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On BT; group schemes and Fermat curves

Rachel Pries and Douglas Ulmer

ABSTRACT. Let p be a prime number and let k be an algebraically
closed field of characteristic p. A BTi group scheme over k is a finite
commutative group scheme which arises as the kernel of p on a p-divisible
(Barsotti—Tate) group. We compare three classifications of BT} group
schemes, due in large part to Kraft, Ekedahl, and Oort, and defined using
words, canonical filtrations, and permutations. Using this comparison,
we determine the Ekedahl-Oort types of Fermat quotient curves and we
compute four invariants of the p-torsion group schemes of these curves.
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1. Introduction

Fix a prime number p and let k£ be an algebraically closed field of charac-
teristic p. Suppose C is a smooth irreducible projective curve of genus g over
k. Tts Jacobian Jac(C) is a principally polarized abelian variety of dimen-
sion g. The p-torsion group scheme G = Jac(C)[p] is a polarized BT} group
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scheme of rank p?9. The isomorphism class of G is uniquely determined by
the de Rham cohomology of C' [Oda69].

An important way to describe the isomorphism class of G is via a com-
binatorial invariant called the Ekedahl-Oort type, or E-O type. The E-O
type is a sequence [¢1,...,1q4] of integers such that ¢; —;—; € {0,1} for
1 < i < g (letting 19 = 0). The p-rank and a-number of G can be quickly
computed from the E-O type. The E-O type gives key information about
the stratification of the moduli space of principally polarized abelian varieties
of dimension g.

Recently, there has been a lot of interest in studying p-torsion group
schemes for curves, for example [Moo04], [EP13], [PW15|, [DH], and [Mo020].
Despite this, there are very few examples of curves for which the Ekedahl—
Oort type has been computed. In this paper, our main result is Theorem 7.1,
in which we determine the Ekedahl-Oort type for the Jacobian Jy of the
smooth projective curve Cq with affine equation y? = z(1 — x), for all posi-
tive integers d that are relatively prime to p.

Here is our motivation for studying the curve Cy4. First, it is a quotient
of the Fermat curve Fj; of degree d. There has been a lot of work on p-
divisible groups of Fermat curves. For example, Yui determined their Newton
polygons [Yui80, Thm. 4.2]. Several authors studied the p-ranks and a-
numbers of Fermat curves, e.g., [KoW88|, [Gon97]|, and [MonS18]. It turns
out that most of the interesting features of the p-torsion group scheme for
Fy are already present for that of C4.

Second, the de Rham cohomology of C4, with its Frobenius and Ver-
schiebung operators, has a streamlined description. Typically it is com-
plicated to discern the Ekedahl-Oort type from a computation of these op-
erators. In the case of C4, the actions of F' and V are given by permutation
data that is easy to analyze. For this reason, we are able to describe the
mod p Dieudonné module of Jy[p] in several different ways and give a closed
form formula for its Ekedahl-Oort type.

Third, in our companion paper [PU], we prove that every polarized BT}-
group scheme over k occurs as a direct factor of the p-torsion group scheme
of Jy for infinitely many d as long as p > 3. In other words, the class of
curves Cq for p 1 d includes all possible structures of p-torsion group schemes
of principally polarized abelian varieties.

To prove Theorem 7.1, we rely on a detailed comparison of three classifi-
cations of BT} group schemes, essentially due to Kraft, Ekedahl, and Oort.
We develop this comparison in Sections 2 through 4, working in general, not
restricting to Jacobians of curves. The Kraft classification uses words on a
two-letter alphabet {f,v}; it interacts well with direct sums and identifies
the indecomposable objects in the category. The Ekedahl-Oort classification
uses the interplay between F' and V' to build a “canonical filtration” and is
well suited to moduli-theoretic questions. The third classification is given in
terms of a finite set S with a permutation and a partition into two subsets,
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and it is particularly well suited to studying Fermat curves. The material
in these sections is fundamental to the proof of the theorem and does not
appear in a self-contained way elsewhere in the literature.

In Section 5, we study homomorphisms between BT} group schemes to
analyze two well-known invariants, the p-rank and a-number, and two newer
invariants related to the p-torsion group scheme of a supersingular elliptic
curve, called the s; ;-multiplicity and ;1 ;-number.

In Section 6, we recall two results about the BT} modules of Fermat curves
and their quotients from [PU]. In Section 7, we prove the main result about
the Ekedahl-Oort type of C4 for all positive integers d relatively prime to p.

In the rest of the paper, we provide explicit examples of the Ekedahl-Oort
structure of C; and the four associated invariants under various conditions
on d and p. In Section 8, we separate out the case p = 2. In Section 9, we
determine the a-number of Cy for all d relatively prime to p. In Sections 10
and 11, we analyze the cases d = p’ — 1 and d = p® + 1, for any natural
number £. We call d = p* — 1 the “encompassing case”; it is in some sense the
general case because for every d’, the group scheme Jac(Cy)[p] is a direct
factor of Jac(Cy)[p] where d = p’ — 1 for some .

Acknowledgements. Author RP was partially supported by NSF grant
DMS-1901819, and author DU was partially supported by Simons Founda-
tion grants 359573 and 713699. We would like to thank the referee for a
thoughtful and very fast report.

2. Groups and modules

In this section, we review certain categories of group schemes and their
Dieudonné modules.

2.1. Group schemes of p-power order and their Dieudonné mod-
ules. Our general reference for the assertions in this section is [Fon77].

Let W (k) denote the Witt vectors over k. Write o for the absolute Frobe-
nius of k, and extend it to W (k) by o(ag,a1,...) = (af,al,...). Define the
Dieudonné ring D = W (k){F,V} as the W(k)-algebra generated by symbols
F and V with relations

FV=VF =p, Fao =0c(a)F, and oV =Vo(a) fora € W(k). (2.1)

Let Dy = D/pD = k{F,V}.

Let G be a finite commutative group scheme of order p over k. Let M(G)
be the (contravariant) Dieudonné module of G. This is a W (k)-module of
length ¢ with semi-linear operators F' and V.

Let GP be the Cartier dual of G. For M a D-module of finite length over
W (k), let M* be its dual module. A basic result of Dieudonné theory is that
M(GP) = M(G)*.
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2.2. BT; group schemes and BT} modules. By definition, a BT} group
scheme over k is a finite commutative group scheme G that is killed by p
and that has the properties

Ker(F : G — GP) =Im(V : GP) - G)
and
Im(F : G — GP) = Ker(V : GP = G).

The notation BT is an abbreviation of “Barsotti-Tate of level 1”7 reflecting
the fact [I1185, Prop. 1.7] that BT group schemes are precisely those which
occur as the kernel of p on a Barsotti-Tate (=p-divisible) group.

By definition, a BT7 module over k is a Dg-module M of finite dimension
over k such that

Ker(F : M — M) =Im(V : M — M)
and
Im(F: M — M) =Ker(V:M— M).

(Oort also calls these DM; modules.) Clearly, a Di-module M is a BT
module if and only if it is the Dieudonné module of a BT} group scheme
over k.

The group schemes Z/pZ, i, and G1711 are BT} group schemes. On the
other hand, «, is not, since Ker F' = M (o) #0=Im V.

A BT group scheme G is self-dual if there exists an isomorphism G = GP.
Similarly, a BT} module M is self-dual if M =2 M*. Clearly, G is self-dual if
and only if M(G) is self-dual.

One may ask that a duality ¢ : G — GP be skew, meaning that ¢P : G =
(GPYP — GP satisfies p” = —¢. This is equivalent to any of the following
three conditions:

e the bilinear pairing G x G — G, induced by ¢ is skewsymmetric;
e the duality M(¢) : M(G)* — M(G) is skew, meaning that M (¢)* =
—M(¢);

e the induced pairing M (G)* x M(G)* — k is skewsymmetric.
Interestingly, when p = 2, there exist BT} group schemes G with an alter-
nating pairing ({(z,z) = 0 for all ) such that the induced pairing on M (G)
is skewsymmetric but not alternating.

For this reason, one defines a polarized BT} module over k as a BT} module
over k with a non-degenerate, alternating pairing, and one defines a polarized
BTy group scheme over k as a BT} group scheme G over k with a pairing
that induces a non-degenerate, alternating pairing on M (G). Corollary 4.2
says that every self-dual BT7; module admits a polarization which is unique
up to isomorphism.

Lthe kernel of p on a supersingular elliptic curve
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If A is a principally polarized abelian variety of dimension g over k , its
p-torsion subscheme A[p] is naturally a polarized BT; group scheme of order

p%.
3. Review of classifications of BT; group schemes

In this section, we review bijections between isomorphism classes of BT}
modules over k and three other classes of objects of combinatorial nature.
More precisely, following Kraft [Kra]?> Ekedahl, and Oort [Oor01], we will
construct a diagram of isomorphism classes:

BT modules - canonical types (3.1)
multisets of (primitive) (admissible) permutations

cyclic words on {f, v} of §=S5;US,.

The top horizontal map is the Ekedahl-Oort classification of BT} modules
and the left vertical map is the Kraft classification. While some of the
material in this section is known, there are significant reasons to cover it, and
we take the opportunity to correct a few minor imprecisions in the literature.
First, it is helpful to have a self-contained short description of this material.
Second, we need a precise dictionary between the classification on the lower
right of the diagram, given in terms of permutations, and the others. The
permutation classification is not as well known and is particularly well suited
to studying the p-torsion group schemes of quotients of Fermat curves. Third,
the work of Oort uses covariant Dieudonné theory, but the contravariant
theory is more convenient for studying Fermat curves.

There are other classifications of BT} modules, one due to Moonen [Moo01],
involving cosets of Weyl groups; and another due to van der Geer [vdG99, §6]
in terms of Young diagrams and partitions. We will not need this material,
so we omit any further discussion.

3.1. Words and permutations. In this section, we describe the bijection
on the bottom row of Diagram (3.1). Let W be the monoid of words w on the
two-letter alphabet {f,v}, and write 1 for the empty word. By convention,
the first (resp. last) letter of w is its leftmost (resp. rightmost) letter. The
complement w® of w is the word obtained by exchanging f and v at every
letter.

For a positive integer A, write W) for the words of length A. Endow
W, with the lexicographic ordering with f < v. If w € W), we write
w = uy_1---ug where u; € {f,v} for 0 <i < X\ — 1. Define an action of the
group Z on W by requiring that 1 € Z map w = uy_1---ug to uguy_1---uq.
If w and w’ are in the same orbit of this action, we say w’ is a rotation of w.

2Kraft’s manuscript is unpublished and, as far as we know, not available online. How-
ever, the results from Kraft that we use are reestablished in [Oor01].
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The orbit w of w under the action of Z is called a cyclic word. Write W for
the set of cyclic words.

A word w is primitive if w is not of the from (w’)¢ for some word w’ and
some integer e > 1. If w has length A > 0, it is primitive if and only if the
subgroup of Z fixing w is exactly AZ. Write W' for the set of primitive words
and W for the set of primitive cyclic words. At the level of multisets, one
can define a retraction of W Cc W by sending the class of a word w = (w')®
where w’ is primitive to the class of w’ with multiplicity e.

Consider a finite set S written as the disjoint union S = Sy U S, of
two subsets and a permutation 7 : S — S. Two such collections of data
(8= S87USy,m) and (8" = S} US;, ') are isomorphic if there is a bijection
v: 8 — 8" such that «(Sy) = S%, «(Sy) = S, and v = 7.

Given (S = Sy U Sy, m), there is an associated multiset of cyclic words on
{f,v} defined as follows. For a € S with orbit of size A, define the word
Wq = U)_1 - - Uy Where

uj = f if 7/(a) € Sy, and u; = v if 7 (a) € S,.

Then w, depends only on the orbit of a. This gives a well-defined map from
orbits of 7 to cyclic words, i.e., elements of V. Taking the union over orbits,
we can associate to (S = Sy US,, ) a multiset of cyclic words. If S and S’
are isomorphic, then they yield the same multiset.

Conversely, given a multiset of cyclic words, let S be the set of all words
representing them (repeated to account for multiplicities), let S; be the
subset of those words ending with f, let S, be the subset of those words
ending with v, and let 7 be defined by the action of 1 € Z as above.

The data (S = S§US,,m) is admissible if the associated words w, for
a € S are primitive.

3.2. Cyclic words to BT} modules. Following Kraft [Kra|, we attach a
BT, module to a multiset of primitive cyclic words. This defines the left
vertical arrow of Diagram (3.1).

3.2.1. Construction. Suppose that w € W' is a primitive word, say w =
ux—1---ug with u; € {f,v}. Let M(w) be the k-vector space with basis
e;j with j € Z/AZ and define a p-linear map F : M(w) — M(w) and a
p~!linear map V : M(w) — M (w) by setting

T ify =
F(e]) — €j+1 1 Uj f7 and V(€j+1) _ €j 1 Uj v,
0 if u; =, 0 ifu;=Ff.

(Note that F'(e;) # 0 exactly when the last letter of the j-th rotation of w
is f, and V(ej41) # 0 exactly when the last letter of the j-th rotation of w
is v.) This construction yields a BT} module which up to isomorphism only
depends on the primitive cyclic word w associated to w.

Kraft proves that M (w) is indecomposable and that every indecomposable
BT; module is isomorphic to one of the form M (w) for a unique primitive
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cyclic word w. Thus every B7T; module M is isomorphic to a direct sum
®M (w;) where w; runs through a uniquely determined multiset of primitive
cyclic words.

If w is a word that is not necessarily primitive, the formulas above define
a BTy module. If w = (w)¢, Kraft also proves that M (w) = M (w')¢.

It is clear that M(f) = M(Z/pZ), M(v) = M(up), and M(fv) is the
Dieudonné module of the kernel of p on a supersingular elliptic curve. More
generally, if w has length > 1 and is primitive, then M (w) is the Dieudonné
module of a unipotent, connected BT} group scheme.

3.2.2. Generators and relations. Let w be a primitive word with asso-
ciated BT1 module M (w). It will be convenient to have a presentation of
M (w) by generators and relations. Clearly, M(f) = Dy/(F — 1,V) and
M) =Dy /(F,V —1).

Now suppose w has length > 1. Then, after rotating w if necessary, we
may assume its last letter is f and its first letter is v. (Both letters appear
because w is primitive, so in particular is not f™ nor v™.) We then write w
in exponential notation as

w = vnrfmr . 'Unlfml,
for some positive integers r,mqy, ..., My, N1, ..., Ny

Lemma 3.1. The BTy module M(w) admits generators E; and relations
FmiE,_ 1 =V™E; forie Z/rZ.
Proof. Indeed, for i = 0,...,7 — 1, let I(i) = Z;Zl(mj +n;j), let I'(i) =
I(i) + miy1, and let E; = ef;). The E; generate M(w) as a Dg-module
because

if 1(i) <j < I'(i), then e; = FI~1O R,

and if I'(¢) < j < I(i+ 1), then e; = vIitlOp,

and there are relations F™ E;_1 = ep;_1) = V" E;. (]
The following diagram illustrates this presentation of M (w):
Ey =erq Ey = ejo) Ey =erp_y)
Az v Al VN AT vn&
o er (o) er(r—1) a

3.3. BT; modules to canonical types. Following Oort [Oor01], we ex-
plain how to describe the isomorphism class of a BT} module in terms of
certain combinatorial data. This defines the top horizontal arrow in Dia-
gram (3.1). Readers are invited to work through the example in Section 3.3.2
while reading this section.

Warning: Many of our formulas differ from those in [Oor01] for two rea-
sons: first, we use the contravariant Dieudonné theory, whereas Oort uses
the covariant theory; second, Oort studies a filtration defined by F~! and
V, whereas we use F' and V1. The two approaches are equivalent (and
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exchanged under duality), but the latter is more convenient for studying
Fermat curves.

3.3.1. The canonical filtration. Recall that W denotes the monoid of
words on {f,v}. Let M be a BT} module, and define a left action of YW on
the set of k-subspaces of M by requiring that

fN := F(N) and vN := V"Y{(N).

In other words, f sends a subspace N to its image under F' and v sends N
to its inverse image under V. Note that if Ny C Na, then fN; C fNs and
vN1 C vNo. If N is a Di-module, so are fN and vN, and fN C N C vN.
Also note that fM =Im F = Ker V = v0.

Let M be a BT7 module. An admissible filtration on M is a filtration by
Dy-modules

0=MyC My C---C M, =M, (3.1)

such that for all 7, there exist indices ¢(i) and v(i) such that fM; = My,
and UMZ‘ = M,/(Z)

Definition 3.2. The canonical filtration on M is the coarsest admissible
filtration on M. If Equation (3.1) is the canonical filtration, the blocks of M
are B; = M1 /M; for 0 <i<s—1.

The canonical filtration of M is constructed by enumerating all subspaces
of M of the form wM and indexing them in order of containment. Define s
to be the number of steps in the filtration and r to be the integer such that
M, = fM = v0. Define functions ¢, v, and p by

QZ)Z{O,...,S}—){O,...,’I“}, fMZ:Md)(z)a
vi{0,....s} = {r,...,s}, vM;= M4,
and
p:H0,...,s} = Z, p(i)=dimy M;.
This data has the following properties.

Proposition-Definition 3.3. The data (r, s, ¢, v, p) associated to the canon-
ical filtration of M is a canonical type, i.e., s > 0, 0 < r < s, and the
functions ¢, v, and p have the following properties:

(1) ¢ and v are monotone nondecreasing and surjective;

(2) p is strictly increasing with p(0) = 0;

(3) v(i+1) > v(i) if and only if p(i + 1) = ¢(i);

(4) if the equivalent conditions in (3) are true, then p(i + 1) — p(i) =
p(v(i)+1) = p(v(i)), while if not, then p(i+1) —p(i) = p(¢(i) +1) —
p(6(i));

(5) and every integer in {1,...,s} can be obtained by repeatedly applying
¢ and v to s.
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If the data (r, s, ¢, v, p) comes from the canonical filtration of a BT} mod-
ule, then it is clear from the definitions that 0 < r < s, with s > 0, and
that properties (1), (2), and (5) hold. Oort proves that properties (3) and
(4) hold in [Oor01, §2].

The properties imply that v(i + 1) — v (i) and ¢(i + 1) — ¢(i) are either 0
or 1, that exactly one of them is 1, and that v(i) + ¢(i) = r + ¢. The next
lemma will be used in later sections.

Lemma 3.4. [Oor01, Lemma 2.4] Let (3.1) denote the canonical filtration
of M and let B; = M1 /M; for 0 < i <s—1. If (i + 1) > ¢(i) then F
induces a p-linear isomorphism B; = By, and if v(i+1) > v(i), then V!
induces a p-linear isomorphism B; = By ;).

The key assertion is that the canonical type of M determines M up to
isomorphism:

Proposition 3.5. If the canonical types of two BTy modules M, M’ are
equal, then M = M’'.

Oort proves a related result [Oor01, Thm. 9.4] with quasi-polarizations
(pairings) which is more involved and only applies to self-dual BT; modules.
Moonen proves the result stated here [Moo01, §4] in the more general context
where the module M also has endomorphisms by a semi-simple [F,-algebra
D; taking D = IF,, yields Proposition 3.5.

Remark 3.6. Let pn:{0,...,s— 1} = Z be defined by u(i) = p(i + 1) — p(4).
Equivalently, (i) = dimg(B;). Property (2) says u takes positive values, and
property (4) says if v(i+1) > v(i), then u(i) = p(v(i)) and if ¢p(i+1) > (1),
then pu(i) = p(o(i))-

Remark 3.7. Oort defines a canonical type to be data as above satisfying
properties (1)—(4), i.e., he omits (5), and he states [Oor01, Remark 2.8 that
every canonical type comes from a BT; module. With this definition, it
is true that every canonical type comes from an admissible filtration on a
BT module, but not necessarily from the canonical filtration. Here is a
counterexample: Let r = 0, s = 2 and ¢(i) = 0, v(i) = i and p(i) = @
for i = 0,1,2. This data comes from a filtration on N = M ((u2)?) and it
satisfies properties (1)—(4), but not (5). The canonical type of N has r =0,
s=1,¢(i)=0,v(i) =ifori=0,1, and p(0) =0, p(1) = 2.

3.3.2. An example. Let M be the k-vector space with basis eq, ..., er and
action of F,V given by

(& €1 | €2 | €3 | €4 | €E5 | €5 | €7
Fle)| 0|0 [0 e |e| 0 |es]
V()| 0|00 |e |e2|es]|es
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Using (...) to denote the span of a set of vectors, the canonical filtration of
M is
Mo =0C M = (e1,e2) C My = (e1,e2,e3) C Mz = (e1,€2,€3,€4,€5)

C My = (e1,ez,e3,¢eq,€5,e6) C Ms = (e1,e2,€3, €4, €5, €6, e7) = M.

The canonical type is given by s = 5, » = 2, and the functions ¢, v, p below:
i |0]1]2]|3]|4]|5
o) 000 [1]1]2
v(i) 2134|4557
p(i) 0|23 |5[6|7

3.4. Canonical types to permutations. Following [Oor01, Section 2],
we explain how to use a canonical type to define a partitioned set S =
Sy U S, with permutation 7 : S — S, thus defining the right vertical arrow
of Diagram (3.1). These results cast considerable light on the structure of
BT; modules, but they will not be used explicitly in the rest of the paper.
Let (r, s, ¢, v, p) be as in Definition 3.3, and let I' = {0, ..., s — 1}. Define
IMI:T — T by:
11(3) = {¢<i> if §(i +1) > 6(0),
v(i) ifv(i+1)> ().
Property (3) of Definition 3.3 shows that II is well defined. Property (1)
implies that II is injective and thus bijective. By Property (4), u(i) =
p(i+ 1) — p(i) is constant on the orbits of II.
We partition I' as a disjoint union I'y UT', where ¢ € I'y if and only if
m(i) = ¢(i). Equivalently,
IF'r={iel|¢(i+1)>¢()} and TIy={iel|vi+1)>wv()}.

Then (r,s, ¢,v,p) is determined by the data ' = T'y UT',, II : I' = I', and
w:I'—7Z.

3.4.1. Example 3.3.2 continued. In this case, the permutation IT of I' =
{0,1,2,3,4} is (0,2)(1, 3,4), the partition is given by I'y = {2,4} and I, =
{0,1, 3}, and the associated words are

wo = fv, w1 = fov, we =vf, wg =vfv, and wy = vvf.

Note that p(0) = u(2) =2 and p(1) = u(3) = p(4), so p is constant on the
orbits of 1I.

To complete the definition of the right vertical arrow of Diagram (3.1), we
use p as a set of “multiplicities” to expand I' into S. More precisely, define

Si={e;liel1<j<u@)}
with partition
Sf:{ei,jeS\ieFf} and SU:{em‘ES‘Z'EFU}

and permutation 7 : S — S with 7(e; ;) := e ;-
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Lemma 3.8. The data (S = Sy U S,, ) is an admissible permutation.

Proof. The set of cyclic words associated to (S = Sy U Sy, 7) is the same
as the set of cyclic words associated to (I'=T'y UT',,II). We need to show
that these words are primitive. If w = w; for ¢ € I', then wry; ;) is the j-th
cyclic rotation of w;. Thus to show that the w; are all primitive, it suffices
to show that they are distinct.

To that end, define a left action of the monoid W on the set {0,...,s}
by requiring that f(i) = ¢(i) and v(i) = v(i). If i € T, and if w; is the
word associated to 4, then w; fixes ¢ and i+ 1. This is a manifestation in the
canonical type of the isomorphisms from Lemma 3.4:

B; %BH(i) %an(i) = --- = B,.

Now assume that 7,j € I', i < j, and w; = w; = w. We will deduce a con-
tradiction of property (5) in Definition 3.3. Since ¢ and v are nondecreasing,
for all n > 0 we have

w'(s) >i+1>i>w"(0) and w"(s)>j+1>j>w"(0),

sow™(s) > 741 and i > w"(0) for all n > 0.

Choose some i’ with ¢ < i’ < j. By property (5) of Definition 3.3, there
is a word w’ with w’(s) =4’. Choose n > 0 large enough that w” is at least
as long as w’, and then replace w’ with w'v™ where m is chosen so w"™ and
w’ have the same length. Since v(s) = v(s) = s, we still have w'(s) = 7.
If w' > w™ (in the lexicographic order from Section 3.1), then i’ = w/(s) >
w™(s) > j+ 1, a contradiction; and if v’ < w™, then i = w'(s) < w™(0) <,
again a contradiction. We conclude that there can be no i < j with w; = wj,
and thus 7 is admissible. O

Remark 3.9. A more thorough analysis along these lines shows that if M is
a BT module, then there are finitely many primitive words w; such that
wi'M 2 wi0 for all n > 1. Enumerate these as wyo,...,ws—1 and choose
integers n; so that wl'M = w;"M and w0 = w;"0 for all n > n;, and so
that the lengths of the w;" are all the same. Define w; = w;". Reorder the
w; so that

Wy < Wy < -0 < W1
(Numbering the @; from ¢ = 0 turns out to be most convenient; see the proof

of Lemma 9.6.) Let w_1M = 0. Then the w; are distinct, the canonical
filtration of M is

0CwM G-+ Cws—1 M =M,

and the primitive words associated to M are precisely the w;, with the mul-
tiplicity of w; being



716 RACHEL PRIES AND DOUGLAS ULMER

3.5. Words to canonical types. In this section, we describe the map from
multisets of (not necessarily primitive) cyclic words to canonical type. This
will be used in Sections 5 and 7.

For 1 < i < n, let w; be cyclic words with multiplicities m;. Let M (w;)
be the Kraft module discussed in Section 3.2. Our goal is to describe the
canonical type of the BT} module

M = G:L?M(’wz)m’

Let A; be the length of w; and choose a representative w; = u; x,—1 - Ui 0
of w; with u; ; € {f,v}. The k-vector space underlying M has basis e; j
where 1 < i < n, j € Z/NZ, and 1 < k < m;. Its Dg-module structure is
given by

€ij if u; ; =
Flesgr) = { e =

0 if u; j = v,

and

Cigh ifuij=v
Vieijik) = {O o — f’
Z?] - °

Let Wy = Ujj—1° Ui 0Us N * " Usj be the j-th rotation of w;. Let ¢ =

LCM(Az‘)i:L.n and set ’LTJiJ‘ = wz/’\

i ‘. Thus each w; ; has length ¢ and we may
compare them in lexicographic order.

Let X be the multiset obtained by including each w; ; with multiplicity m;,.
(The ; ; need not be distinct, and if there are repetitions, one should add
multiplicities.) Now relabel the distinct elements of ¥ as w; for 0 <t < s—1
and ordered so that wy < w; < --+ < ws_1. Let 7 be the function such that
7(i,7) =t if and only if W; ; = wy. Let p(t) be the multiplicity of w; in X.

For 1 <t < s, let M; be the k-subspace of M spanned by those e; ;. with
7(i,7) <t —1. We claim that the canonical filtration of M is

0=MyC M C--C M, =M.

Indeed, it is easy to see that if w; ends with f and wy is the first rota-
tion of wy, then F induces a p-linear isomorphism M1 /My = My 1 /My.
On the other hand, if w; ends with v, then V! induces a p-linear isomor-
phism M1 /My = My 1 /Myp. Thus the displayed filtration is an admissible
filtration. Via the action of W on M, the word w; induces a semi-linear
automorphism of My /M;, while a power of w; induces the zero map of
Myy1 /My if t # . Tt follows that w? M = My, for large enough n, so this
is the coarsest filtration, thus the canonical filtration.

The dimension of the block By = My1/M; equals p(w;), the multiplicity
of wy in X.

It remains to record the values of r and the functions ¢, v, and p associated
to M:
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r=#{t|0<t<s, w ends with f};

o(i) =#{t|0 <t <i, w ends with f};

v(i) =r+#{t|1<t<i, w ends with v}; and
(i) = SI=b (o).

3.5.1. Example. Let w; = fv, wo = fvfv, and m; = mg = 1. Taking
n1 = 2 and ny = 1, one finds that ¥ contains wy = fvfv and w; = vfuf,
each with multiplicity 3. The function 7 is

7(1,0) =7(2,0) =7(2,2) =0 and 7(1,1)=7(2,1) =7(2,1) =1,

and p(0) = p(1) = 3. Thus s = 2, r = 1, and the functions ¢, v, and p are
given by

1 |0]1]2
S@) [ 0]0][1
v(i) 1122
p() (0136

4. Duality and E-O structures

4.1. Duality of BT; modules. We record how duality of B7T7 modules
interacts with the objects in Diagram (3.1). All the assertions in this section
will be left to the reader.

For a BT} module M, let M* is its dual. If N C M is a k-subspace, then

F(NY) = (v7'N)" and vT(NE) = (PN
Let
0=MyC M G C My =M

be the canonical filtration of M; setting M = (Ms_;)*, then the canonical
filtration of M* is

0=M; CM C---CM:=M"

=

If the canonical data attached to M is (r, s, ¢, v, p), and the canonical data
attached to M* is (r*, s*, ¢*, v*, p*), then s* = s, r* = s—r, and for 0 <i <
S?

9" (i) = s —v(s —i), v(i) = s — ¢(s — i), and p"(i) = p(s) — p(s — ©).

It follows that M is self-dual if and only if the associated canonical data
satisfies s = 2r,

¢(i) +v(s—1i)=s, and p(i) + p(s — i) = p(s). (4.1)

The relationship between the partitioned set with permutation associated to

M and to M* is S* = S, S}i = Sy, S, = Sy, and 7" = 7. It follows that

M is self-dual if and only if there exists a bijection ¢ : S = .S which satisfies
((Sf)=S,andTor=rom.

If w is a primitive word on {f, v}, define w® to be the word obtained by

exchanging f and v. This operation descends to a well-defined involution on
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cyclic words and M (w)* = M (w®). It follows that M is self-dual if and only
if the associated multiset of cyclic primitive words consists of self-dual words
(w® = w) and pairs of dual words ({w,w}).

4.2. Ekedahl-Oort classification of polarized BT; modules. Clearly,
a polarized BT; module is self-dual. Conversely, as we will see below (Corol-
lary 4.2), any self-dual BT} module can be given a polarization. In this
section, we review the Ekedahl-Oort classification [Oor01] of polarized BT}
modules.

4.2.1. Elementary sequences. Elementary sequences are a convenient
repackaging of the data of a self-dual canonical type (r,s,o,v,p). Using
Equation (4.1), the restrictions of ¢ and p to {0, ...,r} determine the rest of
the data. An elementary sequence of length g is a sequence W = [¢1, ..., 1]
of integers with ¢; 1 <; < ;1 +1fori=1,...,9 and ¢pg = 0. The set
of elementary sequences of length g has cardinality 29.

Given (r, s, ¢, v, p), define an elementary sequence as follows. Let g = p(r).
Set g = 0. For each 1 < j < g, let ¢ be the unique integer 0 < ¢ < r such
that p(i — 1) < j < p(i). Define

g e =6l -1),
P71 i gli) > b(i— 1),

(Put more vividly, the sequence v; increases for p(i—1) steps if (i) > ¢(i—1)
and it stays constant for p(z — 1) steps if ¢(i) = ¢(i — 1).)

We leave it as an exercise for the reader to check that, given an elementary
sequence, there is a unique self-dual canonical type giving rise to it by this
construction.

Elementary sequences can be obtained directly from a self-dual BT} mod-
ule as follows: The canonical filtration can be refined into a “final filtration,”
i.e., a filtration

-1
-1

0=MoC My &--- G Mog=M

respected by F and V! and such that dim(M;) = i. Then ¥ is defined by

Theorem 4.1. [Oor01, Thm. 9.4| Every elementary sequence of length g
arises from a polarized BTy module of dimension 2g, and two polarized BT
modules over k with the same elementary sequences are isomorphic. More
precisely, there is an isomorphism of BT1 modules which respects the alter-
nating pairings. (This isomorphism is not unique in general.)

The elementary sequence attached to a B7Tj; module is also called its
Ekedahl-Oort structure.

Corollary 4.2. FEvery self-dual BTy module admits a polarization, i.e., a
non-degenerate alternating pairing, and this pairing is unique up to (non-
unique) isomorphism.
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Proof. If M is a self-dual BT} module, construct its canonical type, and its
elementary sequence ¥ as in Section 4.2.1. Theorem 4.1 furnishes a polarized
BT) module with the same underlying BT; module, and this proves the
existence of a polarization. For uniqueness, note that the construction of
¥ does not depend on the pairing. So, given two alternating pairings on
M, Theorem 4.1 shows there is a (not necessarily unique) automorphism
intertwining the pairings. ([

5. Homomorphisms

The Kraft description of BT} modules is well adapted to computing ho-
momorphisms. We work out three important examples in this section.

5.1. Homs from Z/pZ or pp.

Definition 5.1. If G is a BT} group scheme, the p-rank of G is the largest
integer f such that there is an injection (Z/pZ)/ — G. Alternatively, f is
the dimension of the largest quotient space of M (G) on which Frobenius acts
bijectively.

Lemma 5.2. If G is a BTy group scheme, the p-rank of G is equal to the
multiplicity of the word f in the multiset of primitive words corresponding to
M(G). Similarly, the largest f such that u{; embeds in M(G) is the multi-
plicity of the word v.

Proof. From the presentation in terms of generators and relations, we see
that if w is a primitive word other than f, then there is no non-zero homo-
morphism from Z/pZ = M(f) to M(w). It follows that if M(G) is given in
the Kraft classification by a multiset of primitive cyclic words, the p-rank is
the multiplicity of the word f. The assertion for p, is proved analogously. [J

5.2. Homs from ay. Let G be a finite group scheme over £ killed by p.
Define the foot (or socle) of G to be the largest semisimple subgroup of G.
The simple objects in the category of finite group schemes over k killed by
p are Z/pZ, pp, and ap. Thus the foot of G is a direct sum of these (with
multiplicity). If G is connected and unipotent, then its foot is of the form
ozf; for some positive integer ¢. Note that M(ay) = Dy /(F,V).

Similarly, if M is a Dg-module of finite length, the head (or co-socle) of
M is its largest semisimple quotient. We write H (M) for the head of M. If
M is a Dg-module on which F' and V' are nilpotent, then H (M) is a k-vector
space on which F' =V = 0. The presentation of M (w) by generators and
relations makes it clear that if w = o™ f™¢ ... 9™ f™ then H(M(w)) has
dimension ¢. More precisely, the images of the generators Ey,..., Fy_1 in
H(M(w)) are a basis.

Definition 5.3. If G is a finite group scheme over k killed by p, the a-number
of G, denoted a(G), is the largest integer a such that there is an injection
ay, < G of group schemes. If G is connected and unipotent, p™&) equals the
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order of the foot of G. Similarly, if M is a Dg-module of finite length, the
a-number of M, denoted a(M), is the largest integer a such that there is a
surjection M — M(oy,) = Dy /(F, V) of Di-modules.

It is clear that the a-number is additive in direct sums and that a(M (f)) =
a(M(v)) =0.

Lemma 5.4. The a-numbers of BT1 modules have the following properties:
(1) If ¢, mq,...,mg, and mni,...,ng are positive integers, then
a(M(vam“ .. .vmfml)) = /.
(2) Also a(M(w)) is the number of rotations of w which start with v and
end with f.

Proof. For part (1), a(M) = dimy(H(M)) and, by the discussion above, if
w =" fre .. " f™ then a(M(w)) = £. Part (2) is immediate from part
(1). O

5.3. Homs from Gl,l- Write M171 = ]D)k/(F - V) = M(fU) Let Gl,l
be the BT) group scheme over k such that M(Gi 1) ~ M;;. The group
scheme G1,1 appears “in nature” as the kernel of multiplication by p on a
supersingular elliptic curve over k (e.g., see [Ulm91, Prop. 4.1]).

Definitions 5.5. Let G be a BT} group scheme over k and let M be a BT}
module.

(1) Define the sy 1-multiplicity of G as the largest integer s such that
there is an isomorphism of group schemes

G=Gi,0d.

Define the sy 1-multiplicity of M as the largest integer s such that
there is an isomorphism of Dy-modules M = M7 ; & M'.

(2) Define the wuj 1-number of G as the largest integer u such that there
exists an injection

Gip — G

of group schemes. Define the wuq -number of M as the largest integer
u such that there is a surjection M — M7'; of Dy-modules.

The notation s11 (resp. u1,1) is motivated by the word superspecial (resp.
unpolarized), see Section 5.5. Note the equalities s11(M(G)) = s11(G)
and u11(M(G)) = u11(G). It is clear that uy1(G) > s1,1(G). The sq,-
multiplicity and w; ;-number are additive in direct sums.

By the Kraft classification, if M (G) is described by a multiset of primitive
cyclic words, then s;;(G) equals the multiplicity of the cyclic word fv in
the multiset.

We want to compute the u; ;-number of the standard BT} modules M (w).
Trivially,

u1,1(M(f)) = u1,1(M(v)) = 0.
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A straightforward exercise shows that uq (M (fv)) = 1, and more precisely
that

Homp, (M (fv), M(fv)) =Fp2 x k,
with (c,d) € Fp2 x k identified with the homomorphism that sends the class
of 1 € Dy /(F — V) to the class of ¢ + dF. The surjective homomorphisms
are those where ¢ # 0.

We may thus assume that w has length A > 2. We will evaluate the uq 1-
number of M (w) by computing Homp, (M (w), M 1) explicitly. To that end,
write w = v™ f ... ™ {1 Since A > 2 and and w is non-periodic, we may
replace w with a rotated word so that m; > 1 or ny, > 1 (or both). Roughly
speaking, the following proposition says that the w;;-number of M (w) is
the number of appearances in w of subwords of the form v>!(fv)¢f>! where
e > 0. For example, if w = v?f?v3 fvf4, then the u1,1-number is 2.

Proposition 5.6. Suppose w = v™ f ... 9™ f where my > 1 orng > 1.
Define u by:

u:=#{1<i<l|m;>1andn; > 1}

+#{1<i<j<tl|n;>1, mj=nj_1=---=n;=1, andm; >1}.
Then

(1) the s1,1 number of M(w) is £ if m; = n; =1 for all i, and 0 otherwise,

(2) Homp, (M (w), My 1) is in bijection with k“**, and
(3) the uy-number of M(w) is u.

Proof. Part (1) follows from the fact that for a primitive word w, the s; 1
number of M (w) is 1 if w = fv and is zero otherwise.

For part (2), we use Lemma 3.1 to present M (w) with generators Ey,.. .,
E;—1 (with indices taken modulo ¢) and relations F"™FE; 1 = V™ E;. Let
20,21 be a k-basis of M with Fzg = Vzy = 21 and Fz; = Vz = 0.
Then a homomorphism v : M (w) — M; ; is determined by its values on the
generators F;. Write

Y(E;i) = aionzo0 + ain21.
Then v is a Di-module homomorphism if and only if F™i (E;—1) = V™ (E;)
fori=1,...,¢. By (2.1),
a€—1,021 if m; =1

F™iy (Bioq) = {

and
VP, ifny =1
Vi (E) =g 0T
0 if n; > 1.
This system of equations places no constraints on a; 1 for¢ = 1,..., ¢, because
Vz1 = Fz1 = 0. The constraints on a;o for ¢ = 1,...,¢ are: if m; =n; =1,

then af_lo = a%p; if m; = 1 and n; > 1, then a;—10 = 0; if m; > 1 and
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n; = 1, then a; o = 0; if m; > 1 and n; > 1, then no constraint. Using that
my > 1 or ny > 1, we find a triangular system of equations for a; g, and it
is a straightforward exercise to show that the solutions are in bijection with
k*. Combining with the k* unconstrained values of {a;1 | 1 <14 < ¢} yields
part (2).

For part (3), the homomorphism ¢ : M(w) — M is surjective if and
only if at least one of the a; ¢ is not zero, which is equivalent to v inducing
a surjection H(M(w)) — H(Mi,1) = k. Part (1) implies that there are u
independent such v (and no more). This shows that w is the largest integer
such that there is a surjection M(w) — My, completing the proof of part
(3). O

5.4. Motivation. The next proposition motivates the sq ;-multiplicity and
the w1 1-number.

Proposition 5.7. Let A/k be an abelian variety and let E/k be a supersin-
gular elliptic curve.

(1) If there is an abelian variety B and an isogeny E* X B — A of degree
prime to p, then s is less than or equal to the sy 1-multiplicity of A[p].
(2) If there is a morphism of abelian varieties E* — A with finite kernel
of order prime to p, then u is less than or equal to the uy1-number

of Alp].

Proof. An isogeny as in (1) shows that E[p] = G;; is a direct factor of
Alp] with multiplicity s, so s < s11(A[p]). A morphism as in (2) shows that
Elp] = G1,1 appears in Alp] with multiplicity at least u, so u < uy 1(A[p]).

O

5.5. Connection to the superspecial rank. Suppose G is a polarized
BT group scheme. In [AP15, Def. 3.3|, Achter and Pries define the su-
perspecial rank of G as the largest integer s such that there is an injection
Gi 1 < G and such that the polarization on G restricts to a non-degenerate
pairing on G ;. In this situation, the pairing allows them to define a com-
plement (see [AP15, Lemma 3.4]), so that G = G{; © G’ (a direct sum of
polarized BT} group schemes). A self-dual BT} group scheme G equipped
with a decomposition G = G11 & G’ (just of BT group schemes) automat-
ically admits a polarization compatible with the direct sum decomposition.
Therefore, the superspecial rank of G equals its sq ;-multiplicity.

They also define an unpolarized superspecial rank, which is the same as our
uy,1-number, and prove a result [AP15, Lemma 3.8] which is closely related
to and implied by Proposition 5.6.

Next, we consider a correction to [AP15, Thm. 3.14|. Let K be the func-
tion field of an irreducible, smooth, proper curve X over k, let Jx be the
Jacobian of X, and let E be a supersingular elliptic curve over k which we
regard as a curve over K by base change. Let Sel(K,p) denote the Selmer
group for the multiplication-by-p isogeny of E/K. See [Ulm91| for details.
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Proposition 5.8. With notation as above, let a, w11, and s11 be the a-
number, uj 1-number, and sy 1-multiplicity of Jx|[p] respectively. Then the
group Sel(K, p) is isomorphic to the product of a finite group and a k-vector
space of dimension a + u1,1 — S1,1-

Proof. Applying [Ulm19, Props. 6.2 and 6.4] withC = X, D =E, A =1,
and n = 1 shows that Sel(K, p) and Homp(H},(X), M1,1) differ by a finite
group. By [0da69, Cor. 5.11], HJo(X) = M(Jx[p]). Write M (Jx[p]) as a
sum of indecomposable BT} modules M (w) for suitable cyclic words w. In
Section 4.3, we computed H,, = Homp (M (w), M; ) for a primitive cyclic
word w. Recall that H,y = 0if w = f or w =v and Hy E Fp2 X k if w = fo.
Also H,, = k" if w ¢ {1, f,v, fv} where u = uy1(M(w)) and ¢ is the
a-number of M (w). The result follows from the additivity of a-numbers,
up 1-numbers, and s j-multiplicities. O

Next, we compute the numerical invariants of a module M = &M (w;)™
in terms of multiplicities of words. In Section 3.5, we defined multiplicities
1 by considering all lifts of w; to words and taking powers of those words so
they all have the same length ¢ = lem(lengths of w;). Let u(f—wv) be the
sum of the multiplicities of all these words of length ¢ starting with f and
ending with v; and let u(—uvf) be the sum of the multiplicities of all words
of length ¢ ending with vf.

Proposition 5.9. The BT\ module M = &M (w;)™ has

(1) p-rank equal to p(f*),

(2) a-number equal to p(f—v) = p(—vf) = p(—fv),

(3) sy.1-multiplicity equal to u((fv)"/?) if £ is even and to 0 if £ is odd,
(4) and uy 1-number equal to the sum of the s1,1 multiplicity and

p(—v2f2) + p(—0 fof?) + -+ p(—o?(fo)lE=D/2 p2),

Proof. Parts (1) and (2) follow from Lemma 5.2 and Lemma 5.4 respectively.
Parts (3) and (4) follow from Proposition 5.6. O

5.6. Examples. For small genus, we give tables of elementary sequences
(“E-O”), matched with the self-dual multisets of primitive cyclic words (“K”),
together with their p-ranks, a-numbers, s1 ;-multiplicities, and «; ;-numbers.

From Section 4.2.1, for the BT} module of the elementary sequence ¥ =
[¥1,...,1q4], the p-rank is the largest i such that ¢; = ¢ and the a-number is
g—14. We do not know how to compute the s1 ;-multiplicity or u; ;-number
directly from W.

For the BT} module of a multiset of cyclic words, the p-rank is the mul-
tiplicity of the word f by Lemma 5.2 and the a-number can be computed
using Lemma 5.4. The s; j-multiplicity is the multiplicity of the cyclic word
fv and the uy ;-number can be computed using Proposition 5.6.
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g=1
E-O K p-rank | a-number | s1 j-mult. | u1 ;-number
0] | {fv} 0 1 1 1
1] | {f,v} 1 0 0 0
g=2
E-O K p-rank | a-number | s; j-mult. | u; -number
[0,0] | {(fv)*} 0 2 2 2
[0,1] |  {ffvv} 0 1 0 1
1,1 | {f,v, fv} 1 1 1 1
[1,2] | {(/)* ()} ] 2 0 0 0

If G is a polarized BTy group scheme of order p?9 with positive p-rank,
then G = G'®Z/pZ & p, where G’ is a polarized BT; group scheme of order
p?9=2. Thus the rows of the table for g for G with positive p-rank can be
deduced from the table for g — 1. In passing from genus g — 1 to genus g: the
elementary sequence changes from [¢1,...,¢y_1] to [1,91+1,... g1 +1];
the multiplicity of the words f and v increases by 1; the p-rank increases by
1; and the a-number, s -multiplicity, and wu; -number stay the same. In
light of this, when g = 3 and g = 4, we only include the BT} group schemes
with p-rank 0 in the table.

g=3
E-O K p-rank | a-number | s1 j-mult. | u1 ;-number
[0,0,0] {(fv)3} 0 3 3 3
[0,0,1] | {fv, ffov} 0 2 1 2
[0,1,1] | {fov,vff} 0 2 0 0
[0,1,2] | {fffovv} 0 1 0 1

The E-O structure [0,1,1] is the first which is decomposable as a BT}
group scheme but indecomposable as a polarized BT} group scheme.

g=4
E-O K p-rank | a-number | s1 1-mult. | w1 ;-number
[0,0,0,0] {(fv)*} 0 4 4 4
[0,0,0,1] | {(fv)?, ffov} 0 3 2 3
[0,0,1,1] | {ffvfovfu} 0 3 0 1
[0,0,1,2] | {(ffovv)?} 0 2 0 2
[0,1,1,1] | {fv, ffv,vvf} 0 3 1 1
0,1,1,2] | {fv, fffovv} 0 2 1 2
[0,1,2,2] | {fffv, fovv} 0 2 0 0
[0,1,2,3] | {ffffovvv} 0 1 0 1
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6. Fermat Jacobians

In this section, we recall two results on the BT} modules of Fermat curves
from [PUJ.

For each positive integer d not divisible by p, let F; be the Fermat curve
of degree d, i.e., the smooth, projective curve over k with affine model

Fy: Xd4yd=1,

and let Jg, be its Jacobian. Let Cq be the smooth, projective curve over k£
with affine model

Ca: yd = (1 — ). (6.1)
The substitution X¢ for  and XY for y in the equation for C; shows that Cy
is a quotient of F,;. The map Fy — Cg4 is the quotient of Fy by the subgroup

{(¢.¢7N) 1 ¢ € pa} € (na)* € Aut(Fy)

of index d. The Riemann-Hurwitz formula shows that the genus of Cy is

(d—1)/2 if dis odd,

9(Ca) = [(d—1)/2] = {(d —9)/2 ifdis even.

Theorem 6.1 (=|PU, Thm. 5.5]). The Dieudonné module M (J4[p]) is the
BT, module with data

S =127/dZ\ {0,d/2} if d is even, and S = 7Z/dZ \ {0} if d is odd,

Sg={aeS|d/2<a<d}, S,={acS|0<a<d/2},
and the permutation m: S — S given by 7(i) = pa.

Theorem 6.2 (=[PU, Thm. 5.9]). The Dieudonné module M (Jr,[p]) is the
BT, module with data

T = {(a,b) € (Z/dZ)* |a #0,b#0,a+b# 0},

Ty ={(a,b)eS|la+b>d}, T,={(a,b)eS|a+b<d},
and the permutation o(a,b) = (pa, pb).

Remark 6.3. Let pg be the group of d-th roots of unity in k£, and note that pq
acts on C4 by multiplication on the y coordinate. Although this action does
not appear explicitly in Theorem 6.1, it plays a key role in the proof. Indeed,
the k-valued characters of pg can be identified with Z/dZ, and the set S is
precisely the set of characters of g which appear in H é r(Cq). Each character
that appears does so with multiplicity one. The subset S, consists of those
characters appearing in the subspace HY(C4, Q') C H(%R(Cd). Moreover, the
indecomposable submodules of M (Jy[p]) as a BTy module with pg action
correspond to the orbits of p on S. As noted in [PU, Rem. 5.6], such a
submodule may become decomposable if we ignore the pg action.
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Remark 6.4. The action of ug also allows one to decompose the Jacobian Jg
(i.e., the motive of Cy) into parts indexed by divisors of d. If d’ divides d,
there is a projection Cq4 — Cg and an induced inclusion Jy — Jg. Defining
JJ as the quotient of Jg by the sum of the images of Jy — Jq where d’
runs through proper divisors of d, we obtain an isogeny

Jy ~ @ Jhew

d'|d

of degree prime to p. In particular, the p-divisible group of J; is isomorphic
to the direct sum of the p-divisible groups of the J3*’. For d = 1 and
d =2, J7 is trivial; if d > 2, then J7° is an abelian variety with complex
multiplication by the cyclotomic field Q(uq). A slight generalization of the
proof of Theorem 6.1 allows one to compute the CM type of J7¢. Using
this, one finds that the p-divisible group of J}* is a “standard ordinary” in
the sense of [Moo04, 1.2.3]. See also |[PU, Rem. 5.10].

Remark 6.5. The quotient C; — F,; induces an inclusion S < T sending a
to (a,a), and the partition and permutation of 7" are compatible with those
of S. There are other quotients C of Fj; by subgroups of N?{- (For example,
the curves v = u" (1 — u)® where e | d, ged(r, s,e) = 1, and r + s < e.) Each
gives rise to a set S¢ with partition and permutation and the projection
F; — C induces an inclusion S¢ < T compatible with the partitions and
permutations. The interesting features of Jp,[p] are already present in J¢,[p],
so we restrict to studying this case for simplicity.

7. Ekedahl-Oort structures of Fermat quotients: general
case

In this section, we determine the Ekedahl-Oort type of the Jacobian J; of
the Fermat quotient curve Cy with affine model y¢ = x(1 —x) for d relatively
prime to p.

7.1. Words, patterns, and multiplicities. By Theorem 6.1, the BT}
module of Jy[p| is the one obtained from diagram (3.1) using the data S C
7,/d7Z with its usual partition and permutation. This data gives rise to a
multiset of cyclic words. To compute the E-O structure, as in Section 3.5, we
consider all representative words of the cyclic words, take powers so they all
have the same length, and compute their multiplicities to find the dimensions
of the blocks B; = M;41/M; in the canonical filtration.

We want to reformulate this to go directly from the set S to the multi-
plicities u. To do so, we introduce the pattern of an element of S. This is
a variant of the word which takes into account the powers mentioned in the
previous paragraph.

Let ¢ = |(p)| be the multiplicative order of p modulo d. Let W, be the set
of words of length ¢ on {f,v}. Define a map Pat : S — W, as follows: for
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a € S, define Pat(a) = ug—1 - - - up where
uj:fifpiaeSf, anduj:vifpjaesv.

If the word w, for a has length ¢ (which happens when ged(a,d) = 1), then
Pat(a) = w, whereas for a with a shorter word, Pat(a) is a power of wj.

For example, take d = 9 and p = 2, so that £ = 6. The orbits of (p) are
1-2—-4—-58—-7—5—1and 3 - 6 — 3. For a = 3, the word is fv
and Pat(3) = fufvfv. For a = 6, the word is vf and Pat(6) = vfvfuf. For
a # 3,6, then Pat(a) = wg; for example Pat(1) = f f fovw.

For w € Wy, define the multiplicity of w to be the cardinality of its inverse
image under Pat:

p(w) = ‘Patfl(w)| :

This is the same multiplicity as defined in Section 3.5 for the module deter-
mined by S.

7.2. Ekedahl-Oort structure of Jg[p]. Recall from Section 4.2.1 that
the E-O structure associated to a self-dual BT} module is the sequence of
integers [¢1,...,14] which starts from 19 = 0 and has sections of length
equal to the block sizes dim(B;) which are increasing (resp. constant) if the
word attached to the block ends with f (resp. v).

To simplify this description, we introduce some notation: ™ (resp. —™)
stands for an increasing (resp. constant) sequence of integers of length m.
Thus,

[ P2 =01,2,3,3,3] and [=?7]=]0,0,1,2,3].

Now enumerate the elements of W, that start with f in lexicographic

order:

wo = f4 w1 = S, we = f20f, wy = 200, .., Wor—1_1 = fotL
(7.1)
Let pj = p(wy).
Using Sections 3.5 and 4.2.1, we get the following description of the E-O
structure of Jy[p|:

Theorem 7.1. Let £ be the multiplicative order of p modulo d, and let
L0, - - -5 foe—1_71 be the multiplicities of the words above. Let Jg be the Ja-
cobian of the Fermat quotient curve Cq with affine model y* = x(1—z). The
Ekedahl-Oort structure of Jy[p] is given by

[/Wo_>,u1/(,u2 _>#21371_1]‘

Proof. Indeed, for the BTy module M = M(Jy[p]) and for 0 < j < 2671
the subspace Mj 1 in the canonical filtration is the span of the basis vectors
eq indexed by a € S such that Pat(a) < w;. In particular, dim(M;4q1) =
Y7o wi- By Definition 3.2, B; = Mj11/Mj, so dim(B;) = p;. If j is even,
then w; ends with f so Bj; is mapped isomorphically onto its image by F'.
If j is odd, then w; ends with v so Bj; is killed by F. Thus the u; are the
values of p(j + 1) — p(j) in the canonical type of Jy[p|, and they give the
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lengths of the runs where the elementary sequence is increasing (j even) or
constant (j odd). O

8. Ekedahl-Oort structures of Fermat quotients: the case
p=2
In this section, suppose p = 2. In this case, the curve C; is an Artin-
Schreier cover of the projective line with equation 2 — 2 = y?, and the
formulas when p = 2 are different from the case when p is odd. We do not
include proofs in this section because most of the results already appear in

the literature.
The genus of Cy is g = (d — 1)/2.

Corollary 8.1. Let p = 2 and d > 1 be odd. Let J; be the Jacobian of
Cq:y®=x(1 —x). Then:
(1) [EP13, special case of Thm. 1.3] the Ekedahl-Oort type of J4[2] has
the form
0,1,1,2,2,...,|ga/2]].
(2) [Sub75, Theorem 4.2| (Deuring-Shafarevich formula) the 2-rank of
Jq[2] is 0;
(3) [EP13, Prop. 3.4] the a-number of Jq[2] is 47+ if d =1 (mod 4) and
% if d=3 (mod 4);
(4) [AP15, Application 5.3] the sy 1-multiplicity of J4[2] is 1 if d = 0 mod
3 and is 0 otherwise.

9. The a-number of the Fermat quotient curve

Suppose p is odd. Let J; be the Jacobian of the curve Cy with affine model
y? = 2(1 — 2). We find a closed-form formula for the a-number of .J; and
some information about its p-rank.

If d = 1,2, then C; is rational; we exclude this trivial case in the next
results.

Proposition 9.1. Suppose p is odd, d > 2, and p does not divide d. Then:
(1) The a-number of Ja[p] is

-2
L ()-(25)

Here (-) denotes the fractional part.

(2) If d==£1 (mod 2p), then the a-number of Jq is
(p = )(dF1)/4p.
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(3) Ifd=p=+1 (mod 2p), then the a-number of Jy is
(p—1)(d =+ (p—1))/4p.

Remark 9.2. An analogue of parts (2) and (3) for the Fermat curve Fy was
proven by Montanucci and Speziali [MonS18] using the Cartier operator.

Proof. By Proposition 5.9, the a-number of Jy[p] is p(—fv) which equals
p(—uvf) since Jy[d| is self-dual. This is the number of elements a € S
such that the pattern of a ends with fv. These are precisely the elements
with a € S, and pa € Sy, and we may count them using archimedean
considerations. More precisely, a € S, means 0 < a < d/2 and pa € Sy
means that (the least positive residue of) pa satisfies d/2 < pa < d.

We prove part (1) and leave the other parts as exercises. The elements
of S which contribute to the a-number are represented by integers satisfying
one of the inequalities

d 2d  3d 4d (p—2)d (p—1)d
2p<a<2p, 2p<a<2p, o % <a< TR
and the number of such integers is the left hand side of the displayed equation
in part (1). The equality in the displayed equation in part (1) is immediate
from the definitions of [.] and (.). O

Remark 9.3. If p is large and d is large with respect to p, by Proposition 9.1,

the a-number of Jy is close to (=1)

4 which is close to g/2. The second
expression in part (1) shows that the difference is less than (p — 1)/2 in

absolute value. Numerical experiments suggest that the difference is bounded
2

by % and part (3) shows that the difference equals this when d =p + 1

(mod 2p).

An abelian variety A is superspecial if its a-number is equal to its dimen-
sion. This is equivalent to A being isomorphic to a product of supersingular
elliptic curves. The next result shows that J; is superspecial if and only if
Cq is a quotient of Cpiq by a subgroup of fip41.

Proposition 9.4. Suppose d > 2 and p t d. Then Jg is superspecial if and
only if d divides p + 1.

An analogue of Proposition 9.4 for F,; was proven by Kodama and Washio
[KoW88, Cor. 1, p. 192]. The “if” direction of our proposition follows from
their result.

Proof. By Proposition 5.9(2), Jg is superspecial if and only if u((fv)9/?) =
g. This is the case if and only if p exchanges Sy and S,, i.e., pSy = S, and
pSy, = Sy. Note also that if this statement holds for (p,d) then it holds for
(p,d’) for any divisor d’ > 2 of d.

We claim that if H C (Z/dZ)* is a subgroup such that hS, = S, (equiv-
alently hSy = Sy) for all h € H, then H = {1}. Suppose that H is such a
subgroup, 1 < a < d, and the class of a lies in H. If a > d/2, then a sends
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1 €S, toa¢sS,, acontradiction. If a < d/2, then there is an integer b in
the interval (d/2a,d/a), so b € Sy, and d/2 < ab < d, so the class of ab lies
in Sy, again a contradiction. Thus H = {1}.

Suppose that p exchanges Sy and S,. By applying the claim to H = (p?),
we see that p has order 2 modulo d, and the same holds for p modulo d’ for
any divisor d’ of d. Since 1 does not exchange Sy and S,, the order of p is
exactly 2 modulo any d’ > 2 dividing d. If d’ is an odd prime power, this
implies p = —1 (mod d').

More generally, let d’ = 2¢ be the largest power of 2 dividing d. If d = 1 or
2, then p = —1 (mod d’). If d’ = 4, there is a unique class of order exactly
2 modulo d’, namely —1, and again p = —1 (mod d’). Finally, if e > 2,
then there are three elements of order exactly 2 modulo d’, but only one of
them reduces to an element of order 2 modulo 27!, namely —1. Again, we
find p = —1 (mod d’). In all three cases, p = —1 (mod d’') and so p = —1
(mod d), as required. O

9.1. Observations about the p-rank. The behavior of the p-rank, sy 1-
multiplicity, and w1 ;-number of J; for arbitrary p and d seems rather erratic.
In later sections, we give closed form formulas for these invariants under
restrictions on d. Here we include some observations about when the p-rank
is as large or small as possible.

An abelian variety is ordinary if its p-rank is equal to its dimension. The
next result shows that Jy is ordinary if and only if Cg is a quotient of C,_;
by a subgroup of 1,—1.

Proposition 9.5. Suppose d > 2 and ptd. Then Jg is ordinary if and only
if d divides p — 1.

An analogue of Proposition 9.5 for the Fermat curve Fy was proven by
Yui [Yui80, Thm. 4.2] using exponential sums; (see also [Gon97, Prop 5.1]
for a proof using the Cartier operator when d is prime). The “if” direction
of our proposition can be deduced from Yui’s result.

Proof. By Proposition 5.9(1), Jy is ordinary if and only if u(f*) = g. If d
divides p — 1, then £ = 1, the orbits of (p) on S C Z/dZ are singletons, and
p(f) =|S¢| = g, so Jq is ordinary.

The converse follows from the claim in the proof of Proposition 9.4. [

At the opposite extreme, the p-rank of J; is 0 when d divides p + 1, by
Proposition 9.4. If J; is supersingular, then the p-rank of J; is zero (the
converse is not necessarily true for ¢ > 3); by |Gon97, Prop. 5.1], Jy is
supersingular when d is prime and the order of p in (Z/dZ)* is even.

9.2. Breaks in words. We end this section with an elementary combina-
torial result used later.

Fix d and let ¢ be the order of (p) C (Z/dZ)*. Given a pattern of length
£, say w = ug_1 - --ug, we say that 0 < j < £ —11is a break of w if uj1 # uj,
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and we say j = £—1 is a break of w if ug # uy_1. If k is the number of breaks
of w, then k is even and 0 < k < £. Moreover, a pattern w is determined by
its set of breaks and by its last letter ug, and there are 2(£) words of length
¢ with k breaks. The sum of these numbers for 0 < k < ¢ equals 2¢.

We also consider “self-dual” words of length £ = 2}, i.e., words of the form
w® - w where w has length A\. Such a word is determined by its last half w,
and we may encode w by specifying its last letter and its “breaks” as above,
ignoring the last potential break: If w = uy_1---ug we say that 0 < j < A—1
is a break if uj11 # uj. (We ignore j = XA —1 because whether or not uy_ is
a break of w®-w is already determined by the other data.) There are 2()‘;1)
words w with k breaks. The sum of these numbers for 0 < k < X\ — 1 is 2*.

Fix £ > 1. Asin (7.1), list all words of length ¢ which begin with f in
lexicographic order:

L -1 {—2 (-1
wo= w1 = fTv,we = f va"'ane*l—l:fU :

Let k(i) be the number of breaks of w; (not looking at possible wrap-around
breaks).

Lemma 9.6. The function k(i) has the properties: (i) k(0) = 0; and (ii) if
20 < i < 2% then k(i) = k(271 — 1 — i) + 1, and it is characterized by
these properties.

Proof. Clearly £(0) = 0. In the list of words, w; is the binary representation
of the integer ¢ where f stands for 0, v stands for 1, and the leftmost letters
are the most significant digits. Thus, if 2/ < i < 2711 then w; = f 7 1ot
and wyj—1_;_; = f7I(t°) for some t, and it is visible that w; has one more
break than wgj—1_;_; does. This proves the second property of k. The two
properties clearly characterize k. O

The function i — k(i) is independent of ¢ if 271 > 4. Its first few values
are:

¢ |0]1]12|13[4]5|6|7|8]9|10|11]12|13 14|15
k(D) (0|1 |2]1|2]3|2]1]2|3[4 |32 |3]|2]1

10. J4[p] in the “encompassing” case

Suppose p is odd. In this section, we fix d = p® — 1, which we call the
“encompassing” case. The reason is that if p t d’, then d' divides pt — 1 for
some £, with the quotient (p’ — 1)/d’ being prime-to-p, and so Jy[p] is a
direct factor of Jy_;[p]. Let S = Sy US, and 7 be defined as before.

10.1. p-adic digits. Elements a € S correspond to p-adic expansions
a=ag+ap+---+ap_1p L (10.1)

where a; € {0,...,p — 1} and we exclude the following cases: all a; = 0
(when a = 0); all a; = p — 1 (when a = d); and the case all a; = (p — 1)/2
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(when a = d/2). Multiplication by p corresponds to permuting the digits
cyclically.

10.2. Multiplicities. Given a € S, let Pat(a) = uy_1 - - - ug be the pattern
of a. Let (10.1) be the p-adic expansion of a. Then a € S, (meaning ug = v)
if and only if @ < d/2. In other words, the condition is that the first p-adic
digit to the left of ay_1 (inclusive) which is not (p — 1)/2 is in fact less than
(v —1)/2

Similarly a € Sy (meaning ug = f) if and only if @ > d/2. This is true if
and only if the first p-adic digit to the left of ay_1 (inclusive) which is not
(p—1)/2is in fact greater than (p —1)/2. The other letters u; of Pat(a) are
determined similarly by looking at the p-adic digits of a to the left of ay_1_;.
(Finding the first digit # (p — 1)/2 may require wrapping around.)

For example, if £ = 4 and p > 3, then Pat(a) = ffvf when

a=(p—1)/2+(p—2)p+0p*+ (p—2)p°.
The following proposition records the “multiplicities” of each pattern.

Proposition 10.1. Let p be odd and d = p* — 1 and define S = SpUS, as
usual.

(1) For w € Wy, write p(w) for the number of elements a € S with
Pat(a) = w. Then

u(F) = ulet) = (T)Z 2.

If w has k > 0 breaks, then

- () (2
(2) More generally,
(1) =) = (T ) e -,

2

0% e 1) = ()
_ <p+1>zejk <p_1>k1 <pe+1—zej _1>’
2 2 2
and
(—voRH foR Lt

p(—frrto®h . fO) =
p

_(ptt pei—h=1 p—1\* [pH1-Xe 41
2 2 2 '
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Proof. We prove part (1) and leave part (2) for the reader. The number
of elements a € S whose pattern is f¢ or v’ is (%)e — 2. Indeed, for f*
(resp. v*), we may choose each a; freely with (p —1)/2 < a; < p — 1 (resp.
0 <a; < (p—1)/2) except that we may not take them all to be (p —1)/2
nor all p — 1 (resp. 0). This proves the first claim in (1).

Suppose w is a pattern with breaks. Then the inequalities at the beginning
of this subsection show that an element a with pattern w should have digits
a; satisfying:

<(p—1)/2 ifuy_;_j; =vand j is not a break of w,

a; < (p—1)/2 ifup_1_; =v and j is a break of w,
>(p—1)/2 ifup__; = f and j is not a break of w,
aj>(p—1)/2 ifuy_1_j = f and jis a break of w.
The count displayed in the second claim in (1) is then immediate. O

Theorem 10.2. Let p be odd and d = p*—1. Let Cy be the curve y® = x(1—1x)
and let Jg be its Jacobian. Then the Ekedahl-Oort type of J; has the form
[ H0 k1. _>N247171]

where o = (%) —2 and for 1 <i <201 — 1, letting k(i) be the function

in Lemma 9.6,
(3) £—k(7)
(pT) (%) if 1 1s even,

Wi = (p 1) k(i)+1 <p+1>g h(0)- if i is odd.

Proof. This follows immediately from Theorem 7.1, the calculation of mul-
tiplicities in Proposition 10.1, and the evaluation of the number of breaks in
Lemma 9.6. (One should note that the k appearing in Proposition 10.1 for
wj is k(i) if 7 is even, and it is k(7) + 1 if 7 is odd.) O
10.3. Examples. Suppose p is odd.

(1) If ¢ =1, C4 has genus (p — 3)/2 and is ordinary. The list of words as
at (7.1) is just f. The elementary sequence is

IR = 1,2, (0 - 3)/2).
(2) If £ =2, the list of words is ff, fv. The elementary sequence has an

increasing section of length (p + 1)2/4 — 2 and a constant section of
length (p — 1)2/4, i.e., it is:

[t /A-2_ (0-1)2/4)
=[1,2,...,(p+1)?*/4—2,....(p+1)*/4-2].

(3) If £ = 3, the list of words is f3, f2v, fuf, fov. The elementary se-
quence is:
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where m = (p+1)3/8 =2 and n = (p + 1)(p — 1)?/8.

(4) If ¢ = 4, the word f3v occurs; this is the smallest example whose
BT group scheme was not previously known to occur as a factor of
the p-torsion of a Jacobian for all primes p. If p = 2,3 mod 5, then
this group scheme occurs generically for the family of genus 4 curves
that are degree 5 cyclic covers of P! given by an equation of the form
y° = z(z — 1)(z — ), see [LMPT19, Notation 6.3, Theorem 7.3].

Proposition 10.3. Let p be odd and let d = p* —1 > 2. Then:
(1) the p-rank of Ja[p] is (E51)* - 21;
(2) the a-number of Jalp] is Pt Pyt ;

(3) the s11-multiplicity of Jq[p] is 0 if £ is odd and is (7’24—_1)02 if € s
even;
(4) and the uy-number of Jg is the sum of the s1 1-multiplicity and

“‘ﬁm p+1\? (p— 1\ ¥ (i 1
2 2 2 '

j=0

Proof. This follows from Proposition 5.9 using the multiplicities in Propo-
sition 10.1. O

11. J4[p] in the Hermitian case

Suppose p is odd. Fix an integer A > 1 and let d = p* + 1. In this case,
the Fermat curve of degree d is isomorphic (over F,) to the Hermitian curve
H, with equation y?™" = 29 + z; where ¢ = p*. It is well known that H, is
supersingular and its Ekedahl-Oort type was studied in [PW15]. Since Cjy
is a quotient of Hy, it is also supersingular in this case.

11.1. p-adic digits. Let S = Z/dZ\ {0,d/2}. Let 7 : S — S be induced
by multiplication by p. Let S, = {b€ S |0<b<d/2} and Sy ={be S|
d/2 < b<d}. Let

S ={(b1,...,b))] 0<bj <p—1andnot all b; = (p—1)/2}.

There is a bijection S’ — S given by

A
(b, ba) = b=14> bip/ .
j=1

Under this bijection, the permutation 7 is given by
(bl,...,bk) — (p— 1 —b/\,bl,...,b)\_l).

An element b belongs to S, if and only if b < (p* + 1)/2. This is true if
and only if, in the tuple, the entry b; with largest j such that b; # (p—1)/2
has the property that b; < (p —1)/2.
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11.2. Multiplicities. The multiplicative order of p modulo d is £ = 2\.
We define a map Pat’ : S — W, as follows: Given b € S, the pattern Pat’(b)
of b is the word w = uy_1 - - - ug given by

uj = fif p’b € Sy and u; = v if p’b € S,

(The notation Pat’ is used to distinguish this from the pattern in the en-
compassing case.) If the word for b has length ¢ (the maximum length),
then it is Pat/(b)¢ - Pat’(b) (where the ¢ stands for the complementary word).
For any b € S, the word for b has a power with length ¢ and this power
equals Pat/(b)¢ - Pat/(b). Note that since p* = —1 (mod d), the word of b is
“self-dual”, i.e., of the form t°t, for every b € S.

For a word w of length A, let u/(w) be the number of elements b € S
with Pat’(b) = w. For a word ¢ of length < A, let u/(—t) be the number of
elements b € S with Pat’(b) = t’ - t for some ', in other words, the number
of b with pattern ending in ¢.

Proposition 11.1. Let p be odd.

(1) Suppose eq,...,ex are positive integers with > e; = A. If k is odd,
then

A—k k

and if k is even, then

M1k k-1
sy il = (B2 ()

(2) More generally, given integers ey,...,ex > 0, let N = > e; and
suppose X' < X\. Ifk is odd, andt has the form t = fékp®k—1...p°2 fe1,
then

and if k is even, and t has the form t = v .- f€1 then

Part (1) of Proposition 11.1 contradicts [PW15, Lemma 4.3], which we
believe is in error.

Proof. Part (1) follows from part (2), so we will prove the latter. It is clear
that p/(—t) = p/(—t°).

Suppose kisodd and t = fero®-1...p°2 f€1 Write f% ... f =uy_1---ug
with u; € {f,v}. Then b € S has pattern —¢ if and only if the p-adic digits



736 RACHEL PRIES AND DOUGLAS ULMER

(b1, ...,by) satisfy, for A\+1— N < j <\,

bj <(p—1)/2 ifuyr_; =v and j is not a break of ¢,

bj <(p—1)/2 ifuy_; =v and j is a break of ¢, (11.1)

bj > (p—1)/2 ifuy_; = f and j is not a break of t,

bj > (p—1)/2 ifuy_; = f and j is a break of ¢,
and the number corresponding to the tuple f = (b1,...,bxy1-x) is large,
namely

A1-N
p)\+1—)\’ +1>14+ Z bjpj—l > (p)\—l-l—)\’ + 1)/2
j=1

So there are (p 1= — 1)/2 choices for 8. Taking the product with the
number of possibilities for b; for A +1 — X < j < X yields the quantity in
the statement.

Similarly, if £ is even and ¢ = v - f" = uy_;---ug with u; € {f,v},
then b € S has pattern —t if and only if the p-adic digits (b1, ..., by) satisfy
(11.1), for A+ 1 — X < j < X and the number corresponding to the tuple 3
is small, namely

A+1-=N

0<1+ Y b P <MY +1)/2
j=1

So there are (p**1=* 4+ 1)/2 choices for 8. Again, taking the product with
the number of possibilities for b; for A +1 — X < j < A yields the quantity
in the statement. O

Theorem 11.2. Let p be odd and d = p* + 1. Let Cq be the curve y* =
x(1 —x) and let Jq be its Jacobian. Then the Ekedahl-Oort type of Jy has
the form [—#0] if X =1 and

[—sHo 1 ... /“'2%171]

if X\ > 1, where, letting k(i) be the function described in Lemma 9.6,

- (%))‘_k(i)_l PT—l)k(i)H if i 1s even,
Wy = LNARE VR .
(%) (%) if © is odd.

Proof. This follows immediately from Theorem 7.1, the multiplicities in
Proposition 11.1, and the number of breaks in Lemma 9.6. (Note that the &k
in Proposition 11.1 for w; is k(i) + 1.) O
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11.3. Examples. Let p be odd.

(1) If A =1, the curve C4 has genus (p — 1)/2 and is superspecial: the
list of words starting with f and with positive multiplicity is fv, and
the elementary sequence is

[—®=D/2] = 0,...,0].
(2) If A = 2, the list of words is f fvv, fovf, and the elementary sequence
has a constant section of length (p? — 1)/4 and an increasing section
of length (p? —1)/4:
@AM = 0,..,0,1,2, L (07 — 1)/4)
(3) If A = 3, the list of words is f3v3, f2v3f, (fv)3, fuvf2, and the ele-
mentary sequence has four segments and has the form
where m = (p+ 1)?(p — 1)/8 and n = (p — 1)3/8.
Proposition 11.3. Let p be odd, let X be a positive integer, and let d = p*+1.
Then:
(1) the p-rank of Jgqlp| is 0;
(2) the a-number of Jy[p] is (p — 1)(p*~! + 1) /4;
(3) the si1-multiplicity of Jq[p] is 0 if X is even and (%)A if A is odd;
(4) and the uy-number of Jy[p] is the sum of the s1 1-multiplicity and

O 1y 11y (51 (7
rt 2 2 2

J
0 fA=1,

The analogue of the a-number calculation in part (2) for the Fermat curve
of degree d = p* + 1 is given in [Gro90, Prop. 14.10].

Proof. This follows from Proposition 5.9 using the multiplicities in Propo-
sition 11.1.
O
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