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Abstract

The success of gradient descent in ML and
especially for learning neural networks is
remarkable and robust. In the context
of how the brain learns, one aspect of
gradient descent that appears biologically
difficult to realize (if not implausible) is
that its updates rely on feedback from
later layers to earlier layers through the
same connections. Such bidirected links are
relatively few in brain networks, and even
when reciprocal connections exist, they may
not be equi-weighted. Random Feedback
Alignment (Lillicrap et al., 2016), where the
backward weights are random and fixed, has
been proposed as a bio-plausible alternative
and found to be effective empirically. We
investigate how and when feedback alignment
(FA) works, focusing on one of the most
basic problems with layered structure — low-
rank matrix factorization. In this problem,
given a matrix Y, xm,, the goal is to find
a low rank factorization Z, x,W,x.m, that
minimizes the error ||ZW — Y||p. Gradient
descent solves this problem optimally. We
show that FA finds the optimal solution when
r > rank(Y). We also shed light on how
FA works. It is observed empirically that
the forward weight matrices and (random)
feedback matrices come closer during FA
updates. Our analysis rigorously derives
this phenomenon and shows how it facilitates
convergence of FA* a closely related variant
of FA. We also show that FA can be far
from optimal when r < rank(Y). This is
the first provable separation result between
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gradient descent and FA. Moreover, the
representations found by gradient descent
and FA can be almost orthogonal even when
their error ||ZW — Y|/ is approximately
equal. As a corollary, these results also hold
for training two-layer linear neural networks
when the training input is isotropic, and the
output is a linear function of the input.

1 INTRODUCTION

Information Processing in the brain is hierarchical,
with multiple layers of neurons from perception to
cognition, and learning is believed to be largely
based on updates to synaptic weights. These weight
updates depend on error information that may only
be available in the downstream (higher-level) areas.
An algorithmic challenge faced by the brain is the
following: how to update the weights of earlier layers
using the error information from later layers, despite
local structural constraints? For example, in the
visual cortex, the weight update to earlier layers —
which detect low-level information such as edges in
an image — may depend on higher-level information
in the image that is available only after downstream
processing.

In artificial neural networks, gradient descent via
backpropagation (Rumelhart et al., 1986) has been
a very successful method of making weight updates.
However, it is unclear whether gradient descent is
biologically plausible due to its non-local updates
(Crick, 1989). In particular, the update to earlier
layers involves feedback from later layers through
backward weights that are transposed copies of the
corresponding forward weights (see Fig. 1). This
requires equi-weighted bidirectional links between
neurons, which are rare in the brain. This issue was
first identified by Grossberg (1987), who called it the
weight transport problem.

Rather surprisingly, Lillicrap et al. (2016) found that


mailto:shivamg@cs.stanford.edu
mailto:vempala@gatech.edu

How and When Random Feedback Works

neural networks are able to learn even when the
backward feedback weights are random and fixed,
independent of the forward weights. This biologically
plausible variant of gradient descent is known as
Feedback Alignment (FA). Feedback alignment and
its variants (Ngkland, 2016) have been shown to be
effective for many problems ranging from language
modeling to neural view synthesis (Launay et al.,
2020). At the same time, they do not match the
performance of gradient descent for large-scale visual
recognition problems (Bartunov et al., 2018; Moskovitz
et al., 2018) such as ImageNet (Russakovsky et al.,
2015).

0000 00009

0 WO

0000 0000
w; wl W, cl
0000 000

w.r w. cr

WZ 2 2 2
0000 0000
GD FA

Figure 1: Gradient descent uses transpose of the
forward weights for backward feedback while feedback
alignment replaces them by fixed random weights.

These observations raise many questions: How and
when does random feedback work? Is there any
fundamental sense in which feedback alignment is
inferior to gradient descent? How different are the
representations found using feedback alignment and
gradient descent? Alongside the biological motivation,
these questions are also important for getting a
better understanding of the landscape of possible
optimization algorithms.

Problem formulation and contributions. In this
paper, we investigate these questions by considering
one of the most basic problems with layered structure
— low-rank matrix factorization (Du et al., 2018;
Valavi et al., 2020; Ye and Du, 2021). In this problem,
given a matrix Y, «xm, the goal is to find a low rank
factorization Z,,«, Wy x.m that minimizes the error

HZanWer_YnXm”%" (1)

The gradient flow (GD) update (gradient descent with
infinitesimally small step size) for this problem is given

by
A .
e o 2)
o =2 YY),

where Y = ZW. From prior work (Bah et al., 2019,
Theorem 39), we know that gradient flow starting
from randomly initialized Z and W converges to the
optimal solution almost surely. The layered structure
and optimality of gradient flow makes low-rank matrix
factorization an ideal candidate for understanding the
performance of feedback alignment.

The feedback alignment (FA) update is given by

dZ N
aw . . (3)
@ LY

Note that the only difference from gradient flow update
is that the backward feedback weight W7 is replaced

by CT in the expression for 42 . Here, C is some

dt
(possibly random) fixed matrix.

Empirically, it is observed that the backward feedback
weights (C, in this case) and the forward weights
(W) come closer during feedback alignment updates
(Lillicrap et al., 2016).  After the forward and
backward weights are sufficiently aligned, the feedback
alignment update is similar to the gradient flow
update. This alignment between the forward weights
and the backward feedback weights led to the name
feedback alignment, and is considered to be the main
reason for the effectiveness of this algorithm.

However, the phenomenon of alignment has turned
out to be hard to establish rigorously. One reason
behind this is that the alignment between forward
and backward weights may not increase monotonically
(see Example 1 for details). We observe that a small
tweak to the feedback alignment update where W is
updated optimally, leads to monotonically increasing
alignment between C' and W (for an appropriately
defined notion of alignment). We call this version of
feedback alignment FA* and its updates are given by

dz A
Z (Y -Y T
o ( )

W= (z"2)"'z"y.

(4)

Notice that the only difference between FA and FA*
is that W is chosen optimally (given Z and Y') in the
FA* update, while it moves in the negative gradient
direction in the FA update. The update to Z remains
the same, and involves a fixed feedback matrix C.

We show that FA* initialized with an arbitrary full
column rank Z converges to a stationary point where
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Figure 2: (a) Feedback alignment (both FA (3) and FA* (4)) converge to the optimal solution when r > rank(Y).
In this plot, n = m = 500 and r = rank(Y) = 50. (b) Feedback alignment solution can be far from optimal when
r < rank(Y). In this plot, n = m = rank(Y) = 500 and r = 50. Gradient descent finds the optimal solution in

both the cases.

(Y —Y)CT =0 (Theorem 1). Our analysis rigorously
demonstrates the phenomenon of alignment, and sheds
light on how it facilitates convergence (Section 3).

Convergence of FA to a stationary point has also
been shown in past works (Baldi et al., 2018;
Lillicrap et al., 2016). Baldi et al. (2018) proves
convergence of feedback alignment for learning one-
hidden layer neural networks with linear activation,
starting from arbitrary initialization. For low-rank
matrix factorization, this implies convergence of FA
to a stationary point. However, as we discussed,
alignment between forward and backward weights may
not increase monotonically in FA. Due to this, these
works are not able to say much about the dynamics
of alignment. The main feature of our analysis is that
by analyzing a slight variant of FA (FA*), we obtain a
better understanding of the phenomenon of alignment
and its implications for convergence.

After analysing how feedback alignment works, we
shift our attention to the question of when it works.
We characterize the solution Y at the stationary points
of feedback alignment, when C' is chosen randomly
(Lemma 1). Building on this characterization, we show
that feedback alignment finds the optimal solution
when r > rank(Y’) (Theorem 2). However, it can be
far from optimal when r < rank(Y’) (Theorem 3). To
the best of our knowledge, this is the first provable
separation result between gradient flow and feedback
alignment (see Fig. 2 for an illustration).

Moreover, the representations found by feedback
alignment and gradient flow are very different. We
show that even when their errors ||ZW —Y||§7 are
approximately equal, the representations found (Z)
can be almost orthogonal (Theorem 4).

Since the stationary point equations for FA and
FA* are same, these results about suboptimality of
feedback alignment and difference in representations
apply to both versions of feedback alignment.

In summary, we give a comprehensive analysis of how
and when feedback alignment works, focusing on the
problem of low-rank matrix factorization. Here is a
list of our contributions:

1. We prove convergence of feedback alignment
(FA*) to a stationary point, shedding light on
the dynamics of alignment and its implications
for convergence (Section 3).

2. We show that feedback alignment (both FA and
FA*) find the optimal solution when r > rank(Y),
but can be far from optimal when r < rank(Y).
This shows provable separation between feedback
alignment and gradient flow (Section 4).

3. We characterize the representations found by
feedback alignment (both FA and FA*), and
show that they can be very different from the
representations found by gradient flow, even when
their errors are approximately equal (Section 4).

As a corollary, all our results also hold for training two-
layer linear neural networks, assuming the training
input is isotropic and the output is a linear function
of the input (Section 5). We defer all proofs and
simulation details to the appendix.

Notation. For any matrix M, M (t) denotes its value
at time £. We will not explicitly show ¢ when it is clear
from context. o;(M) denotes the i largest singular
value of M. M® denotes the i*" column of M. ||M]|,.
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denotes the Frobenius norm of M and ||v|| denotes the
{5 norm of vector v.

2 RELATED WORK

Feedback alignment. Lillicrap et al. (2016) show
convergence of feedback alignment dynamics for
learning one-hidden layer neural networks with linear
activation, starting from zero initialization. Baldi
et al. (2018) generalize this result to arbitrary
initialization, and also show convergence for linear
neural networks of arbitrary depth when the input and
all hidden layers are one dimensional.

In recent work, (Song et al.,, 2021) study feedback
alignment for highly overparameterized one-hidden
layer neural networks where the width of the hidden
layer is much larger than the size of training set.
This work builds on past work on Neural Tangent
Kernels (Jacot et al., 2018), and shows that feedback
alignment converges to a solution with zero training
error. Contrary to the popular understanding of
feedback alignment, they show that forward and
backward weights may not align in this highly
overparameterized regime. However, in the parameter
regime typically encountered in practice, alignment is
a robust phenomenon (Lillicrap et al., 2016).

Refinetti et al. (2021) obtain a set of ODEs that
describe the progression of feedback alignment test
error for neural networks in certain parameter regimes.
Using simulations, and analysis of these ODEs at
initialization, they argue that neural network training
proceeds in two phases: the initial alignment phase
where the forward and backward weights align with
each other, followed by a memorization phase where
learning happens. In Section 3, we show that while
such a progression can take places in simple cases
(see Example 1), in general, the dynamics are much
more involved with highly interleaved phases. This
paper also presents intuition about the behaviour of
feedback alignment for deeper networks, and possible
reasons for its poor performance with convolutional
neural networks (CNNs).

The focus of our work is twofold: (i) understanding
how feedback alignment works by studying the
dynamics of alignment and its impact on convergence,
(ii) understanding when feedback alignment works
by contrasting its solution and representations with
gradient descent. Our work complements the existing
line of work on understanding feedback alignment.

Biologically plausible learning. Many algorithms
have been proposed to address the weight transport
problem (Lillicrap et al., 2020). Most of these
algorithms either encourage alignment between

forward and backward weights implicitly (Lillicrap
et al., 2016; Ngkland, 2016; Moskovitz et al., 2018;
Akrout et al., 2019), or learn weights that try to
preserve information between adjacent layers (Bengio,
2014; Lee et al., 2015; Kunin et al., 2019, 2020). A
parallel line of work studies how training algorithms
can be implemented in the brain using spiking neurons
without distinct inference (forward propagation) and
training (backward propagation) phases (Xie and
Seung, 2003; Bengio et al., 2017; Scellier and Bengio,
2017; Whittington and Bogacz, 2017; Guerguiev et al.,
2017; Sacramento et al., 2018). More recent work
more directly models plasticity and inhibition in the
brain and shows that memorization and learning
are emergent phenomena (Papadimitriou et al., 2020;
Dabagia et al., 2021).

Building the mathematical foundation of such
biologically plausible algorithms can lead to
illuminating insights applicable to the brain as well
as to the general theory of learning and optimization.
Our work can be viewed as progress in this direction.

3 CONVERGENCE

In this section, we show that FA* (4) converges to
a stationary point satisfying (Y — Y)C’T = 0, where
Y =2ZW and W = (272)"1Z7Y.

Theorem 1. Let Z(0) be full column rank. For any
e >0 and

T>M<mGWHWMMﬂ®f
- o (2(0))°

€
FA* dynamics (4) satisfy

)

r min(m, n))

%%HW_Y@wﬂige

Moreover,

1mefY@mﬂE:a

t—o0

Note that the time for convergence of minimum of
. 2

H Y — Y(t))C’TH depends linearly on 1. We describe
F

the complete proof of Theorem 1 in Appendix A. We

also describe the proof idea for the convergence result
by Baldi et al. (2018) in Appendix E.

To understand our result, let’s first discuss a toy
example where m =1 (recall Y is an n x m matrix).

Example 1. Suppose we want to factorize y,x1 as
Unx1 = ZnxrWrx1, and we use c.x1 for feedback. FA*
update is given by

dzZ .
= ==
w=(ZT2)"1ZTy.
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Figure 3: (a)When y and § are column vectors, H(y — @)CTHi increases monotonically in the beginning followed

. . 2
by monotonic decrease (see Example 1). (b) For general matrices Y and Y, progression of H(Y - Y)CTH can
F

be highly non-monotonic.

This gives
2
d ||y — 9" Yy
— = T — 9y =9l le))® Fw
p7 ly = 9lI7 [lell
d cTw B o
=c(Z272)7 e ly—9lI°
dt
d —)cT?
Note that d;:w > 0. And W > 0
only when cTw < 0. So cTw increases with time

(when |y —g|> > 0). |ly —g|° |c||” increases in the
beginning if cTw < 0, but it starts decreasing once
cl'w >0, and eventually goes to 0 (see Fig. 3a). This
shows how alignment of ¢ and w (measured by cTw)
facilitates convergence.

The alignment between ¢ and w
monotonically in FA* dynamics. This
true in FA dynamics. FA update is given by

mncreases
s not

dz .
ar (y— )"
dw
— =7ZT(y —9).
pr (y—9)
This gives
d cTw T T
=c Z (y—19).
7 =2 -9
Suppose Z(0) = —ycl' and w(0) = 0. In this
case, at t = 0, d;fw = —lel* Iyl < o
Therefore, alignment between ¢ and w can also

decrease in FA dynamics. This makes FA* more
suitable to understand the dynamics of alignment and
its implications for convergence.

In this example with m = 1, we saw that the loss

. 2
H(Y - Y)CTHF has an initial phase in which it can

increase monotonically, followed by a phase in which
it decreases monotonically. However, the loss can be
highly non-monotone in the general case. We illustrate
this in Fig. 3b, where we show the loss progression
for FA* for the case where m = n = 100 and r =
99. In our simulations, we observe such highly non-
monotonic behaviour when r is close to n. We observe
a similar highly non-monotone behavior of loss for FA
as well (see Fig. 5).

Therefore, we need a more careful analysis for the
general case. From the FA* update equations (4), we

get 4 gtTZ = 0. That is, Z7Z does not change with
time. For this discussion, let us assume 7 is initialized
such that Z(0)7Z(0) = I, which implies Z7Z = I
throughout (the proof in the appendix holds for any
full column rank 7).

Also, let R denote the residual matrix (Y — Y)CT,
A denote the alignment matrix CW7T + WCT, and
¢ denote the loss HR||§, R; denotes the i'" row of
R (viewed as a column vector). Using basic matrix
calculus, we get

e T _ - T Ap.

pri Tr(RAR") = ;:1 R; AR;, (5)
dA T

2 _9RTR.

- =2R"R (6)

Equation 5 says that if A is positive semi-definite
(PSD), then the loss ¢ decreases with time. Equation
6 says that A becomes more PSD with time, that is,
2T Az never decreases for any fixed = (see Fig. 4a).
This is the sense in which alignment between C' and W
increases monotonically. However, unlike Example 1,
this is not sufficient to claim that loss starts decreasing
monotonically after some time. This is because A
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Figure 4: (a) 27 (CWT + WCT)zx vs time for 10 randomly chosen z. z7(CW7T 4+ WCT)z is monotonically
increasing for all . (b) Minimum eigenvalue of CW7T + WCT is monotonically increasing but can stay negative.

may never become PSD as there can be some z for
which % remains 0 after some time. We illustrate
this in Fig. 4b where we show an instance where the
minimum eigenvalue of A is monotonically increasing,
but stays negative. That is, A does not become PSD.
However, ¢ still converges to zero (Fig. 3b shows the

corresponding loss progression).

To get past this hurdle, we need to understand the
directions x for which % > 0. Observe that when
% > 0, there is some row R; of R such that R]TARj <
0. And 2T Az increases sufficiently for all  for which
RJTQS is large enough. In other words, when the loss
increases, C' and W become better aligned with respect
to the direction which led to increase in loss (R;), and
all directions close to it. And such an R; — with
respect to which C' and W are not aligned, satisfying
RJTAR]' < 0 — must exist whenever the loss increases.
Therefore, the loss can not increase indefinitely. Using
this idea, we bound the total possible increase in loss,
fOT dfy [4€ > 0] dt, for all 7. Here, 1[] denotes the
indicator function which is equal to 1 if the condition
inside the bracket is true, and 0 otherwise.

Using a similar argument, we can bound the total time
for which the loss is large and is either increasing
or decreasing very slowly.  That is, we bound
Jy1[f>eand & > 6] dtforall e > 0,6 > 0,T > 0.
At any other time, if the loss is large, it has to decrease
sharply.

Therefore, the loss cannot increase too much, and
cannot be in a slowly decreasing phase for too long.
Using this, we show a bound on the time by which
loss goes below e (first part of Theorem 1). Building
on these ideas, we can also show that the loss converges
to 0 eventually. We refer the readers to Appendix A
for more details.

In summary, here is the crux of the argument:
whenever a bad event happens (increase in loss or slow
decrease in loss), the alignment between C' and W
increases with respect to the direction which caused
the bad event (R;), and all directions close to it.
Such a bad event can not happen when C' and W
are sufficiently aligned with respect to all rows of
R. Therefore a bad event can not happen many
times. This identifies the directions with respect to
which alignment increases, and how this phenomenon
facilitates convergence.

Implications for FA. The only difference between
FA and FA* is that we set W optimally in the FA*
update whereas we take the gradient step for W
in the FA update. As we discussed in Example 1,
the dynamics for FA and FA* can generally be very
different. However, if we initialize FA with the optimal
W (for the given Z) at t = 0, we observe that its
loss progression is similar to FA* (see Fig. 5). The
similarity is even more apparent if we initialize W
optimally and choose a larger learning rate for W
(compared to Z) in which case W continues to be close
to optimal throughout the dynamics. For reference, we
also include a plot for FA with randomly initialized W
in Appendix F.

More generally, we believe that the ideas behind
understanding alignment for FA* may also be helpful
for FA. To see this, observe that for FA,

‘2—? oY -WI'z+z%y -v)cT,
d*A -

=9

3 =2R"R

- 72Ty -v)cTwet —cwcet(y -v)'z
~Z2Tz27% (v —v)cT —c(y -Tz2z7Z.
Here, A=CWT + WCT and R= (Y —Y)CT. It W
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Figure 5: FA and FA* loss progression when the initial
value of W is chosen optimally for FA.

is close to optimal, then Z7 (Y — f/) ~ 0, dA/dt = 0
and d?A/dt?> ~ 2RTR. Recall from Equation 6 that
dA/dt = 2RTR for FA*. This RTR term is the main
reason for alignment. Thus, when Z7(Y — Y) ~ 0,
one can hope to argue that A becomes more PSD
with time and the ideas behind the analysis of FA*
may be helpful for analysing FA. In general, if one can
understand the progression of Z7 (Y — Y), combining
it with our insights about FA* mays yield a rigorous
understanding of FA alignment dynamics.

4 UNDERSTANDING THE
STATIONARY POINTS

In the previous section, we saw that FA* converges to
a stationary point satisfying (Y — Y)C’T = 0, where
Ysm = ZnsrWesxm and W = (Z72)71ZTY . In this
section, we study the stationary points of feedback
alignment and compare them to those of gradient flow
(2). From prior work (Bah et al., 2019, Theorem 39,
part (b)), we know that gradient flow starting from a
random initialization converges to the optimal solution
almost surely. We investigate when the solution found
by feedback alignment is optimal, and how different
the representations found using feedback alignment
and gradient flow can be.

Note that the stationary point equations are same for
FA and FA*, and are given by

Y -v)cT =0
ZT'(Y -Y)=0 (7)
Y = ZW.

So the results of this section apply to both versions of
feedback alignment.

Characterization of stationary points. In the
next lemma, we characterize the solution Y at
stationary points when C' is chosen randomly.

Lemma 1. Suppose C' is chosen randomly with entries
drawn i.i.d. from N(0,1) and the stationary point

equations for feedback alignment (7) are satisfied. Let
Apxr = YCT and By, = argming ||AB — Y||§;
Then' Y = AB almost surely.

The proof of Lemma 1 can be found in Appendix B.
To understand Lemma 1, we write Y = Y"1 | oju;0]
where o, is the ! singular value of Y, and u; and v;
are the corresponding left and right singular vectors
respectively. Then the j* column of A,

AV =" giu;Ryj,
i=1

where R;; = (v;,C9)) is a N(0,1) random variable.
That is, AYU) is a random linear combination of
singular vectors of Y, scaled by its singular values.
Lemma 1 says that feedback alignment finds the
solution Y that corresponds to the best approximation
of Y (in Frobenius norm) in the space spanned by
AWs. On the other hand, gradient descent finds the
solution that corresponds to the best approximation
of Y in the space spanned by top-r singular vectors of
Y, which is also the optimal solution (see e.g., (Blum
et al., 2020)).

Optimality of solution. Next, we show that when
r > rank(Y), feedback alignment stationary points
correspond to the optimal solution (see Fig. 2a for an
illustration).

Theorem 2. Suppose C' is chosen randomly with
entries drawn i.i.d. from N(0,1), the stationary point
equations for feedback alignment (7) are satisfied, and
r > rank(Y). Then ZW =Y =Y almost surely,

which also minimizes ||ZW — Y||% .

The proof of Theorem 2 follows directly from Lemma
1 and can be found in Appendix B. Columns of A
correspond to random linear combinations of singular
vectors of Y, scaled by its singular values. We have at
least rank(Y") such columns. Therefore, the columns
of A span the singular vectors of Y (corresponding to
non-zero singular values) almost surely. Theorem 2
follows since Y is the best approximation of Y in the
column span of A, which is equal to Y almost surely.

Also, note that this result does not hold for arbitrary
C. For instance, suppose Y is a rank-1 matrix and
r = 1. Let Z be any arbitrary full column-rank matrix,
and W = (Z72)"'ZTY. In this case, Y — Y has
rank at most 2. If we choose C«,, such that its only
row is orthogonal to the row space of ¥ — Y, then
(Y —Y)CT = 0 and the stationary point equations (7)
are satisfied. However, Y may not be equal to Y. This
motivates the random choice of C.

Next, we show that the feedback alignment solution
can be far from optimal when r is much smaller than
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rank(Y’) (see Fig. 2b for an illustration).

Theorem 3. Suppose

(i) C has entries drawn i.i.d. from N(0,1),

(i) the stationary point equations for feedback
alignment (7) are satisfied,

(iii) the singular values of Y satisfy

1 ;
o = for i<r
' L for r+1<i<n

2(n—r)’

(iv) c1 < r < con for some absolute constants c1, ca,

then the error ||ZW — Y||§, > 0.74 with probability at
least 0.99 over the choice of C'.

On the other hand, gradient flow (2) starting from
randomly initialized Z and W ( with i.i.d. N(0,1)
entries) converges to the optimum solution with
lZw — Y||§; = 0.5 almost surely.

Note that in the setting of Theorem 3, even a naive
solution that sets Z and W to 0 obtains an error
of 1, while feedback alignment and gradient descent
errors are 0.74 and 0.5 respectively. In this sense, the
feedback alignment solution is far from optimal. The
proof of Theorem 3 can be found in Appendix C.

To understand Theorem 3, it is instructive to consider
the case when r = 1. Let the singular values of Y
satisfy

L for i=1

\/53
for 2<i<n.

1
v/2(n—-1)’

From Lemma 1, we know that Y = A, 1 B1xm almost
surely. Here A is a column vector satisfying

g; =

1
A=—

1 n
U R+ ——— ) wRy,
V2 V2(n —1) ;

where u; are the left singular vectors of Y and R; are
drawn iid. from A(0,1). On the other hand, the
optimum solution corresponds to A = u;. So while the
optimum A aligns with the top singular vector, the A
corresponding to feedback alignment has a significant
component in the orthogonal subspace. This causes
the feedback alignment solution to be far from optimal.

Comparison of representations. In the previous
result, we saw that the error achieved by the feedback
alignment solution can be much higher than the
gradient flow solution. Next, we demonstrate that
even when the two errors are approximately equal, the
representations recovered by the two algorithms can be
almost orthogonal, again in the rank-deficient setting.

Theorem 4. Suppose

(i) C has entries drawn i.i.d. from N(0,1),

(i) the stationary point equations for feedback
alignment (7) are satisfied,

(iii) the singular values of Y satisfy o1 =1 and 0; = ¢
fori>1, where 0 <e <1,

(iv) r =1 (rank 1 approzimation) and n > ¢ for some
absolute constant c.

Let Zpy and Wga denote the Z and W satisfying
the above conditions respectively, and Zgp and Wap
represent the factors found by gradient flow (2)
starting from randomly initialized Z and W (with i.i.d.
N(0,1) entries). Then

2
1ZpaWra — Y% < | ZepWep — Y% (1 N 62?1)

‘< Zra Zap >‘< 4
1Zrally” 1 Zaplly /|~ ev/n

with probability at least 0.99 over the choice of C' and
random initialization of gradient flow.

and

The proof of Theorem 4 can be found in Appendix D.

To understand Theorem 4, let us set e = 0.5. We get
that the error of feedback alignment solution is at most
140 (%) times that of the gradient flow solution, while
Zra and Zgp are almost orthogonal, with normalized

absolute inner product O (ﬁ)

From Lemma 1, we know that Y = A, 1 B1xm almost
surely. Here A is a column vector satisfying

A=u Ry + 05ZUZRZ,
=2

where u; are the left singular vectors of Y and R;

are drawn i.i.d. from N(0,1). Since Zps and A are

column vectors and ZpsWgr4 = AB almost surely, we
get

YA ur Ry + 0.5 2?22 u; R;

1Zrall,  /RZ+025%. , R?

almost surely. Since gradient flow converges to the
optimum solution almost surely, we know

Zap

_Zep_ _ .
1 Zapll,

almost surely. Using concentration of a y-squared
random variable, we get that the normalized absolute

inner product between Zgp and Zp4 is O (ﬁ) with
high probability.

The error of gradient flow solution ||ZgpWeap — YH%
is equal to the optimum error which is Y . , 07 =
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0.25(n — 1). Tt is not hard to see that the error of
feedback alignment solution is at most ||Y||§; which
is equal to 1 + 0.25(n — 1). From here, we get that
the error of feedback alignment solution is at most
14 O (+) times that of the gradient flow solution.

Therefore, the errors of feedback alignment solution
and the gradient flow solution can be approximately
equal, while the representations they find are almost
orthogonal. =~ We note that for low-rank matrix
factorization, this phenomenon happens only when
the optimum error is large. For instance, when the
optimum error is 0, we are in the regime where
r > rank(Y). In this case, the column space of
Zra and Zgp are equal to the column space of Y
almost surely. It would be interesting to understand
to what extent the representations found by gradient
flow and feedback alignment are different for other
problems such as for learning neural networks. And
are there problems for which the representations are
significantly different even with small optimum error?

5 LINEAR NEURAL NETWORKS

As a direct corollary, all our results for matrix
factorization also hold for training two-layer linear
neural networks, assuming the training input is
isotropic and the output is a linear function of the
input. Specifically, let O = XY, where the rows X;
and O; represent the i*" training input and output
respectively, and let X7X = I. We want to find Z
and W that minimize the training error

IXZW - Olf3, (8)

which is equal to the matrix factorization error | ZW —
Y|% (Equation 1). We use XTX = I here, and in
the update equations below. The gradient flow (GD)
update for this problem is given by

% = X700 -x2wyWT = —v)yWw7T

= ZTXT(O0 - X2W) = ZT(Y - Y).

where Y = ZW. The feedback alignment (FA) update
is given by

az _ XTO-xzw)cT =y —v)cT
W (10
— = ZTXT(O - X2W)=ZT (Y —Y).

The update for feedback alignment with optimal W
(FA*) is given by

% =XT0-xzw)ct =y -v)cT

W= (Z'X"X2)"'z"'xT0 = (72" 2)' 72"y

(11)

As the GD, FA and FA* updates, and the error term
are same as the corresponding updates and the error
term for matrix factorization (Equations 2, 3, 4), all
our results also hold in this case.

6 CONCLUSION

We investigate how and when feedback alignment
works, focusing on the problem of low-rank matrix
factorization. For the “how” question, we studied the
dynamics of alignment between forward and backward
weights, and its implications for convergence. For
the “when” question, we showed that feedback
alignment converges to the optimal solution when
the factorization has rank r > rank(Y), but it can
be far from optimal in the rank-deficient case where
r < rank(Y). To the best of our knowledge, this is
the first rigorous separation result between feedback
alignment and gradient descent. We also demonstrate
that the representations learned by feedback alignment
and gradient descent can be very different, even when
their errors are approximately equal.

There are many interesting directions for future
research. A natural next step is to extend our
understanding of alignment dynamics to the problem
of learning non-linear neural networks. Song et al.
(2021) show that alignment may not happen in highly
overparameterized neural networks. But it is a
robust phenomenon in the parameter regimes typically
encountered in practice, and therefore important to
understand. It would also be interesting to understand
the implicit regularization properties of feedback
alignment and compare them to gradient descent by
considering problems such as matrix sensing in the
overparameterized regime (Gunasekar et al., 2017;
Li et al., 2018). From the point of view of the
theory of optimization, a fundamental question is
whether feedback alignment is part of a larger family of
algorithms (e.g., that replace parts of the gradient with
random values) and whether it might be applicable
to problems even without layered structure. More
generally, building the mathematical foundations of
biologically plausible learning is a fruitful direction
that can reveal surprising algorithms while advancing
our understanding of the brain.
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Supplementary Material:
How and When Random Feedback Works:
A Case Study of Low-Rank Matrix Factorization

A PROOF OF THEOREM 1

Let Y, «,m be the matrix we want to factorize and ?nxk = ZnsirWrsxm. Let Cry,m be the feedback matrix.
Feedback alignment (FA*) updates Z and W as follows:

iz o
==y

W= (z"z)"'z".

Notation. We will use M (t) to denote matrix M at time ¢. However, we will not show time ¢ when it is clear
from context. For a symmetric matrix M, we use \;(M) to denote the i*! largest eigenvalue of M. For any
vector v, we use |[v|| to denote the f5 norm of v. For any matrix M, we use M* to denote its i*® row.

We use 1[.] to denote the indicator function which is equal to 1 if the condition inside the square brackets is
true and 0 otherwise.

We use A to denote the alignment matrix ((ZTZ)71 cwt +wcer (ZTZ)fl) and R to denote the residual
(Y —Y)CT.

p 20T AW ()
ECIR

> k, and zero vector otherwise. We define

For a non-zero vector z(t), we use x<j(t) to denote vector z(t) i < k, and zero vector otherwise.

o z(t)T A@)z(t)
N PTOTE ,
r<(t) and z-1(t) to be equal to z(t) when x(t) is a zero vector. For a matrix M(t) with i row Mi(t),
M<,(t) denotes the matrix whose i*" row equals ML, (t) for all 4. Similarly, we define M (t) to be the matrix

whose i*" row equals M% , (¢) for all i. Note that we can write z(t) = <k (t)+a>,(t) and M () = M<g(t)+Msx(t).

Similarly, we use x> (t) to denote vector z(t)

“ _ 2
We will use the loss function £(t) = H(Y —Y@)CT (zW)Tz(t)) QHF.

Theorem 1. Let Z(0) be full column rank. For any e > 0 and

)
€

s 2 (m (V) 01 (C) 1 (2(0))° /7 mz’n(m,n))
o (2(0))”
FA* dynamics (4) satisfy

min H(Y - Y(t))CTHi <e

Moreover,

lim H(Y - Y(t))C’THi —0.

t—o0

Note on the bound on T. The bound on T depends on the condition number of Z(0) and the top singular
values of Y, C' and Z(0). To understand this bound, suppose we set € = €; ||Y||§ ||C’H; (for some €; > 0), so
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. 2
that € has same scale as H(Y - Y)C’THF. Then the bound on T is given by

24 <01 (V) o1 (C) o1 (Z(0))° /7 mm(m,n)> |
€1 Y 1% ICII5 or (2(0))°

This bound decreases if we scale up ¥ and C' and scale down Z(0). This is because 22 = (Y — Y)CT. So the
relative magnitude of update to Z increases if we scale up Y and C and scale down Z(0). The bound obtained

would not be dependent on the scales of Z(0), C, and Y, if we choose a scale independent update given by
dz _ (Y-V)CT|Z|
dt YN IIC e

A.1 Proof Overview

From Fact 3, we know that Z7 Z does not change with time. While our formal proof holds for arbitrarily initialized
Z (with full column rank), in this proof sketch, we will assume that Z is initialized such that Z7Z = I. In
Lemma 4, we show that

v
— = —Tr(RART
p r(RAR")
=Y RTAR
i=1

where R and A are residual and alignment matrices respectively, as defined above, and R’ is the i'" row (viewed
as a column vector) of R . This implies that % < 0if A is PSD. In Lemma 5, we show that

% =2(2"2)'R"R(Z" 2)"!

= 2RTR.

This implies that 7 Az never decreases with time for all . In this sense, A becomes more PSD with time.
However, this is not sufficient to claim that A will become PSD eventually as there can exist z for which

dxgﬁ = 0 at all times. Therefore, a more careful analysis of the directions in which A becomes PSD (z such
that 27 Az > 0) is needed.

Whenever % is positive, there is some row R’ of R for which RITAR is negative. Also, note that % =

;T o ; .
2 HRar;H2 > 2(R" z)? > 0, for = such that R;"2 # 0. So whenever a direction R’ causes the loss to increase
sufficiently, 7 Az also increases sufficiently for all z close to R'. And when z” Az > 0 for all 2, the loss can not
increase anymore. That is, whenever some direction causes the loss to increase, A becomes “more PSD” for all

directions close to this direction, and when A is PSD for all directions, the loss can not increase anymore. Using
¢

this idea, we bound the total increase in loss possible ( fOT flt

in lemma 9, we upper bound the total time for which the following holds: the loss is large and the loss is either
increasing or decreasing slowly. At any other time, if the loss is large, it has to decrease sharply. Combining
these two lemmas, in Lemma 10, we show a bound on time by which the loss goes below € at least once. In
Lemma 11, we optimize the bound proved in Lemma 10. In Lemma 12, we translate the guarantee on £(t) to

1 [% > O] dt) in Lemma 8. Using a similar idea,

. 2
the desired guarantee on H(Y - Y)C’TH . The proves the first part of the theorem.
F

The results in Lemma 8 and 9 crucially rely on Lemma 7 which gives an upper bound on

T 2
/0 |Rew(t)] dt.

for all ¥ > 0 and for all T. This lemma helps formalize the intuition discussed above. An upper bound on
foT |R<o(t) ||§, dt lets us upper bound the total increase in loss (Lemma 9). An upper bound on fOT | R<k(t) ||% dt
for positive k lets us bound the total time for which the loss is large and is either increasing or decreasing slowly
(Lemma 7).
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Note that whenever ||R§k(t)x||§ is large for any z, 27 A(t)z increases by a large amount. Also, by definition,
for any row R%L,(T) (viewed as a column vector) of R<x(T), RL (T)" A(T)RL,(T) can not be too large, that

is, RL,(T)TA(T)RL,(T) < kHng(T)Hj. We also know that RL, (T)TA(0)RL,(T) > A.(A(0)) |\Ri§k(T)H§.

Therefore, for any row R%(T),
T ) 9 T ) 9
|| Irsora @< [ ramz e
- / e @ O g ryar

= 2( k(T A(T)R(T) — Ry (T) " A(0) R (T)

(k= A (AO) | R (T

IN

I

In other words, this bounds the inner product of rows of R<(T') with the rows of R<(t) for ¢ < T. This fact
lets us upper bound the integral of sum of squared norms of these rows. We prove such a bound for general
vectors in Lemma 6, and use it to prove Lemma 7.

We prove convergence of ¢(t) to zero (second part of the theorem) in Lemma 13, where we use the following
argument. In Lemma 10, we show that for all € > 0 and all T' > 0, there exists ¢ > T such that ¢(¢) < e. Now, if
the loss doesn’t converge to 0, then there must exist some €; > 0, such that for all T' > 0, there exists some t > T
satisfying ¢(t) > €;. Using these two arguments, we can generate an infinite increasing sequence Ty, T}, T, Ty, - - -
such that ¢(T;) < €1/2 and ¢(T}) > €; for all i. Thus we can get infinitely many disjoint intervals [T3,T}] o

which the loss increases by at least €;/2, implying that the total increase in loss is unbounded which contradlcts

Lemma 8, where we show fo dell [dl > 0} dt is bounded for all T. Therefore, the loss £(¢) must converge to 0.

A.2 Proof

The following two facts will be useful for the proof.

Fact 2.
ZT Yy —-Y)=0
Fact 3.
Az 7)
=0.
dt

Fact 2 follows since ¥ = ZW = Z(272)"12TY. Fact 3 follows since 422 — 27(y — V)CT + (Z7(Y —
Y)CT)T _
Fact 3 says that Z7'Z does not change with time. While our result holds for arbitrarily initialized Z (with full
column rank), it might be helpful for the reader to assume that Z is initialized such that Z7Z = I.
Now, we evaluate the expression for %.
Lemma 4.

dl

o= —Tr (v =1 ((272) " ewT + W (272) ) oy - Y)T).

Proof. We can write

where

L g, ((CZ)T (j;)) | (12
dl

=2V - etz z)y~tewt —2z(Zz7z) oy - )Ty - Y)CT(z7Z)7!
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Here, we used Z7 (Y — )A’) = 0 (see Fact 2) to simplify the expression. Substituting this in equation 12, we get

% = Tr ((C(Y - ?)T) (—2(Y Vet (ZTz)ytewT —22(Z2T2) "oy - Y)T(Y - Y/)CT(ZTZ)*)) .
Again using ZT(Y —Y) =0, we get
% = —2Tr (O(Y -y —-v)oT ((ZTZ)*CWT))
Using the identities Tr(MN) = Tr(NM) and Tr(M7T) = Tr(M), we get
% = 2Ty ((Y ~-V)CT ((Z"Zz) ' ewT) C(y — Y)T)

— Ty ((Y — T ((ZTz)‘1 cw? +weT (ZTZ)_1> oY — Y)T) .
O

Recall that the alignment matrix is A = ((ZTZ)71 cwt +weT (ZTZ)fl) and the residual is R = (Y —Y)C7.

Next, we show how A changes with time.

Lemma 5.
A
C;—t =22 Z)'RTR(Z" 7)™
Proof. From Fact 3, we know that d(Zd:Z) = 0. This implies
dA 1 dwT AW _
© = ((ZTZ) 0T + 0T (272) 1) (13)

Here, W = (Z72)='ZTY. Again, using UI(ZT:Z) =0and % = (Y — Y)CT, we get
aw
dt
From Fact 2, we know that Z7 (Y — }A’) = 0 which implies (Y — Y/)TY = 0. Using this, we get
aw _ . .
ST Z'2)y ey -Y)T(y —Y).
Substituting this in Equation 13, we get

a 20272y ey -vV)T(v —v)cT(z¥z)~!

dt
=2(ZT2)"'RTR(ZT Z)7".

=Z"2)"c(y -)Ty.

O
The lemma below essentially says the following: suppose we observe n vectors vy (t),va(t) - - - v, (t) at each time
t , and let the vectors observed at any time 7' have small inner product with all vectors observed before time T'

>, fOT (vg(T), v;(t))?dt is small),for all T. Then Y, fOT [|vi(£)||? dt can not be too large, for all T.
Lemma 6. Let v;(t) : R —= R" forie€ {1,2--- ,n} such that

> / (0r(T), (1))t < ¢ [or(T)|? (14)
=1

for all' T,k and for some constant ¢ > 0. Then

n T
> [ ol ae < 2re, (15)
i=1 70

Jor all T (assuming ||vi(t)|| is integrable).
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Proof. Let Ly = > 1", fOT v;(t)v; (t)Tdt. Sum of eigenvalues of L is given by

T n T
S NilLr) =) / l[v; (87 dt. (16)
i=1 i=1 70
Here, we used Y_;_; A\i(Lr) = Tr(Lr). Using >;_; N\i(L7)? = Tr(LrLL), we get

2 Al =2 3, /0 /o (vi(t1),v;(t2)) dty dt
1= J; . . ) ) ] .
— /0 /o <vi<t1)’vj<t2)>2 dty dta + ZZ /0 /o <Ui(t1),vj(t2)>2 dto dtq

I
M: 1§

i=1 j=1 i=1 j=1
n T n to n T n t1

:Z/ / (vi(t1), v (t2))? dty dt2+Z/ Z/ (vi(t1), v;(t2))? dty dty
j=1 Y0 ;=170 i=1 Y0 ;=170

Using condition 14, we get
r n T
Suze? <2y [ el (1)
i=1 i=1 70

Using Cauchy—Schwarz inequality, we can write

(Z )\i(LT)> <r Z Ni(Lp)2.

Substituting from Equation 16 and 17, we get

n T 2 n T
<Z/ IIW(t)IIZdt) 527"02/ lvs (8)|* dit.
i=1 v0 i=1 70
which implies

n T
Z/ o ()12 dt < 2re.
i=1 Y0

In the last step, we used Y., fOT llvi(£)]|> dt # 0. If it is equal to zero, then the lemma is trivially true. O

Recall that A denotes the alignment matrix ((ZTZ)_1 cwT +weT (ZTZ)_I)7 and R denotes the residual
matrix (Y — Y)OT.

T
Also recall the following notation. For a non-zero vector x(t), we use z<(t) to denote vector x(t) if 2@ _AWDz() o

l=®I* =
if W > k, and zero vector

otherwise. We define < (t) and x> 4(t) to be equal to x(t) when z(t) is a zero vector. For a matrix M (t) with

ith row M(t), M<k(t) denotes the matrix whose i'" row equals MZ,(¢) for all i. Similarly, we define M-y (t)
th -

k, and zero vector otherwise. Similarly, we use () to denote vector x(t)

to be the matrix whose ¢
M(t) = M<y(t) + M> ().

row equals M%,(t) for all i. Note that we can write z(t) = x<x(t) + z>x(t) and

In the next lemma, we show an upper bound on fOT ||R§k(t)||§, dt. We will see in Lemma 8 and Lemma 9 that
||R§k(t)||% being large corresponds to certain undesirable events. For example, in Lemma 8, we will see that
||R§0(t)||? being large corresponds to increase in loss ¢(t). The next lemma will be helpful in bounding the total
time for which such undesirable events can happen.

Lemma 7. For all k > A\, (A(0)) and for all T,

T
/O IRae@2 dt < v (k= A (A©O) A (Z(0)TZ(0))°.
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Proof. Let RL,(T) be any row of R<y(T). By definition, we know that R%,(T) (viewed as a column vector)
satisfies B _ ' _ 2_
(RLe(T)TA(T)(RL,(T)) < k|| Ry (T)]| (18)

for all i. Since A.(A(0)) is the minimum eigenvalue of A(0), we also know that

(R (T)TA0) (R, (T) > A (A(0)) [|Rizy ()] (19)
The last two equation imply
(R (T)T A(T)(RE(T)) = (REr(T)T AQ)(RER(T)) < (k= Ar(A(0))) || Ry (D) (20)
This implies
T
|y (UG ) (ramnar < - a0 R (21)
0
Substituting for W from Lemma 5, we get
T
/0 2R (T)T (207 2(0) 7 ROTRE) (207 2(0) ) (Rei(1) dt < (k= A(AO) [RL(D (22)

Note that for all z and k, 2T RT Rz > xTngng:z:. Also using Fact 3, we know that (Z(t)TZ(t))71 =

(Z(0)TZ(0))”". This gives us

(k — A-(A(0)) ||RL (D)

/0 (Re(T)T ((2(0)72(0)) " Ren() Rei(t) (2(0)72(0)) ) (RL, (T)) dt <

5 .
(23)
The expression in the above integral is integrable by Lemma 16.
Now, define v;(t) = (Z(O)TZ(O))fé R.,.(t). The above equation implies
/OT i<vi(T)7 v; (t)>2 dt < (k B )\T(A(O))) UZ(TQ)T(Z(O)TZ(()))Uz(T) ) (24)
We know v;(T)T(Z(0)T Z(0))v:(T) < A (Z(0)T Z(0)) ||vs(T)||?. This gives us
|3, ey 0 ar < E2AOD 2 ZOTZO) T (25)
0o 4
Using Lemma 6, we get
T n
|l at < v = (400) M (200)" 200) (20)
for all T (||v, (t)]|? is integrable by Lemma 16). This is equivalent to
T 12
| [rey zorz) | at< v = a a0 x (207 20). (27)
for all T'. We know
12 _1\2
|Rex®) (2)720) % | = IR<®I} A ((200)72(0) )
(28)

IRl
M\ (Z(0)TZ(0))
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Combining this with Equation 27, we get
T
2

/0 IR<k(®)l[7 dt < 7 (k=X (A0)) M (2(0)72(0))", (29)
for all T (||R§k(t)||i is integrable by Lemma 16).
This comples the proof. O
Recall, we use 1[.] to denote the indicator function which is equal to 1 if the condition inside the square brackets
is true and 0 otherwise.

In the next lemma, we show an upper bound on total increase possible in loss £(t).
Lemma 8. For all T,

de(t)  [de(t)

T
[ |5 o] dr< o (002 x (207 200)°.

Proof. We do not explicitly show time ¢ for variables in the proof below. Whenever time is not written, the
corresponding variable is evaluated at some arbitary time t.

From Lemma 4 and Lemma 5, we know that

e T
o = ~T7(RART) (30)
T
W =22T(Z"Z2)'RT"R(Z" Z) ' (31)

for all fixed & (which do not change with ¢). Here, R denotes the residual matrix (Y —Y)C” and A denotes the
alignment matrix ((ZTZ)_1 cwT +weT (ZTZ)_l).

Note that if A.(A(0)) > 0, then % < 0 for all ¢ and the lemma is trivially true. In the proof below, we assume
Ar(A(0)) <0.

By the definition of R<j and R, we can write

dr
it (Tr(R<gARL) + Tr(R-0ARL))) . (32)
By definition of R, we know that Tr(RsoARL) > 0. This gives us
dl

bt o T
dt S TT(RSOARSO) (33)

2
< =M (A) [[R<oll -
Here, \.(A) is the minimum eigenvalue of A(t). Since @
never decreases. That is, A.(A(t)) > A.(A(0)). This implies
¢

2 S A (A0) [ Reoll - (34)

> 0 for all fixed x, the minimum eigenvalue of A

From Lemma 7, we know

T
| IR0 de <= 3, (40) M (200)72(0) (35)
0
for all T. Therefore we get

/OT %(f) 1 [dfg) > 0] dt < /OT ~A\r(A(0)) [|R<o(t) 7 1 [dil(tt - 0] "

~—

T
S*AT(A(O))/O IR<o(t)|[7 dt

<A (A0) M (Z(0)TZ(0)
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for all T. Here, we used \.(A(0)) < 0. The expressions in the above integral are Lebesgue integrable as product

of bounded integrable functions is integrable (over any finite interval). Here, % is integrable due to continuity,

1 [%(tt) > 0} is integrable by Lemma 15 and ||R§0(t)||?, is integrable by Lemma 16.

This completes the proof. O

In the next lemma, we bound the total time for which loss | R| 5 is large, and ¢ is either increasing, or decreasing
slowly. Since ¢ = ||R(ZTZ)*1/2||§ and ZT Z doesn’t change with time, this also gives a bound for total time for
which loss ¢ is large, and ¢ is either increasing, or decreasing slowly.

Lemma 9. For alld >0, € >0 and for all T,

T
/ 1 [‘M(t) > —8 and |R(t)||% > €| dt <
0

r (2 -0 (AW0) M (207 2(0)°
dt |

o

Proof. We do not explicitly show time ¢ for variables in the proof below. Whenever time is not written, the
corresponding variable is evaluated at some arbitary time t.

From Lemma 4 and Lemma 5, we know that

a_ —Tr(RART), (37)
di
T
W — 247272 \RTR(Z7 2) \a. (38)

for all fixed z (which do not change with t). Here, R denotes the residual matrix (Y — Y)C” and A denotes the
alignment matrix ((ZTZ)71 cwt +weT (ZTZ)fl).

Note that if A,(4(0)) > 2, then % < —2§ for all ¢ where ||R(t)||% > €. In this case, the lemma is trivially true.
In the proof below, we assume A, (A(0)) < %.

dt
we can write

Let 1 [dl(t) > —6 and HR(t)Hi, > e] =1 at the current time ¢. Let k = 22. By the definition of R<j, and Ry,

ar

i (Tr(R<kARL,) + Tr(R-xARLY)) . (39)
Since % > —4, we get
(Tr(R<xARL,) + Tr(Rs,ARL))) < 6. (40)
By definition of R~j, we know that )
Tr(R=xARL;) > || Roi|p k. (41)

Since A, (A) is the minimum eigenvalue of A(t) and since the minimum eigenvalue of A does not decrease with
time, we can write

Tr(R<kARL)) > |R<ill3 A(A)

: (12)
> [|R<klp Ar(A(0)).
Equation 40, 41 and 42 together imply
IR<kllz Ar(A(0)) + [ Bkl k < 6. (43)
Since ||R§k||?? + ||R>k\|; >eand k= %, we get
IR<kllfe Ar(A©O) + (e = IR<klI}) = < 6. (44)
€
Rearranging the terms, we get
0
2
1R<kllp 2 577 (45)

Ar(A(0))

€
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This implies

T T
| iraol > [ irali |50 > - wd 1RO > o
0 0 (46)

8 T rdet) )
2 25—/\(14%0))/0 1 [dt > =6 and [|R(t)||F > 6] dt,

€ T
for all T. The expressions in the above integral are Lebesgue integrable as product of bounded integrable

functions is integrable (over any finite interval). Here, 1 [%(:) > —(5} and 1 [HR(t)H; > e} are integrable by
Lemma 15 and ||R§k(t)||§, is integrable by Lemma 16.

From Lemma 7, we know

/0 IRek(®)]% dt < 7 (k= A\ (A0) N (2(0)TZ(0))?

0 (47)
— (6 A (A(O))) M (Z(0)7Z(0))?,
for all T. From last two equations, we conclude
T 2\, (A(0)7 M (Z(0)TZ(0))°
/ 1 [dﬂ(t) > —6 and ||R(t)|% >e} dt< = (% (4O)" M (2(0)72(0)) : (48)
for all T O

Using above lemmas, in the next lemma, we show that the loss goes below € at least once in every length T' time
interval for appropriately defined T

Lemma 10. For alle >0, >0, Ty >0, and

2 2
. (WM —\r (A(O))) M (2(0)72(0)) AT+ (A(0)* A1 (2(0)7Z(0))° — ¢
- 5 5 b
FA dynamics satisfy
. <.
SR g ) S e

Proof. Assume £(t) > € for all Ty <t < Ty +T. We would show that ¢(T; + T') < € in this case, which would
imply the lemma.

We can write

BT qu(t)
(T +T)=0TH) +/ = dt
— T o dit) o [0 o] g [ dUD g D) ] (49)
(1)+/T1 it {t‘] +/T1 it {dt>]
T +T T +T
gé(Tl)Jr/T dzgjt)]l{dz(tw<—5] dt+/T dz(:)]l[cg(;)>0} dt.

The expressions in the above integral are Lebesgue integrable as product of bounded integrable functions is

integrable (over any finite interval). Here, % is integrable by continuity, 1 [%(tt) > —(5], 1 [%(tt) > 0] and

1 [%(:) < —5} are integrable by Lemma 15.
We will now bound the two integral terms in the RHS. From Lemma 8, we know
BT qet)y  [det BT o) [det
[T A0 ] g [T 0 [0 ], o
T dt dt 0 dt dt
2
<7 A (A0)% A (2(0)72(0)) (51)
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We can write

/:1” %’f) 1 [‘W) < _5} a<—s [ 1 {dw) < —5] dt
_ s (T - /TlTﬁTn [dig) > 5} dt) (52)

=6 (T - /T1T1+T]1 [dfi(tt) > —6 and £(t) > e] dt)

where we used the assumption £(t) > e for all Ty < t < Ty + T in the last equation. Recall that ¢(¢t) =
2
R zw) | = R0 20)

2
. Therefore, we can write
F

)
AN

|ryzo 24

IROIF M(Z(0)"2(0))7) (53)

_ RO
M (Z(0)72(0))

N

Using this, we can write

T +T n+T
/ ﬂl:cw(t)>_5and€(t)>€:| dtg/ ﬂ[(wm>—6and€(t)>e] dt
7 dt 0 dt

T rdet) >4
< /O 1 [dt > —§ and |R(t)|% > e)\r(Z(())TZ(O))] dt.

The expressions in the above integral are Lebesgue integrable as product of bounded integrable functions is
integrable (over any finite interval). Here, 1 [%@ > —5}, 1[i(t) > € and 1 [\\R(tm; > e/\r(Z(O)TZ(O))] are
integrable by Lemma 15.

We can bound this integral using Lemma 9. This gives us

T +T T +T
/Tl 1 [dfg) > 5 and (1) > e] it < /O 1 [dig) > —5 and [|R(D)|2 > e/\,n(Z(O)TZ(O))] it (55)

T (W A (A(O)))2 A (2(0)72(0))?

< - (56)
Substituting this in Equation 52, we get
BT qo(t) de(t) r (e)\r(Z(?J()STZ(O)) = Ar (A(O)))2 A1 (Z(O)TZ(O))2
/ — L1 |—= < =§| dt<—-0|T — (57)
T dt dt )
Substituting the bound for T', we get
Tui+T or A (A(0))% M (2(0)72(0))° -
/ aet) | [t _ 5] gy < g (LT E T A (AO)" A (Z0)TZ(0) € (58)
T dt dt )
Combining equations 49, 50 and 58, we get
Ty +T)<e. (59)
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Lemma 11. For any € > 0 and

)

24 [ 01(Y)o1(C)o1(Z(0))*/r min(m,n)
o,(Z(0))°

FA dynamics satisfy

min £(t) <e.
t<T

Proof. For ease of notation, let us define «, 3,7, ¢ as follows

2
A (Z2(0)TZ(0))
B = Ar(A(0)),
7= M(Z(0)7Z(0))*r,
¢ = £(0) + A (A(0)*M(2(0)72(0))? — €.
Then from Lemma 10 (with 77 set to 0), we know that for
2
> (@0-B)™y
- 0
FA dynamics satisfy
min £(t) <e.
t<T

B2+

JoZ

T > 2av4/ B2 + % — 2af7, (60)

min £(t) <e.
t<T

This holds for all § > 0. Minimizing the bound on 7" with respect to § by setting § = we get that for

FA dynamics satisfy

In the rest of the proof, we will bound the RHS of equation 60.

27/ % + — — 2aBy < 2a7, | 52 + " 2lapy|
=2ayy [ B2+ — 5 i 2alBly.

In the last step, we used the fact that o and 7 are non-negative. Substituting for a;, 3,~, ¢, we get 2ary, / 52 + L
2apy

4\ (Z2(0)7Z(0))2 r £(0) + rA-(A(0))201(Z(0)TZ(0))2 — €
= TN 207 Z(0)) (\/ A(A0)" + M (ZOTZ(0)) + WA(O)))

1 Al( (0)TZ(0))2 < \/)\T(A(O))Q ) +rAT(A(o»zAl(Z(osz(o))z s MA(O))') (61)

A(Z(0)TZ(0) r A(Z(0)7Z(0))
_4a(ZO)tr ? ( %T o>+rAT<A<o>>201<z<o>>4+AT(A(O)”)

€ o (Z r o1(Z(0))*
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Now, we use the following bounds

A (AO)] = [ (207 2(0) " WO + W(O)CT (2(0)72(0) )|
201 (C)a1 (W(0))
SR .
_ 201(C)or(¥)
- on(2(0)®
Here, for the last inequality, we use W(0) = (Z(0)7Z(0))~1Z(0)TY and therefore o1 (W (0)) < 01((Y))/o-(Z(0)).

o1 2 9
< WE?; H (Y B Y(O)) HF
() , . . 2 (63)
< 29| (v - 20 (207 20) " 207y )|
0'1(0)2 2

Substituting bounds in Equation 62 and 63 to Equation 61, we get 2ay4/ 3% + % — 2af8y

870120 1(C) 01(Y) Y[ o (20)°
- (\/2 B0 20 1)

81 01(Z(0)* 01(C) o1 (Y Y3
_ 81 a(Z0) :(0) <>(2+47J(|71(||11;)2+1)

|
m
Q
S
—
N
N
o
N~—
N—
(@28

|
e
Q
S
—~| = |
N
=)
==
(@28

<24 o1(Y)o1(C)o1(Z(0))/r min(m,n)
T a,(£(0))?

where we used min(m,n) > r for the last inequality. Combining this with Equation 60, we get that for

T 2 <01(Y)01(C)01(Z(0))4 r mm(m,n)> |

€ o,(Z(0))°

FA dynamics satisfy

min £(t) <e.
<T

Lemma 12. For any ¢ > 0 and

)

24 [ 01(Y)o1(C)o1(Z(0))8/r min(m,n)
= o (ZO)

FA dynamics satisfy
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Proof.
o =vner|] = o = venerizor zonHzor 200
<L) 0u(Z ( )?

Applying Lemma 11 with € = ¢;/01(Z(0))?, we get that for

)

24 [ o1(Y)o1(C)o1(Z(0))5/r min(m,n)
o,(Z(0))°
FA dynamics satisfy
. c__
wmin (0 < 7o
which implies

. 2
min H(Y - Y)CTHF <.

t<T

This finishes the proof of the first part of Theorem 1 (convergence of the minimum iterate).
. 2
Next, we show that H(Y - Y(t))C’THF goes to 0 as ¢ goes to oo.

Lemma 13. H(Y - Y/(t))CTHi — 0 ast — oo.

Proof. Since Z(t)TZ(t) = Z(0)T Z(O) (Fact 3) and since Z(0) is full column rank, it is enough to show that
Lt) = H (Y - Y(t)) T (z)'Z(t) b H goes to 0 as t goes to oo.

We will show this by contradiction. Suppose £(t) does not converge to 0 with time. Then there must exist some
€1 > 0, such that for all T > 0, there exists some ¢t > T satisfying £(t) > €;.

We also know from Lemma 10, that for all e > 0 and for all ' > 0, there exists some ¢ > T satisfying [(t) < €

Using the above two arguments, we can generate an increasing infinite sequence of times 71,77, T2, Ty, - - -, such
that I[(T;) < €1/2 and I(T]) > €1, for all i € IN.

By definition of this sequence,

d/
/Ti o dt = A(T}) — (T}

&
2 )
2r A (A(0)? M (2(0)72(0))*

€1

>

for all # € IN. Let k be some integer greater than . Then,

Tede  [de Ti qr
ZT1lE>0| dat> = dt
o dt [dt 0} = Jo dt
k T!
i de
> — dt
ke
2

> 7 A (A(0)2 M\ (2(0)72(0))°.

This is a contradiction to Lemmma 8, where we show for all T,

/0 %(tt) 1 [dfl(t) > 0} dt < A (A(0)* M (Z2(0)72(0))°
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Therefore, by contradiction ¢(¢) must converge to 0 as ¢t goes to co. O

This completes the proof of Theorem 1.

Below, we prove some helper Lemmas that we used to show that the integrals involved in the above proofs were
well defined.

Lemma 14. £(t), %(tt), |R()|| gs [|A(t)]| o are bounded for all t.

Proof. The proof follows from the fact that ||Z(t)||, and H(Z "'z (t))71HF are bounded which holds since
Z(t)T Z(t) doesn’t change with time (Fact 3). O
Lemma 15. Let f(t) be some continuous function of t over [0,00). Then the functions 1[f(t) > 0] and 1[f(t) >
0] are Lebesgue integrable over [Ty, Ts] for all Ty, T > 0.

Proof. Since f is a continuous function, {t : f(t) > 0} and {¢t : f(t) > 0} are open and closed sets respectively,
which imply they are measurable. Therefore, 1[f(¢) > 0] and 1[f(¢) > 0] are bounded measurable functions. The

proof follows from the fact that bounded measurable functions over any finite interval are Lebesgue integrable
O

2
I

Lemma 16. f;(t) = (:nTRiSk(t))2 and g;(t) = HRiSk(t) are Lebesgue integrable over [0,T] for all T, k, x, i.

Proof. We can write fi(t) = (2T Ri(t)x) 1[R'(t)T A(t)R!(t) < k] and g;(t) = HR’(t)H2 1[RI(t)TA(t)R(t) < K].
(«TRi(t)z), |Ri(t)||* and L[R! (1)T A(t)Ri(t) < k] are bounded (Lemma 14). Also, (zT Ri(t)x) and |Ri(t)||* are
integrable as they are continuous and 1[R*(t)T A(t)R(t) < k] is integrable by Lemma 16. The Lemma follows
since the product of bounded Lebesgue integrable functions is Lebesgue integrable (over any finite interval).

O

B PROOF OF LEMMA 1 AND THEOREM 2

Lemma 1. Suppose C is chosen randomly with entries drawn i.i.d. from N(0,1) and the stationary point
equations for feedback alignment (7) are satisfied. Let Ay, = YCT and By, = argming ||AB — Y||% Then
Y = AB almost surely.

Proof. From stationary point equation 7, we know that (Y — )A/')CT = 0, which gives us
ycor =zwce”
This implies
col(A) = col(YCT) C col(Z) (64)
where col(-) denotes the space given the linear span of columns of the corresponding matrix.
We also know from stationary point equation 7 that Z7(Y — ZW) = 0. This implies that
W:argwllninHZW—YH% (65)

That is, W is chosen optimally once we fix Z.

We consider two cases depending on rank of Y.

Case 1: rank(Y) <r.

Since Cj,x, is a random matrix with i.i.d. Gaussian entries, we get col(A) = col(YCT) = col(Y) almost surely.
Thus B minimizing ||[AB — YH?, will satisfy AB =Y almost surely.
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Also, col(YCT) = col(Y) C col(Z) almost surely (from equation 64). Thus W minimizing |[ZW — Y||§7 will
satisfy ZW =Y almost surely. So, we get that Y = AB almost surely.

Case 2: rank(Y) > r.

Since C,x, is a random matrix with i.i.d. Gaussian entries and rank(Y) > r, rank(YCT) = r almost surely.
We also know that rank(Z,x,) < r = rank(YCT), and col(A) = col(YCT) C col(Z) (from equation 64).
This implies col(A) = col(YCT) = col(Z) and rank(A) = rank(Z) = r almost surely. Therefore, we can
write A = ZR for some invertible matrix R, almost surely. Recall that B = argming ||AB — YH% and W =
argming |AB — Y||2F Since A and Z are full column rank, we get B = (AT A)"1ATY and W = (Z1Z)"1Z7Y,
almost surely. Substituting A = ZR, we get

AB =ZR(RT"ZTZR)"'RTZ"Y
=272z 27y
=W

almost surely. This completes the proof. O

Theorem 2. Suppose C' is chosen randomly with entries drawn i.i.d. from N(Q, 1), the stationary point equations
for feedback alignment (7) are satisfied, and r > rank(Y). Then ZW =Y =Y almost surely, which also
minimizes || ZW — Y||§, .

Proof. In case 1 of the proof of Lemma 1, we show ZW = Y almost surely, when rank(Y) < r. This proves
Theorem 2. O

C PROOF OF THEOREM 3

For the proofs below, we will use Px to denote the matrix projecting onto the linear span of columns of matrix
X, and X;.; to denote a matrix containing column ¢ to column j from matrix X. We use M () to denote the i'"
column of M.

Before proving Theorem 3, we prove the following helper lemma. Let o;, u; and v; be the i*" singular value, left
singular vector and right singular vector of Y respectively, such that Y = >"" | ol =USVT,

Lemma 17. Let A be some n X r matriz and and Pa be the projection matriz for the columns space of A. Let
. 2 2 n 2
B = argming ||Y — A Then [[Y — AB|[% = Y20, (1 — | Paus ).

Proof. Let the singular value decomposition of A = UaX 4V ] where U, ¥4 and V4 are n x rank(A), rank(A) x
rank(A) and rank(A) x r matrices respectively. Since B = argming ||Y — AB||§,7 we know

AB = AAYY
=UULY
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. Here AT denotes the pseudoinverse of A. This gives us
2
IV — AB|% = ||Y — UaULY ||},
= Y13 + Tr(YTULUSUAULY) — 2T (YTUAULY)
2
= V1l = lUAY [

n n 9
=2 i =D ot [[UZul,
i=1 i=1
n n 9
=2 ol =2 ol |[UaZuill,
i=1 i=1
n
= > ot (1 = [|Pausl3).
i=1

This completes the proof. O

Theorem 3. Suppose

(i) C has entries drawn i.i.d. from N(0,1),

(ii) the stationary point equations for feedback alignment (7) are satisfied,
(1) the singular values of Y satisfy

L for i<r

=
' L for r+1<i<n

2(n—r)’

(iv) c1 < r < con for some absolute constants ¢, ca,
then the error || ZW — Y||% > 0.74 with probability at least 0.99 over the choice of C.

On the other hand, gradient flow (2) starting from randomly initialized Z and W ( with i.i.d. N(0,1) entries)
converges to the optimum solution with |ZW — Y||§7 = 0.5 almost surely.

Proof. The part about gradient flow follows from prior results. From Bah et al. (2019, Theorem 39, part (b)) we
know that gradient flow starting from randomly initialized Z and W reaches the global optimum almost surely.
The global optimum here corresponds to the best rank r approximation of Y (in Frobenius norm) (Blum et al.,
2020) whose error ||[ZW — Y||?: is given by >.1" 07 = 0.5.

Next, we lower bound the error at Z and W satisfying the stationary point equations for feedback alignment.
From Lemma 1, we know that ZW = AB almost surely, where A = YC7 and B = argming | AB — Y||i7 Using
Lemma 17, this gives us

|ZW =Y} = [|AB - Y||%

2
= oi (1~ |[Paui3)
i=1

n
2
=1-Y o [Pausl;,
i=1
almost surely. We used Z?:l 02 =1 in the last step.

For the rest of the proof, we will assume that A = YC7 is full column rank. Since Y has rank n, and Cj,x, is
a random matrix with r < n, this is true almost surely over the choice of C. Since we want to bound the error
with high probability (at least 0.9), we can safely ignore the cases where A is not full column rank.

We want to lower bound ||[ZW — Y||?;, for which we will upper bound Y}, o7 ||PAui||§. Recall that A =
YOT =31 | osuwfC. We can write the 5" column of A, AW =37 | o,u; R;;, where R;j = (v;, C). Since
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the entries of C' are drawn i.i.d. from A(0,1) and v;s are orthonormal, R;;s are N'(0,1) random variables, and
are independent for all 7, j.
Let A be the matrix obtained by applying the Gram—Schmidt orthonormalization process to the columns of A.

o A — _AD i) — AP Pay, A
That is, AW = HA(U” and A% = ||A(k)_PA1:k71A(k)||

for 2 < k <r. Here Py,, , is the projection matrix for

projecting to the space spanned by the first k£ — 1 columns of A. We can write P4 = AAT | which gives

n 5 n R 2
ZU? [Pausll; = ZU? AT, ,
1=1 =1
r N 2 n R 2
= o2 ||ATu;|| + Z o2 ||ATw; (67)
=1 1=r+1
L& |12 1 NI
= — AT ‘ }AT
2r 4 i 2+2(n77ﬂ).z i
i=1 1=r+1
Since u;s are orthonormal, this gives us
n . N2
> [ AT <||4
i=r+1 2 F
<r
where we used the fact that A is an n x r matrix with unit length columns. Therefore we get
~ o L~ ar 1P r
2 | Paul|2 < — HA wil| +—— 68
;o—zn Az||2_2ri§:jl | T (68)

R 2 .
Now we need to bound 22:1 HATuZ- ) Let Upxy, be a matrix whose j* column U = u; and let U;.; be a

2 , T iG) 2
, = i ot A0,

matrix with columns w;, u;41 -+ ,u;. With this notation, we need to bound HATUM

. . . 22
To get a sense of this quantity, we first consider ||U7,, AU,

UlTr (i 0'7U1R7J>
i=1

s
ZO? ||uiH;R12j
=1

J

o 21
i=1

2
2
HUETA(J)HQ -

2

2
which is at most % plus some lower order term with high probability. We will show that HUIT:TA(J)H2 also

0T, AL,
7A'_2.
||Uf+1:7zA(J)|‘2
Py, = Uy UL, and Py, = UTH:nUme be the projection matrices for the space spanned by columns of
Uy.r and U,41., respectively. We know

can not be much larger than % with high probability. To show that, we consider the ratio Let

HU@A“) ? HpUm,zlm ?
T e 22 B A 22
‘ Ur—i—l:nA(]) 9 HPU7-+1;1LA(J) 5

HPUl:r (A(j) B PAl:j—lA(j)> H;
”PU (A(j) - PAl:jflA(j)) Hz

r+1:n
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for j € {2,3,--,r} and

[ N
[ R A
— HPUI:T 1)”2
HPUTH:nA(l) Hz

. Using Lemma 18 and 19, and applying a union bound, we get

PNIE:
o A0, _ 3+

Ao 12 T
“Uf+1:7LA(]))’2 2 7

with probability at least 0.99, for all j € {1,2---,r} (assuming r > 2000 and n > 2r). Since AU is a unit

NP N2
vector, U7~T+1:nA(j)H =1- HUlT:TA(J)H . This gives us
2 2
HUT AG) H Lyg /o
2
12— -
T
' 2
1 T
3t/
=7
53— T

with probability at least 0.99, for all j € {1,2--- r}. Rearranging, we get

1 r
Ul J)H S 47
H Lir 2 n—r

. 2
with probability at least 0.99, for all j € {1,2---,r}. This gives us the desired bound on }_;_, HATui ,

- Z HU{—’:TA(J')

i=1 i=1 (69)

1 T
-+ 7
r<2—|— n—7“>

with probability at least 0.99. Combining this with Equation 68, we get

" TN 2 r
2 2 T
o< 5
;JZ | AUHQ_ZTZ:1 b 2+2(n—1")
<1+z r T
4 2Vn-r 2n-r) (70)
1 r
<-4+4
_4Jr n—r
<1—|—001
_4 .

with probability at least 0.99 (assume n > 40001 r). Combining this with equation 66, we get

2
1ZW =Y |7 =1-3 " of [|Pauil;
i=1
>0.74

with probability at least 0.99, assuming 2000 < r < 40001 O
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We use Lemma 18, 19 and 20 for proving Theorem 3. These Lemmas are proved assuming the conditions (i) to
(iv) in Theorem 3 are satisfied.

Lemma 18. Let r > 2000 and n > 2r. With probability at least 0.997,

. N2 1
. (10 )<
i : 27 2

’
n—r

2 1
[, () < Ly [
: 27 2

)
n—r

forallje{2,3---,r}.
Proof. For 2 < j<r)

1:r

. 12
HPUM (A(J) _ PAlﬁj_lA(j)) H =Py

A P, Py AU)HZ
9 1:r 1:5—1 9

= PU1;TA(j) - PUl:rPAlzj—l (PUlrr + Py

7‘+1:n)

A<j>”2

2

= PUl:r'A(j) - PU1:TPA1:j—1PU1:rA(j) - PU1:TPA1:]’—1PU

r+1l:n

40) Hz (72)

IN

PUI:TA(j) - PUl:rPAlzjflpUler(j)

2 112
5 + HPUI:TPAL]'—IPUT+1:71.A(]) H2

+2 HPUl:rA(j) - PUI:TPAlzj—lpUlcrA(j)H HPUl:rPAl:j—lPUT+1:nA(j)H
2 2
Now we bound the individual terms in the last inequality.
HPUl;rA(j) - PUl:rpAl:j—IPUl A(])H = HPU A(J)H + HPU1 PAIJ 1P Us. ])H
- 2<PU1:TA ’PUlz'rPAl:j—lPUl:rA(j)>
. N2 2
USng HPUI:TPAlzj—IPUl:TA(j)H2 < HPAlzj—IPUlﬂ‘A(]) H2 and
) , 2
<PU1:7~A(])’ PUIJTPAljjflpUliT‘A(J)> = HPAI:]'—IPUI:TA(-])HQ’ we get
2
HPU1 AY) — Py, Pa,, Py, J)H HPUMA(])H
2
Substituting AU) = Z;;l ou;R;; and Py, = Uy Uy T , we get
I .,
2r 7
=1
Using concentration (Lemma 21) and a union bound, we know
2 1
2
Pr ZR >r 41647 log(r)] < - < 1000 (73)
for all j € {1,2,--- ,r}, for r > 2000. Therefore we get
) 1 84/
HPUler(j) - PUlzrrPA1:j71P ]) H P i(r) (74)

2 Vr
with probability at least 0.999 for all j € {2,3---,r}. Next, we bound the ||Py,, Pa,,,_, Pu,.,,AY Hz term in
Equation 72.
HPUI:TPAI:]‘—IPU

r+1:n

AU)HQ
2

IN

HPAI:]'—IPU

r+1:n

wf "

r

IN

n—r
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with probability at least 0.999, for all j € {2,3,--- ,n} (assuming r > 2000, n > 2r ). We prove the last
inequality in Lemma 20.

Combining Equations 72, 74 and 75, and applying a union bound, we get

1 8 log( 109
) _ (4) -
|7 (4 LA =5 \/ et

L, 8vwg (76)

- 2
1 /

< -4+14

-2 + n—r

with probability at least 0.998, for all j € {2,3,--- ,r} (assuming r > 2000 and n > 2r). For the j = 1 case, we
know

2 I
HPUMA(UH2 =) ohR}
=1

i=1 (77)

IN

with probability at least 0.999 (for » > 2000). Here we used the concentration inequality from Lemma 21.
Combining Equations 76 and 77, and applying a union bound, we get

1
o (40 )y
‘ 2~ 2 n—r
(1) 1 r
|7 (4)], < 5+
2~ 2 n—r
with probability at least 0.997, for all j € {2,3--- ,r} (assuming r > 2000 and n > 2r). O

Lemma 19. Let r > 2000 and n > 2r. With probability at least 0.993,

Amﬂr>l_ wr

[P ()2 5 - 22

forallje{2,3---,r}.
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Proof. For j € {2,3--- r},

. . 2 . 112
HPUHM (A(J) _ PAl;j_lA(J)) H2 - PUT+MA(J) _ PUT+1:nPA1:_7~_1A(J)H2
. 112
= PUr+1:nA(]) - PUT+1:77,PA1:]‘71 (PUI:T + PUr+1:n) A(]) 5
. . 112
= PUT+1:71A(J) - PU7~+1:TLPA1:]'71PUl:'r'A(]) - PUr+1:nPAl;j71PUr+1;nA(J) 5
. 12 112
> PU7v+1;nA(j) - PU7~+1:7LPA1;J'71PU1;7~A(J)H2 + HPU'P+1:7LPA1:_7'—1PU7'+1:nA(j)H2
-2 HPUT+1:W,A(j) - PUr+l:nPA1:_j—lPUl:rA(j)H2 HPUT+1:TLPAl:j—LlPUr+1:"n,A(j)H2
. 112
> PUT+1mA(]) _ PUTHmPAl:jflPUl:TA(J) ,
-2 HPUrJrl:nA(j) - PUT+1:n,PA1:j71PU1:TA(j)H HPU’V‘+1:’VLPA1:]'71PU7‘+1:nA(j)H
2 2
(78)
Now we bound the individual terms in the last inequality. We first lower bound the

HPUerA(j) - Py

112
7‘+1:nPA1:j71PU1:7-A(J)H2 term.

. NP NP . .
|Pu1n A9 = Po oy Py P AV = [Py A9 = 2P0, A9 Py Py Py AP (79)

We lower bound the ||PUT+1:nA(j) Hz term:

n

2 2 p2
2: E UiRij

i=r+1

= Z RY, (80)

i=r+1

r+1;nA(j)

|7

- } 8 log(r)
-2 Vn—r

with probability at least 0.999, for all j € {1,2--- ,r}. Here we used concentration of chi-squared random
variables (Lemma 21) and a union bound. We also assumed r > 2000 and n > 2r.

A(j)>.

1:ir

Next, we upper bound (Py, .., A9, Py ., Pa,, Py

<PU7‘+1:71A(j)7PU'r‘+1:nPA1:j—1PU1:TA(j)> = <PU AU)? PAI:j—IPU A(j)>

< Z UzUsz37 PA1J 1 <ZU101 z]>>

i=r+1
1P, (E wiRiy) |, Z wp P (DL uiRy)
2 (n—T 1=r+1 e ||PA1:J'—1 (2;1“13”)“2
(81)

1:ir

Now, note that 7" . u;R;; and Pa,,_, (3;_; uiRy;) are independent since the latter only depends on R;; for

i <7 and Ry for k < j — 1. Also, for any fixed P4, ,_, (3;_; u;R;;), there exists a unit norm vector « lying in
the linear span of {u,41, Urt2,- - ,Un} , such that

= Pa,,_, (ZT 1 ulRl
iRij, . iRij, 82
< Z b J HPAl:j—l (Zz 1“2 1] ||2>‘ |< Z ’ ’ I>‘ ( )

i=r+1 i=r+l

< i uiRij,m>
1=r+1

for all values of R;;s. Therefore, we can write

Y PAl: j—1 (Z’g:l UzR”)
ule iy J > a
< Z ! HPALJFI (22:1 uiRij)H2

i=r+1

< Pr

> a] (83)
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for all & > 0, where the probability is over the randomness of Y " .| u;Rs; and Pa,  , (327 u;Ri5) is fixed.
Now, since Z?:TH u;R;; is an isotropic Gaussian random variable in the space spanned by {41, Urs2, -, Un},
we know that <Z?:T+1 u Ry, x> and <Z?:T+1 ui Ry, ur+1> are equal in distribution. Here we used the fact that
x is a unit vector lying in the span of {u,11,ury2, -, u,}. Therefore

> a}

< Z uiRm 1’>
i=r+1
Combining this with Equation 83, and setting o = 24/log(r), we get

i wi R Pay ;o (i wilij)
: HPAl:j—l (22:1 quz])H2

1=r+1

Pr >a| = Pr

< Z uiRija Ur+1>

i=r+1
= Pr(|Ry41 4| 2 of.

Pr

> 2\/log(r)| < Pr [|RT+1 i > 2\/109(7")}

Using a standard tail bound for Normal random variables (Wainwright, 2015), and a union bound, we get

- PA1:>1 (27:1 ule_])
iRij, ! °
|< Z e HPAlzj—l (> ie1 uiRij)Hg

1=r+1

< 2+/log(r) (84)

with probability at least 0.999 for all j € {2,3,--- ,r} where the probability is over Z?:'r-&-l u; R;;. But since this
holds for any fixed Py, , (3;_; u;R;;), this holds even when we take probability over both Z?:TH u; R;; and
PAl:j—l (Z;:l uZR’LJ) Also,

2 2
<

Pay ;o (Z UiRz‘j>
=1

T
E uiRij
i=1

=Y R}
i=1
<7+ 16+/7 log(r)

with probability at least 0.999, for all j € {2,3--- ,r} (assuming r > 2000). Here we used concentration (Lemma
21) and a union bound. Combining Equations 81, 84 and 85, and using a union bound, we get

2 2

(r+16y/r Tog(r)) 4 tog(r)

2r(n—r) (86)

(Py A(j),PU

r4lin

PAl:j—lpUler(j)>

IN

r+1l:n

log(r)
n—r

<2

with probability at least 0.998, for all j € {2,3,---,r}, assuming r > 2000. Combining equations 79, 80 and 86,
and applying a union bound, we get

HPU AY) — Py . Pa, Py A(j)H2 > L 8ylog(r)  4ylog(r)
r+1:n r4+1:n 1:5—1 1:r 2 — 2 \/n —r \/n —r (87)
1 124/log(r)
2

Jnor

with probability at least 0.997, for all j € {2,3---,r}. We also upper bound
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HPUrH:nA(j) - PUr+1:nPAl:j—lpUl:'rA(j) Hz

: ir

() o 0| 0|
HPU7‘+1:7LA I _PUT#»I:nPAl:jflPUl TA] H2 < HPUrJrl:nA I H + HPUT+1:VLPA1:]'—1PU1 AY H

+2|| Py A9 || P Pty P, AD)

<afav]f
_ 2 2
2 o 2
== RZ 4+ = R2
T; ”Jrn_rz':;rl Y

732\/log(r) 32+/log(r)
<4+ NG + —

<8

with probability at least 0.998 for all j € 2,3,--- ,r (assuming r > 2000 and n > 2r). Here we applied
concentration (Lemma 21) and a union bound.

We also need to upper bound HPU'r~+1:7L PAI:jflPUTH:”A(j) H2
OllE &
HPUT‘+1:71PA1:]'—1PUT«F]:'ILA J H < HPA1;J‘71PU7~+1:71A J H
2 2 (89)
r
<
n—r

with probability at least 0.999, for all j € {2,3,---,n} (assuming r > 2000, n > 2r ). We prove the last
inequality in Lemma 20.

Combining Equations 78, 87, 88 and 89, and applying a union bound, we get

1 12 log(r)_Q\/g o

2 Vn—r n—r (90)
1 v

2 Vn—r

with probability at least 0.994 for all j € {2,3,--- ,r} (assuming r > 2000, n > 2r).

G MNE
P (4 )

>

To prove the lemma, we also need to bound HPUTH:"A(D H;
NE ~ oo
[t - $° ot
i=r+1
2(n—r) i

i=r4+1 (91)

Y

Y

Jn—r

with probability at least 0.999 (assuming r > 2000, n > 2r). Here we used the concentration inequality from
Lemma 21.

Applying a union bound, we get that both Equations 90 and 91 hold with probability at least 0.993 for all
j€42,3,--- ,r}. This completes the proof. O
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Lemma 20. Let r > 2000 and n > 2r. Then

J
HPALHPUHM )H

“n—r

with probability at least 0.999 for all j € {2,3,--- ,r}.

Proof.
2 n 2
HPAl:j*lPUer‘”A(J)HQ < PAI:j71 < Z aiuiRij>
1=r+1 2
1 ) , (92)
- P, iRij
2n—r) | (;“ ) )

Note that Pa,, , and (3.7 . u;R;;) are independent since Py, , only depends on random variables Ry, for
k < j—1. Also, for any fixed Pa,,; ,, there exists a projection matrix P;_; that project onto some j — 1

dimensional subspace of the linear span of {u,41, ury2, - ,uy} (assume n > 2r), such that
Pay;, ( Z UiRij> -1 ( Z uiRij>
i=r+1 2 i=r+1 2
for all values of R;;s. Therefore, we can write
Pr|||Pa,, , ( > uiRZ—j> >a| < Pr|||Pj- < > uiRZ—j> >« (93)
i=r+1 2 1=r+1 2

for all a > 0, where the probability is over the randommness of R;;js and Pa,  , is fixed. Now, since

Z?:TH u;R;; is an isotropic Gaussian random variable in the space spanned by {41, Urt2,- - , U}, we know
2 2 e
that || Pj_1 (37, wiRis) ||, and || Py, (30,4 wiRij)|[, are equal in distribution. Here we used the fact
that P;_; projects onto some j — 1 dimensional subspace of the linear span of {u,41,ury2, -+, u,}. Therefore
n 2 2
-1 ( Z qu2J> Z ol = P’I" Uriiirgj—1 < Z Ui ZJ) Za
i=r+4+1 2 i=r+1 2

[r+j—1
= Pr Z R?j > 041

Li=r+1

[ 2r
< Pr Z R?j>a1

Li=r+1

for j <r. Combining this with Equation 93, and setting o« = r + 16+/7 log(r), we get

Py, ( Z uﬂ%z’j)

1=r+1

Pr

>r+164/7 log(r)| < Pr Z R2 >+ 164/7 log(r)| . (94)

i=r+1

Using concentration (Lemma 21) and a union bound, we know

Z R2 >r+16+/7 log(r ] % i

i=r+1

for all j € {1,2,--- ,r}. Therefore, we get

Pay; s ( > UiRij)

i=r+1

<7+ 16~/ log(r) (95)
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with probability at least 0.999 for all j € {2,3,---,r} where the probability is over R;js. But since this holds
for any fixed Pa,,;_,, this holds even when we take probability over both R;;s and Pa,,;_,. Substituting this in
Equation 92, we get that for r > 2000,

HPAIrjﬂPUerA(J) < H—\/?Tg(r)
2 2(n—r) 06)
r
< .
n—r
with probability at least 0.999 for all j € {2,3,--- ,r}. .

Lemma 21. (Wainwright, 2015) Let X be a x? random variable with d degrees of freedom, then
Pr{|X —d| > df] < 2¢%"/8

for allt € (0,1).

D PROOF OF THEOREM 4

Theorem 4. Suppose

(i) C has entries drawn i.i.d. from N(0,1),

(i1) the stationary point equations for feedback alignment (7) are satisfied,

(iii) the singular values of Y satisfy o1 =1 and o; = € fori > 1, where 0 < € < 1,
(iv) r =1 (rank 1 approzimation) and n > c¢ for some absolute constant c.

Let Zp o and Wga denote the Z and W satisfying the above conditions respectively, and Zgp and Wap represent
the factors found by gradient flow (2) starting from randomly initialized Z and W (with i.i.d. N(0,1) entries).
Then

2
|1ZeaWra =Y |7 < | ZapWep = Y |7 (1 - n)

and

(e o) <
|1Zrally” [ Zaplly /]~ ev/n

with probability at least 0.99 over the choice of C' and random initialization of gradient flow.

Proof. Let o;, u; and v; be the i singular value, left singular vector and right singular vector of Y respectively,
such that Y =>""  oyuv] = USVT.

From Bah et al. (2019, Theorem 39, part (b)) we know that gradient flow starting from randomly initialized
Z and W reaches the global optimum almost surely. The global optimum here corresponds to the best rank 1
approximation of Y (in frobenious norm) (Blum et al., 2020) whose error ||ZW — YH?, is given by Y1 , 07 =
€2(n —1). So, from prior work, we know that

Zap

26D _y, (97)
Zcplls

and
| ZapWep — Y3 = €2(n — 1) (98)

almost surely.

Next, we consider Zp4 and W 4 satisfying the stationary point equations for feedback alignment. From Lemma
1, we know that ZpaWpa = AB almost surely, where A = YCOT and B = argming | AB — Y||iﬂ
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Using Lemma 17, this gives us

|ZraWea — Y% = [AB — Y|
=321 - | Pawill?)
=1

n

=&n-1)+1-> o} [|Pauill; (99)
=1

<én—-1)+1

<é(n—1) (1+622n>

almost surely. Here we assume n > 2 for the last inequality.

Note that A = YCT = Y"1 | oyu;R; where R; = (v;,CT) (recall r = 1 and therefore C7 is m x 1 ). Since v;s
are othonormal and entries of C' are i.i.d. N(0,1), R;s are N'(0,1) random variables and are independent for all
1. Since A and Zg4 are n X 1 matrices, B and Wg4 are 1 X m matrices, and ZpsWgra = AB almost surely, we
know that Zpa4 = cA and Wpy = %B almost surely, for some non-zero constant c. Therefore ZEA_ — A

_ (> o R, U1>2
dimin 012R'i2
_ R} (100)
R% + 62 Z?:Q Rl2
< R
o 62 Zi:2 R7,2
10

~ €2n

almost surely. Therefore, we get

with probability at least 0.99. For the last inequality, we used tail bounds for normal random variable and chi-
squared random variable (Lemma 21), and a union bound, which give R <9 and >\ , R? > n—1—8y/n > 0.9n
(assume n > 10000) with probability at least 0.99. From Equations 98, 99 and 100, we get

2
|1ZpaWra =Y < 1ZepWep — Y7 (1 * n)

and

‘< ZraA Zap >‘< 4
1Zrally” 1 Zaplly /|~ ev/n

with probability at least 0.99 (assuming n > 10000). O

E PROOF IDEA OF Baldi et al. (2018)

Baldi et al. (2018, Theorem 8) show convergence of feedback alignment (FA) for training two layer linear neural
networks. Here, we discuss the main idea behind their proof. We describe the idea for the problem of matrix
factorization. Recall that the FA update is given by

iz N
— = -1

aw .
=2 =Y)

(101)
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. 2
We want to show that H(Y - Y)CTHF converges to 0 with time.

Let
V= % (ewTwcT —cyTz - z"ycT)
Observe that
% =—Cy -y -v)cT
which implies
i =l ner <o

. 2

Therefore, Tr(V) is monotonically non-increasing with its rate of decrease given by H Y — Y)CTHF.

Now, since CWTWCT is PSD, Tr(CWTWCT) > 0. Also, Tr(CYTZ) = Tr(ZTYCT). This gives
Tr(V) > -Tr (CY"Z)

Baldi et al. (2018) show that Z remains bounded throughout the dynamics. Therefore, Tr(V') is bounded from
below.

. 2
Since T'r(V') is monotonically non-increasing with rate of decrease given by H (Y —Y)CoT H , and it is also bounded
F

. 2
from below, [|(Y — Y)CTHF can not be too large for too long. Baldi et al. (2018) use this observation to show

. 2
that H(Y - Y)C’THF converges to 0.

Note that this proof of convergence for FA is very different from our proof of convergence for FA*. This proof
doesn’t say much about the dynamics of alignment. In contrast, our proof crucially relies on the phenomenon of
alignment and sheds light on how it facilitates convergence.

F SIMULATION DETAILS AND ADDITIONAL PLOTS

Figure 2. We generate Y as USVT where U and V are an n x k and m x k independent random matrices
respectively with orthonormal columns, and ¥ is a k x k diagonal matrix. For GD and FA, Z and W are initialized
as n x r and r X m random matrices respectively where each entry is drawn i.i.d. from a normal distribution
with mean 0 and standard deviation 0.001. We use the same initial Z and W for FA and GD. For FA*, we use
the same initial Z as FA and GD but W is initialized to (Z72)"'Z7Y. C is a random r X m matrix with i.i.d.
entries drawn from a normal distribution with mean 0 and standard deviation 1. We use the same C for FA,
GD and FAx. We use a learning rate of 1 for GD and 0.1 for FA and FA*.

For Figure 2a, n = m = 500 and » = k = 50. The diagonal entries of ¥ are set to 1/+/50. For Figure 2b,
n=m =k = 500 and r = 50. The first 50 diagonal entries of ¥ are set to 1/4/2 % 50 and the next 450 diagonal
entries are set to 1/v/2 % 450. The diagonal entries for 2b are set in accordance with Theorem 3.

Figure 3a. y is a random 100 dimensional unit vector. Z is initialized as a 100 x 50 random matrix with
entries drawn i.i.d. from a normal distribution with mean 0 and standard deviation 0.001. w is initialized as
(ZT7Z)=1ZTy. cis set to —w(0). We use a learning rate of 0.1.

Figure 3b. We generate Y as ABT/ HABTHF where A and B are 100 x 99 matrices with with entries drawn
ii.d. from a normal distribution with mean 0 and unit standard deviation. Z is initialized as a 100 x 99 random
matrix with orthonormal columns (such that Z7Z = I), and W is initialized as (Z72)~'Z7Y. C is a random
99 x 100 matrix with i.i.d. entries drawn from a normal distribution with mean 0 and standard deviation 1. We
use a learnin% rate of 0.1. We note that the non-monotonic loss progression is not due to any learning rate issue.

d ||[(v-y)cT
w does switch from being negative to positive and back many times in the dynamics.
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Figure 4 This corresponds to the same setting as Figure 3b. We draw x from uniform distribution over the
unit sphere.

Figure 5 This corresponds to the same setting as Figure 3b. We use the same Z(0), W(0),Y and C for FA
and FA*. For FA and FA*, we use a learnig rate of 0.1. For FA with larger learning rate for W, we use a learning
rate of 0.5 for W update and 0.1 for Z update.

100 — FA 0.010 — FA
w20 e 0.008
— =
O 60 O
= & 0.006
L 40 N
= =0.004
20
k 0.002
0
0 500 1000 1500 300 500 1000 1500
No. of steps No. of steps

(a) (b)

Figure 6: (a) FA loss dynamics with the same Y,C and Z(0) as in Figure 5 but with a randomly initialized .
As expected, FA loss progression in this case looks very different from the loss progression for FA* and for FA
with optimally initialized W, as shown in Figure 5. (b) Zoomed in version of Figure 6a starting from step 300
showing non-monotonic loss progression.

Figure 6 Similar to Figure 5, this corresponds to the same setting as Figure 3b, except that W is initialized
to a random 99 x 100 matrix with i.i.d. entries drawn from a normal distribution with mean 0 and standard
deviation 0.001.

As expected, the loss progression for FA with randomly initialized W is very different from FA* and from FA
with optimally initialized W (shown in Figure 5). The initial loss is much higher in this case compared to Figure
5 as we do not initialize W optimally here.



