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Abstract—The Open Knowledgebase of Interatomic Models
(OpenKIM) is an NSF Science Gateway that archives fully
functional computer implementations of interatomic models
(potentials and force fields) and simulation codes that use
them to compute material properties. Interatomic models are
coupled with compatible simulation codes and executed in a
fully automated manner by the OpenKIM processing pipeline,
a cloud-based computation platform. The pipeline as previously
introduced in the literature was insufficient to support the large
volume and scale of computations that have become necessary
within the materials science community. Accordingly, we present
extensions made to the pipeline that allow it to utilize High-
Performance Computing (HPC) resources in an efficient and
performant fashion.

Index Terms—cyberinfrastructure, molecular dynamics, high-
performance computing

I. INTRODUCTION

In recent years, the materials science community has in-
creasingly focused on numerical modeling approaches to pre-
dict the properties of novel materials. While fully determining
the electronic states of a material via quantum mechanical
approaches like density functional theory (DFT) remains pro-
hibitively expensive to calculate for anything but the smallest
systems, researchers have turned to atomistic methods where
the interactions are computed using approximate interatomic
models (IMs) (empirical interatomic potentials and force
fields) for the increasingly large sections of materials typically
modeled in contemporary materials science research. This
trend has accelerated even further with recent developments
in machine learning that have led to the development of
more accurate IMs. Many IMs have been developed for a
plethora of materials over the last few decades that vary
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considerably in their complexity, computational efficiency, and
transferability across different material properties. Further-
more, the computer implementation of these models is often
not published with the corresponding research. This can make
it difficult for subsequent researchers interested in similar
systems to determine whether a model that fits their needs
has already been developed, or which of several existing IMs
most accurately predicts a particular physical property relevant
to their investigation.

The Open Knowledgebase of Interatomic Models
(OpenKIM, KIM) [1], [2] is an NSF-funded Science Gateway
or cyberinfrastructure [3], [4] founded in 2009 to address
the need for a central repository of IMs to help researchers
find applicable models and make informed comparisons
between them. OpenKIM archives fully functional computer
implementations of IMs with the relevant parameters,
maintained in a public database hosted at https://openkim.org.
Archived alongside the models are a host of property
computations, i.e. simulation codes that are coupled with
them to compute material property predictions, called Tests
in OpenKIM parlance. This coupling is made possible by
the KIM Application Programming Interface (KIM API) [5],
which provides a standard mechanism for models and
simulations to exchange information. When a new IM is
uploaded to OpenKIM, it is automatically paired and executed
with all compatible property computations and the resulting
material property predictions are stored in the database;
similarly, when a new property computation is uploaded, it
is run against all compatible IMs. This stands in contrast to
existing orchestration tools for atomistic simulation [6]–[9],
where users interactively define their own specific workflows.
In general, property computations may query the OpenKIM
database for the results of other computations, which imposes
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a partial ordering on the sequence in which they must be run.
Carrying out these computations is, therefore, a non-trivial
endeavor requiring careful implementation in addition to
computational resources. Once completed, their results allow
for direct comparisons to be made between the predictions
of comparable models (e.g., which IMs best predict the
geometric parameters of the most common bulk phases of
silicon?).

This process of taking an IM submitted to openkim.org,
automatically determining which property computations are
compatible with it to form jobs, resolving the dependencies
between property computations, executing the jobs, and pre-
senting their results is handled by the OpenKIM processing
pipeline [10]. The pipeline is composed of several high-
level components connected by asynchronous Celery [11] task
queues running RabbitMQ [12] as a message broker. In its
original design, there were three main components: (1) the
Gateway, responsible for handling communication between
openkim.org and the other components; (2) the Director,
which creates jobs for compatible model-simulation code pairs
and determines the order in which they are run, respecting
their dependencies; and (3) an array of Workers responsible
for carrying out the actual calculations. These Workers were
run on commodity hardware, and were thus limited to running
small jobs, each containing a small number of simultaneous
processes, with relatively low overall throughput.

Recently, the materials science research community has
trended toward not only increasingly large volumes of jobs, but
also individual jobs that require significant computational re-
sources. The OpenKIM project itself is entering a stage where
tens of thousands to hundreds of thousands of jobs must be run
in the span of several months. These jobs primarily consist of
small serial jobs requiring less than 15 minutes to run, but also
include a significant portion that require dozens of cores and
one or more days to finish executing. To accommodate this
demand, there is a need for the processing pipeline to be able
to submit jobs to third-party High-Performance Computing
(HPC) clusters to take advantage of large-scale computational
resources already available to academic projects. In this work,
we describe the precise modifications made to the original
OpenKIM processing pipeline introduced in [10] to allow for
utilization of HPC resources, highlighting the fundamental
issues encountered and their solutions.

II. DESIGN AND IMPLEMENTATION

A. Executing jobs on HPC resources

The fundamental unit of the OpenKIM pipeline is the
KIM Job. A KIM Job is a single coupling of an IM and
a property computation (Test) used to compute a specific
physical property. Each job needs to run in a controlled,
reproducible software environment that includes any external
packages required by the simulation. This environment must
also be easily portable and require minimal permissions to run
on HPC clusters, which typically only allow user-level access.
The pipeline addresses these needs by executing KIM Jobs
inside of Singularity [13] containers. In addition to ensuring

that jobs run with all required software, the isolation provided
by containers also makes it possible to prevent multiple
jobs running simultaneously on the same compute node from
interfering with one another.

With a viable way of running jobs on HPC clusters estab-
lished, a second challenge is to devise a method of taking KIM
Jobs, which are generated within the pipeline, and submitting
them to the scheduler of a given cluster. We specifically seek
a solution that allows for execution at any of a number of
clusters because it increases overall throughput. Individual
clusters sometimes become overloaded with jobs or go offline
for maintenance, and each has its own resource allocation
limit. Submitting too many jobs on a single cluster will also
trigger load-balancing mechanisms intended to ensure fair
usage among its users. To this end, the pipeline utilizes the
Tapis [14] platform operated by the Texas Advanced Com-
puting Center (TACC). Tapis is a web-based API framework
intended to allow researchers to securely orchestrate computa-
tional workflows across heterogeneous HPC resources. While
it is possible to self-host an instance of Tapis, TACC provides
a fully hosted solution free of charge, making it a simpler
alternative to competing workflow managers [15]–[19]. Tapis
is also ideally suited to the present application because its
programmable API is sufficiently flexible to allow the existing
pipeline infrastructure that effectively defines job workflows
to be reused without alteration. Users begin by registering
any desired storage and execution systems to which they have
access, and proceed to define Tapis Apps that work atop them.
Each Tapis App is required to have its own well-defined set
of parameters and input files that it needs to run. A Tapis Job
is then created by invoking a Tapis App with explicit values
for its parameters and the paths of specific input files on a
registered storage system. Once a Tapis Job is submitted, it
is possible to subscribe to event notifications as it progresses
through a number of different states in its life cycle, allowing
it to be monitored without repeatedly polling HPC resources
directly. Finally, once a Tapis Job has completed, all files
present in its directory on the execution system, including any
new files it produced while running, can be copied back to a
specified storage system.

As described above, Tapis promises to provide a unified, ab-
stract interface for the pipeline to interact with HPC resources.
However, before KIM Jobs can be submitted to clusters as
Tapis Jobs, two changes must be made to the workflow of the
pipeline. First, each KIM Job must be assigned a number of
CPU cores and an execution time to request. This information
is defined on a per-Test basis: when a new property computa-
tion is submitted to OpenKIM, the submitter indicates the core
count and time that each KIM Job associated with it should
request. The Workers of the original pipeline architecture
must also be replaced by a new component that serves as
the interface between Tapis and the rest of the pipeline. For
this purpose, the Dispatcher component is introduced. Rather
than being fetched and executed by Workers, new KIM Jobs
spawned by the Director are received by the Dispatcher, which



packages1 them into a format expected by the Tapis App used
by the pipeline and submits them as Tapis Jobs.

B. Scalable job submission

Given the large number of KIM Jobs that pass through the
pipeline, submitting each as an individual Tapis Job would be
impractical for two reasons. First, the high volume of jobs
per unit time would place undue stress upon both the Tapis
service and the cluster schedulers. Second, the compute nodes
on modern execution systems can contain a relatively large
number of cores and node sharing may not be allowed by the
scheduler, i.e. only a single job may be running on a given
compute node at any given time. Jobs in the pipeline range
significantly in the number of cores they request, and reserving
an entire compute node only to use a small fraction of its cores
to run a single KIM Job is highly inefficient.

To remedy this problem, in practice the Dispatcher groups
KIM Jobs into bundles that are each submitted as a separate
Tapis Job. Associated with each HPC cluster accessible to the
pipeline are a set of scheduler queues or partitions that can
be used to run jobs. These partitions vary in terms of the
specific type of compute node they run jobs on, which has
an explicit number of CPU cores, as well as the maximum
allowable wallclock time for jobs submitted to them. We refer
to each HPC cluster-scheduler partition pair as an execution
site. The Dispatcher uses an internal SQLite [20] database to
store the aforementioned information for each execution site.
Accompanying each execution site in the database is a batch
queue to be filled with KIM Jobs. When the Dispatcher first
receives a new KIM Job, it queries its database for all available
execution sites that can accommodate the number of cores and
run time requested by the job; in order to be compatible with
a given execution site, a KIM Job is required to be able to
fit on a single one of its compute nodes. As a primitive load
balancing mechanism, one of these execution sites is selected
at random (with equal probability) and the job is bound to the
relevant queue. The Dispatcher then checks to see whether the
jobs currently bound to that queue suffice to form a bundle,
which we discuss next.

Because each execution site has a specific core count and
wallclock time associated with it, it can be thought of as
defining an operable region or bin in a two-dimensional
resource space whose (discrete) horizontal axis corresponds to
CPU cores and whose vertical axis corresponds to execution
time. This rectangular region can be filled with KIM Jobs,
each of which similarly defines a rectangle in this space. This
application is a simple example of the more general “knapsack
problem” in combinatorial optimization [21].2 Even for a
single two-dimensional bin, and without allowing rectangles
to rotate during packing since our resource space axes are

1The packaging of KIM Jobs includes performing any queries for other
job results that may be required by the property computation and storing
the information in an input file accompanying the job. This is done because
external network access is generally not allowed from HPC clusters.

2In the general knapsack problem, multiple bins are packed simultaneously
from the same set of objects, with the objective being to produce a packing
requiring the smallest number of bins.

not equivalent, various objective functions and methods can
be used. We choose the Maximal Rectangles-Bottom Left
(MAXRECTS-BL) algorithm described in [22], as imple-
mented in the rectpack [23] python package. When a given
rectangle is being packed into the bin, a set of candidate
placements is first formed for which the rectangle will not
overlap with any existing rectangles in the bin and for which
its upper edge has the lowest possible value along the vertical
axis (execution time). From these candidates, the placement
for which the left edge of the rectangle possesses the smallest
value along the horizontal axis is selected. The reasoning for
first prioritizing that rectangles be placed toward the bottom of
the bin in our application is that it maximizes both throughput
and efficiency. All KIM Jobs contained in the same bundle
are independent of one another, and so can be executed in
parallel to minimize the overall time to solution. In light
of the aforementioned lack of node sharing on many HPC
systems, it is also most efficient to occupy as many cores of a
compute node simultaneously as possible for the duration of
the bundle’s execution. We then prioritize having rectangles
placed as far left in the bin as possible to ensure that, if the
bundle is being submitted to an execution site that does feature
node sharing, we request only as many cores as will actually
be used.

The bundling procedure for a given execution site outlined
above is carried out in an online manner: KIM Jobs bound to
the relevant execution site are iterated over one-by-one in the
order in which they were received by the Dispatcher. If a KIM
Job’s rectangle fits in the bin for the execution site, it remains
fixed in the position in which it was placed for the duration of
the packing process. As soon as a sufficient number of KIM
Jobs have been packed into the bin, the iteration ceases, and
a job bundle is formed and submitted to the execution site as
a single Tapis Job. The final number of cores and run time
requested for the job correspond to the smallest rectangular
region that fits inside of the bin but still encompasses all of
the KIM Job rectangles. This is illustrated in the toy example
of our chosen method of bundling shown in Fig. 1. If there
were not enough KIM Jobs that were able to be packed into
the bin, the bundling process is aborted, to be repeated the
next time a new KIM Job is bound to the relevant execution
site.3

Once on the cluster, Tapis submits the bundle to the sched-
uler as a single overarching job that spawns one subprocess, or
step, for each constituent KIM Job. These steps are executed
in accordance with the position in which the KIM Jobs
were packed within the bundle: a KIM Job cannot begin
executing until all KIM Jobs that fall beneath it have finished.
This on-node execution scheduling is implemented using the
GNU make utility [24] by leveraging its mechanism for
dependencies between targets. For the example bundle shown

3If no new KIM Jobs have been received by the Dispatcher for some time,
those currently bound to an execution site that lacks a sufficient number of
jobs to create a bundle may be left idle. To avoid this, bundles are created
for each execution site at regular time intervals regardless of how many KIM
Jobs are currently bound to them.
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Fig. 1. An example of bundling five KIM Jobs using the MAXRECTS-BL algorithm for an execution site whose compute nodes feature six cores and for
which jobs are allowed at most 100 minutes of execution. The yellow rectangle reflects the total number of cores and execution time that will be requested
for the bundle. White spaces within the bundle indicate wasted compute time; this is, in part, due to the fact that jobs are placed in the bin online in the order
in which they were received (A→B→C→D→E) and not rearranged during packing.

in Fig. 1, each of the five KIM Jobs defines one target that
contains a command to execute the job in its corresponding
Singularity container. The targets for KIM Jobs A and B have
no dependencies, while the target for job C lists both A and
B as dependencies; the targets for jobs D and E both list job
C as a dependency. In this case, the overarching bundle job
begins by executing the steps for jobs A and B in parallel.
The step for job C waits until A and B were finished running
before being started. Finally, once job C is complete, jobs
D and E begin executing in parallel. Although cores on the
compute node are not explicitly reserved for specific steps at
any point, this method of execution ensures that each step
receives, on average, the number of cores it requested for the
duration of the wallclock time it requested. Once all steps
are done executing, the contents of the bundle’s directory
are copied back to the Dispatcher, which analyzes scheduler
accounting information for the bundle and the subdirectory
for each KIM Job. The results of KIM Jobs that managed
to complete are packaged into either results or errors and
sent back to the Gateway, which inserts them in the primary
database and forwards them to the OpenKIM web app for
display on openkim.org. A schematic of the entire process is
shown in Figure 2.

III. ROBUSTNESS CONSIDERATIONS

Implicit in the workflow described above are several techni-
cal complications that warrant discussion. First, the execution
time requested by a KIM Job may prove insufficient, result-
ing in a timeout on the cluster. In such an event, different
schedulers vary in their precise behavior depending on how
they are configured, but common among them is that a job
is sent a termination signal and is given a finite duration of
time to tear itself down; if the job is still active after this
period has passed, it is forcibly killed. In deciding the time
allocated to each step inside of a bundle, a small buffer of
at least this magnitude must be added to the time originally

requested by the corresponding KIM Job in anticipation of a
possible timeout. It is also critical that the Dispatcher be able
to properly detect timeouts of steps within bundles when it
analyzes the contents of the bundle directory returned by Tapis.
This is accomplished by examining the scheduler accounting
information for a bundle, which is printed to a file after all
steps have finished executing and the scheduler has had time
to poll their status. Upon detecting a timeout, the Dispatcher
ensures that when the relevant KIM Job is next submitted, it
will request twice as much wallclock time as it previously did.
However, increasing the requested time for a job may mean
that the execution site to which it was originally bound can
no longer accommodate it. In this case, it is rebound to a new
execution site, chosen randomly out of those remaining that
are compatible with its requested resources. This repeats until
a job is either able to finish running or its requested resources
exceed those of any available execution sites, at which point
a designated error is packaged for it that is returned to the
Gateway.

Aside from timeouts, KIM Jobs may fail to execute because
of hardware-related issues. These issues can range in scope
from being localized to one or more compute nodes to
affecting an entire cluster, e.g. a power failure or widespread
network outage. Further, all systems, including Tapis itself,
must undergo planned maintenance periodically. This may
occur before an attempt is made to submit a bundle for
execution or while a bundle is already executing. To account
for such failure modes, an indirect approach is taken. When
the Dispatcher analyzes the contents of a bundle returned
by Tapis, it excludes the possibility of a localized hardware
malfunction by verifying the existence of certain sentinel files
that are always created for each job at its conclusion. To
determine whether a global issue has occurred, the Dispatcher
periodically inspects all active Tapis Jobs in its database. Every
time a notification is received for a Tapis Job, it is recorded
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Fig. 2. Overview of the workflow of the HPC-enabled pipeline: (1) a new KIM Job is created by the Director and put on a job queue on the Gateway; (2)
the Dispatcher retrieves the job and (3) binds it to an execution site; (4) an attempt is made to bundle the new KIM Job with all other KIM Jobs currently
bound to its execution site since the last time a bundle was created; (5) assuming a bundle of sufficient size can be made, it is submitted as a single Tapis Job
and copied onto its execution site, where it is submitted to the cluster scheduler and run; (6) once execution of all KIM Jobs in the bundle has completed, the
contents of the bundle’s directories are copied back to the Dispatcher by Tapis; (7) the Dispatcher inspects the contents of the bundle and packages results or
errors and (8) they are copied back to the Gateway before (9) being sent to the OpenKIM web app for display on openkim.org. We refer the reader to [10]
for further details of the Gateway, Director, and web app.

along with a timestamp. If the time elapsed since a notification
was last received for a job significantly exceeds the total
wallclock time it requested, it is cancelled and resubmitted
as part of a new bundle. In the event that an HPC cluster
is experiencing frequent or prolonged outages, the pipeline
also features the ability to deactivate execution sites in real
time, which automatically rebinds their jobs to compatible sites
still active. Once their availability has stabilized, they can be
reactivated and accept jobs once more.

IV. CONCLUSION AND FUTURE WORK

In this paper, we discuss an extension to the OpenKIM
processing pipeline described in [10], whose purpose is to cou-
ple IMs with compatible property computations and execute
the corresponding jobs, respecting any dependencies that may
exist between them. In its original design, the pipeline was
limited to running small jobs consisting of at most several
simultaneous processes each. Prompted by the need to support
execution of a large volume of jobs in rapid succession, as
well as individual jobs of significant size, we have extended
the pipeline to run jobs on multiple HPC resources with
the ability to easily extend to more. This is achieved by
replacing the Workers present in its original architecture with
a new component, the Dispatcher, that forms bundles of jobs
for each HPC resource and submits them using the Tapis
platform. Upon reaching the cluster, the jobs are executed
in a portable, isolated fashion using containers in a sequence
derived from their relative position within the encompassing
bundle. Throughout the process of executing jobs, timeouts

and other modes of failure are handled gracefully by the
Dispatcher, including dynamically rebinding jobs to different
HPC resources as necessary.

With regard to future work, one area where significant gains
in efficiency could be made is in the resources requested
for each KIM Job. Currently, the same wallclock time is
requested for the initial submission of every KIM Job that
uses a given simulation code. However, the actual execution
time of every completed job is recorded by the Dispatcher,
and statistical analysis of this information could conceivably
allow for more accurate estimates for the expected run time of
new KIM Jobs based on their constituent property computation
or IM. Such analysis might also reveal a more sophisti-
cated mechanism of load balancing between HPC resources.
Because the different HPC resources used to run jobs are
heterogeneous, a given job may take longer to execute on
one system than another. Accordingly, the current method
of equally distributed load balancing between execution sites
may be suboptimal, although other considerations such as
the time jobs spend queued before beginning to run would
also need to be considered. Efficiency could be also improved
by using an offline packing algorithm when creating bundles
to more exhaustively search the space of possible packings
for a given execution site bin and set of KIM Jobs. Finally,
the ability for a single KIM Job to span multiple compute
nodes could also become necessary in the future, and would
require corresponding adjustments to the current design of the
pipeline.
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