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ABSTRACT 

A pandemic of respiratory illnesses from a novel coronavirus 

known as Sars-CoV-2 has swept across the globe since December 

of 2019.  This is calling upon the research community including 

medical imaging to provide effective tools for use in combating this 

virus. Research in biomedical imaging of viral patients is already 

very active with machine learning models being created for 

diagnosing Sars-CoV-2 infections in patients using CT scans and 

chest x-rays. We aim to build upon this research. Here we used a 

transfer-learning approach to develop models capable of 

diagnosing COVID19 from chest x-ray. For this work we compiled 

a dataset of 112120 negative images from the Chest X-Ray 14 and 

2725 positive images from public repositories. We tested multiple 

models, including logistic regression and random forest and 

XGBoost with and without principal components analysis, using 

five-fold cross-validation to evaluate recall, precision, and f1-score. 

These models were compared to a pre-trained deep-learning model 

for evaluating chest x-rays called COVID-Net. Our best model was 

XGBoost with principal components with a recall, precision, and 

f1-score of 0.692, 0.960, 0.804 respectively.  This model greatly 

outperformed COVID-Net which scored 0.987, 0.025, 0.048. This 

model, with its high precision and reasonable sensitivity, would be 

most useful as “rule-in” test for COVID19. Though it outperforms 

some chemical assays in sensitivity, this model should be studied 

in patients who would not ordinarily receive a chest x-ray before 

being used for screening. 
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1 BACKGROUND 

Beginning in December of 2019, a novel, Human coronavirus 

emerged in Wuhan, China [4].  Though similar to the previous 

SARS and MERS viruses, this virus proved to be more infectious 

and quickly became a global pandemic [4].  Causing pneumonia-

like symptoms, a total of 2,552,687 deaths have been attributed to 

this virus as of March 3, 2021 [4, 12].  The elderly are especially 

vulnerable to this virus [8].   

Routine testing for this virus usually involves a 

nasopharyngeal or oropharyngeal swab [13].  The sample is then 

sent to an outside facility for determination of viral load by 

polymerase chain reaction (PCR) [13].  Some rapid tests exist but 

are not used as prevalently [13].  This test is time consuming, taking 
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several days for results to be returned. It also expends valuable 

reagents and testing kits that are in limited supply.  A faster, less 

expensive modality for diagnosing the novel coronavirus 

(COVID19) would be valuable in hospital settings when patients 

are too sick to wait for answers.  Rapid chemical testing for 

COVID19 has been made available but suffers from the same 

problem of consuming reagents and test kits [16].  Additionally, 

rapid antigen tests have less sensitive compared to other tests [16]. 

Other researchers have been explored the marks left by 

COVID19 on radiographic images of the patient's lungs.  

COVID19 presents radiologically like an atypical or organizing 

pneumonia, but also has some distinctive characteristics [12].  On 

plain-film x-ray, patchy or diffuse opacities with the texture of 

consolidation or ground-glass may be visible, but the unique 

imaging features of COVID19 are much more apparent in a CT 

scan [12].  CT scans of COVID19 infected patients show ground-

glass opacities, crazy paving, airspace consolidation, 

bronchovascular thickening, and traction bronchiectasis [12].   

Given these distinctive findings, machine learning 

algorithms have been developed to diagnose cases of the virus with 

CT data [9].  A meta-analysis of machine learning models used for 

diagnosis of COVID19 based on medical imaging found 18 papers 

applying deep-learning to CT scans.  These deep-learning models 

performed well on their respective datasets with reported area-

under the receiver operating characteristic curve (AUROC) 

between 0.7 and 1.0 [17]. 

However, CT scans come with their own problems.  

Compared to a plain-film x-ray, CT scans use much larger amounts 

of radiation, presenting higher risk to the patient.  For this reason, 

physicians use them sparingly.  A diagnostic algorithm for 

COVID19 infection using a plain-film chest x-ray as its input 

would greatly economize the patient's radiation exposure.  The 

same meta-analysis found 22 papers using deep-learning to analyze 

plain-film chest x-rays [16].  These models also exhibited good 

performance on their datasets with accuracies ranging from 0.88 to 

0.99 [17]. 

Our goal is to improve upon the existing technology for 

deep-learning diagnosis of COVID19 using chest x-rays by 

including larger number of images in the training set and 

incorporating a transfer learning approach.  We will use a pre-

trained CheXNet model to extract imaging features from chest x-

rays for use in a downstream.  This approach was used by this 

research group previously for predicting the etiology of acute 

shortness of breath in an ER setting [15]. 

 

 

 
Figure 1:  COVID19 appearance on chest x-ray.   Image shows 

patchy bilateral opacities with diffuse ground glass appearance.  

Image credit:  Dr. Subhan Iqbal (Radiopaedia Contributor) 

https://radiopaedia.org/cases/covid-19-pneumonia-101?lang=us 

 

 

 
Figure 2:  COVID19 appearance on CT scan.  Image shows patchy 

peripheral ground glass.   Image Credit:  Dr Elshan Abdullayev 

(Radiopaedia Contributor) https://radiopaedia.org/cases/covid-19-

pneumonia-45?lang=us 

 

 

Summary of this work. For this project, we used a transfer-learning 

approach to develop a model capable of diagnosing COVID19 from 

chest x-ray.  For this project we compiled a dataset of 112120 

negative images from the Chest X-Ray 14 and 2725 positive images 

from public repositories [5, 6, 7, 10, 14, 18. 19, 20].  Features were 

extracted from the images using a CheXNet trained on Chest X-

Ray 14 [1, 5].  The output layer and penultimate layer were used, 
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giving a total of 1038 raw features.  The feature data was split into 

five folds for cross-validation.  Multiple downstream models, 

including logistic regression and random forest and XGBoost with 

and without principal components analysis, were tested using 

cross-validation to evaluate recall, precision, and f1-score [2, 23].  

These models were compared to a pre-trained deep-learning model 

for evaluating chest x-rays called COVID-Net [3].  Our best model 

was XGBoost with principal components with a recall, precision, 

and f1-score of 0.692, 0.960, 0.804 respectively [2].  This model 

greatly outperformed COVID-Net which scored 0.987, 0.025, 

0.048 [3].  This drastic improvement in performance is most likely 

due to the expanded dataset used in the training of our model 

compared to the dataset used to train COVID-Net [3].  This model, 

with its high precision and reasonable sensitivity, would be most 

useful as “rule-in” test for COVID19.  Though it outperforms some 

chemical assays in sensitivity, this model should be studied in 

patients who would not ordinarily receive a chest x-ray before 

being used for screening [16]. 

2 METHODS 

2.1 Comparison Model 

For the purposes of comparison, we chose the COVIDNet-CXR4-

A release of COVIDNet [3].  The model reports an accuracy of 

0.943 and sensitivity of 0.950 on its own dataset [3].  For an 

accurate comparison, this model will be re-evaluated on the test-

folds used to evaluate the rest of the models. 

2.2 Dataset 

For this project, we created a simpler model for predicting the 

presence or absence of COVID19 in patients with symptoms of 

pneumonia.  To this end, we used a dataset containing a mixture of 

positive and negative chest x-rays.  Conveniently, the Chest X-Ray 

14 dataset was published prior to the outbreak of COVID19, and all 

images contained within are negative by default [5].  We obtained 

positively labeled cases of COVID19 by using the public 

repositories referenced in the COVIDNet Github [6, 7, 10, 14].  

Additional positive cases were obtained from the cancer imaging 

archive [18, 19, 20].  The dataset was split into 5 folds for cross-

validation.  In total, there were 112,120 negative images and 2,725 

positive images.   

2.3 Features and Principal Components 

We used a transfer learning approach with the previously trained 

CheXNet model [1].  CheXNet was trained on the Chest X-Ray 14 

dataset to predict the presence or absence of 14 different medical 

anomalies including atelectasis, cardiomegaly, effusion, 

infiltration, mass, nodule, pneumonia, pneumothorax, 

consolidation, edema, emphysema, fibrosis, pleural thickening, and 

hernia [1, 5].  We will use the outputs of CheXNet as a feature layer 

describing each image.  Additionally, we will expand this dataset 

with an additional 1024 features from the layer immediately before 

the final classification layer.  Though this expanded set of features 

will provide a richer dataset with which to work, it will also add a 

great deal to the computational complexity.  It is unlikely that all 

obtained features will contribute to the ability of the model to 

discriminate between COVID19 infection and other chest x-rays.  

To reduce the expanded set of features to a more manageable size, 

we used principal component analysis to reduce the total number of 

features with automatic choice of dimensionality using Minka’s 

MLE [22].   

2.4 Data Augmentation 

The dataset was markedly imbalanced by class with a large number 

of negative images compared to positive.  Imbalanced datasets 

present a problem for machine learning algorithms and tend to skew 

the trained model toward predicting the overrepresented class more 

often.  To overcome this issue, we used a method similar SMOTE 

[21].  New positive cases were generated from existing positive 

cases by randomly selecting 2-4 positive cases and calculating the 

centroid of each of the extracted features for the group.   

2.5 Logistic Regression and Trees 

To analyze the features from CheXNet, we used a variety of 

models, including logistic regression, random forest, XGBoost, and 

a neural network. We performed this analysis using python and the 

scikit-learn and XGBoost packages for python [2, 23].  CheXNet 

features were obtained from all images and saved prior to training.  

The random forest and XGBoost were evaluated on both the raw 

CheXNet features and on the principal components derived from 

the CheXNet features.  All models were evaluated using recall, 

precision, and f1-score.   

3 RESULTS 

We conducted the evaluation of the models, including COVID-Net, 

Logistic Regression, Random Forest, XGBoost, Random Forest 

with Principal Components, and XGBoost with Principal 

Components. We used the 5-fold cross validation. We reported a 

summary of the testing results in Table 1, with the Recall, Precision 

and F1_Score for each model on the same testing dataset. 

 

   

Table 1:  The average model performance on 5-fold cross-

validation. 

Model Recall Precision F1_Score 

COVID-Net 0.987 0.025 0.048 

Logistic Regression 0.575 0.065 0.117 

Random Forest 0.590 0.797 0.687 

XGBoost 0.708 0.890 0.788 

RandomForest 

w/Principal 

Components 

0.505 0.865 0.637 

XGBoost 

w/Principal 

Components 

 

0.692 0.960 0.804 

From the Table 1 testing results, we can draw some conclusions of 

the performance of the models.  XGBoost had better performance 
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than random forest.  This is likely due to this method of using 

gradients and loss calculations to expand the decision forest, 

enabling greater flexibility and a closer fit with increased risk of 

overfitting.  It is interesting to note that principal component 

analysis improved the performance of XGBoost while hindering 

the performance of random forest.  It is also interesting that 

principal component analysis improved precision while decreasing 

sensitivity in both cases.  The aggregate tree methods proved to be 

superior on this problem to logistic regression, likely owing to the 

greater flexibility of these non-parametric models. 

Compared to COVIDNet, all attempted models performed better.  

COVIDNet tended to have a high sensitivity but committed several 

errors predicting COVID19 infection in images that were negative, 

as shown by its precision and f1-score.  Given our dataset, all of 

these false-positives took place on the Chest X-Ray 14 dataset, 

which was not in the training set for COVIDNet.  From this, we can 

conclude that the larger dataset for these models was a major source 

of performance improvement. 

It is likely that XGBoost with principal component 

analysis could be used as a diagnostic test by physicians.  This test 

has high precision compared to sensitivity, so it would be most 

useful as a “rule-in” test to confirm the presence of COVID19 

infection in the lungs if it is already suspected, but the test still has 

a relatively high sensitivity.  When comparing our model’s 

performance on this dataset to the characterizations of molecular 

tests by Bisoffi et al, our model outperforms the tested serologic 

and ELISA tests in sensitivity as well as two of the RT-PCR tests 

[16].  However, all patients in this dataset received chest x-rays, 

indicating the presence of symptoms that prompted physicians to 

obtain chest x-rays.  A new clinical trial examining the performance 

of this model compared to a gold-standard RT-PCR on patients who 

would not ordinarily receive a chest x-ray would be needed before 

the model could be confidently used to screen asymptomatic 

patients for COVID19. 

4 DISCUSSIONS OF FALSE POSITIVE 

IMAGES 

This section we provide some discussions with our analysis of the 

false positive images. This may shed some lights on further 

research to figure out what features does the models learn from 

COVID-19 chest x-ray images.   

 

CheXNet Dataset Analysis. Only 592 COVID-19 false positive 

images (total 112120 images) were found when inferenced by 

COVID-Net. This proved that the model must learned some distinct 

features in COVID-19 images that can clearly separate COVID-19 

images from the rest of the lung diseases. Figure 3 showed that the 

percentage of each disease labels of false positive images.  

By going through the false positive images from different 

disease categories, we found that the image with no useful 

information can also give a high COVID-19 score (Figure 4). This 

showed that the model may learn some noise that are unique in 

COVID-19 images. This can be a potential reason for its good 

performance in distinguishing between normal and COVID-19 

images.  

Therefore, we also tried to inference some images that are 

modified artificially to check features that model learned. 

 

 
Figure 3:  The percentage of each of the 14 disease labels among 

false positive images.    

 

 
 

Figure 4:  This image with no useful information can also give a 

high COVID-19 score. 

 

 

Artificially modified images. We chose an image that is in normal 

category and made some modifications. Please refer to Figure 5. 

By changing the original image into mosaic style (third image) or 

designing an image from random white and black pixels (fourth 

image) can give a high COVID-19 score. This showed that the 

model may have learned that discontinuity between black and white 

pixels is associated with COVID-19. Increasing intensity to the 

original images (second image) did not give a big change in scores.  

 

Smoothing the image. We also tried to make some modifications to 

COVID-19 false positive image to reverse it back to normal. Please 

refer to Figure 6. The image on the lower left is COVID-19 false 

positive and we added filters to smooth the images. The COVID-

19 scores were dropped. This indicated that discontinuity between 

black and white pixels can be one of the potential features that the 
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model learned to distinguish between Normal and COVID-19 

images. 

 

 
 

Figure 5:  Artificially modified images. We chose an image that is 

in normal category and made some modifications. By changing the 

original image (first image) into mosaic style (third image) or 

designing an image from random white and black pixels (fourth 

image) can give a high COVID-19 score. Increasing intensity to the 

original images (second image) did not give a big change in scores. 

 

 
 

 Figure 6:  Smoothing the images. The image (bottom image) is 

COVID-19 false positive and we added filters to smooth the image 

(top image). The COVID-19 scores were dropped. 

5 FUTURE WORK 

The currently used tests for Sars-CoV-2 infection rely on chemical 

methods using swabs of the airway and may require sending the 

samples to laboratory.  A computer-aided diagnostic test based on 

chest x-rays would not have this problem, and results could be 

expected quickly. Furthermore, success in distinguishing Sars-

CoV-2 infection from other forms of pneumonia would also be an 

important step differentiating between bacterial and viral 

pneumonias.  This critical distinction could help clinicians decide 

if antibiotic therapy is appropriate in their patients and improve 

antibiotic stewardship. 

In the future, we will explore adding clinical information 

to the imaging information to improve model performance.  To 

accomplish this, we are partnering with a local residency program 

to acquire COVID19 cases with imaging and clinical information 

from an established hospital system.  After collecting data, we will 

develop a model that takes advantage of both imaging and clinical 

data for COVID19 diagnosis.   

Additionally, this group participated this year the 

COVID19 EHR Dream Challenge competition [24].  This 

competition has proposed multiple research questions of clinical 

import and challenged teams from around the world to build 

machine learning models capable of solving them from data that 

could be found in a patient’s electronic health record [24].  This 

competition has spurred research into the diagnosis of COVID19 

as well as the estimation of patient outcomes.  Analysis of the 

resulting models will provide further insight into which elements 

of a patient’s electronic health record are important for diagnosis 

and outcomes.   
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