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Abstract
Data poisoning attacks, in which an adversary corrupts a training set with the goal of inducing
specific desired mistakes, have raised substantial concern: even just the possibility of such an
attack can make a user no longer trust the results of a learning system. In this work, we analyze
when strong robustness guarantees can be achieved even in the face of such attacks.

We define and show how to provide robustly-reliable predictions, in which the predicted label is
guaranteed to be correct so long as the adversary has not exceeded a given corruption budget, even
in the presence of instance targeted attacks, where the adversary aims to cause a failure on specific
test examples. Our guarantees are substantially stronger than those in prior approaches, which
were only able to provide certificates that the prediction of the learning algorithm does not change,
as opposed to certifying that the prediction is correct, as we do here. Remarkably, we provide a
complete characterization of learnability in this setting, in particular, nearly-tight matching upper
and lower bounds on the region that can be certified, as well as efficient algorithms for computing
this region given an ERM oracle. Moreover, for the case of linear separators over logconcave
distributions, we provide efficient truly polynomial time algorithms (i.e., non-oracle algorithms)
for such robustly-reliable predictions.

We also extend these results to the active setting where the algorithm adaptively asks for labels
of specific informative examples, and the difficulty is that the adversary might even be adaptive to
this interaction, as well as to the agnostic learning setting where there is no perfect classifier even
over the uncorrupted data.
Keywords: Data poisoning, adversarial robustness, instance-targeted attacks, reliable learning

1. Introduction

Overview: There has been significant interest in machine learning in recent years in building robust
learning systems that are resilient to adversarial attacks, either test time attacks (Goodfellow et al.,
2015; Carlini and Wagner, 2017; Madry et al., 2018; Zhang et al., 2019) or training time attacks
(Steinhardt et al., 2017; Shafahi et al., 2018) also known as data poisoning. A lot of the effort
on provable guarantees for such systems has focused on test-time attacks (e.g., Yin et al., 2019;
Attias et al., 2019; Montasser et al., 2019, 2020, 2021; Goldwasser et al., 2020), and the question
of understanding what is fundamentally possible under training time attacks or data poisoning has
been fairly wide open (Barreno et al., 2006; Levine and Feizi, 2021).
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In data poisoning attacks, an adversary corrupts a training set used to train a learning algorithm
in order to induce some desired behavior. Even just the possibility of such an attack can make a user
no longer trust the results of a learning system. Particularly challenging is the prospect of providing
formal guarantees for instance targeted attacks, where the adversary has a goal of inducing a mistake
on specific instances; the difficulty is that the learner does not know which instance the adversary is
targeting, so it must try to guard against attacks for essentially every possible instance. In this work,
we devolop a general understanding of what robustness guarantees are possible in such cases while
simultaneouly analyzing multiple important axes:

• Instance targeted attacks: The adversary can know our test example in advance, applying its full
corruption budget with the goal of making the learner fail on this example, and even potentially
change its corruptions from one test example to another.

• Robustly-reliable predictions: When our algorithm outputs a prediction y with robustness level η,
this is a guarantee that y is correct so long as the target function belongs to the given class and the
adversary has corrupted at most an η fraction of the training data. For any value η, we analyze
for which points it is possible to provide a prediction with such a strong robustness level; we
provide both sample and distribution dependent nearly matching upper and lower bounds on the
size of this set, as well as efficient algorithms for constructing it given access to an ERM oracle.
We note that prior work (e.g., Gao et al. (2021)) only provided certificates of stability, meaning
that the prediction of the algorithm does not change, rather than correctness. Robustly-reliable
predictions, which certify correctness, imply that our predictions can truly be trusted.

• Active learning against adaptive adversaries: We also address the challenging active learning
setting where labeled data is expensive to obtain, but the learning algorithm has the power to
adaptively ask for labels of select examples from a large pool of unlabeled data in order to learn
accurate classifiers with fewer labeled examples. While this interaction could save labels, it also
raises the concern that the adversary could generate harm by adaptively deciding which points
to corrupt based on choices of the algorithm. We provide algorithms that not only learn with
fewer labeled examples, but are able to operate against such adaptive adversaries that can make
corruptions on the fly.

• Agnostic learning: Providing a reasonable extension to the agnostic case where there is no perfect
classifier even over the uncorrupted data.

While prior work has considered some of these aspects separately, we provide the first results that
bring these together, in particular combining reliable predictions with instance-targeting poisoning
attacks. We also provide nearly-tight upper and lower bounds on guarantees achievable, as well as
efficient algorithms.

Our Results: Instance targeted data poisoning attacks have been of growing concern as learned
classifiers are increasingly used in society. Classic work on data poisoning attacks (e.g., Valiant
(1985); Kearns and Li (1993); Bshouty et al. (2002); Awasthi et al. (2017)) only considers non-
instance-targeted attacks, where the goal of the adversary is to increase the overall error rate, rather
than to cause errors on specific test points it wishes to target. Instance targeted poisoning attacks,
on the other hand, are more challenging but they are particularly relevant for modern applications
like recommendation engines, fake review detectors and spam filters where training data is likely
to include user-generated data, and the results of the learning algorithm could have financial conse-
quences. For example, a company depending on a recommendation engine for advertisement of its
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product has an incentive to induce a positive classification on its own product or to harm a specific
competitor. To defend against such adversaries, we would like to provide predictions with instance-
specific correctness guarantees, even when the adversary can use its entire corruption budget to
target those instances. This has been of significant interest in recent years in machine learning.

In this work we consider algorithms that provide robustly-reliable predictions, which are guaran-
teed to be correct under well-specified assumptions even in the face of targeted attacks. In particular,
given a test input x, a robustly-reliable classifier outputs both a prediction y and a robustness level
η, with a guarantee that y is correct unless one of two bad events has occurred: (a) the true target
function does not belong to its given hypothesis class H or (b) an adversary has corrupted more
than an η fraction of the training data. Such a guarantee intrinsically has in it a notion of targeting,
because the prediction is guaranteed to be correct even if the adversarial corruptions in (b) were
designed specifically to target x. Note that it is possible to produce a trivial (and useless) robustly-
reliable classifier that always outputs η < 0 (call this “abstaining” or an “unconfident prediction”).
We will want to produce classifiers that, as much as possible, instead output confident predictions,
that is, predictions with large values of η. This leads to several kinds of guarantees one might hope
for, because while the adversary cannot cause the algorithm to be incorrect with a high confidence,
it could potentially cause the classifier to produce low-confidence predictions in a targeted way.

In this work, we demonstrate an optimal robustly-reliable learner L, and precisely identify
the guarantees that can be acheived in this setting, with nearly matching upper and lower bounds.
Specifically,

• We prove guarantees on the set of test points for which the learner will provide confident predic-
tions, for any given adversarial corruption of the training data (Theorem 5), or even more strongly,
for all bounded instance-targeted corruptions of the training set (Theorem 7). Intuitively speak-
ing, we show that the set of points on which our learner should be confident are those that belong
to the region of agreement of low error hypotheses. Our learner shows more confidence for points
in the agreement regions of larger radii around the target hypothesis. We also show how L may
be implemented efficiently given an ERM oracle (Theorem 6) by running the oracle on datasets
where multiple copies of the test point are added with different possible labels. We further provide
empirical estimates on the set of such test points (Theorem 9), which could help determine if the
learner is ready to be fielded in a highly adversarial environment.

• We provide fundamental lower bounds on which test points a robustly-reliable learner could pos-
sibly be confident on (Theorems 10 and 11). We do this through characterizing the set of points
an adversary could successfully attack for any learner, which roughly speaking is the region of
disagreement of low error classifiers. In essence, ambiguity about the original dataset prior to
corruption leads to ambiguity about which low error classifier is the target concept, so we cannot
predict confidently on any point in the region of disagreement among these low error concepts.
Our upper bound in Theorem 7 and lower bound in Theorem 10 exactly match, and imply that
our learner L is optimal in its confident set.

• For learning linear separators under logconcave marginal distributions, we show a polynomial
time robustly-reliable learning algorithm under instance-targeted attacks produced by a malicious
adversary (Valiant, 1985) (see Theorem 14). The key idea is to first use the learner from the
seminal work of Awasthi et al. (2017) (that was designed for non-targeted attacks) to first find
a low error classifier and then to use that and the geoemetry of the underlying data distribution
in order to efficiently find a good approximation of the region of agreement of the low error
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classifiers. We also show that the robust-reliability region for this algorithm is near-optimal for
this problem, even ignoring computational efficiency issues (Theorem 28).

• We also study active learning, extending the classic disagreement-based active learning tech-
niques, to achieve comparable robust reliability guarantees as above, but with reduced number of
labeled examples (Theorems 30, 32), even when an adversary can choose which points to corrupt
in an adaptive manner. This is particularly challenging because the adversary can use its entire
corruption budget on only those points whose labels are specifically requested by the learner.

• Finally, we generalize our results to the agnostic case where there is no perfect classifier even
over the uncorrupted data (Theorems 37, 38, 39, and 41). In this case, the adversary could cause
a robustly-reliable learner to make a mistake, but only if every low-error hypothesis in the class
would have also made a mistake on that point as well.

1.1. Context and Related Work

Non-instance targeted poisoning attacks. The classic malicious noise model introduced in (Valiant,
1985) and subsequently analyzed in (Kearns and Li, 1993; Bshouty et al., 2002; Klivans et al., 2009;
Awasthi et al., 2014, 2017) provides one approach to modeling poisoning attacks. However the ma-
licious noise model only captures untargeted attacks — formally the adversary’s goal is to maximize
the learner’s overall error rate.

Instance targeted poisoning attacks. Instance-targeted poisoning attacks were first considered by
Barreno et al. (2006). Shafahi et al. (2018) and Suciu et al. (2018) showed empirically that such
targeted attacks can be powerful even if the adversary adds only correctly-labeled data to the train-
ing set (called “clean-label attacks”). Targeted poisoning attacks have generated significant inter-
est in recent years due to the damage they can cause to the trustworthiness of a learning system
(Mozaffari-Kermani et al., 2014; Chen et al., 2017; Geiping et al., 2020).

Past theoretical work on defenses against instance-targeted poisoning attacks has generally fo-
cused on producing certificates of stability, indicating when an adversary with a limited budget could
not have changed the prediction that was made. For example, Levine and Feizi (2021) propose par-
titioning training data into k portions, training separate classifiers on each portion, and then using
the strength of the majority-vote over those classifiers as such a certificate (since any given poi-
soned point can corrupt at most one portion). Gao et al. (2021) formalize a wide variety of different
kinds of adversarial poisoning attacks, and analyze the problem of providing certificates of stability
against them in both distribution-independent and distribution-specific settings. In contrast to those
results that certify when a budget-limited adversary could not change the learner’s prediction, our
focus is on certifying that the prediction made is correct. For example, a learner that always out-
puts the “all-negative” classifier regardless of the training data would be a certifying learner in the
sense of Gao et al. (2021) (for an arbitrarily large attack budget) and its correctness region would
be the probability mass of true negative examples. In contrast, in our model, outputting a prediction
(y, η) means that y is guaranteed to be a correct prediction so long as the adversary corrupted at
most an η fraction of the training data and the target belongs to the given class; so, a learner that
always outputs (y, η) for y = −1 and η ≥ 0 would not be robustly-reliable in our model (unless the
given class only had the all-negative function). We are the first to consider such strong correctness
guarantees in the presence of adversarial data poisoning.

Interestingly, for learning linear separators, our results improve over those of Gao et al. (2021)
even for producing certificates of stability, in that our algorithms in run polynomial time and apply
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to a much broader class of data distributions (any isotropic log-concave distribution and not only
uniform over the unit ball).

Blum et al. (2021) provide a theoretical analysis for the special case of clean-label poisoning
attacks (Shafahi et al., 2018; Suciu et al., 2018). They analyze the probability mass of attackable
instances for various algorithms and hypothesis classes. However, they do not consider any form of
certification or reliability guarantees.

Reliable useful learners. Our model can be viewed as a broad generalization of the reliable-useful
learning model of Rivest and Sloan (1988), and the perfect selective classification model of El-
Yaniv and Wiener (2010, 2012), which only consider learning from noiseless data, to the setting of
noisy data and adversarial poisoning attacks. El-Yaniv and Wiener (2010) in particular give tight
positive and negative results for the noise-free case, and exploration of the “risk-coverage” tradeoff
in which the algorithm is allowed to have a nonzero error-rate in the region of confidence. Because
we are concerned with instance-wise guarantees against targeted attacks, in our setting we require
zero error when the algorithm claims to be confident: a prediction (y, η) must be correct whenever
an adversary has poisoned at most an η fraction of the training points.

2. Formal Setup

Setup. Let D denote a data distribution over X ×Y , where X is the instance space and Y = {0, 1}
is the label space. Let H ⊂ YX be the concept space. We will primarily assume the realizable
case, that is, for some h∗ ∈ H, for any (x, y) in the support supp(D) of the data distribution D,
we have y = h∗(x) (we extend to the non-realizable case in Section 6). We will use DX to denote
the marginal distribution over X of unlabeled examples. The learner L has access to a corruption
S′ of a sample S ∼ Dm, and is expected to output a hypothesis hL(S′) ∈ YX (proper with respect
to H if hL(S′) ∈ H). We will use the 0-1 loss, i.e. `(h, (x, y)) = 1[h(x) 6= y]. For a fixed
(possibly corrupted) sample S′, let errS′(h) denote the average empirical loss for hypothesis h, i.e.
errS′(h) = 1

|S′|
∑

(x,y)∈S′ `(h, (x, y)). Similarly define errD(h) = E(x,y)∼D[`(h, (x, h∗(x)))]. For
a sample S, letHη(S) = {h ∈ H | errS(h) ≤ η} be the set of hypotheses inH with at most η error
on S. Similarly for any distribution D, let Hη(D) = {h ∈ H | errD(h) ≤ η}. We will consider
a class of attacks where the adversary can make arbitrary corruptions to up to an η fraction of the
training sample S. If the adversary can also choose which examples to attack, it corresponds to the
nasty attack model of Bshouty et al. (2002). We formalize the adversary below.
Adversary. Let d(S, S′) = 1 − |S∩S

′|
m ∈ [0, 1] denote the normalized Hamming distance between

two samples S, S′ with m = |S| = |S′|. Let A(S) denote the sample corrupted by adversary
A. For η ∈ [0, 1], let Aη be the set of adversaries with corruption budget η and Aη(S) = {S′ |
d(S, S′) ≤ η} denotes the possible corrupted training samples under an attack from an adversary
in Aη. Intuitively, if the given sample is S′, we would like to give guarantees for learning when
S′ ∈ Aη(S) for some (realizable) uncorrupted sample S. Also we will use the convention that
Aη(S) = {} for η < 0 to allow the learner to sometimes predict without any guarantees (cf.
Definition 1). Note that the adversary can change both x and y in an example (x, y) it chooses to
corrupt, and can arbitrarily select which η fraction to corrupt as in Bshouty et al. (2002).

We now define the notion of a robustly-reliable learner in the face of instance-targeted attacks.
This learner, for any given test example x, outputs both a prediction y and a robust reliability level
ηx, such that y is guaranteed to be correct so long as h∗ ∈ H and the adversary’s corruption budget
is ≤ ηx. This learner then only gets credit for predictions guaranteed to at least a desired value η.
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Definition 1 A learner L is robustly-reliable for sample S′ w.r.t. concept spaceH if, given S′, the
learner outputs a function LS′ : X → Y × R such that for all x ∈ X if LS′(x) = (y, η) and if
S′ ∈ Aη(S) for some sample S labeled by concept h∗ ∈ H, then y = h∗(x). Note that if η < 0,
then Aη(S) = {} and the above condition imposes no requirement on the learner’s prediction. If
LS′(x) = (y, η) then let hL(S′)(x) = y.

Given sample S labeled by h∗, the η-robustly-reliable region RRL(S, h∗, η) for learner L is
the set of points x ∈ X for which given any S′ ∈ Aη(S) we have that LS′(x) = (y, η′) with η′ ≥ η.
More generally, for a class of adversariesA with budget η, RRLA(S, h∗, η) is the set of points x ∈ X
for which given any S′ ∈ A(S) we have that LS′(x) = (y, η′) with η′ ≥ η. We also define the

empirical η-robustly-reliable region R̂R
L

(S′, η) = {x ∈ X : LS′(x) = (y, η′) for some η′ ≥ η}.
So, RRLA(S, h∗, η) = ∩S′∈A(S)R̂R

L
(S′, η).

Remark 2 The requirement of security even to targeted attacks appears in two places in Definition
1. First, if a robustly-reliable learner outputs (y, η) on input x, then y must be correct even if an η
fraction of the training data had been corrupted specifically to target x. Second, for a point x to be
in the η-robustly-reliable region, it must be the case that for any S′ ∈ Aη(S) (even if S′ is a targeted
attack on x) we have LS′(x) = (y, η′) for some η′ ≥ η. So, points in the η-robustly-reliable region
are points an adversary cannot successfully target with a budget of η or less.

Definition 1 describes a robustly-reliable learner for a particular (corrupted) sample. We now ex-
tend this to the notion of a learner being robustly reliable with high probability for an adversarially-
corrupted sample drawn from a given distribution.

Definition 3 A learner L is a (1 − γ)-probably robustly-reliable learner for concept space H
under marginal DX at sample size m if for any target function h∗ ∈ H, with probability at least
1 − γ over the draw of S ∼ Dm (D is the distribution over examples labeled by h∗ with marginal
DX ), for all S′ ∈ Aη(S), and for all x ∈ X , if LS′(x) = (y, η′) for η′ ≥ η then y = h∗(x). If L
is a (1 − γ)-probably robustly-reliable learner with γ = 0 for all marginal distributions DX , then
we say L is strongly robustly-reliable for H. Note that a strongly robustly-reliable learner is a
robustly-reliable learner in the sense of Definition 1 for every sample S′ of size m.

The η-robustly-reliable correctness for learner L for sample S labeled by h∗ is given by the
probability mass of the robustly-reliable region, RobCL(D, η, S) = Prx∼DX [x ∈ RRL(S, h∗, η)].

In our analysis we will also need several key quanntities – agreement/disagreement regions and
the disagreement coefficient — that have been previously used in the disagreement-based active
learning literature (Balcan et al., 2006; Hanneke, 2007; Balcan et al., 2009).

Definition 4 For a set H ⊆ H of hypotheses, define the disagreement region DIS(H) = {x ∈
X : ∃h1, h2 ∈ H s.t. h1(x) 6= h2(x)}, and the agreement region Agree(H) = X \ DIS(H). For
hypotheses h, h′ we denote their disagreement over distribution D as dD(h, h′) = Prx∼DX [h(x) 6=
h′(x)] and similarly their disagreement over sample S as dS(h, h′) = 1

|S|
∑

(x,y)∈S 1[h(x) 6=
h′(x)]. For a hypothesis h and a value ε ≥ 0, the ball BHD (h, ε) around h of radius ε is defined as the
set {h′ ∈ H : dD(h, h′) ≤ ε}, and similarly for sample S, BHS (h, ε) = {h′ ∈ H : dS(h, h′) ≤ ε}.
Lastly, the disagreement coefficient, θε, ofH with respect to h∗ over D is given by

θε = sup
r>ε

PrDX [DIS(BHD (h∗, r))]

r
.
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3. Robustly Reliable Learners for Instance-Targeted Adversaries

We now provide a general strongly robustly-reliable learner using the notion of agreement regions
(Theorem 5) and show how it can be implemented efficiently given access to an ERM oracle for
H (Theorem 6). We then prove that its robustly reliable region is pointwise optimal (contains
the robustly reliable regions of all other such learners), for all values of the adversarial budget η
(Theorems 7 and 10). Recall that a strongly robustly-reliable learner L is given a possibly-corrupted
sample S′ and outputs a functionLS′ such that ifLS′ = (y, η) and S′ = Aη(S) for some (unknown)
uncorrupted sample S labeled by some (unknown) target concept h∗ ∈ H, then y = h∗(x).

Theorem 5 Let Hη(S′) = {h ∈ H | errS′(h) ≤ η}. For any hypothesis class H, there exists a
strongly robustly-reliable learner L that given S′ outputs a function LS′ such that

R̂R
L

(S′, η) ⊇ Agree(Hη(S′)).

Proof Given sample S′, the learner L outputs the function LS′(x) = (y, η) where η is the largest
value such that x ∈ Agree(Hη(S′)), and y is the common prediction in that agreement region; if
x 6∈ Agree(Hη(S′)) for all η ≥ 0, then LS′(x) = (⊥,−1). This is a strongly robustly-reliable
learner because if LS′(x) = (y, η) and S′ ∈ Aη(S), then h∗ ∈ Hη(S′), so y = h∗(x). Also, by
design, all points in Agree(Hη(S′)) are given a robust reliability level at least η.

We now show how the strongly robustly-reliable learner L from Theorem 5 can be implemented
efficiently given access to an ERM oracle for classH.

Theorem 6 Learner L from Theorem 5 can be implemented efficiently given an ERM oracle forH.

Proof Given sample S′ and test point x, for each possible label y ∈ Y the learner first computes the
minimum value εy of the empirical error on S′ achievable using h ∈ H subject to h(x) = y; that is,
εy = min{errS′(h) : h ∈ H, h(x) = y}. This can be computed efficiently using an ERM oracle by
simply running the oracle on a training set consisting of S′ and m+ 1 copies of the labeled example
(x, y) where m = |S′|; this will force ERM to produce a hypothesis h such that h(x) = y. Now if
ε0 = ε1, then this means that x 6∈ Agree(Hη(S′)) for any value η for whichHη(S′) is nonempty, so
the algorithm can output (⊥,−1). Otherwise, the algorithm can output the label y = argminy′{εy′}
and η = max{ε0, ε1}− 1/m. Specifically, by definition of εy, this is the largest value of η such that
x ∈ Agree(Hη(S′)).

We now analyze the η-robustly-reliable region for the algorithm above (Theorems 7 and 9)
and prove that it is optimal over all strongly robustly-reliable learners (Theorem 10). Specifically,
Theorem 7 provides a guarantee on the size of the η-robustly-reliable region in terms of properties
of h∗ and S, and then Theorem 9 gives an empirically-computable bound. Thus, these indicate when
such an algorithm can be fielded with confidence even in the presence of adversaries that control an
η fraction of the training data and can modify them at will.

Theorem 7 For any hypothesis class H, the strongly robustly-reliable learner L from Theorem 5
satisfies the property that for all S and for all η ≥ 0,

RRL(S, h∗, η) ⊇ Agree
(
BHS (h∗, 2η)

)
.
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Moreover, if S ∼ Dm then with probability 1−δ, Agree(BHS (h∗, 2η)) ⊇ Agree(BHD (h∗, 2η+ε)) for
m = O( 1

ε2
(d+ ln 1

δ )). So, whp, RRL(S, h∗, η) ⊇ Agree(BHD (h∗, 2η + ε)). Here d = VCdim(H).

Proof By Theorem 5, the empirical η-robustly-reliable region satisfies R̂R
L

(S′, η) ⊇ Agree(Hη(S′)).

The set RRL(S, h∗, η) = ∩S′∈Aη(S)R̂R
L

(S′, η) therefore contains⋂
S′∈Aη(S)

Agree(Hη(S′)) = Agree
(
BHS (h∗, 2η)

)
,

where the above equality holds because if h ∈ BHS (h∗, 2η) then there exists S′ ∈ Aη(S) such that
h ∈ Hη(S′), and if h ∈ Hη(S′) for some S′ ∈ Aη(S) then h ∈ BHS (h∗, 2η). Finally, by uniform
convergence (Anthony and Bartlett (2009) Theorem 4.10), if S ∼ Dm for m = O( 1

ε2
(d + ln 1

δ ))
then with probability at least 1 − δ we have dD(h, h∗) ≤ dS(h, h∗) + ε for all h ∈ H. Thus,
Agree(BHS (h∗, 2η)) ⊇ Agree(BHD (h∗, 2η + ε), and RRL(S, h∗, η) ⊇ Agree(BHD (h∗, 2η + ε).

Remark 8 (Linear separators for uniform distribution over the unit ball) The above agreement
region can be fairly large for the well-studied setting of learning linear separators under the uni-
form distribution D over the unit ball in Rd, or more generally when the disagreement coeffi-
cient (Hanneke (2007)) is bounded. Since the disagreement coefficient is known to be at most
π
√
d in this setting (Hanneke (2007)), we have that Pr[DIS(BHD (h∗, 2η + ε))] ≤ π

√
d(2η + ε) or

Pr[Agree(BHD (h∗, 2η + ε))] ≥ 1 − π
√
d(2η + ε). For example, if 1% of our data is poisoned and

our dataset is large enough so that ε = 0.1%, even for d = 9 we are confident on over 80% of the
points. We illustrate the relevant agreement region for linear separators in Figure 1.

Figure 1: The agreement region of lin-
ear separators that can be
given robustly-reliable pre-
dictions.

We can also obtain (slightly weaker) empirical esti-
mates for the size of the robustly-reliable region for the
learner L from Theorem 5. Such estimates could help
determine when the algorithm can be safely fielded in an
adversarial environment. For example, in federated learn-
ing, if an adversary controls processors that together hold
an η fraction of the training data, and can also cause the
learning algorithm to re-run itself at any time, then this
would allow one to decide if a low abstention rate can
be guaranteed or if additional steps need to be taken (like
collecting more training data, or adding more security to
processors).

Theorem 9 For any hypothesis class H, the strongly robustly-reliable learner L from Theorem 5
satisfies the property that for all S, for all η ≥ 0 and for all S′ ∈ Aη(S),

RRL(S, h∗, η) ⊇ Agree(H3η(S
′)).

Furthermore, L outputs a hypothesis ĥ such that RRL(S, h∗, η) ⊇ Agree
(
BHS′(ĥ, 4η)

)
.

8



ROBUSTLY-RELIABLE LEARNERS UNDER POISONING ATTACKS

Proof We use the fact that S′ ∈ Aη(S) to conclude Agree(H3η(S
′)) ⊆ Agree

(
BHS (h∗, 2η)

)
, which

together with Theorem 7 implies the first claim. Indeed h ∈ BHS (h∗, 2η) implies that errS(h) ≤ 2η

and therefore errS′(h) ≤ 3η. Also, if errS′(h) ≤ 3η, then h ∈ BHS′(ĥ, 4η) since errS′(ĥ) ≤ η again
using the triangle inequality, which implies the second claim.

It turns out that the bound on the robustly-reliable region from Theorem 7 is essentially optimal.
We can show the following lower bound on the ability of any robustly-reliable learner for any
hypothesis classH to be confident on any point in Agree(BHS (h∗, 2η)). Our upper and lower bounds
extend the results of Gao et al. (2021) for learning halfspaces over the uniform distribution to general
hypothesis classes and any distribution with bounded region of disagreement.

Theorem 10 Let L be a strongly robustly-reliable learner for hypothesis class H. Then for any
h∗ ∈ H and any sample S, any point in the η-robustly-reliable region must lie in the agreement
region of BHS (h∗, 2η). That is,

RRL(S, h∗, η) ⊆ Agree
(
BHS (h∗, 2η)

)
.

Moreover, if S ∼ Dm then with probability 1−δ, Agree(BHS (h∗, 2η)) ⊆ Agree(BHD (h∗, 2η−ε)) for
m = O( 1

ε2
(d+ ln 1

δ )), where d = VCdim(H). So, whp, RRL(S, h∗, η) ⊆ Agree(BHD (h∗, 2η− ε)).

Proof Let x 6∈ Agree(BHS (h∗, 2η)). We will show that x cannot be in the η-robustly-reliable
region. First, since x 6∈ Agree(BHS (h∗, 2η)), there must exist some h′ ∈ BHS (h∗, 2η) such that
h′(x) 6= h∗(x). Next, let SX be the points in S with labels removed, and let SA denote a labeling
of SX such that exactly half the points in ∆S = {x ∈ SX | h′(x) 6= h∗(x)} are labeled according
to h∗ (the remaining half using h′, for convenience assume |∆S | is even). Notice that sample
S = {(xi, h∗(xi)) | xi ∈ SX} which labels points in SX using h∗ satisfies SA ∈ Aη(S) since
h′ ∈ BS(h∗, 2η). Also for S′ = {(xi, h′(xi)) | xi ∈ SX} labeled by h′, we have SA ∈ Aη(S′).
Now, assume for contradiction that x ∈ RRL(S, h∗, η). This means that LSA(x) = (y, η′) for
some η′ ≥ η. However, if y 6= h∗(x), the learner is incorrectly confident for (true) dataset S since
SA ∈ Aη(S). Similarly, if y = h∗(x), the learner is incorrectly confident for sample S′ since
h′(x) 6= h∗(x). Thus, L is not a strongly robustly-reliable learner and we have a contradiction.

Finally, by uniform convergence, if S ∼ Dm for m = O( 1
ε2

(d+ ln 1
δ )) then with probability at

least 1−δ we have dD(h, h∗) ≥ dS(h, h∗)−ε for all h ∈ H. This implies that Agree(BHS (h∗, 2η)) ⊆
Agree(BHD (h∗, 2η − ε) and so RRL(S, h∗, η) ⊆ Agree(BHD (h∗, 2η − ε) as desired.

We can also extend the above result to (1 − γ)-probably robustly-reliable learners, as follows.
See Appendix A for a proof.

Theorem 11 Let L be a (1 − γ)-probably robustly-reliable learner for hypothesis class H under
marginal DX . For any h∗ ∈ H, given a large enough sample size m = |S| ≥ c

ε2
ln 1

δ , we have

ES∼Dm [RobCL(D, η, S)] ≤ Pr[Agree(BHD (h∗, 2η − ε))] + 2γ + δ,

where c is an absolute constant and D is the distribution with marginal DX consistent with h∗.

We can strengthen Theorem 11 for learners that satisfy a somewhat stronger condition that with
probability at least 1 − γ over the draw of the unlabeled sample SX , for all targets h∗ ∈ H, the
sample S produced by labeling SX by h∗ should be a good sample. See Theorem 16 (Appendix A).
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4. Robustly-Reliable Learners for Instance-Targeted Malicious Noise

So far, our noise model has allowed the adversary to corrupt an arbitrary η fraction of the training
examples. We now turn to the classic malicious noise model (Valiant, 1985; Kearns and Li, 1993)
in which the points an adversary may corrupt are selected at random: each point independently
with probability 1 − η is drawn from D and with probability η is chosen adversarially. Roughly,
the malicious adversary model corresponds to a data poisoner that can add poisoned points to the
training set (because the “clean” points are a true random sample from D) whereas the Aη noise
model corresponds to an adversary that can both add and remove points from the training set.

Traditionally, the malicious noise model has been examined in a non-instance-targeted setting.
That is, the concern has been on the overall error-rate of classifiers learned in this model. Here, we
consider instance-targeted malicious noise, and provide efficient robustly-reliable learners building
on the seminal work of Awasthi et al. (2014, 2017). To discuss the set of possible adversarial
corruptions in the malicious noise model with respect to particular random draws, for training set
S and indicator vector v ∈ {0, 1}|S|, let Amal(S, v) denote the set of all possible S′ achievable
by replacing the points in S indicated by v with arbitrary points in X × Y . We will be especially
interested in Amal(S, v) for v ∼ Bernoulli(η)m. Formally,

Definition 12 Given sample S and indicator vector v ∈ {0, 1}|S|, letAmal(S, v) denote the collec-
tion of corrupted samples S′ achievable by replacing the points in S indicated by v with arbitrary
points in X × Y . We use Amalη to denote Amal(S, v) for v ∼ Bernoulli(η)|S|.

We now define the notion of probably robustly-reliable learners and their robustly-reliable re-
gion for the malicious adversary model.

Definition 13 A learner L is a (1−γ)-probably robustly-reliable learner againstAmalη for class
H under marginal DX at sample size m if for any target function h∗ ∈ H, with probability at least
1− γ over the draw of S ∼ Dm and v ∼ Bernoulli(η)m, for all S′ ∈ Amal(S, v) and all x ∈ X , if
LS′(x) = (y, η′) for η′ ≥ η then y = h∗(x). The η-robustly-reliable region RRLmal(S, h

∗, η, v) =

∩S′∈Amal(S,v)R̂R
L

(S′, η), that is, the set of points x given robust-reliability level η′ ≥ η for all
S′ ∈ Amal(S, v). The η-robustly-reliable correctness is defined as the probability mass of the
η-robustly-reliable region, RobCLmal(D, η, S, v) = PrDX [RRLmal(S, h

∗, η, v)].

In Appendix B we show how this model relates to theAη adversary from Section 3, and to other
forms of the malicious noise model of Kearns and Li (1993).

4.1. Efficient algorithm for linear separators with malicious noise

For learning linear separators, the above approaches and prior work Gao et al. (2021) provide in-
efficient upper bounds, since we do not generically have an efficient ERM oracle for that class. In
the following we show how we can build on an algorithm of Awasthi et al. (2017) for noise-tolerant
learning over log-concave distributions to give strong per-point reliability guarantees that scale well
with adversarial budget η. The algorithm of Awasthi et al. (2017) operates by solving an adaptive
series of convex optimization problems, focusing on data within a narrow band around its current
classifier and using an inner optimization to perform a soft outlier-removal within that band.1 We

1. A simplified version of the algorithm without the outlier removal step was analyzed by Awasthi et al. (2015, 2016)
for the case of learning under Massart noise.
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will need to modify the algorithm to fit our setting, and then build on it to produce per-point relia-
bility guarantees.

Theorem 14 Let DX be isotropic log-concave over Rd and H be the class of linear separators.
There is a polynomial-time (1 − δ)-probably robustly-reliable learner L against Amalη for class
H under DX based on Algorithm 2 of Awasthi et al. (2017), which uses a sample of size m =
poly(d, 1

η , log(1/δ)). Furthermore, for any h∗ ∈ H, with probability at least 1−δ over S ∼ Dm and

v ∼ Bernoulli(η)m, we have PrDX [RRLmal(S, h
∗, η, v)] ≥ 1− Õ(

√
dη). The Õ-notation suppresses

dependence on logarithmic factors and distribution-specific constants.

Proof We will run a deterministic version of Algorithm 2 of Awasthi et al. (2017) (see Appendix
C) and let h = h(S′) be the halfspace output by this procedure. By Theorem 27 (an analog of
Theorem 4.1 of Awasthi et al. (2017) for the Amalη noise model), there is a constant C0 such that
errD(h) ≤ C0η with probability at least 1 − δ over the draw of S ∼ Dm and v ∼ Bernoulli(η)m.2

In the following, we will assume the occurrence of this 1 − δ probability event where the learner
outputs a low-error hypothesis for any S′ ∈ Amal(S, v). We now show how we extend this result to
robustly-reliable learning.

We will first show we can in principle output a robust-reliability value η on all points in the
set Agree(BHD (h,C0η)). (Algorithmically, we will do something slightly different because we do
not have an ERM oracle and so cannot efficiently test membership in the agreement region). In-
deed by Theorem 27, h∗ is guaranteed to be in BHD (h,C0η). By the definition of the disagree-
ment region, if h(x) 6= h∗(x) for some x, then x ∈ DIS(BHD (h,C0η)). Therefore every point in
Agree(BHD (h,C0η)) can be confidently classified with robust reliability level η.

Since we cannot efficiently determine if a point lies in Agree(BHD (h,C0η)), algorithmically we
instead do the following. First, for any halfspace h′, let wh′ denote the unit-length vector such that
h′(x) = sign(〈wh′ , x〉). Next, following the argument in the proof of Theorem 14 of Balcan and
Long (2013), we show that for some constant C1, for all values α, we have:

Agree
(
BHD (h,C0η)

)
⊇
{
x : ||x|| < α

√
d
}
∩
{
x : |〈wh, x〉| ≥ C1αη

√
d
}
. (1)

Algorithmically, we will provide robustness level η for all points satisfying the right-hand-side
above (which we can do efficiently), and the containment above implies this is legal. To complete
the proof of the theorem, we must (a) give the proof of containment (1) and (b) prove that the
intersection of the right-hand-sides of (1) over all h = h(S′) for S′ ∈ Amal(S, v) has probability
mass 1− Õ(

√
dη).

We begin with (a) giving the proof of the containment in formula (1). First, by Lemma 20 (due
to Balcan and Long (2013)), BHD (h,C0η) consists of hypotheses having angle at most C1η to h for
some constant C1. So, if ||x|| < α

√
d, then for any h′ ∈ BHD (h,C0η) we have:

|〈wh′ , x〉 − 〈wh, x〉| ≤ ||wh′ − wh|| · ||x|| < C1αη
√
d.

2. While Awasthi et al. (2017) describe the adversary as making its malicious choices in a sequential order, the results
all hold if the adversary makes its choices after the sample S has been fully drawn; that is, if the adversary selects an
arbitrary S′ ∈ Amal(S, v). What requires additional care is that the results of Awasthi et al. (2017) imply that for
any S′ ∈ Amal(S, v) the algorithm succeeds with probability 1 − δ, whereas we want that with probability 1 − δ
the algorithm succeeds for any S′ ∈ Amal(S, v); in particular, the adversary can make its choice after observing
any internal randomness in the algorithm. We address this by making the algorithm deterministic, increasing its label
complexity. For more discussion, see Appendix C.
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Thus, if x also satisfies |〈wh, x〉| ≥ C1αη
√
d, we have 〈wh, x〉〈wh′ , x〉 > 0. This implies that

x ∈ Agree
(
BHD (h,C0η)

)
, completing the proof of containment (1).

Now we prove (b) that the intersection of the right-hand-sides of (1) over all h = h(S′) for
S′ ∈ Amal(S, v) has probability mass 1− Õ(

√
dη). To do this, we first show that for all h such that

errD(h) ≤ C0η we have:

Bα
√
d ∩ {x : |〈wh, x〉| ≥ C1αη

√
d} ⊇ Bα√d ∩ {x : |〈wh∗ , x〉| ≥ 2C1αη

√
d}, (2)

where Bα
√
d = {x : ||x|| < α

√
d} is the open ball of radius α

√
d centered at the origin in the

Euclidean d-space. This follows from the same argument used to prove (a) above. Specifically,
by Lemma 20, BHD (h∗, C0η) consists of hypotheses having angle at most C1η to wh∗ for the same
constant C1 as above. So, if ||x|| < α

√
d, then for any h ∈ BHD (h∗, C0η) we have

|〈wh, x〉 − 〈wh∗ , x〉| ≤ ||wh − wh∗ || · ||x|| < C1αη
√
d.

This means that if |〈wh∗ , x〉| ≥ 2C1αη
√
d then |〈wh, x〉| ≥ C1αη

√
d.

To complete the proof of (b), we now just need to show that the probability mass of the right-
hand-side of (2) is at least 1 − Õ(

√
dη). This follows using the argument in the proof of Theorem

14 in Balcan and Long (2013). First we use the fact that for an isotropic log-concave distribution
over Rd, we have PrDX (||x|| ≥ α

√
d) ≤ e−α+1 (Lemma 19). This means we can choose α =

ln(1/(
√
dη)) and ensure that at most an O(

√
dη) probability mass of points x fail to satisfy the first

term in the right-hand-side of (2). For the second term, using the fact that marginals of isotropic log-
concave distributions are also isotropic log-concave (in particular, the 1-dimensional marginal given
by taking inner-product with wh∗) and that the density of a 1-dimensional isotropic log-concave
distribution is at most 1 (Lemma 19), at most an O(αη

√
d) probability mass of points x fail to

satisfy the second term in the right-hand-side of (2). Putting these together yields the theorem.

Remark. Note that the above result improves over a related distribution-specific result of Gao et al.
(2021) in three ways. First, we are able to certify that the prediction of our algorithm is correct rather
than only certifying that the prediction would not change due to the adversary intervention. Second,
we are able to handle much more general distribution — any isotropic logconcave distribution, as
opposed to just the uniform distribution. We essentially achieve the same Õ(

√
dη) upper bound on

the uncertified region but for a much larger class of distributions. Finally, unlike Gao et al. (2021),
our algorithm is polynomial time.

Lower bounds. In Appendix D we give a near-matching lower bound on robust reliability toAmalη .

5. Active Robustly Reliable Learners

Instance-targeted attacks may also occur in situations where the labeled data is expensive to obtain
and one would typically use active learners to learn accurate classifiers with fewer labeled examples.
For example, consider translation to a rare language for which an expert can be expensive to obtain.
We might have access to proprietary labeled data, but may be charged per label and would like to
minimize the cost of obtaining the labels. It is possible that an attacker with access to the data
corrupts it in an instance-targeted way.

We consider a pool-based active learning setting (Settles (2009)), where the learner draws (la-
beled and unlabeled) examples from a large pool of examples which may have been corrupted by

12
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an instance-targeted adversary. That is, a dataset S is drawn according to some true distribution D
and the instance-targeted adversary may corrupt an η fraction of the dataset arbitrarily (change both
data points and labels). The learner has access to unlabeled examples from the corrupted dataset
S′, and is allowed to make label queries for examples in the dataset. The goal of the learner is to
produce a robustly-reliable predictor for the marginal distribution DX , and using as few labels as
possible. Our (passive) robustly-reliable learner in Theorem 7 needs Õ( d

ε2
) examples; in this section

we explore if we can actively robustly-reliably learn with fewer labeled examples.
Our results are stated formally and proven in Appendix E. Here we briefly summarize the results.

In Theorem 30, we propose an active learning method that, for any given η, produces an optimal
η-robustly-reliable region (i.e., matching the upper and lower bounds of Theorems 7 and 10), while
making a number of label queries that, for small η, is significantly smaller than the number m of
examples in S′ (the corrupted sample), when the disagreement coefficient θ is small: specifically,
it makes a number of queries Õ(θηm+ θd). We note that in this setting, because robust-reliability
requires reliability for any corruption S′ of S, we can effectively think of the adversary as being
adaptive, meaning it can even adaptively choose its corruptions based on which points the learner
will choose to query. For instance, it could choose to corrupt the labels of every one of the first
ηm queries made by the learning algorithm, so that the learner might need ηm queries just to find a
single uncorrupted sample. The algorithm we propose for this challenging setting is actually quite
simple: we process the corrupted data S′ in sequence, and for each new point xi we query its label
yi iff xi is in the region of disagreement of the set of all h ∈ H that make at most ηm mistakes
among all previously-queried points. In the end, after processing all m examples in S′, we use
the region of agreement of this same set of classifiers as the empirical η-robustly-reliable region,
predicting using their agreed-upon label for any test point x in this region. In addition to this result,
in Theorem 32 we also show further reductions in label complexity are possible when the adversary
is oblivious to the internal randomness of the learner.

6. Robustly reliable agnostic learners

So far we have assumed that the uncorrupted samples S are realizable under our concept classH. We
now show that our results can be extended to the non-realizable setting, i.e. minh∈H errS(h) > 0,
with weaker but still interesting guarantees. Specifically, our algorithm might now produce an
incorrect prediction (y, η) with η greater than the adversary’s power, but only if every hypothesis in
H with low error on the uncorrupted S would also be incorrect on that example.

We can define a ν-tolerably robustly-reliable learner in the non-realizable setting as the learner
whose reliable predictions agree with every low error hypothesis (error at most ν) on the uncorrupted
sample. If there are multiple h ∈ H satisfying errS(h) ≤ ν and they disagree on x then it must
be the case that the algorithm outputs η < 0. The setting ν = 0 yields the usual robustly-reliable
learner. The (ν, η)-robustly-reliable region RRL(S, ν, η) and empirical (ν, η)-robustly-reliable re-

gion R̂R
L

(S′, ν, η) are defined as in the realizable setting. Similarly to Definition 3, we can also
extend this to a robustly-reliable learner with high probability for an adversarially-corrupted sam-
ple drawn from a given distribution. A (1 − γ)-probably ν-tolerably robustly-reliable learner for
concept space H would be tolerably robustly-reliable with probability at least 1 − γ over the draw
of samples. Formal definitions appear in Appendix F.

We provide a ν-tolerably strongly robustly-reliable learner using the notion of agreement regions
(Theorem 37). Our results here generalize corresponding results from Section 3. We first present our
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learner and a guarantee on the learner’s empirical (ν, η)-robustly-reliable region given any (possibly
corrupted) dataset. Our algorithm assumes ν is given. The learner’s empirical robustly-reliable
region contains the agreement region of hypotheses with error at most η+ν on the corrupted sample,
which implies agreement with all hypotheses with error at most ν on the uncorrupted dataset. Using
arguments similar to those in the proof of Theorem 7, we can show that the (ν, η)-robustly-reliable
region of our learner contains the agreement region of hypotheses with error at most 2η + ν on the
uncorrupted sample, i.e. Agree (H2η+ν(S)) (Theorem 38). We also show a matching lower bound
by showing that any point not in the agreement region may be successfully attacked for any learner
(Theorem 39).

We observe that any 2ν-tolerably strongly robustly-reliable learner for the concept space can be
used to give a (1−γ)-probably ν-tolerably robustly-reliable learner over a distributionD where the
best hypothesis h∗ in H has error errD(h∗) = ν (Theorem 40). We can use this reduction, together
with our ν-tolerably strongly robustly-reliable learner, to give a probably tolerably robustly-reliable
learner for any distributionD along with guarantees about its distribution-averaged robust reliability
region (Theorem 41). We further show a lower bound on the robust reliability region of any (1 −
γ)-probably ν-tolerably robustly-reliable learner which implies that our learner is nearly optimal
(Theorem 42). The key idea in establishing this lower bound is the creation of two distributions
with the same marginal but nearly-consistent with two hypotheses which are close in error. See
Appendix F for formal statements of the results and proofs.

7. Discussion

In this work, we provide the first correctness guarantees (specifically robust reliability) for instance-
targeted training time attacks, along with guarantees about the size of the robustly-reliable region.
One implication of our results is a combined robustness against test-time attacks as well, where an
adversary makes imperceptible or irrelevant perturbations to the test examples in order to induce
errors. Specifically, even without being given any knowledge of the kinds of perturbations such
an adversary could make, our algorithms in the worst case will simply abstain (output η < 0) or
produce an η less than the perturbation budget of the adversary if the adversary is performing both
kinds of attacks together. In the agnostic case, the adversary could cause us to make a mistake,
but only if every low-error hypothesis in the class would have also made a mistake. An interesting
open question is to provide usefulness guarantees for test time attacks, for reliable predictors: that
is, nontrivial bounds on the probability that an adversary’s perturbation of the test point can cause
the predictor to abstain.
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Appendix A. Additional lower bounds in the realizable setting

Proof of Theorem 11 Let L be a (1− γ)-probably robustly-reliable learner forH under marginal
DX and let h∗ ∈ H. Let x 6∈ Agree(BHD (h∗, 2η− ε)). To prove the theorem, it suffices to prove that
PrS∼Dm [x ∈ RRL(S, h∗, η)] ≤ 2γ + δ.

Select some h′ ∈ BHD (h∗, 2η − ε) such that h′(x) 6= h∗(x); such an h′ exists by definition
of the disagreement region. Let S ∼ Dm and define S′ = {(x, h′(x)) | (x, h∗(x)) ∈ S}. Note
that S′ ∼ D′m, where D′ is a data distribution with the same marginal as D but consistent with
h′. We now consider three bad events of total probability at most 2γ + δ: (A) L is not robustly-
reliable for all datasets in Aη(S), (B) L is not robustly-reliable for all datasets in Aη(S′), and (C)
dS(h′, h∗) > 2η. Indeed events (A) and (B) occur with probability at most γ each since L is given
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to be a (1 − γ)-probably robustly-reliable learner. Since h′ ∈ BHD (h∗, 2η − ε), for any x ∼ DX ,
the probability that h′(x) 6= h(x) is at most 2η − ε. By Hoeffding’s inequality, if m ≥ 1

2ε2
ln 1

δ , we
have that dS(h′, h∗) > 2η (i.e., event (C)) occurs with probability at most δ.

We claim that if none of these bad events occur, then x 6∈ RRL(S, h∗, η). To prove this, assume
for contradiction that none of the bad events occur and x ∈ RRL(S, h∗, η). Let S̃h′,h∗ denote a
relabeling of S such that exactly half the points in ∆S = {x | (x, y) ∈ S, h′(x) 6= h∗(x)} are
labeled according to h∗ (the remaining half using h′, for convenience assume |∆S | is even). Note
that since bad event (C) did not occur, this means that S̃h′,h∗ ∈ Aη(S) and S̃h′,h∗ ∈ Aη(S′), Now,
since x ∈ RRL(S, h∗, η) and S̃h′,h∗ ∈ Aη(S), it must be the case that LS̃h′,h∗ (x) = (y, η′) for some

η′ ≥ η. But, if y 6= h∗(x) then this implies bad event (A), and if y 6= h′(x) then this implies bad
event (B). So, x cannot be in RRL(S, h∗, η) as desired.

We show how we can strengthen the lower bound of Theorem 11 for learners that satisfy the
somewhat stronger condition of being a (1−γ)-uniformly robustly-reliable learner (defined below).
This condition requires that with probability at least 1 − γ over the draw of the unlabeled sample
SX , for all targets h∗ ∈ H, the sample S produced by labeling SX by h∗ should be a good sample.
In contrast, Theorem 11 requires only that for any h∗, with probability at least 1− γ over the draw
of S, S is a good sample (different samples may be good for different target functions).

Definition 15 L is a (1 − γ)-uniformly robustly-reliable learner for class H under marginal
distribution DX if with probability at least 1− γ over the draw of an unlabeled sample SX ∼ DmX ,
for all h∗ ∈ H, for all S′ ∈ Aη(S) (where S = {(x, h∗(x)) : x ∈ SX}), for all x ∈ X , if
LS′(x) = (y, η′) for η′ ≥ η then y = h∗(x).

Theorem 16 Let L be a (1 − γ)-uniformly robustly-reliable learner for hypothesis class H under
marginal DX . Then, for any h∗ ∈ H, for S ∼ Dm (where D is the distribution over examples
labeled by h∗ with marginal DX ), with probability 1− γ over the draw of S we must have

RRL(S, h∗, η) ⊆ Agree
(
BHS (h∗, 2η)

)
.

Moreover, ifm ≥ c
ε2

(d+ln 1
δ ), where c is an absolute constant and d is the VC-dimension ofH, then

with probability 1−δ, Agree(BHS (h∗, 2η)) ⊆ Agree(BHD (h∗, 2η−ε)). So, ES∼Dm [RobCL(D, η, S)] ≤
Pr[Agree(BHD (h∗, 2η − ε))] + γ + δ.

Proof The proof is similar to the proof for Theorem 10. We are given that L is a (1− γ)-uniformly
robustly-reliable learner. This means that with probability 1 − γ, the unlabeled sample SX has the
property that the learner would be robustly-reliable for any target function inH. Assume this event
occurs, and consider any x 6∈ Agree(BHS (h∗, 2η)). We will show that x cannot be in the η-robustly-
reliable region. First, since x 6∈ Agree(BHS (h∗, 2η)), there must exist some h′ ∈ BHS (h∗, 2η) such
that h′(x) 6= h∗(x). Next, let SA denote a labeling of SX such that exactly half the points in
∆S = {x ∈ SX | h′(x) 6= h∗(x)} are labeled according to h∗ (the remaining half using h′, for
convenience assume |∆S | is even). Notice that S satisfies SA ∈ Aη(S) since h′ ∈ BS(h∗, 2η).
Also for S′ = {(xi, h′(xi) | xi ∈ SX} labeled by h′, we have SA ∈ Aη(S′). Now, assume
for contradiction that x ∈ RRL(S, h∗, η). This means that LSA(x) = (y, η′) for some η′ ≥ η.
However, if y 6= h∗(x), the learner is incorrectly confident for (true) dataset S since SA ∈ Aη(S).
Similarly, if y = h∗(x), the learner is incorrectly confidnet for sample S′ since h′(x) 6= h∗(x). This
contradicts our assumption about SX .
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The second part of the theorem statement follows directly from standard uniform convergence
bounds.

Appendix B. Relating Amalη to other models

In this section we provide some observations that relate our instance-targeted malicious noise ad-
versarial model from Section 4 to models from prior and current work. We begin by noting that
learnability against the sample-based attacks defined above implies learnability under attacks which
directly corrupt the distribution D with malicious noise.

Lemma 17 Suppose D is a distribution over X × Y . Under the malicious noise model of Kearns
and Li (1993), the learner has access to samples from Dη(A′) = (1 − η)D + ηA′, where A′ is an
arbitrary adversarial distribution over X × Y . Let S ∼ Dm and S′ ∼ Dη(A′)m. Then there exists
adversary A1 ∈ Amal

η such that A1(S) is distributed identically as S′.

Proof Select A1 as the adversary which flips a coin for each example in S and with probability η
replaces the example with one generated by A′.

This implies that if we have a learner that is robust to adversaries in Amal
η , it will also work for

the malicious noise model of Kearns and Li (1993). Next, we observe that the Amalη model is a
special case of the Aη+ε model in the following sense.

Lemma 18 Let S be a sample of large enough size m = |S| ≥ 1
ε2

log 2
δ , and S′ be a corruption of

S by malicious adversary Amal
η . Then with probability at least 1 − δ over the randomness of Amal

η ,
the corrupted sample satisfies S′ ∈ Aη+ε(S).

Proof By Hoeffding’s inequality, with probability at least 1− δ, the Amal
η adversary may corrupt at

most η + ε fraction of examples in S.

Appendix C. Further discussion of Awasthi et al. (2017) and modification to our
setting

Awasthi et al. (2017) define the adversary in the malicious noise model as making its choices in a
sequential order as training examples are drawn, with knowledge of the points drawn so far but not
of those still to come or of the random choices the algorithm will subsequently make. In our setting,
we want with high probability over the sample S ∼ Dm, the draw of v ∼ Bernoulli(η)m and any
randomness in the algorithm, for the algorithm to succeed for all S′ ∈ Amal(S, v). This corresponds
to an adversary that can make its choices after both (a) the entire sample S is drawn and (b) any
internal randomness in the algorithm has been fixed. Difference (a) is easy to handle, and indeed the
analysis of Awasthi et al. (2017) goes through directly. To address (b) we will modify the algorithm
to make it deterministic; this increases its label complexity, though it remains polynomial. Here,
we review the relevant portions of the algorithm and analysis in Awasthi et al. (2017) and describe
needed changes. We begin with three useful facts about log-concave distributions:
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Lemma 19 (Lovász and Vempala (2007)) AssumeD is an isotropic log-concave distribution over
Rd. Then Prx∼D(||x|| ≥ α

√
d) ≤ e−α+1. Furthermore, if d = 1 then Prx∼D(x ∈ [a, b]) ≤ |b− a|.

Lemma 20 (Balcan and Long (2013) Lemma 3) Assume D is an isotropic log-concave distribu-
tion over Rd. Then there exists c such that for any two unit vectors u and v in Rd we have
cθ(u, v) ≤ disD(u, v) = Pr(x,y)∼Dsgn(〈u, x〉) 6= sgn(〈v, x〉).

Theorem 21 (Balcan and Long (2013) Theorem 14) Let β ≥ 0 be a sufficiently small constant.
Assume that D is an isotropic β logconcave distribution in Rd. Then the disagreement coefficient
(Hanneke, 2007) is given by θ(ε) = O(d

1
2

+ β
2 ln 2 log(1/ε)).

Now we show how we adapt the algorithm and analysis from Awasthi et al. (2017). Algorithms
2 and 3 below contain the algorithm from Awasthi et al. (2017) for learning from malicious noise,
adapted to our model and restated to our notation. As noted above, one key change to the algorithm
is to make it deterministic: specifically, Step 2(b) of Algorithm 2 examines the labels of all points
in set W rather than just a random sample in computing and optimizing weighted hinge-loss. We
verify that the arguments in Awasthi et al. (2017) continue to apply to this algorithm in the Amalη

model (in particular, that the noisy and non-noisy points continue to satisfy the properties used in
the analysis), and highlight where particular care or modifications are needed.

Algorithm 2 EFFICIENT LEARNING OF LINEAR SEPARATORS IN THE Amalη MODEL

Input: allowed error rate ε, probability of failure δ, sequences of sample sizes nk > 0, k =
1, 2, 3, ..., a sequence of cut-off values bk > 0, a sequence of hypothesis space radii rk > 0, a
sequence of removal rates ξk, a sequence of variance bounds σ2

k, precision value κ; weight vector
w0. Note that compared to Awasthi et al. (2017), we have replaced the random sampling inside W
with just directly using loss with respect to weighting p.

1. Place the first n1 examples in S′ into a working set W .

2. For k = 1, . . . , s = dlog2(1/ε)e

a. Apply Algorithm 3 to W with parameters u ← wk−1, γ ← bk−1, r ← rk, ξ ← ξk,
σ2 ← σ2

k and let q be the output function q : W → [0, 1] . Normalize q to form a
probability distribution p over W .

b. Find vk ∈ B(wk−1, rk), ‖vk‖2 ≤ 1, to approximately minimize hinge loss in W
weighted by p: `τk(vk, p) ≤ minw∈B(wk−1,rk)∩B(0,1) `τk(w, p) + κ/32.
Normalize vk to have unit length, yielding wk = vk

‖vk‖2 .

c. Let W = {}. Scan S′ until nk+1 data points x have been found such that |wk · x| < bk,
and put them into W . (If S′ is exhausted before this step is completed, then output
failure.)

Output: weight vector ws of error at most ε with probability 1− δ.

The first step in the analysis (Theorem 4.2 in Awasthi et al. (2017)) is to show that with high
probability, the convex program in Algorithm 3 has a feasible solution q∗, specifically one in which
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Algorithm 3 LOCALIZED SOFT OUTLIER REMOVAL PROCEDURE Awasthi et al. (2017)
Input: a set W of samples; the reference unit vector u; desired radius r; a parameter ξ specifying
the desired bound on the fraction of clean examples removed; a variance bound σ2

1. Find q : W → [0, 1] satisfying the following constraints:

a. for all x ∈W , 0 ≤ q(x) ≤ 1

b. 1
|W |
∑

(x,y)∈W q(x) ≥ 1− ξ

c. for all w ∈ B(u, r) ∩B(0, 1), 1
|W |
∑

x∈W q(x)(w · x)2 ≤ σ2.

Output: A function q : W → [0, 1].

q∗(x) = 0 for each noisy point and q∗(x) = 1 for each clean point. This analysis makes the worst-
case assumption that every adversarial point is placed inside the band |wk ·x| < bk. Moreover, since
q∗(x) = 0 for each noisy point, there is no dependence on its location or label, so this q∗ remains
feasible in our setting. Also, the analysis uses the fact that the non-noisy points are a true random
sample from D (which is true in the Amalη model but not the Aη model used in Section 3). For
completeness, we present the theorem and summarize its analysis.

First, let η′ denote the value η divided by the probability mass under D of the band |wk−1 ·x| <
bk−1. This is an upper bound on the probability a random example in the band is noisy even if
the adversary places all of its points inside the band. By Chernoff bounds, nk ≥ poly(1/η′, 1/δ)
suffices so that with probability at least 1−δ, at most a 2η′ fraction of the points inW are controlled
by the adversary. Assume this is indeed the case. Also, let Dwk−1,bk−1

denote the distribution D
restricted to the band |wk−1 · x| < bk−1.

Theorem 22 (Analog of Theorem 4.2 of Awasthi et al. (2017) for the Amalη noise model) For any
C > 0, there is a constant c and a polynomial p such that, for all ξ > 2η′ and all 0 < γ < C,
if nk+1 ≥ p(1/η′, d, 1/ξ, 1/δ, 1/γ, 1/r), then, with probability 1 − δ, the output q of Algorithm 3
satisfies the following:

•
∑

x∈W q(x) ≥ (1− ξ)|W | (a fraction 1− ξ of the weight is retained)

• For all unit length w such that ‖w − u‖2 ≤ r,

1

|W |
∑
x∈W

q(x)(w · x)2 ≤ c(r2 + γ2). (6)

Furthermore, the algorithm can be implemented in polynomial time.

Proof (Sketch) The theorem is proven by analyzing the clean data points, namely those that are
not under the adversary’s control, using a pseudodimension-based uniform convergence analysis
and properties of log-concave distributions. This uses the fact that the non-noisy points are a true
random sample from the underlying distribution, so this does not apply to the Aη model used in
Section 3.

Specifically, the proof uses the following two properties of isotropic log-concave distributions.
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Lemma 23 (Lemma 4.3 of Awasthi et al. (2017)) If we draw ` times i.i.d. from Dwk−1,bk−1
to

form XC , with probability 1− δ, we have that for any unit length a,

1

`

∑
x∈XC

(a · x)2 ≤ E[(a · x)2] +

√
O(d log(`/δ)(d+ log(1/δ)))

`
.

Lemma 24 (Lemma 3.4 of Awasthi et al. (2017)) Assume that D is isotropic log-concave. For
any c3, there is a constant c4 such that, for all 0 < γ ≤ c3, for all a such that ‖u − a‖2 ≤ r and
‖a‖2 ≤ 1

Ex∼Du,γ ((a · x)2) ≤ c4(r2 + γ2).

The two lemmas above, along with the fact that the non-noisy points in the Amalη model are indeed
distributed according to D, imply that for all w ∈ B(u, r),

1

|W |
∑
x∈W

q∗(x)(a · x)2 ≤ 2E[(a · x)2] ≤ c(r2 + γ2),

for an appropriate constant c, where q∗(x) = 0 for each noisy point and q∗(x) = 1 for each non-
noisy point as defined above. Finally, an efficient separation oracle for the convex program yields
the theorem.

The next step is a further analysis of the working set W in each round k of Algorithm 2. The
analysis partitions W into the “clean” set WC drawn from the true distribution Dwk−1,bk−1

of points
fromD subject to lying inside the previous band, and the “dirty” setWD controlled by the adversary.
Lemma 4.5 in Awasthi et al. (2017) upper-bounds the size of WD, and its analysis makes the worst-
case assumption that every adversarial point lies inside the band. Since our setting is identical in
terms of the probabilistic selection of which points are controlled by the adversary (differing only in
allowing the adversary to make its choice after all of S is drawn), this argument also goes through
directly. Specifically, Lemma 4.5, adapted to our setting, is as follows:

Lemma 25 (Analog of Lemma 4.5 of Awasthi et al. (2017) for the Amalη noise model) There is
an absolute positive constant c such that, with probability 1− δ

6(k+k2)
,

|WD| ≤ cηnkMk ≤ cMηnk
ε

(7)

Proof (Sketch) Since the underlying distribution of non-noisy points is isotropic log-concave, the
probability that a random example from D falls in the band is Ω(M−k). By Chernoff bounds, this
implies thatO(nkM

k) examples fromD are sufficient so that with probability at least (1− δ
12(k+k2)

),

nk examples fall inside the band. In the Amalη model, the probability that each example drawn is
noisy is η, and in the worst case, the adversary can place each noisy example inside the band.
Since with probability at least (1 − δ

12(k+k2)
) the total number of examples drawn is O(nkM

k),

Chernoff bounds imply that for some constant c, with probability at least 1 − δ
12(k+k2)

we have

|WD| ≤ cηnkMk. The second inequality follows from the fact that k ≤ dlogM (1/ε)e.

The bound of Lemma 25 above is then used in Lemma 4.7 of Awasthi et al. (2017), which
relates the average hinge loss of examples in W when weighted according to the solution q found
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by Algorithm 3 (scaled to sum to 1 over W ) to the average hinge loss of the clean examples WC

weighted uniformly. In particular, it shows that the soft outlier-removal performed by Algorithm 3
is comparable to correctly identifying and removing the adversarial data with respect to the loss of
any w ∈ B(wk−1, rk). Lemma 25 is used in equation (11) of the proof of Lemma 4.7 (see below),
and is the only property of WD used in the proof.

Specifically, let p denote the weighting q over W produced by Algorithm 3, scaled to sum to 1.
Constraints a and b in the definition of q ensure that the total variation distance between p and the
uniform distribution over W is at most ξ. Now, let `(w, p) be the average hinge-loss of points in W
weighted by p, and let `(w,WC) denote the average hinge loss of the clean examples WC weighted
uniformly. Lemma 4.7 of Awasthi et al. (2017) relates these as follows:

Lemma 26 (Analog of Lemma 4.7 of Awasthi et al. (2017) for the Amalη noise model) There are
absolute constants C1, C2 and C3 such that, with probability 1 − δ

2(k+k2)
, if we define zk =√

r2
k + b2k−1, then for any w ∈ B(wk−1, rk), we have

`(w,WC) ≤ `(w, p) +
C1η

ε

(
1 +

zk
τk

)
+ κ/32 (8)

and

`(w, p) ≤ 2`(w,WC) + κ/32 +
C2η

ε
+ C3

√
η

ε
× zk
τk
. (9)

Proof (Sketch) Given the lemmas shown above, the proof now follows exactly as in Awasthi et al.
(2017). In particular, the key properties of the data used are the size of the set WD, which comes
from Lemma 25 analyzed above and is used inequation (11) below, and the fact that the clean data is
distributed according to D (which is true in the Amalη model). Specifically, from the lemmas above,
with probability at least 1− δ

2(k+k2)
, there are constants K1, K2 and K3 such that

1

|W |
∑
x∈W

q(x)(w · x)2 ≤ K1z
2
k (10)

|WD| ≤
K2ηnk
ε

(11)

1

|WC |
∑

(x,y)∈WC

(w · x)2 ≤ K3z
2
k. (12)

Assume these indeed hold. Equation (10) and the fact that
∑

x∈W q(x) ≥ (1 − ξk)|W | ≥ |W |/2
imply

∑
x∈W p(x)(w · x)2 ≤ 2K1z

2
k. Combining this with equation (11) and that fact that the total

variation distance between p and the uniform distribution over W is at most ξ, and using Cauchy-
Schwartz, yields the following bound on the weighted loss of the noisy examples in W :∑

(x,y)∈WD

p(x)`(w, x, y) ≤ K2η/ε+ ξk +
√

2K1K2η/ε+ ξk

(
zk
τk

)
. (13)

A similar argument gives the following bound on the weighted loss over all the examples in W :∑
(x,y)∈W

p(x)`(w, x, y) ≤ 1 +
√

2K1

(
zk
τk

)
. (14)
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Next, using (12) together with Cauchy-Schwartz and the fact that
∑

x∈W q(x) ≥ (1− ξk)|W | and
q(x) ∈ [0, 1], we can upper-bound the average loss over the clean examples:

`(w,WC) ≤ 1

|WC |

 ∑
(x,y)∈W

q(x)`(w, x, y)

+ 2ξk +
√

2ξkK3

(
zk
τk

)
.

Finally, ξk is chosen small enough so the last two terms above are at most κ/32. Applying further
manipulation together with (11) and (14) yields the first inequality in the Lemma. The second
inequality follows from partitioning `(w, p) into a sum over clean points and a sum over noisy
points, and then applying (13) together with (11) and the fact that p(x) ≤ 1 for all x.

These results now can be combined to give the algorithm’s guarantee for theAmalη noise model.

Theorem 27 (Analog of Theorem 4.1 in Awasthi et al. (2017) for the Amalη noise model) Let dis-
tributionD overRd be isotropic log-concave. Letw∗ be the (unit length) target weight vector. There
are settings of the parameters of Algorithm 2, and positive constants M , C and ε0, such that in the
Amalη noise model, for all ε < ε0, for any δ > 0, if η < Cε, nk = poly(d,Mk, log(1/δ)),
and θ(w0, w

∗) < π/2, then after s = O(log(1/ε)) iterations, the algorithm finds ws satisfying
err(ws) ≤ ε with probability ≥ 1− δ.

Proof (Sketch) First, by a uniform convergence analysis, with high probability for allw ∈ B(wk−1, rk)
we have |errDwk−1,bk−1

(w) − `(w,WC)| ≤ κ/16. Assume this holds, as well as equations (8) and
(9) from Lemma 26. Next, we analyze as in Awasthi et al. (2017) but with one key change: Algo-
rithm 2 deterministically computes `(vk, p) in step 2(b) rather than using a random labeled sample
from p as in Awasthi et al. (2017); thus, we do not need to relate the sampled loss and true ex-
pected loss with respect to p. This change in the algorithm was crucial because in the Amalη model,
the adversary can effectively choose its corruptions after observing any internal randomness of the
algorithm. Specifically, we now have:

errDwk−1,bk−1
(wk) ≤ `(vk,WC) + κ/16

≤ `(vk, p) +
C1η

ε

(
1 +

zk
τk

)
+ κ/8

≤ `(w∗, p) +
C1η

ε

(
1 +

zk
τk

)
+ κ/8 (since w∗ ∈ B(wk−1, rk))

≤ 2`(w∗,WC) +
C2η

ε
+ C3

√
η

ε
× zk
τk

+
C1η

ε

(
1 +

zk
τk

)
+ κ/4

≤ κ/3 +
C2η

ε
+ C3

√
η

ε
× zk
τk

+
C1η

ε

(
1 +

zk
τk

)
+ κ/2.

Using the fact that zk = O(τk), an Ω(ε) bound on η is sufficient so that errDwk−1,bk−1
(wk) ≤ κ

with probability (1− δ
k+k2

).
Finally, the theorem follows from an inductive argument showing that after k iterations, with

high probability we have errD(wk) ≤ M−k. In particular, since errD(wk−1) ≤ M−(k−1) by
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induction, the angle between wk−1 and w∗ is O(Mk−1). Also, rk is chosen to be proportional to
M−(k−1) so the angle between vk and wk−1 is also O(Mk−1). M is chosen a sufficiently large
constant so that by properties of isotropic log-concave distributions (Theorem 4 of Balcan and Long
(2013)), wk has error at most M−k/4 with respect to wk−1 outside the band |wk−1 · x| ≤ bk−1,
and wk−1 has error at most M−k/4 with respect to w∗ outside the band. So, wk has error at most
M−k/2 with respect to w∗ outside the band. From above, we have that errDwk−1,bk−1

(wk) ≤ κ.

Combining this with a bound on the probability mass in the band gives error at most M−k/2 inside
the band. So, errD(wk) ≤M−k as desired, proving the theorem.

Appendix D. Lower bound on robust reliability against Amalη

We also have a near-matching lower bound on robust reliability in the Amalη model. This lower
bound states that points given robust-reliability level η must be in Agree(BHD (h∗, η

1−η − ε)) with a
high probability, which differs from our upper bound above by a constant factor in the agreement
radius.

Theorem 28 Let L be a (1 − γ)-probably robustly-reliable learner against Amalη for hypothesis
classH under marginal DX . For any h∗ ∈ H, given a large enough sample size m = |S| ≥ c

ε2
ln 1

δ
and any η ≤ 1

2 , we have

ES∼Dm,v∼Bernoulli(η)mRobCLmal(D, η, S, v)] ≤ Pr

[
Agree

(
BHD
(
h∗,

η

1− η
− ε
))]

+ 2γ + 2δ,

where c is an absolute constant and D is the distribution with marginal DX consistent with h∗.

Proof Let L be a (1− γ)-probably robustly-reliable learner forH under marginal DX and let h∗ ∈
H. Let x 6∈ Agree(BHD (h∗, η

1−η − ε)). It is sufficient to prove that PrS∼Dm,v∼Bernoulli(η)m [x ∈
RRL(S, h∗, η, v)] ≤ 2γ + 2δ.

Select some h′ ∈ BHD (h∗, η
1−η − ε) such that h′(x) 6= h∗(x); such an h′ exists by definition

of the disagreement region. Let S ∼ Dm and define S′ = {(x, h′(x)) | (x, h∗(x)) ∈ S}. Note
that S′ ∼ D′m, where D′ is a data distribution with the same marginal as D but consistent with
h′. Let ∆S = {(x, y) ∈ S | h′(x) 6= h∗(x)} denote the disagreement of h∗, h′ on sample S and
Sv = {(xi, yi) ∈ S | vi = 1} be the points with indicator v set to 1 which the malicious adversary
gets to corrupt.

We now consider four bad events of total probability at most 2γ + 2δ: (A) L is not robustly-
reliable for all datasets in Amal(S, v), (B) L is not robustly-reliable for all datasets in Amal(S′, v),
(C) d(S, Sv) < η − ε

3 , and (D) |∆S \ Sv| > (η − ε
3)|S|. Indeed events (A) and (B) occur with

probability at most γ each since L is given to be a (1 − γ)-probably robustly-reliable learner. An
application of Hoeffding’s inequality implies (C) occurs with probability at most δ for sufficiently
large m ≥ c

ε2
ln 1

δ for some absolute constant c since v ∼ Bernoulli(η)m. Finally, observe that
the event (x, y) ∈ ∆S \ Sv for any (x, y) in the sample S is a Bernoulli event with probability of
occurrence at most

(
η

1−η − ε
)

(1− η) = η − (1− η)ε ≤ η − ε
2 , since the events (x, y) ∈ ∆S and

(x, y) /∈ Sv are independent and η ≤ 1
2 . Another application of Hoeffding’s inequality implies a

δ-probability bound on (D).
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We claim that if none of these bad events occur, then x 6∈ RRLmal(S, h
∗, η, v). Assume for

contradiction that none of the bad events occur and x ∈ RRLmal(S, h
∗, η, v). We will now proceed

to describe an adversarial corruption S̃vh′,h∗ of S which guarantees at least one of the bad event
occurs if x is in the stipulated η-robustly-reliable region. We select a uniformly random sequence
of |∆S \Sv| corruptible points from Sv and replace them (x, 1− y) for each (x, y) ∈ ∆S \Sv. We
substitute the remaining points in Sv by (x, h∗(x)) for some fixed x ∈ Agree(BHD (h∗, η

1−η − ε)).
We specify this substitution to ensure that all remaining points in the disagreement region occur in
pairs with opposite labels, and we do not reveal the corruptible points. The first claim follows by
noting that |∆S \ Sv| ≤ |S|(η − ε

3) ≤ |Sv| since bad events (C) and (D) did not occur. Clearly
S̃vh′,h∗ ∈ Amal(S, v), the above observation further implies that S̃vh′,h∗ ∈ Amal(S′, v). Now, since
x ∈ RRLmal(S, h

∗, η, v) and S̃vh′,h∗ ∈ Amal(S, v), it must be the case that LS̃v
h′,h∗

(x) = (y, η′) for

some η′ ≥ η. But, if y 6= h∗(x) then this implies bad event (A), and if y 6= h′(x) then this implies
bad event (B). So, x cannot be in RRL(S, h∗, η, v) as desired.

Appendix E. Active Learning: Detailed Results

To formalize our results on active learning, we have the following definition.

Definition 29 A learner L is said to be an active robustly-reliable learner w.r.t. concept space H
if for any training sample S′, the learner has access to unlabeled examples from S′ and the ability
to request labels, and must output a function LS′ : X → Y × R. The label complexity of L is the
number of labels the learner requests before outputting LS′ .

An active robustly-reliable learner L is said to be strongly robustly-reliable against Aη for
classH if for any target function h∗ ∈ H, for any dataset S consistent with h∗, for all S′ ∈ Aη(S),
for all x ∈ X , if LS′(x) = (y, η′) for η′ ≥ η then y = h∗(x). The robustly-reliable correctness and
robustly-reliable region, for this value η, are defined the same as for passive learning above.

An active robustly-reliable learner L is said to be (1 − δ)-strongly robustly-reliable against
Aη for class H if for any target function h∗ ∈ H, for any dataset S consistent with h∗, for all
S′ ∈ Aη(S), with probability at least 1 − δ over the internal randomness of the learner, for all
x ∈ X , if LS′(x) = (y, η′) for η′ ≥ η then y = h∗(x). The empirical η-robustly-reliable region is
defined as for passive learning above.

We will now show two results indicating that it is possible for the learner to query the labels
intelligently to obtain a robustly-reliable algorithm, first in the stronger sense of strongly robustly-
reliable learning, and second in the weaker sense of (1− δ)-strongly robustly-reliable learning (i.e.,
with high probability over the randomness of the learner). In both cases, we are also able to obtain
a bound on the number of queries made by the active learner, holding with high probability over
the draw of the uncorrupted dataset S (and in the (1 − δ)-strongly robustly-reliable case, also the
randomness of the learner).

First, let us consider the case of strongly robustly-reliable active learning. Note that this case
is quite challenging, since the adversary effectively knows what queries the learner will make. For
instance, the adversary may choose to set it up so that the learner’s first ηm queries are all corrupted,
so that the learner cannot even find an uncorrupted point until it has made at least ηm queries. In
particular, this intuitively means that nontrivial reductions in label complexity compared to passive
learning are only possible in the case of small η.
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Our result (Theorem 30 below) proposes an active learning method that, for any given η, pro-
duces an optimal η-robustly-reliable region (i.e., matching the upper and lower bounds of Theo-
rems 7 and 10), while making a number of label queries that, for small η, is significantly smaller
than the number m of examples in S′ (the corrupted sample), when the disagreement coefficient θ
is small: specifically, it makes a number of queries Õ(θηm + θd). The algorithm we propose is
actually quite simple: we process the corrupted data S′ in sequence, and for each new point xi we
query its label yi iff xi is in the region of disagreement of the set of all h ∈ H that make at most
ηm mistakes among all previously-queried points. In the end, after processing all m examples in
S′, we use the region of agreement of this same set of classifiers as the empirical η-robustly-reliable
region, predicting using their agreed-upon label for any test point x in this region. The result is
stated formally as follows.

Theorem 30 For any hypothesis class H and η ≥ 0, there is an active learner L that is strongly
robustly-reliable against Aη which, for any data set S consistent with some h∗ ∈ H,

RRL(S, h∗, η) ⊇ Agree(BHS (h∗, 2η)).

Moreover, if D is a realizable distribution with some h∗ ∈ H as target concept, then for any
δ ∈ (0, 1), if m = Ω

(η+ε
ε2

(
d log 1

ε + log 1
δ

))
(where d is the VC dimension), and S ∼ Dm, with

probability at least 1− δ,

RRL(S, h∗, η) ⊇ Agree(BHD (h∗, 2η + ε)),

and with probability at least 1− δ, the number of label queries made by the algorithm is at most

O

(
θ

(
ηm+ d log

m

d
+ log

1

δ

)
log

(
min

{
m,

1

η

}))
= Õ(θηm+ θd) ,

where θ = θ4η is the disagreement coefficient of H with respect to h∗ over the distribution D
(Definition 4).

Proof Given any hypothesis classH and η ≥ 0, consider the following active learning algorithm L.
The algorithm initializes sets V0 = H, Q0 = {}. Given a data set S′ = {(x′1, y′1), . . . , (x′m, y

′
m)},

where the algorithm initially observes only x′1, . . . , x
′
m, the algorithm, processes the data in se-

quence: for each t ≤ m, the algorithm queries for the label y′t iff x′t ∈ DIS(Vt−1); if it queries,
then Qt = Qt−1 ∪ {(x′t, y′t)}, and otherwise Qt = Qt−1; in either case, Vt = {h ∈ H :∑

(x,y)∈Qt 1[h(x) 6= y] ≤ ηm}. To define the predictions of the learner in the end, for any
x ∈ Agree(Vm), define LS′(x) = (y, η) for the label y agreed upon for x by every h ∈ Vt; for
any x /∈ Agree(Vm), we can define LS′(x) = (⊥,−1).

Note that if S′ ∈ Aη(S) for a data set S = {(x1, y1), . . . , (xm, ym)} consistent with some
h∗ ∈ H, then (since Qt is a subsequence of S′, and h∗ makes at most ηm mistakes on S′), we
maintain the invariant that h∗ ∈ Vt for all t. In particular, this implies LS′(x) is well-defined
since Vm is non-empty. Moreover, this implies that for any x, any label y agreed-upon by all
h ∈ Vm is necessarily h∗(x). Thus, L satisfies the definition of a strongly robustly-reliable learner.
Additionally, for any h ∈ Vm, since we also have h∗ ∈ Vm, the algorithm would have queried for
the label y′t of every x′t ∈ DIS({h, h∗}). Since h remains in Vm, it must be that h(x′t) 6= y′t on at
most ηm of these points. Since any h ∈ H not in BHS (h∗, 2η) has strictly greater than 2ηm points in
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S on which it disagrees with h∗ and is incorrect, and the number of such points in S′ can be smaller
by at most ηm, every h ∈ Vm is necessarily in BHS (h∗, 2η): that is, Vm ⊆ BHS (h∗, 2η). It follows
immediately that RRL(S, h∗, η) ⊇ Agree(BHS (h∗, 2η)).

To address the remaining claims, let D be a realizable distribution with some h∗ ∈ H as target
concept, and fix ε, δ ∈ (0, 1) and η ≥ 0, and suppose m = Ω

(η+ε
ε2

(
d log 1

ε + log 1
δ

))
with an

appropriate numerical constant factor. Let S ∼ Dm. By classic relative uniform convergence
guarantees Vapnik and Chervonenkis (1974) (see Theorem 4.4 of Vapnik (1998)), with probability
at least 1− δ, every h ∈ H satisfies

|errS(h)− errD(h)| ≤ O

(√
errD(h)

1

m

(
d log

m

d
+ log

1

δ

)
+

1

m

(
d log

m

d
+ log

1

δ

))
,

so that, for an appropriate numerical constant, if m = Ω
(η+ε
ε2

(
d log 1

ε + log 1
δ

))
, every h ∈ H with

errD(h) > 2η + ε has errS(h) > 2η. Thus, on this event, BHS (h∗, 2η) ⊆ BHD (h∗, 2η + ε). In
particular, by the above analysis of the algorithm under any fixed S, we have Vm ⊆ BHS (h∗, 2η).
Together, we have that with probability at least 1 − δ, Vm ⊆ BHD (h∗, 2η + ε), which immediately
implies that RRL(S, h∗, η) ⊇ Agree(BHD (h∗, 2η + ε)).

Finally, we turn to bounding the number of label queries. For every t ∈ {1, . . . ,m}, define
St = {(x1, y1), . . . , (xt, yt)} and S′t = {(x′1, y′1), . . . , (x′t, y

′
t)}. Note that the number of queries

equals
m∑
t=1

1[x′t ∈ DIS(Vt−1)] ≤ ηm+
m∑
t=1

1[xt ∈ DIS(Vt−1)]. (15)

Following a similar argument to the analysis of RRL above, for any t ≤ m, since any h ∈ H
not in BHSt

(
h∗, 2ηm

t

)
has strictly greater than 2ηm points in St on which it disagrees with h∗ and

is incorrect, and the number of such points in S′t can be smaller by at most ηm, every h ∈ Vt is
necessarily in BHSt

(
h∗, 2ηm

t

)
: that is, Vt ⊆ BHSt

(
h∗, 2ηm

t

)
. Together with (15), this implies the total

number of queries is at most

ηm+
m∑
t=1

1

[
xt ∈ DIS

(
BHSt−1

(
h∗,

2ηm

t− 1

))]
.

By Bernstein’s inequality for martingale difference sequences, with probability at least 1− δ/2, the
right hand side above is at most

ηm+ log2

2

δ
+ 2e

m∑
t=1

Pr
(
xt ∈ DIS

(
BHSt−1

(
h∗,

2ηm

t− 1

))∣∣∣∣St−1

)

= ηm+ log2

2

δ
+ 2e

m∑
t=1

DX
(

DIS
(
BHSt−1

(
h∗,

2ηm

t− 1

)))
. (16)

Let αt = c
t

(
d log t

d + log 1
δ

)
, for a numerical constant c > 0. Again by relative uniform conver-

gence guarantees, together with a union bound (over all values of t), for an appropriate numerical
constant c > 0, with probability at least 1− δ/2, for every t ≤ m and h ∈ H,

errD(h) ≤ 2errSt(h) + αt.
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Thus, on this event, for every t ≤ m, BHSt
(
h∗, 2ηm

t

)
⊆ BHD

(
h∗, 4ηm

t + αt

)
. Plugging into (16), by

a union bound, with probability at least 1− δ, the total number of queries is at most

ηm+ log2

2

δ
+ 2e

m∑
t=1

DX
(

DIS
(
BHD
(
h∗,

4ηm

t− 1
+ αt−1

)))
≤ (1 + 8e)ηm+ log2

2

δ
+ 2e

∑
4ηm<t≤m

DX
(

DIS
(
BHD
(
h∗,

4ηm

t− 1
+ αt−1

)))

≤ (1 + 8e)ηm+ log2

2

δ
+ 2e

∑
4ηm<t≤m

θ4η

(
4ηm

t− 1
+ αt−1

)

= O

(
θ4η

(
ηm+ d log

m

d
+ log

1

δ

)
log

(
min

{
m,

1

η

}))
,

where the inequality on the second-to-last line is by the definition of the disagreement coefficient,
and the final expression results from summing the harmonic series:

∑b
t=a

1
t = O

(
log b

a

)
.

Next, we consider the weaker case of (1 − δ)-strongly robustly-reliable active learning. Note
that in this case, the adversary only corrupts the data pool, but is not directly involved with the
learner’s queries. That is, the corruption may depend on the dataset S and the target test instance x,
but it does not depend on the randomness in the algorithm used by the learner to query labels and
output a hypothesis.

In this case, our result (Theorem 32 below) provides a method that yields an empirical robustly-
reliable region of comparable size to the results for passive learning above (up to constant factors),
using a number of queries that is significantly smaller than the sample complexity of passive learn-
ing, when η and the disagreement coefficient are small. However, we note that unlike Theorem 30
above, in this case the number of queries is bounded, in that it does not depend on the size m of the
data set S: that is, it can be expressed purely as a function of η,ε,δ,d, and θ. However, it is also worth
noting that the number of queries in Theorem 30 is actually of the same order as in Theorem 32 (up
to log factors) in the case that m = Θ

(η+ε
ε2

(
d log 1

ε + log 1
δ

))
, so that for the minimal sample size

sufficient for the result on RRL(S, h∗, η) in Theorem 30, we essentially lose nothing compared to
the guarantee achievable by the weaker (1− δ)-strongly robustly-reliable learner in Theorem 32.

Our (1 − δ)-strongly robustly-reliable active learner in Theorem 32 will use an agnostic active
learning algorithm (in the usual learning setting, without robust-reliability requirements). We will
use the algorithm proposed by Dasgupta et al. (2007). The algorithm partitions points seen so far
into sets T (labels explicitly queried) and U (labels not queried). For a new point x, ERMs hy on
T consistent with U ∪ (x, y) for y ∈ {0, 1} are learned and the label for x is requested only if the
difference in errors of h0, h1 is small. The algorithm has the following guarantee.

Theorem 31 (Dasgupta et al. (2007)) Let H denote the hypothesis space. Let D be a distribution
such that h∗ = argminh∈H errD(h) and errD(h∗) = η. If θη+ε is the disagreement coefficient
of H w.r.t. h∗ over D, then given S ∼ Dm with m ≥ c

(η+ε
ε2

(
d log 1

ε + log 1
δ

))
unlabeled ex-

amples for sufficiently large constant c, with probability at least 1 − δ, the algorithm queries at
most O

(
θη+ε

(η+ε)2

ε2

(
d log 1

ε + log 1
δ

)
log 1

ε

)
labeled examples and returns a hypothesis h ∈ H

with errD(h) ≤ errD(h∗) + ε.
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In Theorem 32 we define an (1 − δ)-strongly robustly-reliable active learner which requires
fewer labels than the passive learner.

Theorem 32 Let H be a hypothesis class, and S be a sample consistent with h∗ ∈ H. If θ̂η+ε

is the disagreement coefficient of H with respect to h∗ over the uniform distribution U(S) over S
(see Definition 4), there exists a (1 − δ)-strongly robustly-reliable active learner L based on the
agnostic active learning algorithm of Dasgupta et al. (2007), which for some constant c, given any
S′ ∈ Aη(S), for sample size m ≥ c

(η+ε
ε2

(
d log 1

ε + log 1
δ

))
, with probability 1 − δ the learner

queries O
(
θ̂η+ε

(η+ε)2

ε2

(
d log 1

ε + log 1
δ

)
log 1

ε

)
labeled examples and returns LS′ which satisfies,

with probability at least 1− δ,

R̂R
L

(S′, η) ⊇ Agree(BHS (h∗, 5η + 2ε)),

where d is the VC dimension ofH. Moreover, ifD is a realizable distribution consistent with h∗ ∈ H
and θη+ε is the disagreement coefficient ofH with respect to h∗ over D, if m = Ω

(
1
ε2

(
d+ log 1

δ

))
,

for any S ∼ Dm, given any S′ ∈ Aη(S), w.p. 1−2δ,LS′ satisfies R̂R
L

(S′, η) ⊇ Agree(BHD (h∗, 5η+

3ε)), and queries O
(
θη+ε

(η+ε)2

ε2

(
d log 1

ε + log 1
δ

)
log 1

ε

)
labeled examples w.p. 1− 3δ.

Proof The learner samples points uniformly randomly from the (corrupted) data pool S′ and applies
the agnostic active learning algorithm of Dasgupta et al. (2007), i.e. the agnostic active learning
algorithm receives unlabeled points drawn uniformly from the data pool S′ and labels are revealed
for points requested by the algorithm. Let ĥ denote the hypothesis output by the algorithm. The
learner provides test point x with the largest η such that x ∈ Agree(BHS′(ĥ, 2η + ε)) and outputs
the common y in the agreement region, and outputs (⊥,−1) if x /∈ Agree(BHS′(ĥ, 2η + ε)) for any
η ≥ 0. Note that this computation does not need the knowledge of labels and can be performed over
the unlabeled pool which the learner has access to.

By Theorem 31, we have an upper bound on the number of labels requested by the agnostic
active learner given by O

(
θ′η+ε

(η+ε)2

ε2

(
d log 1

ε + log 1
δ

)
log 1

ε

)
with probability at least 1 − δ over

the algorithm’s internal randomness, where θ′η+ε is the disagreement coefficient of H w.r.t. h∗ over
D′, with D′ being the distribution corresponding to uniform draws from S′. We will show that
θ′η+ε = O(θ̂η+ε), which implies the desired bound. Let D̂ denote U(S). Observe that for each
h ∈ H if dD′(h, h∗) ≤ r, then dD̂(h, h∗) = PrD̂[h(x) 6= h∗(x)] = dS(h, h∗) ≤ dS′(h, h

∗) + η =
PrD′ [h(x) 6= h∗(x)] + η ≤ r + η. Thus, BHD′(h∗, r) ⊆ BHD̂ (h∗, r + η) and DIS(BHD′(h∗, r)) ⊆
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DIS(BHD̂ (h∗, r + η)). Now,

θ′η+ε = sup
r>η+ε

PrD′X [DIS(BHD′(h∗, r))]
r

≤ sup
r>η+ε

PrD̂X [DIS(BHD′(h∗, r))] + η

r

≤ sup
r>η+ε

PrD̂X [DIS(BHD̂ (h∗, r + η))] + η

r

≤ sup
r>η+ε

PrD̂X [DIS(BHD̂ (h∗, 2r))] + r

r

≤ 2θ̂η+ε + 1 = O(θ̂η+ε)

The agnostic active learning algorithm returns a hypothesis ĥ with error at most errD′(ĥ) ≤
errD′(h

∗) + ε ≤ η + ε on S′ with failure probability δ. Since errS′(ĥ) ≤ η + ε (if the failure
event does not occur) and errS′(h

∗) ≤ η, using the triangle inequality h∗ ∈ BHS′(ĥ, 2η + ε) and
we can provide robust-reliability η to x if x ∈ Agree(BHS′(ĥ, 2η + ε)). Notice BHS′(ĥ, 2η + ε) ⊆
BHS′(h∗, 4η + 2ε) ⊆ BHS (h∗, 5η + 2ε). Therefore the empirical η-robustly-reliable region of the
learner contains Agree(BHS (h∗, 5η + 2ε)) with probability 1− δ over the learner’s randomness.

To establish the distributional results, we need to relate θη+ε with θ̂η+ε and the robustly-reliable
agreement region over the sample to one over the distribution, both using uniform convergence
bounds. By uniform convergence (Anthony and Bartlett (2009) Theorem 4.10), with probability at
least 1− δ, for each h ∈ H if dD̂(h, h∗) ≤ r, then dD(h, h∗) ≤ dS(h, h∗) + ε = dD̂(h, h∗) + ε ≤
r + ε. Thus, on this event, BHD̂ (h∗, r) ⊆ BHD (h∗, r + ε) and DIS(BHD̂ (h∗, r)) ⊆ DIS(BHD (h∗, r +

ε)). Moreover, note that the family {DIS(BHD (h∗, r)) : r ≥ 0} has VC dimension 1, and there-
fore by uniform convergence, with probability at least 1 − δ, we have PrD̂X [DIS(BHD (h∗, r))] ≤
PrDX [DIS(BHD (h∗, r))] + ε for all r ≥ 0. Supposing both of these events, we have

θ̂η+ε = sup
r>η+ε

PrD̂X [DIS(BHD̂ (h∗, r))]

r

≤ sup
r>η+ε

PrD̂X [DIS(BHD (h∗, r + ε))]

r

≤ sup
r>η+ε

PrDX [DIS(BHD (h∗, r + ε))] + ε

r

≤ sup
r>η+ε

PrDX [DIS(BHD (h∗, 2r))] + r

r

= 1 + 2 sup
r>η+ε

PrDX [DIS(BHD (h∗, 2r))]

2r

≤ 2θη+ε + 1 = O(θη+ε),

By a union bound, the above 3 events occur simultaneously, with probability at least 1−3δ. This
implies the desired label complexity bound. The bound on the trusted region follows from another
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application of the uniform convergence bound which implies BHS (h∗, 5η + 2ε) ⊆ BHD (h∗, 5η + 3ε)
with probability 1− δ, from which the stated result follows by a union bound.

Remark 33 Our above result is essentially a reduction of finding a (1−δ)-strongly robustly-reliable
active learner to a general agnostic active learner. We have used the algorithm from Dasgupta et al.
(2007) in Theorem 32, but we can substitute any other agnostic active learning algorithm to get the
corresponding label complexity guarantees.

We demonstrate an application of the above theorem to the well-studied setting of learning a
linear separator, with the data distributed according to the uniform distribution over the unit ball.

Remark 34 (Linear separators for uniform distribution over the unit ball) It was shown by Han-
neke (2007) that θη+ε = O(

√
d) for this setting. Theorem 32 now implies an exponential gain in

the label complexity for ε ≈ η and a gain by a factor of Õ( 1√
dη

) for ε� η.

Appendix F. Extension to the agnostic case

So far we have assumed that the uncorrupted samples S are realizable under our concept classH. We
will now show that our results can be extended to the non-realizable setting, i.e. minh∈H errS(h) >
0, with weaker but still interesting guarantees. Specifically, our algorithm might now produce an
incorrect prediction (y, η) with η greater than the adversary’s power, but only if every hypothesis in
H with low error on the uncorrupted S would also be incorrect on that example.

We can define a ν-tolerably robustly-reliable learner in the non-realizable setting as the learner
whose reliable predictions agree with every low error hypothesis (error at most ν) on the uncorrupted
sample.

Definition 35 A learner L is ν-tolerably robustly-reliable for sample S′ w.r.t. concept spaceH if,
given S′, the learner outputs a function LS′ : X → Y×R such that for all x ∈ X if LS′(x) = (y, η)
then for all h∗ ∈ H such that errS(h∗) ≤ ν for some S with S′ ∈ Aη(S), we have y = h∗(x).

Given sample S such that there is some h∗ ∈ H satisfying errS(h∗) ≤ ν, the (ν, η)-robustly-
reliable region RRL(S, ν, η) for learner L is the set of points x ∈ X for which given any S′ ∈
Aη(S) we have that LS′(x) = (y, η′) with η′ ≥ η. More generally, for a class of adversaries
A with budget η, RRLA(S, ν, η) is the set of points x ∈ X for which given any S′ ∈ A(S) we
have that LS′(x) = (y, η′) with η′ ≥ η. We also define the empirical (ν, η)-robustly-reliable
region R̂R

L
(S′, ν, η) = {x ∈ X : LS′(x) = (y, η′) for some η′ ≥ η}. So, RRLA(S, ν, η) =

∩S′∈A(S)R̂R
L

(S′, ν, η).

Definition 35 describes the notion of a robustly-reliable learner for a particular (corrupted) sam-
ple. Notice that if there are multiple h ∈ H satisfying errS(h) ≤ ν and they disagree on x then
it must be the case that the algorithm outputs η < 0. Notice also that setting ν = 0 in the above
definition yields the usual robustly-reliable learner. Similarly to Definition 3, we now extend this
to robustly-reliable with high probability for an adversarially-corrupted sample drawn from a given
distribution.
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Definition 36 A learner L is a (1−γ)-probably ν-tolerably robustly-reliable learner for concept
space H under marginal DX (where D is the distribution over examples with marginal DX ) if
with probability at least 1 − γ over the draw of S ∼ Dm, for any concept h∗ ∈ H such that
errD(h∗) ≤ ν, for all S′ ∈ Aη(S), and for all x ∈ X , if LS′(x) = (y, η′) for η′ ≥ η then
y = h∗(x). If L is a (1 − γ)-probably ν-tolerably robustly-reliable learner with γ = 0 for all
marginal distributions DX , then we say L is ν-tolerably strongly robustly-reliable for H. Note
that a ν-tolerably strongly robustly-reliable learner is a ν-tolerably robustly-reliable learner in
the sense of Definition 35 for every sample S′. Given distribution D, the (ν, η)-robustly-reliable
correctness for learner L for sample S is given by the probability mass of the robustly-reliable
region, RobCL(D, ν, η, S) = Prx∼DX [x ∈ RRL(S, ν, η)].

We now provide a general ν-tolerably strongly robustly-reliable learner using the notion of
agreement regions (Theorem 37). Our results here generalize corresponding results from Section 3.
We first present our learner and a guarantee on the learner’s empirical (ν, η)-robustly-reliable region
given any (possibly corrupted) dataset. Our algorithm assumes ν is given.

Theorem 37 Let Hη+ν(S′) = {h ∈ H | errS′(h) ≤ η + ν}. For any hypothesis class H,
there exists a ν-tolerably strongly robustly-reliable learner L (Definition 36) that given S′ outputs
a function LS′ such that

R̂R
L

(S′, ν, η) ⊇ Agree(Hη+ν(S′)).

Proof Given sample S′, the learner L outputs the function LS′(x) = (y, η) where η is the largest
value such that x ∈ Agree(Hη+ν(S′)), and y is the common prediction in that agreement region; if
x 6∈ Agree(Hη+ν(S′)) for all η ≥ 0, then LS′(x) = (⊥,−1). This is a strongly robustly-reliable
learner because if LS′(x) = (y, η) and S′ ∈ Aη(S) and errS(h∗) ≤ ν, then h∗ ∈ Hη+ν(S′),
so y = h∗(x). Also, notice that by design of the algorithm, all points in Agree(Hη+ν(S′)) will be
given robust-reliability level at least η. The learner may be implemented using an ERM oracle using
knowledge of ν and the construction in Theorem 6.

We now analyze the (ν, η)-robustly-reliable region for the algorithm above which we will prove
is pointwise optimal over all ν-tolerably strongly robustly-reliable learners.

Theorem 38 For any hypothesis classH, the ν-tolerably strongly robustly-reliable learner L from
Theorem 37 satisfies the property that for all S and for all η ≥ 0 and for any h∗ with errS(h∗) ≤ ν,

RRL(S, ν, η) ⊇ Agree (H2η+ν(S)) ⊇ Agree
(
BHS (h∗, 2η + 2ν)

)
,

where Hα(T ) = {h ∈ H | errT (h) ≤ α} for any α ≥ 0, where T may be a sample or a
distribution. Moreover, if S ∼ Dm for m = O( 1

ε2
(d + ln 1

δ )) then with probability at least 1 − δ,
RRL(S, ν, η) ⊇ Agree(H2η+ν+ε(D)). Here d denotes the VC dimension ofH.

Proof By Theorem 37, the empirical η-robustly-reliable region R̂R
L

(S′, ν, η) ⊇ Agree(Hη+ν(S′))
for any dataset S′. The (ν, η)-robustly-reliable region, which is the set of points given robustness
level at least η for all S′ ∈ Aη(S) given that there is h∗ ∈ H with errS(h∗) ≤ ν, is therefore at
least ⋂

S′∈Aη(S)

Agree(Hη+ν(S′)) = Agree (H2η+ν(S))
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where the above holds because if h ∈ Hη+ν(S′) for some S′ ∈ Aη(S) then h ∈ H2η+ν(S),
and conversely if h ∈ H2η+ν(S) then h ∈ Hη+ν(S′) for some S′ ∈ Aη(S). Further, if h ∈
H2η+ν(S) then h ∈ BHS (h∗, 2η + 2ν) since errS(h∗) ≤ ν. This implies Agree (H2η+ν(S)) ⊇
Agree

(
BHS (h∗, 2η + 2ν)

)
. Finally, by uniform convergence, if S ∼ Dm for m = O( 1

ε2
(d + ln 1

δ ))
then with probability at least 1− δ we have errD(h) ≤ errS(h) + ε for all h ∈ H. This implies that
Agree(H2η+ν(S)) ⊇ Agree(H2η+ν+ε(D)) and so RRL(S, ν, η) ⊇ Agree(H2η+ν+ε(D)).

We will now show a matching lower bound for Theorem 38. In contrast to the realizable case,
our matching bounds here are in terms of agreement regions of hypotheses with low error on the
sample (more precisely Agree (H2η+ν(S))), instead of balls around a fixed hypothesis in H. In
Theorems 7 and 10, the size of the robustly-reliable region is Agree

(
BHS (h∗, 2η)

)
, which in the

realizable case is the same as Agree (H2η(S)). This also implies we do not lose too much of the
robustly-reliable region in the agnostic case.

Theorem 39 Let L be a ν-tolerably strongly robustly-reliable learner for hypothesis classH. Then
for any sample S, any point in the (ν, η)-robustly-reliable region must lie in the agreement region
ofH2η+ν(S) = {h ∈ H | errS(h) ≤ 2η + ν}. That is,

RRL(S, ν, η) ⊆ Agree (H2η+ν(S)) .

Proof Let x 6∈ Agree(H2η+ν(S)). We will show that x cannot be in the (ν, η)-robustly-reliable
region. First, since x 6∈ Agree(H2η+ν(S)), there must exist some h1, h2 ∈ H2η+ν(S) such that
h1(x) 6= h2(x). Since we are interested in the (ν, η)-robustly-reliable region, suppose we have
hypothesis h∗ ∈ H such that errS(h∗) ≤ ν. Now either h1(x) 6= h∗(x) or h2(x) 6= h∗(x). Assume
WLOG that h1(x) 6= h∗(x). Let S∗e = {(x, y) ∈ S | h∗(x) 6= y)} denote the points in the
uncorrupted sample where h∗ is incorrect. Further let Se = {(x, y) ∈ S | h1(x) 6= y} be the points
where h1 is incorrect on S. Finally let S̃ be a fixed subset of Se \ S∗e of size min{2ηm, |Se \ S∗e |}
and let S′ ⊂ S̃ with |S′| = |S̃|/2.

We will now construct two sets S1 and SA. S1 will be such that errS1(h1) ≤ ν and SA will
satisfy SA ∈ Aη(S) as well as SA ∈ Aη(S1). For any U ⊆ T , let FLIP(T, U) = {(x, 1 − y) |
(x, y) ∈ U}∪T \U denote a sample T with flipped labels for subset U . We define S1 = FLIP(S, S̃)
and SA = FLIP(S, S′). To show errS1(h1) ≤ ν, note that we have one of two cases. Either
|Se \ S∗e | ≤ 2ηm, in which case S̃ = Se \ S∗e and h1 will we correct on these in S1. So h1 is
incorrect on at most |S∗e | points on S1 and errS1(h1) ≤ ν. The other case is |Se \ S∗e | > 2η, which
implies S̃ ≥ 2ηm. Since S̃ ⊆ Se, we have that errS1(h1) ≤ errS(h1) − 2η ≤ ν. Finally since
|S̃| ≤ 2ηm and |S′| = |S̃|/2, we have d(S, S1) ≤ 2η and d(S, SA) ≤ η. Also, S1 and SA differ
on points corresponding to S̃ \ S′ with |S̃ \ S′| = |S̃|/2 ≤ ηm. Thus, SA ∈ Aη(S) as well as
SA ∈ Aη(S1).

Now notice that sample S has errS(h∗) ≤ ν and SA ∈ Aη(S). Also S has errS1(h1) ≤ ν and
SA ∈ Aη(S1). Now, assume for contradiction that x ∈ RRL(S, ν, η). This means that LSA(x) =
(y, η′) for some η′ ≥ η. However, if y 6= h∗(x), the learner is incorrectly confident for (true) dataset
S since SA ∈ Aη(S). Similarly, if y = h∗(x), the learner is incorrectly confident for sample S1

since h1(x) 6= h∗(x). Thus, L is not a ν-tolerably strongly robustly-reliable learner and we have a
contradiction.
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We can show that any 2ν-tolerably strongly robustly-reliable learner for the concept space can
be used to give a (1− γ)-probably ν-tolerably robustly-reliable learner over a distribution D where
the best hypothesis h∗ inH has error errD(h∗) = ν.

Theorem 40 LetH be the concept space, andD be a distribution such that minh∈H errD(h) = ν∗,
and letL be a 2ν∗-tolerably robustly-reliable learner forH for any sample S′. Ifm ≥ c

ν∗2
(d+ln 1

γ ),
then L is also (1− γ)-probably ν∗-tolerably robustly-reliable learner forH under marginal DX .

Proof Let D′ be a distribution with the same marginal DX as D. Let S ∼ D′m. By uniform
convergence (Anthony and Bartlett (2009) Theorem 4.10), for each h′ ∈ Hν∗(D′) = {h ∈ H |
errD′(h) ≤ ν∗}, we have that errS(h′) ≤ 2ν∗ with probability at least 1−γ over the draw of S. For
each such S, for all S′ ∈ Aη(S), and for all x ∈ X , if LS′(x) = (y, η′) for η′ ≥ η then y = h(x)
for any h ∈ H with errS(h) ≤ 2ν∗ since L is 2ν∗-tolerably robustly-reliable for any sample S′.
In particular, the prediction agrees with each h′ ∈ Hν∗(D′). Therefore L is a (1 − γ)-probably
ν∗-tolerably robustly-reliable learner forH under marginal DX .

We can use the above reduction, together with our ν-tolerably strongly robustly-reliable learner,
to give a probably tolerably robustly-reliable learner for any distribution D along with guarantees
about its distribution-averaged robust reliability region.

Theorem 41 LetH be the concept space, andD be a distribution such that minh∈H errD(h) = ν∗.
If m ≥ c

ν∗2
(d+ ln 1

γ ), then there is a (1− γ)-probably ν∗-tolerably robustly-reliable learner forH
under marginal DX , with (2ν∗, η)-robustly-reliable correctness that satisfies

ES∼Dm [RobCL(D, 2ν∗, η, S)] ≥ (1− 2γ) Pr
x∼DX

[Agree (H2η+3ν∗(D))],

where d is the VC-dimension ofH, and c is an absolute constant.

Proof Let h∗ ∈ argminh∈H errD(h). Let S ∼ Dm for some m ≥ c
ν∗2

(d + ln 1
γ ). By uniform

convergence (Anthony and Bartlett (2009) Theorem 4.10), with probabilility at least 1− γ over the
draw of S, we have that errS(h∗) ≤ errD(h∗) + ν∗ ≤ 2ν∗. By Theorem 38, there exists a 2ν∗-
tolerably strongly robustly-reliable learner L such that RRL(S, 2ν∗, η) ⊇ Agree (H2η+2ν∗(S)).
Further, by Theorem 40, L is (1 − γ)-probably ν∗-tolerably robustly-reliable learner for H under
marginal DX .

Finally, let’s consider the η-robustly-reliable correctness of L. By another application of uni-
form convergence, with probability at least 1−γ, Agree (H2η+2ν∗(S)) ⊇ Agree (H2η+3ν∗(D)). As
shown above, with probability 1 − γ, we also have RRL(S, 2ν∗, η) ⊇ Agree (H2η+2ν∗(S)). By a
union bound over the failure probabilities, with probability at least 1 − 2γ over the draw of S, we
have RRL(S, 2ν∗, η) ⊇ Agree (H2η+3ν∗(D)). Finally, by the definition of (ν, η)-robustly-reliable
correctness, we have that

ES∼Dm [RobCL(D, 2ν∗, η, S)] = ES∼Dm
[

Pr
x∼DX

[RRL(S, 2ν∗, η)]

]
≥ (1− 2γ) Pr

x∼DX
[Agree (H2η+3ν∗(D))].
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Finally we have the following lower bound on the robustly-reliable correctness for any (1− γ)-
probably ν-tolerably robustly-reliable learner. The key idea in establishing this lower bound is
the creation of two distributions with the same marginal but nearly-consistent with two hypotheses
which are close in error.

Theorem 42 Let L be a (1−γ)-probably ν-tolerably robustly-reliable learner for hypothesis class
H under marginal DX . Given a large enough sample size m = |S| ≥ c

ε2

(
d+ ln 1

δ

)
, we have

ES∼Dm [RobCL(D, ν + ε, η, S)] ≤ Pr[Agree(H2η+ν−ε(D))] + 2γ + 3δ,

where c is an absolute constant and D is the distribution with marginal DX consistent with h∗.

Proof Let L be a (1− γ)-probably ν-tolerably robustly-reliable learner for H under marginal DX
and let h∗ ∈ H such that errD(h∗) ≤ ν. Let x 6∈ Agree(H2η+ν−ε(D)). To prove the theorem, it
suffices to prove that PrS∼Dm [x ∈ RRL(S, ν + ε, η)] ≤ 2γ + 3δ.

By definition of the disagreement region, we can select some h1, h2 ∈ H2η+ν−ε(D) such that
h1(x) 6= h2(x). Assume WLOG that h1(x) 6= h∗(x). Let E∗ = {(x, y) | h∗(x) 6= y} and E1 =
{(x, y) | h1(x) 6= y}. Note that PrD[E∗] ≤ ν and PrD[E1] ≤ 2η + ν − ε. Let D′ be a distribution
which modifiesD by re-assigning a probability mass of p = min{2η−ε,PrD[E1\E∗]} from points
(x, y) ∈ E1 \ E∗ to corresponding points with flipped labels (x, 1− y). Formally, using Corollary
44, there are distributions D1 and D2 such that D = pD1 + (1− p)D2 with supp(D1) ⊆ E1 \E∗,
and we define D′ = pD′1 + (1− p)D2 where D′1 is the distribution corresponding to drawing from
D1 but with flipped labels. Notice that D′ has the same marginal DX distribution as D. Moreover,
errD′(h1) ≤ ν. Indeed, if PrD[E1 \E∗] ≤ 2η−ε, we have errD′(h1) ≤ PrD′ [E

∗] = PrD[E∗] ≤ ν.
Else, observe that errD′(h1) ≤ PrD′ [E1] ≤ PrD[E1]− (2η − ε) ≤ ν.

Drawing from D is equivalent to first flipping a random biased coin, with probability p drawing
according to D1 (call these points ‘red’), and otherwise drawing from D2. Let S ∼ Dm and S′

be the dataset obtained by flipping labels of all the ‘red’ points in S. Notice that S′ ∼ D′m. We
now consider three bad events of total probability at most 2γ + 3δ: (A) L is not (ν + ε)-tolerably
robustly-reliable for all datasets in Aη(S), (B) L is not (ν + ε)-tolerably robustly-reliable for all
datasets in Aη(S′), and (C) d(S, S′) > 2η. Indeed events (A) and (B) occur with probability at
most γ + δ each since L is given to be a (1 − γ)-probably ν-tolerably robustly-reliable learner for
H under DX , and by uniform convergence (Anthony and Bartlett (2009) Theorem 4.10) for each h
with errD(h) ≤ ν we have errS(h) ≤ ν + ε with probability at least 1 − δ. Finally, a point drawn
according to D is red with probability p ≤ 2η − ε. By an application of the Hoeffding’s inequality,
there are at most 2η red points in S with probability at least 1 − δ, i.e. (C) occurs with probability
at most δ.

We claim that if none of these bad events occur, then x 6∈ RRL(S, ν+ε, η). To prove this, assume
for contradiction that none of the bad events occur and x ∈ RRL(S, ν + ε, η). Let S̃h1,h∗ denote
a relabeling of S such that exactly half the red points are labeled according to h∗ (the remaining
half using h1). Note that since bad event (C) did not occur, this means that S̃h1,h∗ ∈ Aη(S) and
S̃h1,h∗ ∈ Aη(S′), Now, since x ∈ RRL(S, ν + ε, η) and S̃h1,h∗ ∈ Aη(S), it must be the case that
LS̃h1,h∗ (x) = (y, η′) for some η′ ≥ η. But, if y 6= h∗(x) then this implies bad event (A), and if

y 6= h′(x) then this implies bad event (B). So, x cannot be in RRL(S, ν + ε, η) as desired.
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Lemma 43 Let (Ω,F , P ) be a probability space. Let A ∈ F and α ≤ P (A). Then we have
probability spaces (A, 2A ∩ F , P1) and (Ω,F , P2) such that for any S ∈ F , P (S) = αP1(A ∩
S) + (1− α)P2(S).

Proof If P (A) = 0, we have α = 0 and the result holds for P2 = P and any P1. Also, if α = 1, we
have P (A) = 1 (or, P (Ω \ A) = 0) and P1(T ) = P (T ) for any T ∈ 2A ∩ F defines a probability
space over A. Further, for any S ∈ F , P1(A∩S) = P (A∩S) = P (S)−P ((Ω \A)∩S) = P (S)
and the desired result holds for any P2.

Assume P (A) > 0 and α < 1. Define P1(T ) = P (T )/P (A) for any T ∈ 2A ∩ F . Notice
(A, 2A ∩ F , P1) is a probability space. In particular, P1(A) = 1 and 0 ≤ P1(T ) ≤ 1 for any
T ∈ 2A ∩ F . For any S ∈ F , define

P2(S) =
1

1− α
P (S)− α

1− α
P1(S ∩A).

We have P2(Ω) = 1
1−αP (Ω)− α

1−α
P (Ω∩A)
P (A) = 1. Also for any S ∈ F ,

P2(S) =
1

1− α
P (S)− α

1− α
P (S ∩A)

P (A)

≥ 1

1− α
P (S)− 1

1− α
P (S ∩A) ≥ 0,

since P (A) ≥ α and P (S) ≥ P (S ∩A). Also,

P2(S) =
1

1− α

(
P (S)− αP (S ∩A)

P (A)

)
=

1

1− α

(
1− P (Ω \ S)− αP (A)− P (A \ (S ∩A))

P (A)

)
= 1− 1

1− α

(
P (Ω \ S)− αP (A \ S)

P (A)

)
≤ 1− 1

1− α
(P (Ω \ S)− P (A \ S)) ≤ 1.

σ-additivity of P2 follows from that of P and P1. Thus, (Ω,F , P2) is a probability space and the
desired relation holds.

We have the following corollary to Lemma 43.

Corollary 44 Let D be a distribution over set S. Let α ≤ PrD[A] for some A ⊆ S. Then
there exist distributions D1 and D2, with supp(D1) ⊆ A and supp(D2) ⊆ S, such that D =
αD1 + (1− α)D2.
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