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Abstract.

Alzheimer’s Disease (AD) is a degenerative brain disease and is the most common cause of dementia.
Despite being a common disease, AD is poorly understood. Current medical treatments for AD are
aimed at slowing the progression of the disease. So early detection of AD is important to intervene at an
early stage of the disease. In recent years, by using machine learning predictive algorithms, assisted
clinic diagnosis has received great attention due to its success of machine learning advances in the
domains of computer vision. In this study, we have combined brain MRI imaging features and the
features of other datatypes, and adopted various models, including XGBoost, logistic regression, and k-
Nearest Neighbors, to improve AD diagnosis. We evaluated the models on the benchmark dataset of
Alzheimer’s Disease Neuroimaging Initiative. Experiment results show that the logistic regression model
is the top performer in terms of evaluation metrics of precision, recall, and F1-score. The prediction of
the models could provide valuable information for diagnosis and prognosis of patients with suspected
Alzheimer’s disease. The XGBoost model achieves a comparable performance and has the potential to
serve as a valuable diagnostic tool for patients with suspected AD with its self-validation by re-
discovering previously known associations with AD.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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1. Background

Alzheimer’s disease (AD) is a degenerative brain disease and is the number one cause of dementia
[@WolKk]. It is estimated that 60% - 80% of dementia cases are due to AD or have shown Alzheimer’s
disease brain changes with one or more other causes of dementia, such as Cerebrovascular disease or
Lewy body disease [@ADFact&Figure]. AD typically manifests with impairment in memory, judgement,
executive function, cognitive decline, and behavioral and psychological changes [@Wolk]. Despite being
a common disease, AD is poorly understood [@Wolk]. The cause and pathogenesis of AD remain open
areas of research [@Wolk]. As of yet, there is no cure for AD [@Wolk]. Current medical treatments for
AD are aimed at slowing the progression of the disease [@Wolk].

1.1 Current Diagnostics

The only definitive diagnosis for AD is a brain biopsy with a histopathological examination, which is
usually only done during an autopsy [@Wolk]. This makes the diagnosis of AD very challenging. In
practice, AD is usually diagnoses by a physician’s clinical assessment of the patient [@Wolk].
Neuroimaging, such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET),
can be used to search for alternative diagnoses or document the progression of the disease [@Wolk].
Biomarkers for AD have been studied and can support a diagnosis of AD but are not currently
recommended as diagnostic tests [@WolKk].

In recent years, data-driven approaches have received great attention due to the advancement of big
data, computational power, and machine learning algorithms. Because the AD resulted brain changes is
a slowly developing progress and could begin years before symptoms emerge [@ADFact&Figure], early
detection of AD has a great potential to provide early intervention, slow disease progression, and reduce
the care cost.

1.2 Related Work

Machine learning algorithms have been applied in the medical field to assist diagnosis for a lot of
diseases, such as heart disease, Parkinson's disease, and Coronavirus disease. A great amount of
research has been performed on using machine learning algorithms to assist AD diagnosis, which trains a
classification model to predict if a patient will have AD, develop mild cognitive impairment (MRI), or
remain normal (represented as normal control, NC). The studied machine learning algorithms can be
categorized as classical machine learning models and deep learning models. The classical machine
learning models mainly include logistic regression, support vector machine (SVM), and tree-based
models. The deep learning models are different architectures of neural networks.

Antor et. al. performed a comparative analysis of logistic regression, decision tree, random forest, and
SVM models to predict AD. They also evaluated the models with fine-tuning to those without fine-tune.
Their experiment results showed that the SVM best performed in detecting dementia in terms of
accuracy, recall, precision, AUC, and F1 score. They claimed a more complex model such as random
forest classifier suffered from overfitting.

Grueso and Viejo-Sobera [@ML systematic review] conducted a comprehensive review and qualitative
analysis over 116 studies selected from 452 publications that used machine learning to predict
progression of AD. It was found that the SVM was the most commonly used a classifier with a mean
accuracy of 75.4%. The SVM algorithm uses a kernel function to map the feature space to a higher
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dimension and usually a polynomial or Gaussion function was used [@Automated]. Ensembling models
of SVM and other methods have also been proposed to optimize the feature selection and to improve
the generalization of models [@Thung].

Deep learning techniques have also gained great attentions in recent years due to its success in the
domains of computer vision and natural language processing. Saleem [@DeeplLearning] et. al. have
reviewed a number of studies for AD diagnosis based on the major deep learning models, including
feed-forward deep neural networks (DNN), convolutional neural networks (CNN), auto-encoder (AE),
recurrent neural networks (RNN), deep belief network (DBN), generative adversarial networks (RNN),
and hybrid models. The authors observed deep learning techniques in general outperform classical
machine learning techniques, with accuracies ranging from 53.17% to 99.95% for classifications of
NC/AD, NC/AD, MCI/AD or NC/MCI/AD. However, most deep learning models lack explainability and as a
result lead to criticisms for being adopted into clinical practice. Paper [@Explainability] discussed the
role of explainable Al from the perspectives of technology, medicine, legislation, ethics, and societies.
They argued that emitting explainability in clinical decision system would jeopardize the core ethic value
of medicine and public health.

1.3 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

To combat this current lack of usable diagnostic studies the ADNI study was started in 2004
[@about_adni]. This large, longitudinal, multi-center study has accumulated data on a large number of
patients with data clinical, MRl imaging, and proteomic data [@about_adni].

2. Methods

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCl) and early Alzheimer’s disease (AD).

In this paper, we present a set of models developed with data from the ADNI study for the diagnosis of
AD using proteomic and MRI imaging data.

2.1 ADNI Patients

We used the ADNI dataset for this study. We sampled 167 individuals across the ADNI 1 and ADNI 2
datasets that had both proteomic and MRI imaging data. These individuals included a mix of patients
with AD, mild-cognitive impairment, and healthy controls.

2.2 ADNI Imaging Features

We used the ADNI imaging features that had already been processed by the study using FreeSurfer.
FreeSurfer is an open-source software package used to visualize and analyze MRI images. The MRI data
of the ADNI 1 dataset was obtained using FS V4.4. FS V5.1 was used to process the ADNI 2 dataset



medRXxiv preprint doi: https://doi.org/10.1101/2022.10.30.22281735; this version posted November 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

[@adni_methods]. The results contained 70 cortical thickness measurements and 42 cortical volume
measurements [@adni_methods].

2.3 ADNI Proteomic Features

The ADNI proteomic features consist of protein levels from samples of the patients’ cerebrospinal fluid.
These samples were processed by Rules-Based Medicine using the Luminex xMAP [@biomarkers]. The
data contained a total of 229 proteomic measurements.

2.4 Feature Normalization

All features were scaled element-wise using Scikit-Learn version 0.24.1's MinMaxScaler [@Pedregosal.

2.5 Different methods

XGBoost Method. We used XGBoost as our classification model during this project [@Chen]. We
recorded results for each pairwise binary classification problem for the three classes, normal control
(NC), mild-cognitive impairment (MCI), and Alzheimer’s Disease (AD). We also recorded results for
XGBoost classifying all three classes simultaneously. We ran the model in Python using Python 3.8.8 and
the 1.3.3 version of the XGBoost package. The experiment was performed using 5-fold cross-validation
with Scikit-Learn’s stratified k-fold [@Pedregosa]. We used the 0.24.1 version of Scikit-Learn
[@Pedregosa]. XGBoost’s performance was evaluated on each datatype individually and both data
types combined. The two datatypes were combined using simple concatenation of the feature arrays.

Logistic Regression Method. Logistic regression was chosen as a comparison model to XGBoost.
Functioning as linear model predicting class probabilities, we expected it to approach the problem in
very different than XGBoost’s gradient boosted trees [@Chen]. We used Scikit-Learn version 0.24.1’s
version of logistic regression with default parameters aside from a max iteration of 500 [@Pedregosal.

K-Nearest Neighbors Method. K-Nearest neighbors (KNN) was also chosen as a comparison model. KNN
is a non-parametric model that can vary its flexibility by changing the value of K. We used Sciki-Learn
version 0.24.1’s version of KNN, evaluating it for K values 2, 5, and 15 [@Pedregosa].

Model Evaluation. Each method was evaluated using five-fold cross-validation on each binary
classification problem consisting of two paired classes (control vs Alzheimer’s, control vs mild cognitive
impairment, and mind cognitive impairment vs Alzheimer’s) as well as the 3-class classification problem.
Recall, precision, and fl1-score were calculated for each classification problem and each fold. The
averages with respect to each class were reported.

SHAP Feature Importance. We used the SHAP TreeExplainer utility to evaluate and graph the relative
importance of the imaging and proteomic features to the XGBoost model [@Lundberg_tree].

3. Results

Here we present the performance of the different methods with the MRl image features and proteomics
data features respectively, and the combination of the two types of data features.
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Figure 1: Recall, Precision, F1 Scores for MRI Data. These graphs show various classification metrics with respect to each class.
From top to bottom, the graphs show recall, precision, and f1-score. Metrics for the NC class are displayed in blue, MCl in green,
and AD in red. The metrics are the averages across all trials.
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Figure 2: Recall, Precision, F1 Scores for Protein Data. These graphs show various classification metrics with respect to each
class. From top to bottom, the graphs show recall, precision, and f1-score. Metrics for the NC class are displayed in blue, MCl in
green, and AD in red. These metrics are the averages across all trials.
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Recall, Precision, F1 Scores for Combined Data
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Figure 3: Recall, Precision, F1 Scores for Combined Data. These graphs show various classification metrics with respect to each
class. From top to bottom, the graphs show recall, precision, and f1-score. Metrics for the NC class are displayed in blue, MCl in
green, and AD in red. These metrics are the averages across all trials.

Figure 4: ADNI Summary Plot, Image Features. The overlapping bars show the average SHAP values of
the top image features for each class.



medRXxiv preprint doi: https://doi.org/10.1101/2022.10.30.22281735; this version posted November 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

e ) vraz moact o o st e

Figure 5: ADNI Summary Plot, Proteomic Features. The overlapping bars show the average SHAP values

of the top proteomic features for each class.
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Figure 6: ADNI Summary Plot, All Features. The overlapping bars show the average SHAP values of the
top imaging and proteomic features for each class.

Table 1: XGBoost performance on MRI Image Features Only. All scores are the average of 5-fold cross-
validation. The recall, precision, and F1-scores for the trinary test (NCvMCIVAD) use a weighted average.

Accuracy Recall Precision F1
MCIVAD 0.686894587 0.686894587 0.6580480014 0.6578067747
NCvMCI 0.788923077 0.7889230769 0.7550217483 0.7609002399
NCvAD 0.791428571 0.791428571 0.7142857143 0.7142857143
NCvMCIVvAD 0.6237076649 0.6237076649 0.6237989168 0.604847908
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Table 2: XGBoost Performance on Proteomic Features Only. All scores are the average of 5-fold cross-
validation. The recall, precision, and F1-Scores for the trinary test (NCvMCIVAD) use a weighted average.

Accuracy Recall Precision F1
MCIVAD 0.7612535613 0.7612535613 0.7602303998 0.7449376398
NCvMCI 0.8043076923 0.8043076923 0.8154784925 0.7897161275
NCvAD 0.7400000000 0.7400000000 0.7608008658 0.7339818077
NCvMCIVAD 0.6295900178 0.6295900178 0.5937355078 0.5894027955

Table 3: XGBoost Performance on MRI and Proteomic Features Combined. All scores are the average of
5-fold cross-validation. The recall, precision, and F1-Scores for the trinary test (NCvMCIVAD) use a

weighted average.

Accuracy Recall Precision F1
MCIVAD 0.8136752137 0.8136752137 0.8113215615 0.7942853606
NCvMCI 0.8043076923 0.8043076923 0.8154784925 0.7897161275
NCvAD 0.779047619 0.779047619 0.8011082251 0.7746031746
NCvMCIVAD 0.6896613191 0.6896613191 0.6984263775 0.6676843769

Table 4 shows the results improvement from combining across all experiments.

Table 4: Results Improvement. This table shows how well combining the two datatypes improves
performance. The performances are in terms of F1-Score.

Problem XGBoost XGBoost XGBoost Performance
Performance on | Performance on | Performance on | Improvement
Imaging Data Proteomic Data | Combined Data

ADNI MCIVAD 0.658 0.745 0.794 0.049

ADNI NCvMCI 0.761 0.790 0.790 0.000

ADNI NCvAD 0.714 0.734 0.775 0.041

ADNI Trinary 0.605 0.589 0.668 0.063

XGBoost displayed similar performance on both the imaging and proteomic datasets. For most
of the experiments performed, combining the two kinds of data produced a synergistic increase in
performance. The NCvAD experiment was an exception, showing no improvement when combining the
two data sets. For the other three ADNI experiments, XGBoost produces an average improvement of
0.051 in terms of f1-score for the combined data.

The logistic regression model performed best out of all models tried for this experiment. Its
performance is such that it may provide valuable information for diagnosis and prognosis of patients
with suspected Alzheimer’s disease.

With its reasonable performance and self-validation by re-discovering previously known
associations with AD, the XGBoost model has the potential to serve as a valuable diagnostic tool for
patients with suspected AD.
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4. Discussions
4.1 Performance of the different Models

XGBoost: Overall, XGBoost produced good results on the ADNI dataset, producing a weighted f1-score of
0.76 on the combined data. XGBoost produced good synergy when combining the data, leading to an
fl-score improvement of 0.05.

Logistic Regression: Logistic regression tended to outperform XGBoost in this analysis. Though they
performed equally on MRI data alone, logistic regression outperformed XGBoost on the proteomic and
combined data, yielding a final f1-score of 0.82 compared to XGBoost’s 0.76. The logistic regression also
showed more synergy between the datasets than XGBoost, improving by 0.07 when the datasets were
combined.

K-Nearest Neighbors: Multiple values of K were tried for KNN. K=5 outperformed all other values of K
on all datasets, although it still underperformed compared to XGBoost and logistic regression. The MRI
dataset was less sensitive to changes in the value of K than the proteomic or combined datasets.

4.2 SHAP Feature Importance Analysis

The feature importance learned by XGBoost and reported using the SHAP utility matches up with
expectations given current medical knowledge about AD. In MRI images, AD typically shows as non-
specific generalized and focal atrophy of the brain [@Wolk]. Hippocampal and medial temporal atrophy
are the most characteristic findings of AD but remain insufficient for diagnosis by imaging alone
[@Wolk]. SHAP analysis of our XGBoost model showed that temporal lobe cortical thickness
measurements were among the top features for the model using imaging features alone. Additionally,
at least one hippocampal volume measurement appeared among top features for the model using
imaging and proteomic features.

The importance of proteomic features shows a similar pattern. Apolipoproteins showed up frequently
among the top features in both the model using proteomic features alone and the model using imaging
and proteomic features. apolipoprotein E (APOE) and apolipoprotein €4 (APOE €4) have been previously
studied as predictors for AD [@Wolk].
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