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ABSTRACT

A pandemic of respiratory illnesses from a novel coronavirus
known as Sars-CoV-2 has swept across the globe since December
of 2019. This is calling upon the research community including
medical imaging to provide effective tools for use in combating this
virus. Research in biomedical imaging of viral patients is already
very active with machine learning models being created for
diagnosing Sars-CoV-2 infections in patients using CT scans and
chest x-rays. We aim to build upon this research. Here we used a
transfer-learning approach to develop models capable of
diagnosing COVID19 from chest x-ray. For this work we compiled
a dataset of 112120 negative images from the Chest X-Ray 14 and
2725 positive images from public repositories. We tested multiple
models, including logistic regression and random forest and
XGBoost with and without principal components analysis, using
five-fold cross-validation to evaluate recall, precision, and f1-score.
These models were compared to a pre-trained deep-learning model
for evaluating chest x-rays called COVID-Net. Our best model was
XGBoost with principal components with a recall, precision, and
fl-score of 0.692, 0.960, 0.804 respectively. This model greatly
outperformed COVID-Net which scored 0.987, 0.025, 0.048. This
model, with its high precision and reasonable sensitivity, would be
most useful as “rule-in” test for COVID19. Though it outperforms
some chemical assays in sensitivity, this model should be studied
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in patients who would not ordinarily receive a chest x-ray before
being used for screening.
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1 BACKGROUND

Beginning in December of 2019, a novel, Human coronavirus
emerged in Wuhan, China [4]. Though similar to the previous
SARS and MERS viruses, this virus proved to be more infectious
and quickly became a global pandemic [4]. Causing pneumonia-
like symptoms, a total of 2,552,687 deaths have been attributed to
this virus as of March 3, 2021 [4, 12]. The elderly are especially
vulnerable to this virus [8].

Routine testing for this virus usually involves a
nasopharyngeal or oropharyngeal swab [13]. The sample is then
sent to an outside facility for determination of viral load by
polymerase chain reaction (PCR) [13]. Some rapid tests exist but
are not used as prevalently [13]. This test is time consuming, taking
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several days for results to be returned. It also expends valuable
reagents and testing kits that are in limited supply. A faster, less
expensive modality for diagnosing the novel coronavirus
(COVID19) would be valuable in hospital settings when patients
are too sick to wait for answers. Rapid chemical testing for
COVIDI19 has been made available but suffers from the same
problem of consuming reagents and test kits [16]. Additionally,
rapid antigen tests have less sensitive compared to other tests [16].

Other researchers have been explored the marks left by
COVID19 on radiographic images of the patient's lungs.
COVID19 presents radiologically like an atypical or organizing
pneumonia, but also has some distinctive characteristics [12]. On
plain-film x-ray, patchy or diffuse opacities with the texture of
consolidation or ground-glass may be visible, but the unique
imaging features of COVID19 are much more apparent in a CT
scan [12]. CT scans of COVID19 infected patients show ground-
glass  opacities, crazy paving, airspace consolidation,
bronchovascular thickening, and traction bronchiectasis [12].

Given these distinctive findings, machine learning
algorithms have been developed to diagnose cases of the virus with
CT data [9]. A meta-analysis of machine learning models used for
diagnosis of COVID19 based on medical imaging found 18 papers
applying deep-learning to CT scans. These deep-learning models
performed well on their respective datasets with reported area-
under the receiver operating characteristic curve (AUROC)
between 0.7 and 1.0 [17].

However, CT scans come with their own problems.
Compared to a plain-film x-ray, CT scans use much larger amounts
of radiation, presenting higher risk to the patient. For this reason,
physicians use them sparingly. A diagnostic algorithm for
COVID19 infection using a plain-film chest x-ray as its input
would greatly economize the patient's radiation exposure. The
same meta-analysis found 22 papers using deep-learning to analyze
plain-film chest x-rays [16]. These models also exhibited good
performance on their datasets with accuracies ranging from 0.88 to
0.99 [17].

Our goal is to improve upon the existing technology for
deep-learning diagnosis of COVIDI19 using chest x-rays by
including larger number of images in the training set and
incorporating a transfer learning approach. We will use a pre-
trained CheXNet model to extract imaging features from chest x-
rays for use in a downstream. This approach was used by this
research group previously for predicting the etiology of acute
shortness of breath in an ER setting [15].

J. Stubblefield et al.

Figure 1: COVIDI19 appearance on chest x-ray. Image shows
patchy bilateral opacities with diffuse ground glass appearance.
Image credit: Dr. Subhan Igbal (Radiopaedia Contributor)
https://radiopaedia.org/cases/covid-19-pneumonia-101?lang=us

Figure 2: COVID19 appearance on CT scan. Image shows patchy

peripheral ground glass. Image Credit: Dr Elshan Abdullayev
(Radiopaedia Contributor) https://radiopaedia.org/cases/covid-19-
pneumonia-45?lang=us

Summary of this work. For this project, we used a transfer-learning
approach to develop a model capable of diagnosing COVID19 from
chest x-ray. For this project we compiled a dataset of 112120
negative images from the Chest X-Ray 14 and 2725 positive images
from public repositories [5, 6, 7, 10, 14, 18. 19, 20]. Features were
extracted from the images using a CheXNet trained on Chest X-
Ray 14 [1, 5]. The output layer and penultimate layer were used,
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giving a total of 1038 raw features. The feature data was split into
five folds for cross-validation. Multiple downstream models,
including logistic regression and random forest and XGBoost with
and without principal components analysis, were tested using
cross-validation to evaluate recall, precision, and fl-score [2, 23].
These models were compared to a pre-trained deep-learning model
for evaluating chest x-rays called COVID-Net [3]. Our best model
was XGBoost with principal components with a recall, precision,
and fl-score of 0.692, 0.960, 0.804 respectively [2]. This model
greatly outperformed COVID-Net which scored 0.987, 0.025,
0.048 [3]. This drastic improvement in performance is most likely
due to the expanded dataset used in the training of our model
compared to the dataset used to train COVID-Net [3]. This model,
with its high precision and reasonable sensitivity, would be most
useful as “rule-in” test for COVID19. Though it outperforms some
chemical assays in sensitivity, this model should be studied in
patients who would not ordinarily receive a chest x-ray before
being used for screening [16].

2 METHODS

2.1 Comparison Model

For the purposes of comparison, we chose the COVIDNet-CXR4-
A release of COVIDNet [3]. The model reports an accuracy of
0.943 and sensitivity of 0.950 on its own dataset [3]. For an
accurate comparison, this model will be re-evaluated on the test-
folds used to evaluate the rest of the models.

2.2 Dataset

For this project, we created a simpler model for predicting the
presence or absence of COVIDI19 in patients with symptoms of
pneumonia. To this end, we used a dataset containing a mixture of
positive and negative chest x-rays. Conveniently, the Chest X-Ray
14 dataset was published prior to the outbreak of COVID19, and all
images contained within are negative by default [5]. We obtained
positively labeled cases of COVID19 by using the public
repositories referenced in the COVIDNet Github [6, 7, 10, 14].
Additional positive cases were obtained from the cancer imaging
archive [18, 19, 20]. The dataset was split into 5 folds for cross-
validation. In total, there were 112,120 negative images and 2,725
positive images.

2.3 Features and Principal Components

We used a transfer learning approach with the previously trained
CheXNet model [1]. CheXNet was trained on the Chest X-Ray 14
dataset to predict the presence or absence of 14 different medical
anomalies including atelectasis, cardiomegaly, effusion,
infiltration, mass, nodule, pneumonia, pneumothorax,
consolidation, edema, emphysema, fibrosis, pleural thickening, and
hernia [1, 5]. We will use the outputs of CheXNet as a feature layer
describing each image. Additionally, we will expand this dataset
with an additional 1024 features from the layer immediately before
the final classification layer. Though this expanded set of features
will provide a richer dataset with which to work, it will also add a

great deal to the computational complexity. It is unlikely that all
obtained features will contribute to the ability of the model to
discriminate between COVID19 infection and other chest x-rays.
To reduce the expanded set of features to a more manageable size,
we used principal component analysis to reduce the total number of
features with automatic choice of dimensionality using Minka’s
MLE [22].

2.4 Data Augmentation

The dataset was markedly imbalanced by class with a large number
of negative images compared to positive. Imbalanced datasets
present a problem for machine learning algorithms and tend to skew
the trained model toward predicting the overrepresented class more
often. To overcome this issue, we used a method similar SMOTE
[21]. New positive cases were generated from existing positive
cases by randomly selecting 2-4 positive cases and calculating the
centroid of each of the extracted features for the group.

2.5 Logistic Regression and Trees

To analyze the features from CheXNet, we used a variety of
models, including logistic regression, random forest, XGBoost, and
a neural network. We performed this analysis using python and the
scikit-learn and XGBoost packages for python [2, 23]. CheXNet
features were obtained from all images and saved prior to training.
The random forest and XGBoost were evaluated on both the raw
CheXNet features and on the principal components derived from
the CheXNet features. All models were evaluated using recall,
precision, and fl-score.

3 RESULTS

We conducted the evaluation of the models, including COVID-Net,
Logistic Regression, Random Forest, XGBoost, Random Forest
with Principal Components, and XGBoost with Principal
Components. We used the 5-fold cross validation. We reported a
summary of the testing results in Table 1, with the Recall, Precision
and F1_Score for each model on the same testing dataset.

Table 1: The average model performance on 5-fold cross-
validation.

Model Recall Precision F1_Score
COVID-Net 0.987  0.025 0.048
Logistic Regression ~ 0.575  0.065 0.117
Random Forest 0.590 0.797 0.687
XGBoost 0.708  0.890 0.788
RandomForest 0.505  0.865 0.637
w/Principal

Components

XGBoost 0.692  0.960 0.804
w/Principal

Components

From the Table 1 testing results, we can draw some conclusions of
the performance of the models. XGBoost had better performance
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than random forest. This is likely due to this method of using
gradients and loss calculations to expand the decision forest,
enabling greater flexibility and a closer fit with increased risk of
overfitting. It is interesting to note that principal component
analysis improved the performance of XGBoost while hindering
the performance of random forest. It is also interesting that
principal component analysis improved precision while decreasing
sensitivity in both cases. The aggregate tree methods proved to be
superior on this problem to logistic regression, likely owing to the
greater flexibility of these non-parametric models.

Compared to COVIDNet, all attempted models performed better.
COVIDNet tended to have a high sensitivity but committed several
errors predicting COVID19 infection in images that were negative,
as shown by its precision and fl-score. Given our dataset, all of
these false-positives took place on the Chest X-Ray 14 dataset,
which was not in the training set for COVIDNet. From this, we can
conclude that the larger dataset for these models was a major source
of performance improvement.

It is likely that XGBoost with principal component
analysis could be used as a diagnostic test by physicians. This test
has high precision compared to sensitivity, so it would be most
useful as a “rule-in” test to confirm the presence of COVIDI19
infection in the lungs if it is already suspected, but the test still has
a relatively high sensitivity. When comparing our model’s
performance on this dataset to the characterizations of molecular
tests by Bisoffi et al, our model outperforms the tested serologic
and ELISA tests in sensitivity as well as two of the RT-PCR tests
[16]. However, all patients in this dataset received chest x-rays,
indicating the presence of symptoms that prompted physicians to
obtain chest x-rays. A new clinical trial examining the performance
of this model compared to a gold-standard RT-PCR on patients who
would not ordinarily receive a chest x-ray would be needed before
the model could be confidently used to screen asymptomatic
patients for COVID19.

4 DISCUSSIONS OF FALSE POSITIVE
IMAGES

This section we provide some discussions with our analysis of the
false positive images. This may shed some lights on further
research to figure out what features does the models learn from
COVID-19 chest x-ray images.

CheXNet Dataset Analysis. Only 592 COVID-19 false positive
images (total 112120 images) were found when inferenced by
COVID-Net. This proved that the model must learned some distinct
features in COVID-19 images that can clearly separate COVID-19
images from the rest of the lung diseases. Figure 3 showed that the
percentage of each disease labels of false positive images.

By going through the false positive images from different
disease categories, we found that the image with no useful
information can also give a high COVID-19 score (Figure 4). This
showed that the model may learn some noise that are unique in
COVID-19 images. This can be a potential reason for its good
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performance in distinguishing between normal and COVID-19
images.

Therefore, we also tried to inference some images that are
modified artificially to check features that model learned.

COVID-19 False Positive Categories
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Figure 3: The percentage of each of the 14 disease labels among
false positive images.

Normal: 0 Pneumonia: 0 COVID-19: 0.999

Figure 4: This image with no useful information can also give a
high COVID-19 score.

Artificially modified images. We chose an image that is in normal
category and made some modifications. Please refer to Figure 5.
By changing the original image into mosaic style (third image) or
designing an image from random white and black pixels (fourth
image) can give a high COVID-19 score. This showed that the
model may have learned that discontinuity between black and white
pixels is associated with COVID-19. Increasing intensity to the
original images (second image) did not give a big change in scores.

Smoothing the image. We also tried to make some modifications to
COVID-19 false positive image to reverse it back to normal. Please
refer to Figure 6. The image on the lower left is COVID-19 false
positive and we added filters to smooth the images. The COVID-
19 scores were dropped. This indicated that discontinuity between
black and white pixels can be one of the potential features that the
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model learned to distinguish between Normal and COVID-19
images.

Image: 00026930_000.png Normal: 1 Pneumonia: 0 COVID-19: 0

~
~.:.”

Image: Increasing_intensity_all.png Normal: 0.972 Pneumonia: 0.014 COVID-19: 0.013

Image: Mosaic.png Normal: 0 Pneumonia: 0 COVID-19: 1

Image: random_whi png Normal: 0 ia: 0 COVID-19: 1

Figure 5: Artificially modified images. We chose an image that is
in normal category and made some modifications. By changing the
original image (first image) into mosaic style (third image) or
designing an image from random white and black pixels (fourth
image) can give a high COVID-19 score. Increasing intensity to the
original images (second image) did not give a big change in scores.

Image: GaussianBlur_fp.png Normal: 0.535 Pneumonia: 0.032 COVID-19: 0.432

Image: covid19_fp.png Normal: 0.001 Pneumonia: 0 COVID-19: 0.999

Figure 6: Smoothing the images. The image (bottom image) is
COVID-19 false positive and we added filters to smooth the image
(top image). The COVID-19 scores were dropped.

5 FUTURE WORK

The currently used tests for Sars-CoV-2 infection rely on chemical
methods using swabs of the airway and may require sending the
samples to laboratory. A computer-aided diagnostic test based on
chest x-rays would not have this problem, and results could be
expected quickly. Furthermore, success in distinguishing Sars-
CoV-2 infection from other forms of pneumonia would also be an
important step differentiating between bacterial and viral
pneumonias. This critical distinction could help clinicians decide
if antibiotic therapy is appropriate in their patients and improve
antibiotic stewardship.

In the future, we will explore adding clinical information
to the imaging information to improve model performance. To
accomplish this, we are partnering with a local residency program
to acquire COVID19 cases with imaging and clinical information
from an established hospital system. After collecting data, we will
develop a model that takes advantage of both imaging and clinical
data for COVID19 diagnosis.

Additionally, this group participated this year the
COVID19 EHR Dream Challenge competition [24].  This
competition has proposed multiple research questions of clinical
import and challenged teams from around the world to build
machine learning models capable of solving them from data that
could be found in a patient’s electronic health record [24]. This
competition has spurred research into the diagnosis of COVID19
as well as the estimation of patient outcomes. Analysis of the
resulting models will provide further insight into which elements
of a patient’s electronic health record are important for diagnosis
and outcomes.
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