclusion
	Acknowledgement
	Appendix

