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Abstract. The goal of this review paper is to summarize the current
state-of-the-art of a regularity theory of the 3D Navier-Stokes (NS) equa-
tions based on the concept of ‘sparseness at scale’ of the regions of intense
fluid activity that has recently lead to the first mathematical evidence
of the asymptotically critical nature of the NS regularity problem, as
well as to briefly discuss several possible avenues of arriving at stronger
and/or more classical manifestations of criticality.

1. Reducing the ‘scaling gap’ and asymptotic criticality

Recall that 3D Navier-Stokes equations (NSE) – describing a flow of 3D
incompressible, viscous Newtonian fluid – read

ut + (u · ∇)u = −∇p+ ∆u,

complemented with the incompressibility condition div u = 0. Here, a
vector-valued function u is the velocity of the fluid and a scalar-valued func-
tion p is the pressure; the viscosity is set to 1 (without loss of generality)
and the external force to zero (for simplicity). In what follows, the spatial
domain will be the whole space.

Denoting the vorticity of the fluid by ω (ω = curlu), the vorticity-velocity
formulation of the 3D NSE is then

ωt + (u · ∇)ω = (ω · ∇)u+ ∆ω;

the LHS is the transport of the vorticity by the velocity, the first term on the
RHS is the vortex-stretching term, and the second one the diffusion–these
are the three principal mechanical drivers of the system.

The NS system features a unique scaling invariance. Let λ > 0 be a
scaling parameter; it is transparent that if a pair u = u(x, t), p = p(x, t) is
a solution to the NSE, then the pair

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2 p(λx, λ2t)

is a solution to the NSE as well (corresponding to the rescaled initial con-
dition, and over the rescaled interval of time).
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Super-criticality of the NS regularity problem is manifested by the actu-
ality that all the regularity criteria–the mathematical conditions preventing
possible formation of a singularity–are at best scaling-invariant (with re-
spect to the above scaling; this is precisely the scaling level at which the
nonlinearity and the diffusion balance out), while all the corresponding a
priori bounds had been on the scaling level of the bounded kinetic energy,
u ∈ L∞(0, T ;L2), i.e., there has been a ‘scaling gap’.

An emblematic example is furnished by the classical Ladyzhenskaya-Prodi-
Serrin regularity criterion, u ∈ Lp(0, T ;Lq),
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vs. the corresponding a priori bound u ∈ Lp(0, T ;Lq),
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(for a suitable range of the parameters).

In order to escape the above scaling entrapment, one may wish to visit the
world of turbulence phenomenology and search for the source(s) of scaling
anomalies and scaling corrections therein. Considering the vorticity descrip-
tion of the flow, a frontrunner appears to be coherent vortex structures (e.g.,
vortex sheets and vortex tubes/filaments) [JWSR93, S81, SJO91, VM94],
and more broadly, spatial intermittency of the regions of intense fluid ac-
tivity. This was one of the principal motives for designing a mathematical
framework based on the ‘scale of sparseness’ of the vorticity super-level sets
as an environment amenable to mathematical analysis of the phenomenon
of spatial intermittency ([Gr13]). Several key definitions are listed below.

Let S be an open subset of R3 and µd the d-dimensional Lebesgue mea-
sure.

Definition 1.1. For a spatial point x0 and δ ∈ (0, 1), an open set S is 1D
δ-sparse around x0 at scale r if there exists a unit vector ν such that

µ1 (S ∩ (x0 − rν, x0 + rν))

2r
≤ δ .

The volumetric version is the following.

Definition 1.2. For a spatial point x0 and δ ∈ (0, 1), an open set S is 3D
δ-sparse around x0 at scale r if

µ3 (S ∩Br(x0))

µ3(Br(x0))
≤ δ .

(It is straightforward to check that for any S, 3-dimensional δ-sparseness

at scale r implies 1D (δ)
1
3 -sparseness at scale r around any spatial point x0;
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however the converse is false, i.e. local-1D sparseness is in general a weaker
condition.)

The main mathematical scheme in this approach is as follows. Local-in-
time analytic smoothing (in the spatial variables [FT89, GrKu98])–measured
in L∞–represents a very strong manifestation of the diffusion. This pro-
vides a suitable environment for the application of the harmonic measure
majorization principle (the log-convexity of the modulus of an analytic func-
tion), cf. Proposition 1.5. Shortly, if the regions of the intense vorticity are
‘sparse enough’, the associated harmonic measure will be ‘small enough’ to
prevent any possible growth of the L∞-norm (the weight associated to the
region producing the maximum will be small enough to counter any further
growth) and–consequently–any possible formation of singularities.

Figure 1 illustrates various vorticity super-level sets in the case of the
Kida-vortex initialized flow. The Kida flow features the maximal number of
symmetries on a periodic cube (in addition to periodicity, there are bilateral
symmetry, rotational symmetry and permutational symmetry of the veloc-
ity components), and was introduced as a model turbulent flow amenable to
reduced computational complexity due to the symmetries [K85, KM87]. It
was also considered as a computational laboratory for the study of possible
formation of singularities in Euler and NS flows [BP94]. Here, it is trans-
parent that the super-level sets of the positive and the negative parts of the
vorticity components are much sparser than the composite.

Henceforth, denote the positive and the negative parts of the vectorial
components of f by f±i , and compute the norm of a vector as the maximum
norm, v = (a, b, c) as |v| = max{|a|, |b|, |c|}. A family of uniformly-local
functional classes defined below is central to the theory.

Definition 1.3 ([BrFaGr18]). For a positive exponent α, and a selection of
parameters λ in (0, 1), δ in (0, 1) and c0 > 1, the class of functions Zα(λ, δ; c0)
consists of bounded, continuous functions f : R3 → R3 subjected to the
following uniformly-local condition. For x0 in R3, select the/a component
f±i such that f±i (x0) = |f(x0)| (the maximum norm at the point x0), and
require that the set

S±i (x0) :=

{
x ∈ R3 : f±i (x) > λ‖f‖∞

}
be 3D δ-sparse around x0 at scale c 1

‖f‖α∞
, for some c, 1

c0
≤ c ≤ c0. En-

force this for all x0 in R3. Here, α is the scaling parameter, c0 is the size-
parameter, and λ and δ are the (interdependent) ‘tuning parameters’.

It is instructive to compare the Zα-classes, based on the scale of sparseness
of the super-level sets, with the weak Lebesgue spaces, Lpw, based on the
rate of decay of the volume of the super-level sets (the rate of decay of the
distribution function of the function in view). Recall that f ∈ Lpw if there
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(a) +/− x-components (b) +/− y-components (c) +/− z-components

(d) vorticity magnitude

Figure 1. Various super-level sets from the Kida simulation
[Raf19]

exists cp > 0 such that

µ3

(
{x ∈ R3 : |f(x)| > γ}

)
≤ cpp
γp

for any γ > 0.

It is transparent that f ∈ Lpw implies f ∈ Z p
3
. In addition, in the geometri-

cally worst case scenario (for sparseness), the super-level set clumped into a
single ball, being in Z p

3
is consistent with being in Lpw. However, in general,

f ∈ Z p
3

gives no information on the rate of decay of the distribution function

of f .

In ([BrFaGr18]), the authors applied the Zα framework to the vorticity
formulation of the 3D NSE–this lead to the first reduction of the scaling
gap since 1960s. The following table summarizes the results and provides a
comparison with the classical pointwise-in-time setting of L∞(0, T ;Lp).

All the regularity classes in the table are scaling invariant. The a priori
bounds in the first two rows are at the scaling level of the energy class
while–in contrast–the a priori bound in the last row–near a possible singular
time–breaks away from the energy-level scaling.

Looking ahead, let us note that there is a simple geometric scenario in
which–within the Zα framework–the scaling gap closes completely and the
NS regularity problem becomes critical. Suppose that the the vorticity
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Regularity class A priori bound Energy-level class

u ∈ L∞(0, T ;L3) u ∈ L∞(0, T ;L2) u ∈ L∞(0, T ;L2)

ω ∈ L∞(0, T ;L
3
2 ) ω ∈ L∞(0, T ;L1) ω ∈ L∞(0, T ;L1)

ω(τ) ∈ Z 1
2

for a suit-

able τ < T , small size-
parameter

ω(τ) ∈ Z 2
5

on (0, T ), when-

ever ‖ω(τ)‖∞ is sufficiently
large, the size-parameter
uniform in time

ω(τ) ∈ Z 1
3

on (0, T ), the

size parameter uniform
in time

super-level sets comprise an ensemble of O(1)-long vortex filaments (not
‘tightly packed’) and assorted geometric structures at the scales smaller
than the scale signifying the diameter of the filaments. Then the a priori
bound ω ∈ L∞(0, T ;L1) ([Co90]) and Chebyshev’s inequality imply that the
solution in view is in Z 1

2
, i.e., one arrives at the criticality.

One might wonder what happens in the ‘non-filamentary’ geometric sce-
narios, e.g., in the flow initiated at the Kida-vortex. A comprehensive study
of the scale of sparseness in this–plausibly ‘Zα-unfriendly’–scenario was per-
formed in collaboration with a computational group at Aarhus University
[Raf19] revealing that–over a time interval leading to the burst of the vortic-
ity magnitude–the solution stabilized in Z 1

2
+ε (see Figure 2). This indicated

that a further progress in closing the scaling gap within the Zα framework
might be possible.

One of the follow-up avenues taken was to study the higher-order spatial
fluctuations of the velocity field featuring more pronounced spatial intermit-
tency and–consequently–harboring a chance for more pronounced deviation

from ‘the scaling’. Considering the sequence of functional classes Z
(k)
αk de-

fined by the following rule,

u ∈ Z(k)
αk

if D(k)u ∈ Zαk ,

for a suitable decreasing sequence {αk}, turned out to be the most profitable
route (this could be viewed as constructing a ‘Sobolev scale’ based on Zα).

Two central results in this setting ([GrXu19ac]) are delineated in the first
two columns of the table below (the third column is included for compari-
son). The regularity class result holds for any k∗ ≥ k∗∗(‖u0‖2, ‖u0‖∞)).
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(a) formation of the peak of the vor-
ticity magnitude in the Kida-vortex
simulation

(b) log-log plot of the scale of sparse-
ness r realized in the flow vs the the-
oretical dissipation scale d over the
time slices marked in (A)

Figure 2. Detecting the onset of turbulent dissipation in
the Kida-vortex simulation within the Zα framework [Raf19]

Regularity class A priori bound Energy-level class

u(τ) ∈
⋂
k≥k∗ Z

(k)
1
k+1

on

a suitable (T ∗ − ε, T ∗),
small size-parameters, uni-
form in time

u(τ) ∈
⋂
k≥0 Z

(k)
1

k+3
2

on a

suitable (T ∗ − ε, T ∗), the
size-parameters uniform in
time

u(τ) ∈
⋂
k≥0 Z

(k)
1

3
2 (k+1)

on (0, T ∗), the size-
parameters uniform in
time

The level-k scales of sparseness realizing the above functional classes are
as follows.

Regularity class-scale A priori bound-scale Energy-level class-scale

1
C1(k)

1

‖D(k)u‖
1
k+1
∞

C2(‖u0‖2) 1

‖D(k)u‖
1

k+3
2∞

C3(u0) 1

‖D(k)u‖
1

3
2 (k+1)
∞

As we are (at this point) primarily interested in the ‘scaling distance’
between various scales, comparing the scaling of dynamic quantities in the
table above is key. This is summarized in the table below.
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Regularity class-scale A priori bound-scale Energy-level class-scale

1

‖D(k)u‖
1
k+1
∞

≈ r 1

‖D(k)u‖
1

k+3
2∞

≈ r
k+1

k+3
2

1

‖D(k)u‖
1

3
2 (k+1)
∞

≈ r
2
3

Since

r
k+1

k+3
2 → r, k →∞

we arrive at the asymptotic criticality, closing (asymptotically) the scaling
gap in the NS regularity problem.

Remark 1.4. Asymptotic criticality demonstrated above can be interpreted
as an ‘asymptotic cascade’ near a possible singular time. Schematically, the
scale of sparseness can be thought of as a size of the largest eddy. At level-
0, the a priori upper bound on this scale is at the energy-level and abyss
away from the lower bound sufficient for the regularity (representing the
dissipation scale within this framework). As k increases, the gap between
the bounds on these two dynamic quantities (the gap between the scaling
signature of the largest eddy and the dissipation scale) decreases, vanishing
as k goes to infinity.

The main mathematical device facilitating utilization of sparseness in the
estimates is the harmonic measure maximum principle for subharmonic func-
tions (cf. [Ahl10] and [Ran]). Here is a version suitable for our purposes.

Proposition 1.5 ([Ran]). Let Ω be an open, connected set in C such that
its boundary has nonzero Hausdorff dimension, and let K be a Borel subset
of the boundary. Suppose that u is a subharmonic function on Ω satisfying

u(z) ≤M , for z ∈ Ω

lim sup
z→ζ

u(z) ≤ m , for ζ ∈ K.

Then

u(z) ≤ mh(z,Ω,K) +M(1− h(z,Ω,K)) , for z ∈ Ω.

(Here, h(z,Ω,K) denotes the harmonic measure of K with respect to Ω,
evaluated at z.)

Note that this majorization principle can be applied to the positive and
the negative parts of the vectorial components of D(k)u since any solution
originating from L∞-data is spatially analytic (with a uniform control on
the L∞-norm over the complexified domain) at least locally in time.
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The main idea in this type of a no-blow-up argument ([Gr13]) is that if
the super-level sets–cut at a fraction of the maximum–are sparse enough,
the associated harmonic measure will be small enough for the majorization
principle to produce a favorable bound. Applying this argument–locally-in-
time–near a possible singular time leads to ‘self-improving bounds’ on the
L∞-norm of the solution in view, contradicting the finite time blow-up.

Consequently–in this approach–there are two main tasks to complete.
One is deriving sharp lower bounds on the radius of spatial analyticity
measured in L∞, and the other one demonstrating a priori sparseness of
the super-level sets near a possible singular time. In the previous works
([Gr13, BrFaGr18]) these two tasks could be completed independently, the
reason being that the analyticity estimates needed could be obtained via the
existing state-of-the-art. However, in the case of the time-evolution of D(k)u
this is no longer the case as the asymmetric terms present a serious obstacle
on the road to the optimal dissipation scale/analyticity radius. This neces-
sitated developing a novel technique–utilizing the sparseness intrinsically–
based on the local-in-time dynamics of ‘chains of derivatives’,{

ci,k ‖D(i)u(t)‖
k+1
i+1
∞

}
0≤κ1≤i≤κ2≤k

where ci,k are suitable combinatorial coefficients, and κ2 − κ1 the length of
the chain. Shortly, the nonlinear effect–at high enough (with respect to the
size of the initial data) k-levels–is weakened through the interplay between
the enhanced sparseness and the local-in-time monotonicity properties of
chains of derivatives (‘ascendind’ vs. ‘descending’).

Lastly, one should remark that the argument leading to the a priori
bounds on the scale of sparseness of the super-level sets of D(k)u even-
tually boils down to the a priori boundedness of the kinetic energy (Leray
bound [Le34]) which–in turn–follows from the (only known) fundamental
cancellation enjoyed by the NS nonlinearity,∫

(u · ∇)u · u dx = 0.

Hence, the framework in hand seems to provide the first instance in the
mathematical theory of the 3D NSE in which the base energy bound is
capable of improving the bounds on ‘regularity norms’ (in this case, on

‖D(k)u‖∞).

2. Toward criticality

At this point, a question arises of whether the current methodology could
be refined/repurposed in order to arrive at stronger and/or more classical
displays of criticality. Two natural avenues to pursue are criticality with
respect to the strength of the diffusion and criticality with respect to the
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strength of the nonlinearity. In what follows, some thoughts on what might
be possible are presented.

2.1. Criticality with respect to the diffusion. Arguably the most clas-
sical setting here is the one of the 3D hyper-dissipative NSE,

(2.1) ut + (u · ∇)u = −∇p− (−∆)βu, divu = 0,

for some β > 1. For simplicity, we will continue to consider the spatial
domain to be the whole space R3; then, (−∆)β is a Fourier multiplier with
the symbol |ξ|2β .

Since the fundamental work of J.L. Lions (cf. [Li59, Li69]), it is known
that the system (2.1) is regular globally-in-time for any β ≥ 5

4 . Tao (rel-
atively) recently extended this result to the case of the diffusion realized
by a Fourier multiplier logarithmically-weaker than the critical exponent
β = 5

4 [Tao09]. Modulo the logarithmic correction(s), the interval of super-

criticality remains β ∈ (1, 5
4).

It is worth noting that the current state-of-the-art essentially does not
differentiate between the NS dissipation (β = 1) and the super-critical hyper-
dissipation β ∈ (1, 5

4). Two examples, from two different sub-realms are
summarized below.

In the context of the search for possible finite-time singularities in the
initially smooth flows, Tao considered a modified 3D NS model in which the
NS nonlinearity is replaced by an ‘averaged nonlinearity’ satisfying the same
scaling properties and featuring (essentially) the same degree of smoothness
as the original NS nonlinearity, as well as the same fundamental cancella-
tion leading to the a priori boundedness of the energy. The nonlinearity
is designed in a way that–when considering a class of carefully constructed
Schwarz initial data–the diffusion is not given a chance to catch up with
the nonlinearity, leading to a finite time blow-up. This blow-up is super-
critical, and–as remarked in [Tao16]–the construction can be adopted to any
super-critical hyper-dissipative NSE.

In the context of demonstrating non-uniqueness of finite-energy weak solu-
tions to dissipative fluid models, building on the fundamental work of Buck-
master and Vicol [BV], a proof of a more refined result–non-uniqueness of
finite-energy, integrable-vorticity, smooth outside of the time-singular set of
the box-counting dimension less than one-weak solutions–for any dissipation
exponent β ∈ [1, 5

4) is given in [BCV18].

In contrast, in light of the asymptotic criticality result for β = 1 ([GrXu19ac]),
and the fact that the local-in-time analyticity estimates in L∞ (a central
player in the theory) are directly related to the strength of the diffusion,
global-in-time regularity results for β ∈ (1, 5

4) seem within reach.
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As remarked in the previous section, the main technical barrier to achiev-
ing the optimal (lower bound on the) radius of spatial analyticity when

working with D(k)u are the asymmetric terms. Nevertheless, after an elabo-
rate dynamical argument based on local-in-time monotonicity properties of
chains of derivatives ([GrXu19ac]), one does end up–for k large enough (de-
pending on the size of the initial data)–with essentially the same regularity
class as what would follow if the local-in-time complexified iteration scheme,
starting from D(k)u0 ∈ L∞, would have the (optimal, corresponding to the
symmetric terms) life-span comparable to

1

c1(k)

1

‖D(k)u0‖
2
k+1
∞

(which would–in turn–yield to the analyticity radius of

1

C1(k)

1

‖D(k)u0‖
1
k+1
∞

near the end-point of the interval).

That was for β = 1. A simple dimensional analysis reveals that the
corresponding (optimal, corresponding to the symmetric terms) bounds on
the life-span and the analyticity radius in the case of the super-critical hyper-
dissipation β ∈ (1, 5

4) would be

1

c1(k, β)

1

‖D(k)u0‖
2β

(2β−1)(k+1)
∞

and
1

C1(k, β)

1

‖D(k)u0‖
1

(2β−1)(k+1)
∞

,

respectively. If this was indeed achievable, global-in-time regularity for any
super-critical hyper-dissipative NS would follow in a straightforward fashion.

Of course, this is not rigorous. However, given that the same type of
‘scaling numerology’ –in the case of the NSE–turned out to be convertible
into a rigorous argument, leading to the asymptotic criticality ([GrXu19ac]),
there is a degree of optimism that the conversion in the case of the super-
critical hyper-dissipative NSE might work as well.

Remark 2.1. Let us note that the methodology presented in [GrXu19ac]
relies on the higher-order (differential) structure of the NS model, and in
particular on the higher-order pointwise structure of the nonlinearity (re-
flected in the local-in-time evolution properties of chains of derivatives). As
a matter of fact, when applied at the level-zero (the NSE itself), it does not
yield any improvement compared to the classical theory. The first gain is
seen at the level-one (or, as previously demonstrated in [BrFaGr18], in the
vorticity formulation), and the scaling gap closes as the order approaches in-
finity. As such, it is not applicable to the class of the averaged nonlinearities
introduced in [Tao16], and a possible road to the global-in-time regularity
for the super-critical hyper-dissipative NSE charted here is not incompatible
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with the finite time super-critical blow-up for the averaged NSE constructed
in [Tao16].

2.2. Criticality with respect to the nonlinearity. Let us consider the
phenomenon of ‘geometric depletion of the nonlinearity’ via local coherence
of the vorticity direction, a dissipation mechanism in the 3D NS system dis-
covered by Constantin (cf. [Co94]). This approach is based on the singular
integral representation of the stretching factor in the evolution of the vor-
ticity magnitude featuring a (singular) geometric kernel regularized by local
coherence of the vorticity direction. Denoting the vorticity direction vector
by η, and the angle between the vectors a and b by ϕ(a, b), the assumption
on the local coherence is usually stated in the following form,

(2.2) sinϕ
(
η(x, t), η(y, t)

)
≤ c|x− y|α

for some α ∈ (0, 1]; this is assumed in the spatial regions of high vorticity,
and over the interval of time (0, T ) where T is the first possible singular
time.

The first no-blow-up result in this setting was obtained by Constantin
and Fefferman in [CoFe93], stating that the Lipschitz-coherence (α = 1)
suffices to rule out a singularity. This was later relaxed to the 1

2 -Hölder

coherence in [BdVBe02] (α = 1
2). The author has also contributed to this

line of research, including the papers [Gr09, GrGu10], as well as a chapter
in the Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
(jointly with Beirao Da Veiga and Giga) [BdVGiGr16].

The following could be viewed as merging two mathematical approaches
for the study of turbulent dissipation, based on two key signatures of the
geometry of turbulent flows, spatial intermittency and local coherence of the
vorticity direction (see, e.g., [JWSR93, S81, SJO91, VM94]). The founda-
tion has already been laid in [GrXu19ac] where the results on the asymptotic
criticality of the 3D NSE in the vorticity formulation were given (working

with ‖D(k)ω‖∞ instead of ‖D(k)u‖∞, and considering the initial data in
L1 ∩L∞; recall that the vorticity analogue of the Leray bound is the bound
on the L1-norm of the vorticity ([Co90])). Geometric depletion of the nonlin-
earity induced by a local coherence of the vorticity direction-assumption is
expected to yield improved estimates on the life-span of the complexified so-
lution and the analyticity radius (replacing the role of the hyper-dissipation
in the preceding subsection).

More precisely, the asymptotic criticality of the 3D NS problem in the
vorticity formulation presented in [GrXu19ac] indicates that (2.2)–featuring
any Hölder exponent greater than zero–might prove to be a regularity cri-
terion.
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The ultimate goal here would be arriving at the global-in-time regularity
for the 3D NSE with the coherence assumption expressed via existence of
an (arbitrary) locally-uniform modulus of continuity γ,

(2.3) sinϕ
(
η(x, t), η(y, t)

)
≤ γ(|x− y|).

It is interesting to note that–assuming a (critical) ‘Type I’ blow-up–Giga
and Miura obtained a no-blow-result precisely under the coherence assump-
tion (2.3) [GiMi].
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