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An Analytic Comparison of Student-Scheduled and Instructor-Scheduled
Collaborative Learning in Online Contexts

Abstract

Collaborative learning can improve student learning, student persistence, and the classroom
climate. While work has documented the tradeoffs of face-to-face collaboration and
asynchronous, online learning, the trade-offs between asynchronous (student-scheduled) and
synchronous (instructor-scheduled) collaborative and online learning have not been explored.
Structured roles can maximize the effectiveness of collaborative learning by helping all students
participate, but structured roles have not been studied in online settings. We performed a
quasi-experimental study in two courses—Computer Architecture and Numerical Methods—to
compare the effects of asynchronous collaborative learning without structured roles to
synchronous collaborative learning with structured roles. We use a data-analytics approach to
examine how these approaches affected the student learning experience during formative
collaborative learning assessments. Teams in the synchronous offering made higher scoring
submissions (5-10% points better on average), finished assessments more efficiently (11-16
minutes faster on average), and had greater equality in the total number of submissions each
student made (for example, significant increase of 13% in the mean equality score among all
groups).

Introduction and Background

Collaborative learning can improve student persistence, learning outcomes, and classroom
cultures [1, 2]. Successful and productive collaborations are not guaranteed. Collaboration can be
greatly improved by careful design of learning tasks [3, 4], assignment of team roles [5], and the
use of technologies [6, 7].

Many evidence-based practices for collaborative learning, such as Context-Rich Collaborative
Problem Solving [8] or Process-Oriented Guided Inquiry Learning [9], were developed for
in-person, synchronous learning contexts. With the on-going pandemic, the importance of online
only pedagogies has become more readily apparent. Online pedagogies provide new opportunities
for increased access to evidence-based pedagogies at potentially lower cost and greater ability to
scale. Unfortunately, we do not know much about how to effectively provide synchronous
collaborative learning experiences only online.

As instructors at a residential campus that moved to fully remote instruction because of the
pandemic, we wanted to offer the best collaborative learning experience we could so that our



students could still experience some of the benefits of a residential campus: connecting with other
amazing students. So, we wanted to particularly explore how to support synchronous online,
collaborative learning that maximized students’ direct interactions with each other. Without much
direct, clear guidance from the research literature about best practices, most research on online
collaboration focuses on purely asynchronous learning, we sought to study the effect of different
policies on the student learning experience during online, synchronous collaborative
learning.

We compared a more student-centric model where students determined when they would meet as
a group (student-scheduled synchronous) and how their group would function (free-for-all roles)
with a more instructor-centric model where the instructor determined when students would meet
as a group (instructor-scheduled synchronous) and provided instructions and constraints for how
group members interacted (structured roles).

To inform the design of our research study, we discuss two critical parameters for supporting
productive collaborations: synchronous vs. asynchronous modalities [3, 10, 11] and structured
roles [12, 9, 13].

Synchronous vs asynchronous learning

Collaborative-learning can be delivered in face-to-face environments and online through the
Internet [14, 15, 16, 17, 18]. Participants can contribute to the task at different times
(asynchronous activity) or interact simultaneously (synchronous activity). Most evidence-based
practices to maximize collaborative learning have relied on the assumption of face-to-face
interactions [19, 20] or online asynchronous interactions, where group members communicate via
chat message systems, online forums and e-mails [21, 22]. Little research has explored the use of
synchronous, collaborative learning in online contexts, but some work suggests that online tools
for synchronous collaborative learning may promote more equal participation among students
than strictly face-to-face learning [11].

Synchronous and asynchronous modalities provide different benefits for collaborative learning.
Asynchronous classes can increase access and equity, enabling students from differing time
zones, students with work schedules, or students with limited access to computing resources the
opportunity to participate when they are able [23]. Additionally, asynchronous classes can better
support students with disabilities or language barriers [24]. In contrast, synchronous learning
opportunities are associated with greater engagement among the students who can attend the
synchronous learning activities. Our study seeks to explore these trade-offs from a data analytics
perspective.

Structured roles

A lack of clarity and experience in assuming team roles can lead students to default into
domineering team leaders or passive free-loaders [25]. Evidence-based practices such as pair
programming [12], role scripting [26, 27] and Process Oriented Guided Inquiry Learning
(POGIL) [9, 13] have shown that providing students with structured roles can help them
participate more equally during collaborative learning. Structured roles are designed to create
positive interdependence between the roles.



In our classes, we based our structured roles on POGIL roles. The “recorder” writes the team’s
answers to problems, the “manager” is responsible for keeping the team on task, and the
“reflector” is responsible for guiding the team in reflection activities on their learning process.
POGIL has primarily been implemented only in-person contexts. The COVID-19 pandemic has
led to some informal sharing of best practices among POGIL instructors [28, 29], but there have
not been formal studies of how to best adapt POGIL roles to online learning contexts.

Research questions

We studied the implementation of online, collaborative learning in two large-enrollment, required
computing courses: Computer Architecture and Numerical Methods. Both courses were offered
during the Fall and Spring semesters of the 2020-21 academic school year and were offered only
online due to the COVID-19 pandemic. In Fall 2020, instructors for both courses agreed to
primarily support student-scheduled, synchronous, collaborative learning in an effort to best
accommodate students across a variety of time zones and students from lower socio-economic
backgrounds who might not be able to easily attend instructor-scheduled, synchronous class
sessions [24]. In Spring 2021, both courses switched to an instructor-scheduled synchronous
model of instruction in an effort to create stronger senses of community among students and to
better support students’ socio-emotional needs during the pandemic [30, 31, 32]. In tandem, both
instructors shifted from letting students collaborate in whatever manner they saw best (free-for-all
roles) in Fall 2020 to requiring students to take on POGIL-inspired structured roles (recorder,
manager, and reflector) in Spring 2021.

We conducted a quasi-experimental study to compare these policies and explore two research
questions.

RQ1: What effect do student-scheduled, synchronous classes with free-for-all roles and
instructor-scheduled synchronous classes with structured roles have on the student learning
experience during collaborative learning activities? We want to encourage students to help
each other learn and complete the learning exercises. We hypothesize that if students are indeed
helping each other collaboratively, then they will derive higher-scoring solutions to problems and
complete collaborative exercises more efficiently.

RQ2: What effect do student-scheduled synchronous classes with free-for-all roles and
instructor-scheduled synchronous classes with structured roles have on the equality of the
number of students’ contributions during collaborative learning activities? We want all
students to actively participate during collaborative learning activities. We don’t want students to
become disenfranchised and become freeloaders and we don’t want students to take over and
dominate group efforts. We explore this question by comparing the equality of the number of
submissions that students make.

Research methods

We performed two trials of a quasi-experimental study in Computer Architecture and Numerical
Methods. Computer Architecture and Numerical Methods are required for computer science
majors at a public, research-intensive university. The courses each enroll 300–400 students per



semester. They meet twice per week with Computer Architecture convening 2 hours per meeting
and Numerical Methods convening 1.5 hours per meeting.

Both courses adopt a flipped classroom format and deliver all assessments (including pre-lecture
content with short checkpoints, homework, longer form machine problems, frequent quizzes and
in-class collaborative learning assessments) through the open-source online assessment platform
PrairieLearn [33]. We compare click-stream data from PrairieLearn for the collaborative learning
assessments (called Group Assessments, henceforth GAs) to observe how different policies
(student-scheduled synchronous with free-for-all roles versus instructor-scheduled synchronous
with structured roles) affected how students collaborated during these assessments. For brevity,
we will henceforth call student-scheduled synchronous as “asynchronous.” All aspects of the
courses were kept the same between semesters: same instructors, same learning materials, same
homework/quiz structures, and same course policies aside from changes related to GAs.

PrairieLearn is a problem-driven learning environment designed to promote mastery-based
learning, where students are able to practice solving randomized problem variants repeatedly,
receiving immediate feedback about their current mastery level. It also provides autograding for a
wide range of question types including numerical and symbolic questions, programming
problems, and some computer-assisted drawing tasks. When used for GAs, all members of the
same team share the same assessment and therefore the corresponding grade. During a class
session, students work collaboratively to solve each question, with the ability to submit unlimited
answers, until they get the question marked as correct. They receive both feedback from
PrairieLearn and from course staff that are available during class time.

In Computer Architecture, GAs had a mixture of problem types, including comparative analysis
of real-world systems, interactive design activities, and short programming problems. Most GAs
had between 4 and 10 problems. In Numerical Methods, GAs mostly consisted of a multi-part
programming problem with students encouraged to submit code incrementally.

Student-scheduled synchronous (“asynchronous”), free-for-all roles course policies. For
“asynchronous” offerings of the courses, instructors did not require attendance during class time
but provided office hours in Zoom during scheduled times. At the start of the semester, students
completed a survey to indicate approximate times that they would like to complete the GAs and a
classmate they would like to have assigned to their team. The instructors assigned students to
teams of 3–4 based on their time preferences and classmate preferences. Students were expected
to complete GAs together during a mutually agreed upon time. Lecture material to help students
complete GAs were pre-recorded and available to students asynchronously.

During GAs, students were allowed to complete them with whatever roles they thought was best.
In Figure 1a, we visualize an example click-stream log from three GAs from the asynchronous
term. Each numbered rectangle represents the click-stream data from a different GA, and the
x-axis represents the first 180 minutes that any member of the team worked on a GA. Each dot
represents a submission by a team member and each member of the team is shown consistently on
a different row. These visualizations show that students often made submissions during the same
time intervals, indicating that students were working at the same time as hoped for. Some students
did not submit anything on some GAs. These lack of submissions may or may not indicate



(a) Asynchronous course offering (b) Synchronous course offering

Figure 1: Visualization of click-stream data. Each subplot represents a different assessment (5,6,7),
each dot inside a subplot represents a student submission into PrairieLearn, and each color repre-
sents a unique student. For better clarity, we display different students in separate rows inside
the subplot. (a) Submissions for a selected group in the asynchronous course offering. The sub-
missions happen concurrently, indicating that students are working together. (b)Submissions for a
selected group in the synchronous course offering. One student makes the majority of submissions
in each assessment, indicating that the student was likely assigned to the role of recorder for the
team.

whether students were present and collaborating with their team members, as a team member
could be helpfully giving feedback while not actively pressing a submit button.

Instructor-scheduled synchronous, structure roles course policies. For synchronous
offerings, instructors required attendance during class time. Both classes offered an additional
section to accommodate students in time zones that did not align with the scheduled course time
(e.g., a 5 a.m. section for students in a different hemisphere). Attendance was collected by using
Zoom’s attendance record. For the first two weeks, students were assigned into random ad hoc
teams to give them opportunities to meet other students. Starting in the third week, students were
allowed to self-organize into teams of 3–4 and students who did not self-organize were assigned
to teams of 3–4 by the instructor. The teams remained fixed for the following 6 weeks of the
semester. For the last 6 weeks, students were given the opportunity to remain with their assigned
teams or to choose new teams. Most teams (>90%) elected to stay with their originally assigned
teams.

At the start of the semester, students were taught about structured roles and their potential benefits
for team dynamics. During GAs, students first had to complete a “manager report” where the
manager indicated which team members were in attendance and what roles each member was
assigned to. The recorder was then responsible for submitting all remaining answers for the team
into PrairieLearn. The reflector completed a “reflector survey” at the end of the assessment to
reflect on what the team had learned, the team’s preparation for the assessment, and how the team
had worked together. To receive participation points, students were required to participate in each
role twice during the semester and were encouraged to rotate their roles each class meeting.

In Figure 1b, we show another visualization of click-stream data that demonstrates how one



student made the vast majority of submissions on each GA, indicating they were likely the
recorder. Each GA has a different student making the majority of submissions, indicating the
teams were rotating which student was the recorder.

Data collection

At the beginning of each term, students provided consent for their anonymized data to be used as
part of research studies. PrairieLearn collects all click-stream data: a log of every time a student
views a question, grades a question, views an assessment. We downloaded all click-stream logs
for GAs from both Computer Architecture and Numerical Methods after all final grades had been
assigned to ensure that log data did not influence how the instructors taught their students.

Data cleaning

To account for students dropping a course, team compositions being shuffled, and students who
simply refused to work with their teams, we analyzed only those teams where at least two
students worked together for more than half of GAs in a semester. Because students were allowed
to drop their lowest GA scores or they simply failed to complete every GA, we report the number
of teams that completed each GA and analyze statistics based only on the teams that completed
each GA.

Metrics for Research Question 1

We defined two metrics to describe the quality of the student learning experience during GAs: the
performance of submissions and the time to completion. We hypothesize that if group members
are helping each other learn, they should make higher performing submissions and they would
spend less time to finish an assignment. Analyzing both metrics is important for observing
productive collaboration. For example, a team might reduce their time to completion by using a
divide-and-conquer rather than collaborative approach, but because team members are not
actively helping each other, we would not expect to also see a corresponding improvement in the
performance of submissions.

Performance of Submissions: when using PrairieLearn, students can make unlimited submission
to the same question without being penalized. Therefore, we defined the performance of
submissions as the team’s average submission score made during an assessment. If a team had a
better understanding of the course material, we expect they would achieve higher average
submission scores. For example a team that earned 90% on their first submission and 100% on
their final submission would have an average score of 95% while a team that earned 0% on their
first submission, 60% on their second submission and 100% on their final submission would have
an average score of 53.3%. We would estimate that the first team had a better understanding of
the course material or the first team at least proofread their submissions better. Because students
were allowed to resubmit answers without penalty until they got them marked as correct, we
cannot use the final assessment score as a performance metric, because most teams eventually
earned perfect scores.

Time to Completion: We summed the time between submissions, removing submissions made
more than 60 minutes apart. We assumed this amount of time indicated that a team was idle and



not actively working on the assessment during that time interval.

Metrics for Research Question 2

When implementing collaborative learning, we want to minimize the number of freeloaders or
dominators and encourage all team members to actively engage in the learning process for the
whole semester. Because we expect that one member, the recorder, should make the majority of
submissions in each GA during the synchronous offering, but had no such expectation for the
“asynchronous” offering, we evaluated team contributions on a per semester basis rather than a
per assessment basis to make the comparison fair.

Figure 2 illustrates the percentage of submissions for each team member from three different
teams. To define a standard metric for equality, we computed the standard deviation of the
percentage of submissions for each team member (σp). Because the group size varied between
2–4 and group size affects the maximum possible standard deviation (σmax), we normalized our
metric by dividing the standard deviation by the maximum possible standard deviation. To
improve interpretability, we subtract this quantity from 1 to get the equality score e, giving

e = 1− σp

σmax

. (1)

Teams with perfectly equal number of submissions from all team members would yield an
equality score of 1 and a team where one team member makes all submissions would yield an
equality score of 0. In Fig. 2, group 19 had an equality score of 0.46 because student 2 made most
of the submissions and student 3 made almost no submissions. Group 94 had an equality score of
0.94 because team members made roughly the same number of submissions.

Analysis methods

For our first research question, we performed a meta-analysis across all GAs for each course and
each metric (performance of submissions and time to completion) using a Multi-Level Modeling
(MLM) approach [34]. We chose MLM because it can model nested data (i.e., assignments nested
within a course) with different variances across groups [34, 35, 36] as is the case with our data.
We use the following MLM for performance of groups on GAs:

Outcomeij = β0 + β1Sync +Wj + ϵij, (2a)
Wj ∼ N(0, τ 2), (2b)
ϵij ∼ N(0, σ2), (2c)

where i indexes groups of students and j indexes GAs. Outcomeij represents the outcome (either
performance or duration, we will use the same model for both) of group i on GA j. Sync
represents whether assignment j was done synchronously or asynchronously (1=synchronously,
0=asynchronously). Here β0 is the intercept, which in this model is the average outcome for
groups doing the assignment asynchronously. In our case, the parameter we are most interested in
is β1, which estimates the impact of doing an assignment synchronously. The error term at the
GA level is ϵij , which models the variance in the distribution of the performance of different



Figure 2: Histograms for three teams with varying levels of equality in their percentage of submis-
sions: Group 19 Equality Score = 0.46, Group 13 Equality Score = 0.72, Group 94 Equality Score
= 0.94

groups on a particular GA as a normal distribution with variance σ2. The course-level error term
is Wj , which models the variance in outcomes between different GAs as a normal distribution
with variance τ 2. Because the variation between performance on the same assignment is the focus
here, as our standardized effect size, we report the value of β1 divided by the standard deviation of
the GA-level error term (sd(σ)). We fit this model four times—once time for each outcome
(performance and duration) for each course (Numerical Methods and Computer Architecture).
We fit our MLM using the lme4 library in the R programming language [37, 38].

The outcomes over all groups and all assessments vary over some range. We used the intra-class
correlation coefficient (ICC) to investigate whether this variance of outcomes is a result from
variation between assessments (for example, some assessments may be harder than others, but
groups have similar outcomes within the same assessment) or variation within assessments
(where groups have different outcomes on the same assessment). The ICC is defined as the ratio
between the variance between assessments and the total variance:

ICC =
τ 2

τ 2 + σ2
. (3)

If the ICC is near 0, then almost all the variation is between assessments. If the ICC is near 1,
then almost all the variation is within assessments.

To aid interpretation of the MLM, we compare averages across the terms using two-way t-tests
with α = 0.05 for each assessment individually. We report effect sizes using Hedge’s g because
of the unequal sample sizes. We do not apply a correction to the α levels because these statistical
tests are merely illustrative rather than the main statistical tests for our study.



For our second research question, we compared the average equality score between semesters
using a two-way t-test again using α = 0.05. We performed this analysis for each course
individually and then aggregated our findings across both courses by combining the data from
both courses from the same term and again compared the means using another independent
samples, two-way t-test. We report effect sizes using Hedge’s g because of the unequal sample
sizes. We again view only the aggregated statistic as the primary measure and use the
disaggregated data to aid interpretation.

Results

We report the result of the MLMs for each course and for performance of submissions and time to
completion. We provide statistical comparisons for each GA individually to aid
interpretation.

Performance of submissions

Table 1 shows the summary of the statistics for all the GAs in the Computer Architecture course.
The synchronous offering had significantly higher performing submissions than the
“asynchronous” offering on 14 of 22 assessments. In only 2 assessments the performance of
submissions from the asynchronous offering were better, but the results were not
significant.

Table 1: Performance of submissions and time to complete for Computer Architecture for each GA
across “asynchronous” (FA20) and synchronous (SP21) offerings. Performance of submissions is
measured by finding the average score of every submission by each team (instead of percent, we
display scores between 0-1), time interval counts if two submissions are made within 60 minutes
and nFA20 and nSP21 are the number of submissions in each semester. The (*) denotes the results
that are statistically significant.

Performance of submissions Time to complete
GA nFA20 nSP21 FA20 score(std) SP21 score(std) p-value Hedge’s g FA20 duration(std) SP21 duration(std) p-value Hedge’s g
1 113 112 .79(0.1) .82(0.11) 0.01* 0.36 82.97(58.58) 59.86(31.66) <0.01* 0.49
2 105 113 .75(0.11) .73(0.09) 0.36 -0.13 62.06(41.14) 59.72(15.95) 0.59 0.08
3 109 112 .47(0.14) .57(0.15) <0.01* 0.67 99.56(48.28) 77.12(27.61) <0.01* 0.57
4 110 113 .55(0.17) .56(0.16) 0.52 0.09 62.1(36.79) 54.85(20.42) 0.07 0.24
5 110 113 .36(0.17) .41(0.16) 0.02* 0.32 92.95(49.7) 75.57(30.76) <0.01* 0.42
6 109 113 .75(0.14) .77(0.14) 0.24 0.16 136.23(74.44) 116.37(90.46) 0.08 0.24
7 109 112 .79(0.15) .86(0.12) <0.01* 0.51 100.9(74.12) 70.49(41.92) <0.01* 0.51
8 108 112 .82(0.21) .93(0.07) <0.01* 0.73 71.34(64.0) 48.79(25.61) <0.01* 0.46
9 109 112 .78(0.1) .82(0.08) <0.01* 0.42 18.99(16.74) 30.46(14.58) <0.01* -0.73
10 109 111 .77(0.12) .79(0.13) 0.19 0.18 38.8(22.97) 30.48(11.62) <0.01* 0.46
11 107 111 .77(0.11) .82(0.12) 0.01* 0.34 58.04(37.09) 47.57(17.39) 0.01* 0.36
12 107 112 .66(0.11) .70(0.09) 0.02* 0.32 80.6(42.14) 67.24(26.91) 0.01* 0.38
13 106 106 .59(0.12) .60(0.12) 0.71 0.05 84.65(54.73) 73.67(39.27) 0.09 0.23
14 106 112 .76(0.17) .80(0.16) 0.07 0.25 44.87(25.13) 35.88(16.75) <0.01* 0.42
15 104 110 .76(0.14) .74(0.17) 0.26 -0.15 46.23(25.83) 43.35(19.03) 0.36 0.13
16 105 108 .43(0.24) .55(0.25) <0.01* 0.48 70.3(49.52) 62.28(36.04) 0.18 0.18
17 105 108 .50(0.17) .60(0.16) <0.01* 0.62 89.34(51.28) 81.54(36.58) 0.2 0.17
18 104 110 .54(0.16) .57(0.17) 0.15 0.2 94.59(56.99) 77.97(46.42) 0.02* 0.32
19 105 107 .69(0.14) .74(0.13) 0.02* 0.33 65.97(45.04) 56.09(24.79) 0.05 0.27
20 103 109 .50(0.19) .62(0.21) <0.01* 0.57 44.24(33.16) 38.74(27.98) 0.2 0.18
21 105 109 .79(0.07) .82(0.07) 0.01* 0.39 27.55(17.78) 28.74(14.98) 0.6 -0.07
22 103 106 .63(0.18) .71(0.19) <0.01* 0.41 30.27(27.4) 26.88(26.51) 0.36 0.13



Table 2 shows the MLM model fit when Outcomeij is the average submission score per team i on
GA j in the Computer Architecture class. The submissions by synchronous groups were, on
average, 4.86 percentage points better than submissions by “asynchronous” groups. The ICC for
this model was 0.44, meaning that just over half of the unexplained variance in the model came
from the variance between assessments, and the rest came from the variance between groups
working on the same assessment. The standardized effect size (β1/sd(σ)) was small (0.37) but
significant (p < 0.001).

Table 2: MLM model fit for the average submission data in the Computer Architecture class,
showing that groups in the synchronous course performed 4.86 percentage points better on average.

Estimate (std) t-value Estimate (std)
β0 (Intercept) 65.76 (2.84) 23.12 σ2 175.85 (13.26)
β1 (Sync) 4.86 (0.43) 11.23 τ 2 224.06 (14.97)

Table 3 shows the summary of the statistics for all the GAs in the Numerical Methods course. The
synchronous offering had significantly higher performing submissions than the “asynchronous”
offering on 8 of 9 assessments. In only 1 assessment the performance of submission from the
asynchronous offering was better, but the result was not significant.

Table 4 shows the MLM model fit when Outcomeij is the average submission score per team i on
GA j in the Numerical Analysis class. The submissions by synchronous groups were, on average,
9.63 percentage points better than submissions by “asynchronous” groups. The ICC for this
model was 0.22, meaning that most of the unexplained variance in the model came from the
variance between assessments, and the rest came from the variance between groups working on
the same assessments. The standardized effect size (β1/sd(σ)) is large (1.31) and significant
(p < 0.001).

Table 3: Performance of submissions and time to complete for Numerical Methods for each GA
across “asynchronous” (FA20) and synchronous (SP21) offerings. Performance of submissions is
measured by finding the average score of every submission by each team (instead of percent, we
display scores between 0-1), time interval counts if two submissions are made within 60 minutes
and nFA20 and nSP21 are the number of submissions in each semester. The (*) denotes the results
that are statistically significant.

Performance of submissions Time to complete
GA nFA20 nSP21 FA20 score(std) SP21 score(std) p-value Hedge’s g FA20 duration(std) SP21 duration(std) p-value Hedge’s g

1 121 93 .34(0.13) .54(0.2) <0.01* 1.23 95.22(50.34) 55.14(24.42) <0.01* 0.97
2 121 95 .46(0.16) .59(0.17) <0.01* 0.75 59.13(35.91) 46.63(20.35) <0.01* 0.41
3 119 95 .38(0.09) .46(0.13) <0.01* 0.77 72.05(36.37) 68.88(39.0) 0.54 0.08
4 118 92 .58(0.15) .64(0.11) <0.01* 0.5 98.33(50.48) 58.42(26.86) <0.01* 0.95
5 119 92 .40(0.14) .46(0.09) <0.01* 0.57 82.41(55.45) 67.11(26.94) <0.01* 0.34
6 118 90 .55(0.15) .61(0.13) <0.01* 0.4 51.86(30.71) 58.63(25.22) 0.08 -0.24
7 64 90 .51(0.12) .66(0.13) <0.01* 1.25 58.92(43.9) 48.44(20.98) 0.08 0.32
8 116 43 .46(0.1) .62(0.14) <0.01* 1.42 49.8(22.5) 61.76(39.86) 0.07 -0.42
9 116 85 .56(0.11) .54(0.14) 0.26 -0.17 81.41(39.0) 50.49(28.44) <0.01* 0.88

Time to completion

As described in Table 1, the synchronous offering of Computer Architecture spent significantly
less time than the “asynchronous” offering to complete 10 of 22 assessments and significantly



Table 4: MLM model fit for the average submission data in the Numerical Methods class showing
that groups in the synchronous course performed 9.63 percentage points better on average.

Estimate (std) t-value Estimate (std)
β0 (Intercept) 47.18 (2.48) 19 σ2 53.78 (7.33)
β1 (Sync) 9.63 (0.67) 14.46 τ 2 191.12 (13.82)

more on 1 assessment. Table 5 shows the MLM model fit when Outcomeij is the time to complete
GA j for team j in the Computer Architecture class. The synchronous groups completed
assessments 10.93 minutes faster on average than “asynchronous” groups. The ICC for this model
was 0.27, meaning that most of the unexplained variance in the model came from the variance
between assessments, and the rest came from the variance between groups working on the same
assessment. For this model, the standardized effect size (β1/sd(σ)) is medium sized (−0.43) and
significant (p < 0.001), meaning that students in the synchronous class spent less time on the
assessments than “asynchronous students”. Summing across all assessments, the medium-effect
size translates to synchronous students in Computer Architecture spending 3.98 hours less or 1
full week of instructional time on in-class activities.

Table 5: MLM model fit for the time to complete data in the Computer Architecture class, showing
that groups in the synchronous course completed their work 10.93 minutes faster on average.

Estimate (std) t-value Estimate (std)
β0 (Intercept) 68.34 (5.37) 12.72 σ2 620.14 (24.9)
β1 (Sync) -10.93 (1.17) -9.31 τ 2 1646.09 (40.57)

As described in Table 3, the synchronous offering of Numerical Methods spent significantly less
time than the “asynchronous” offering to complete 5 of 9 assessments. Table 6 shows the MLM
model fit when Outcomeij is the time to complete GA j for team j in the Numerical Methods
class. The synchronous groups completed assessments 16.19 minutes faster on average than
“asynchronous” groups. The ICC for this model was 0.087, meaning that almost all of the
unexplained variance in the model came from the variance between assessments, and most groups
completed each assessments in a similar amount of time. For this model, the standardized effect
size (β1/sd(σ)) is large (−1.41) and significant (p < 0.001), meaning the synchronous students
spent less time on assessments than “asynchronous” students. Summing across all assessments,
the large effect size translates to synchronous students in Numerical Methods spending 2.83 hours
of instructional time less than students in the “asynchronous” offering (almost 1 full week) on
in-class activities.

Table 6: MLM model fit for the time to complete data in the Numerical Methods class, showing
that groups in the synchronous course completed their work 16.19 minutes faster on average.

Estimate (std) t-value Estimate (std)
β0 (Intercept) 72.35 (4.01) 18.04 σ2 132.28 (11.5)
β1 (Sync) -16.19 (1.79) -9.02 τ 2 1390.96 (37.3)



Equality of number of submissions

Figure 3a provides a histogram of the equality score for all teams with more than 2 members from
Computer Architecture. The synchronous offering of the course (µ = 0.71, σ = 0.17, N = 96)
had significantly more (p = 0.006, g = 0.397) equality in the number of submissions among team
members than the “asynchronous” offering of the course (µ = 0.63, σ = 0.25, N = 99).

(a) Computer Architecture (b) Numerical Methods

Figure 3: Histogram of the equality scores for each team for the “asynchronous” (FA20) and
synchronous (SP21) offerings.

Figure 3b provides a histogram of the equality score for all teams with more than 2 members from
Numerical Methods. The synchronous offering of the course (µ = 0.71, σ = 0.16, N = 74) had
significantly more (p = 0.049, g = 0.284) equality in the number of submissions among team
members than the “asynchronous” offering of the course (µ = 0.67, σ = 0.18, N = 118).

Combining data reveals that the synchronous offering of the courses yielded significantly higher
(p < 0.001) equality in the number of student submissions with a small effect size
(g = 0.337).

Discussion and Conclusions

Our analysis reveals marked improvements across all metrics for synchronous collaborative
learning with structured roles relative to “asynchronous” collaborative learning without structured
roles. The effect sizes were substantive, suggesting improvements in the performance of
submissions by a half to a full letter grade and students needing one week less of in-class time to
finish assessments. These benefits were complemented by evidence that there was more equal
participation by all team members in the synchronous offering.

Our data analytics approach cannot capture many nuances of collaborative learning that do not
require clicking a button in PrairieLearn such as conversations or help seeking. Thus, we might
see improvements in our chosen metrics that do not correspond to improved learning experiences.
Counter-productive divide-and-conquer approaches might improve time to duration statistics or a
dominant student might lead to improved performance of submissions. However,



divide-and-conquer approaches likely won’t also lead to improved submission performance as
students are not checking each other’s work and a dominant student would likely not lead to an
equal number of submissions. When taken together, the improvements in all three metrics provide
strong evidence that the synchronous course structured roles created an environment where
students more readily participated in learning activities and helped each other collaboratively. In
future papers, we will be complementing this analysis with deeper analysis of more qualitative
data including students’ feedback on reflector surveys, end-of-semester surveys, and observations
of student teams during class time.

It is not clear whether the change from “asynchronous” to synchronous or free-for-all roles to
structured roles or the combination of changes is responsible for the improvements in students’
in-class experience. The instructors of these courses did find that the quality of their interactions
with students and the logistics of running the course were also dramatically improved. For
example, the synchronous meeting time made it easier for instructors to remind students of roles
and provide tips and suggestions in real time for how specific teams could enact their roles. Based
on our experience as instructors and the evidence from the data analytics, it is reasonable to claim
that the combination of synchronous collaborative learning with structured roles is a best practice
to recommend to other instructors.

References

[1] S. Freeman, S. Eddy, M. McDonough, M. Smith, N. Okoroafor, H. Jordt, and M. Wenderoth, “Active learning
increases student performance in science, engineering, and mathematics,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 23, pp. 8410–8415, 2014.

[2] J. Gasiewski, M. Eagan, G. Garcia, S. Hurtado, and M. Chang, “From gatekeeping to engagement: A
multicontextual, mixed method study of student academic engagement in introductory stem courses,” Research
in Higher Education, vol. 53, p. 229–261, 2012.

[3] M. Kapur and C. K. Kinzer, “Examining the effect of problem type in a synchronous computer-supported
collaborative learning (cscl) environment,” Educational Technology Research and Development, vol. 55, pp.
439–459, 2007.

[4] T. Tucker, S. Shehab, E. Mercier, and M. Silva, “Board 50: Wip: Evidence-based analysis of the design of
collaborative problemsolving engineering tasks,” Proceedings of American Society for Engineering Education,
2019.

[5] H. H. Hu, C. Kussmaul, B. Knaeble, C. Mayfield, and A. Yadav, “Results from a survey of faculty adoption of
process oriented guided inquiry learning (pogil) in computer science,” in Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education, 2016, pp. 186–191.

[6] T. Nokes-Malach, J. Richey, and S. Gadgil, “When is it better to learn together? insights from research on
collaborative learning,” Educational Psychology Review, vol. 27, p. 645–656, 2015.

[7] S. Shehab, L. Lawrence, E. Mercier, A. Margotta, E.Livingston, M. Silva, and T. Tucker, “Towards the effective
implementation of collaborative problem solving in undergraduate engineering classrooms: co-designing
guidelines for teaching assistants,” Proceedings of American Society for Engineering Education, 2020.

[8] P. Heller and M. Hollabaugh, “Teaching problem solving through cooperative grouping. part 2: Designing
problems and structuring groups,” American Journal of Physics, vol. 60, no. 7, pp. 637–644, 1992. [Online].
Available: https://doi.org/10.1119/1.17118



[9] “Pogil: Process oriented guided inquiry learning,” https://pogil.org, Last accessed on 2021-01-31.

[10] M. H. Dlab, I. Boticki, N. Hoic-Bozic, and C. K. Looi, “Exploring group interactions in synchronous mobile
computer-supported learning activities,” Computers & Education, vol. 146, p. 103735, 2020.

[11] R. R. Fowler, “Talking teams: Increased equity in participation in online compared to face-to-face team
discussions,” The ASEE Computers in Education (CoED) Journal, vol. 6, no. 1, p. 14, 2015.

[12] B. Hanks, S. Fitzgerald, R. McCauley, L. Murphy, and C. Zander, “Pair programming in education: a literature
review,” Computer Science Education, vol. 21, no. 2, pp. 135–173, 2011.

[13] R. S. Moog and J. N. Spencer, Process oriented guided inquiry learning. American Chemical Society
Washington, DC, 2008, vol. 994.

[14] T. Koschmann, “Paradigm shifts and instructional technology: An introduction,” CSCL: Theory and practice of
an emerging paradigm, vol. 12, no. 4, pp. 18–19, 1996.

[15] E. Lehtinen, K. Hakkarainen, L. Lipponen, M. Rahikainen, and H. Muukkonen, “Computer supported
collaborative learning: A review,” The JHGI Giesbers reports on education, vol. 10, p. 1999, 1999.

[16] L. Lipponen, “Exploring foundations for computer-supported collaborative learning.” in CSCL, vol. 2, 2002, pp.
72–81.

[17] P. Dillenbourg, S. Järvelä, and F. Fischer, “The evolution of research on computer-supported collaborative
learning,” in Technology-enhanced learning. Springer, 2009, pp. 3–19.

[18] P. Dillenbourg, Collaborative learning: Cognitive and computational approaches. advances in learning and
instruction series. ERIC, 1999.

[19] E. Mercier and S. Higgins, “Collaborative learning with multi-touch technology: Developing adaptive
expertise,” Learning and Instruction, vol. 25, p. 13–23, 2013.

[20] L. Paquette, N. Bosch, E. Mercier, J. Jung, S. Shehab, and Y. Tong, “Matching data-driven models of group
interactions to video analysis of collaborative problem solving on tablet computers,” Proceedings of
International Conference of the Learning Sciences, vol. 1, 2018.

[21] A. Solimeno, M. E. Mebane, M. Tomai, and D. Francescato, “The influence of students and teachers
characteristics on the efficacy of face-to-face and computer supported collaborative learning,” Computers &
Education, vol. 51, no. 1, pp. 109–128, 2008.

[22] S. Dewiyanti, S. Brand-Gruwel, W. Jochems, and N. J. Broers, “Students’ experiences with collaborative
learning in asynchronous computer-supported collaborative learning environments,” Computers in Human
Behavior, vol. 23, no. 1, pp. 496–514, 2007.

[23] H. Galperin, “ COVID-19 and the Distance Learning Gap,”
http://arnicusc.org/wp-content/uploads/2020/04/Policy-Brief-5-final.pdf, Last accessed on 2020-07-28.

[24] S. J. Aguilar, “Guidelines and tools for promoting digital equity,” Information and Learning Sciences, 2020.

[25] L. Lipponen, K. Hakkarainen, and S. Paavola, “Practices and orientations of CSCL,” in What we know about
CSCL. Springer, 2004, pp. 31–50.

[26] A. Weinberger, I. Kollar, Y. Dimitriadis, K. Mäkitalo-Siegl, and F. Fischer, “Computer-supported collaboration
scripts,” in Technology-enhanced learning. Springer, 2009, pp. 155–173.

[27] T. Schellens, H. Van Keer, B. De Wever, and M. Valcke, “Scripting by assigning roles: Does it improve
knowledge construction in asynchronous discussion groups?” International Journal of Computer-Supported
Collaborative Learning, vol. 2, no. 2-3, pp. 225–246, 2007.

[28] “POGIL: Teaching online during the COVID-19 crisis,”
https://pogil.org/teaching-online-during-the-covid-19-crisis, Last accessed on 2021-01-31.

[29] I. Howley, “Adapting guided inquiry learning worksheets for emergency remote learning,” Information and
Learning Sciences, 2020.



[30] C. N. Gunawardena, C. A. Lowe, and T. Anderson, “Analysis of a global online debate and the development of
an interaction analysis model for examining social construction of knowledge in computer conferencing,”
Journal of educational computing research, vol. 17, no. 4, pp. 397–431, 1997.

[31] L. Gilbert and D. R. Moore, “Building interactivity into web courses: Tools for social and instructional
interactions,” Educational Technology, vol. 38, no. 3, pp. 29–35, 1998.

[32] G. Gonzales, E. Loret de Mola, K. A. Gavulic, T. McKay, and C. Purcell, “Mental health needs among lesbian,
gay, bisexual, and transgender college students during the covid-19 pandemic,” Journal of Adolescent Health,
vol. 67, no. 5, pp. 645–648, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1054139X20304882

[33] M. West, G. L. Herman, and C. Zilles, “Prairielearn: Mastery-based online problem solving with adaptive
scoring and recommendations driven by machine learning,” in 2015 ASEE Annual Conference & Exposition.
Seattle, Washington: ASEE Conferences, June 2015.

[34] T. A. Snijders and R. J. Bosker, Multilevel analysis: An introduction to basic and advanced multilevel
modeling. Sage, 2011.

[35] M. S. Peteranetz and L.-K. Soh, “A multi-level analysis of the relationship between instructional practices and
retention in computer science,” in Proceedings of the 51st ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 37–43.
[Online]. Available: https://doi.org/10.1145/3328778.3366812

[36] S. Poulsen, C. J. Anderson, and M. West, “The relationship between course scheduling and student
performance,” in Proceedings of the 4th Workshop on Educational Data Mining in Computer Science
Education, 2020.

[37] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2020. [Online]. Available: https://www.R-project.org/

[38] D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models using lme4,” Journal of
Statistical Software, vol. 67, no. 1, pp. 1–48, 2015.


