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Abstract

The incorporation of cutting planes within the branch-and-bound algorithm, known
as branch-and-cut, forms the backbone of modern integer programming solvers.
These solvers are the foremost method for solving discrete optimization problems
and have a vast array of applications in machine learning, operations research, and
many other fields. Choosing cutting planes effectively is a major research topic
in the theory and practice of integer programming. We conduct a novel structural
analysis of branch-and-cut that pins down how every step of the algorithm is
affected by changes in the parameters defining the cutting planes added to an integer
program. Our main application of this analysis is to derive sample complexity
guarantees for using machine learning to determine which cutting planes to apply
during branch-and-cut. These guarantees apply to infinite families of cutting planes,
such as the family of Gomory mixed integer cuts, which are responsible for the
main breakthrough speedups of integer programming solvers. We exploit geometric
and combinatorial structure of branch-and-cut in our analysis, which provides a
key missing piece for the recent generalization theory of branch-and-cut.

1 Introduction

Integer programming (IP) solvers are the most widely-used tools for solving discrete optimization
problems. They have many applications in machine learning, operations research, and other fields, in-
cluding MAP inference [34], combinatorial auctions [52], NLP [37], neural network verification [17],
interpretable classification [61], training of optimal decision trees [13], and optimal clustering [48].

Under the hood, IP solvers use the tree-search algorithm branch-and-bound [41] augmented with
cutting planes, known as branch-and-cut (B&C). A cutting plane is a linear constraint that is added
to the linear programming (LP) relaxation at any node of the search tree. With a carefully selected
cut, the LP guidance can more efficiently lead B&C to the optimal integral solution. Cutting planes,
specifically the family of Gomory mixed integer cuts (GMI) which we study in this paper, are
responsible for breakthrough speedups of modern IP solvers [15, 21].
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(a) Facility location with 40 locations and 40 clients;
sampled by perturbing a base facility location IP.

(b) Facility location with 80 locations, 80 clients, and
random Euclidean distance costs.

Figure 1: These figures illustrate the need for distribution-dependent policies for choosing cuts. We
plot the average number of nodes B&C expands as a function of a parameter µ that controls a policy
to add GMI cuts, detailed in Appendix A. In each figure, we draw a training set of facility location IPs
from two different distributions. In Figure 1a, we define the distribution by starting with a uniformly
random facility location instance and perturbing its costs. In Figure 1b, the costs are more structured:
the facilities are located along a line and the clients have uniformly random locations. In Figure 1a, a
smaller value of µ leads to small search trees, but in Figure 1b, a larger value of µ is preferable.

Successfully employing cutting planes can be challenging because there are infinitely many cuts
to choose from and there are still many open questions about which cuts to employ when. A
growing body of research has studied the use of machine learning for tuning various aspects of IP
solvers [e.g., 2, 8, 12, 24, 29, 33, 35, 36, 38, 40, 42, 44, 45, 51, 52, 57–60], recently including cut
selection [10, 11, 30, 53, 55]. We analyze a machine learning setting where there is an unknown
distribution over IPs—for example, a distribution over a shipping company’s routing problems.
The learner receives a training set of IPs sampled from this distribution which it uses to learn cut
parameters with strong average performance over the training set (leading, for example, to small
search trees). Figure 1 illustrates that tuning cut parameters according to the instance distribution at
hand can have a large impact on B&C’s performance, and that for one distribution, the best parameters
can be very different—in fact opposite—than the best parameters for another distribution.

We provide sample complexity bounds for this procedure, which bound the number of training
instances sufficient to ensure that if a set of cut parameters leads to strong average performance
over the training set, it will also lead to strong expected performance on future IPs from the same
distribution. These guarantees apply no matter what procedure is used to optimize the cut parameters
over the training set—optimal or suboptimal, automated or manual.

A significant body of research has recently provided sample complexity bounds for automated
algorithm configuration, further illustrating the importance of this line of research [e.g., 5–7, 9–
11, 16, 25, 28]. However, these works have been unable to analyze Gomory mixed integer (GMI)
cuts [26], which are perhaps the most important family of cutting planes in integer programming. They
dominate most other families of cutting planes [23] and are directly responsible for the realization
that a B&C framework is necessary for the speeds now achievable by modern IP solvers [4]. Prior
research has been unable to handle GMI cuts because there are an uncountably infinite number of
different GMI cuts that one could add, whereas prior research on cutting planes was only able to
handle cutting plane families of finite effective size [10, 11]. The current work closes this gap.

The key challenge is that an infinitesimal change to any GMI cut can completely change the entire
course of B&C because a cut added at the root remains in the LP relaxations stored in each node all
the way to the leaves. At its core, our analysis therefore involves understanding an intricate interplay
between the continuous and discrete components of our problem. The first, continuous component
requires us to characterize how an LP’s solution changes as a function of its constraints. The optimum
will move continuously through space until it jumps from one vertex of the polytope to another. We
use this characterization to analyze how the B&C tree—a discrete, combinatorial object—varies as a
function of its LP guidance, which allows us to prove our sample complexity bound.

1.1 Our contributions

In order to prove our sample complexity bound for GMI cuts, we analyze how the B&C tree varies as
a function of the cut parameters on any IP. We prove that the set of all possible cuts can be partitioned
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(a) LP optimum
closed form

(Lemma 4.1)

(b) Invariant
branching

(Lemma 4.2)

(c) Invariant LP
integrality

(Lemma 4.3)

(d) Invariant B&C
execution

(Theorem 4.4)

Figure 2: Our B&C analysis involves successive refinements to our partition of the parameter space.

into a finite number of regions such that within any one region, B&C builds the exact same search tree.
Moreover, the boundaries between regions are defined by low-degree polynomials. The simplicity of
this function allows us to prove our sample complexity bound. The buildup to this result consists of
three main contributions, each of which we believe may be of independent interest:

1. Our first main contribution (Section 3) addresses a fundamental question in linear programming:
how does an LP’s solution change when new constraints are added? As the constraints vary, the
solution will jump from vertex to vertex of the LP polytope. We prove that one can partition the
set of all possible constraint vectors into a finite number of regions such that within any one region,
the LP’s solution has a clean closed form. Moreover, we prove that the boundaries defining this
partition have a specific form, defined by degree-2 polynomials.

2. We build on this result in our second main contribution (Section 4): a novel analysis of how the
entire B&C search tree changes as a function of the cuts added at the root. At a high level, B&C
builds this search tree by iteratively subdividing its feasible set via a process called branching on
variables: in one subdivision, the constraint xi ≤ k is enforced and in the other xi ≥ k + 1, for
some variable i and integer k (k is chosen according to the LP relaxation solution, as described in
Section 2). Upon constructing a subdivision S, it checks whether the LP relaxation restricted to S
is integral. If not, it further subdivides S, unless the LP relaxation’s solution is worse than the best
integral solution found thus far, in which case it stops searching in S—a process called fathoming
or pruning S. Each subdivision is stored as a node in B&C’s search tree. Our analysis of how the
B&C search tree changes as a function of the cuts added has four steps, illustrated by Figure 2:
(a) Section 4.1: First, we use our result from Section 3 to show that the cut parameter space can

be partitioned into regions such that in any one region, the LP optimal solution at any node
of the B&C search tree has a clean closed form, as illustrated in Figure 2a.

(b) Section 4.2: We use this result to show that each region can be further partitioned (as
illustrated in Figure 2b) such that no matter what cut we employ in any one region, all of
the branching decisions that B&C makes are fixed. Intuitively, this is because the branching
decisions depend on the LP relaxation, which has a closed-form solution in any one region.

(c) Section 4.3: Next, we show that each region from Figure 2b can be further partitioned into
regions (illustrated in Figure 2c) where in any one region, for every node in the B&C tree, the
integrality of that node’s LP relaxation is invariant no matter what cut in that region we use.

(d) Section 4.4: Finally, we show that each of these regions can be further subdivided into regions
(as in Figure 2d) where the nodes that B&C fathoms are fixed, so the tree it builds is fixed.

3. This result allows us to prove sample complexity bounds for learning high-performing cutting
planes from the class of GMI cuts, our third main contribution (Section 5). Our key technical
insight is that the GMI cutting plane coefficients can be viewed as a mapping that embeds our
polynomial partition from the previous step (Figure 2) into the space of GMI cut parameters. We
prove that the resulting embedding does not distort the polynomial hypersurfaces too much: the
embedded hypersurfaces are still polynomial, with only slightly larger degree.

1.2 Related research

Learning to cut. Several papers have studied how to use machine learning for cut selection from
an applied perspective [30, 53, 55], whereas our goal is to provide theoretical guarantees. Towards
this end, this paper helps develop a theory of generalization for cutting plane selection. This line of
inquiry began with a paper by Balcan et al. [10], who studied Chvátal-Gomory (CG) cuts [18, 27]
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for (pure) integer programs (IPs). Later work [11] provided a unifying sample-complexity analysis
of tunable tree-search algorithms when there is a finite set of actions the algorithm can take at any
given node. All prior research on generalization guarantees for integer programming [6, 10] fits
this framework. In the context of single-variable branching [6], the number of possible branching
decisions at any node is equal to the number of variables. In the context of CG cuts, Balcan et al.
[10] showed that there are only finitely many distinct cuts at any node. These analyses followed by
making pairwise comparisons between actions and understanding in what region of the parameter
space one action would be chosen over another. Since there were only a finite number of actions,
there were only a finite number of pairwise comparisons. This approach cannot work in our setting
due to the uncountably infinite number of GMI cuts. Tackling a continuum of cutting planes requires
novel techniques that we develop in this paper—in particular a structural analysis of B&C that is
significantly more involved than the finite-action setting.

Sensitivity analysis of IPs and LPs. A related line of research studied the sensitivity of LPs, and
to a lesser extent IPs, to changes in their parameters [e.g., 20, 43, 46]. This paper fits in to this line of
research as we study how the solution to an LP varies as new rows are added.

2 Notation and branch-and-cut background

Integer and linear programs. An integer program (IP) is defined by an objective vector c ∈ Rn, a
constraint matrix A ∈ Zm×n, and a constraint vector b ∈ Zm, with the form

max{cTx : Ax ≤ b,x ≥ 0,x ∈ Zn}. (1)

The linear programming (LP) relaxation is formed by removing the integrality constraints:
max{cTx : Ax ≤ b,x ≥ 0}. We denote the optimal solution to (1) by x∗

IP and its LP-relaxation
optimal solution by x∗

LP. Let z∗LP = cTx∗
LP. If σ is a set of constraints, we let x∗

IP(σ) denote the
optimum of (1) subject to these additional constraints (similarly define z∗LP(σ) and x∗

LP(σ)).

Polyhedra and polytopes. A set P ⊆ Rn is a polyhedron if there exists an integer m, A ∈ Rm×n,
and b ∈ Rm such that P = {x ∈ Rn : Ax ≤ b}. P is a rational polyhedron if there exists
A ∈ Zm×n and b ∈ Zm such that P = {x ∈ Rn : Ax ≤ b}. A bounded polyhedron is called a
polytope. The feasible regions of all IPs considered in this paper are assumed to be rational polytopes 1

of full dimension. Let P = {x ∈ Rn : aix ≤ bi, i ∈ M} be a nonempty polyhedron. We assume
the representation of P is irredundant, that is, {x ∈ Rn : aix ≤ bi, i ∈ M \ {j}} ̸= P for all
j ∈ M . For any I ⊆ M , the set FI := {x ∈ Rn : aix = bi, i ∈ I,aix ≤ bi, i ∈ M \ I} is a face of
P . Conversely, if F is a nonempty face of P , then F = FI for some I ⊆ M . Faces of dimension 1
are called edges and faces of dimension 0 are called vertices. A detailed reference on the polyhedral
theory used in our arguments can be found in Conforti et al. [19].

Given a set of constraints σ, let P(σ) denote the polyhedron that is the intersection of P with all
inequalities in σ.

Cutting planes. A cutting plane is a constraint αTx ≤ β. Let P be the feasible region of the LP
relaxation of (1) and PI = P ∩ Zn be the IP’s feasible set. A cut is valid if it is satisfied by every
integer point in PI: αTx ≤ β for all x ∈ PI. A valid cut separates a point x ∈ P \ PI if αTx > β.
We refer to a cut both by its parameters (α, β) ∈ Rn+1 and the halfspace αTx ≤ β in Rn.

An important family of valid cuts that we study in this paper is the set of Gomory mixed integer
(GMI) cuts. For decades, general-purpose cutting planes were thought to be unwieldy and useless for
solving IPs quickly in practice. However, a seminal paper by Balas et al. [4] completely reversed this
sentiment by showing that GMI cuts added throughout the B&C tree led to massive speedups. Today,
GMI cuts are one of the most important components of state-of-the-art IP solvers.

Definition 2.1 (Gomory mixed integer cut). Suppose the feasible region of the IP is in equality
form Ax = b, x ≥ 0 (which can be achieved by adding slack variables). For u ∈ Rm, let fi

1This assumption is not a restrictive one. The Minkowski-Weyl theorem states that any polyhedron can be
decomposed as the sum of a polytope and its recession cone. All results in this paper can be derived for rational
polyhedra by considering the corresponding polytope in the Minkowski-Weyl decomposition.
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denote the fractional part of (uTA)i and let f0 denote the fractional part of uT b. That is, (uTA)i =
(⌊uTA⌋)i + fi and uT b = ⌊uT b⌋+ f0. The Gomory mixed integer (GMI) cut parameterized by u is∑

i:fi≤f0

fixi +
f0

1− f0

∑
i:fi>f0

(1− fi)xi ≥ f0.

The form of the GMI cut is obtained via a slightly more nuanced rounding procedure than the one
used to obtain the CG cut ⌊uTA⌋x ≤ ⌊uT b⌋. GMI cuts strictly dominate CG cuts. More details
about GMI cuts can be found in the tutorial by Cornuéjols [22].

Branch-and-cut. We provide a high-level overview of B&C (Nemhauser and Wolsey [49], for
example, provide more details). Given an IP, B&C searches the IP’s feasible region by building a
binary search tree. B&C solves the LP relaxation of the input IP and then adds any number of cutting
planes. It stores this information at the tree’s root. Let x∗

LP = (x∗
LP[1], . . . ,x

∗
LP[n]) be the solution to

the LP relaxation with the addition of the cutting planes. B&C next uses a variable selection policy
to choose a variable xi to branch on. This means that it splits the IP’s feasible region in two: one set
where xi ≤ ⌊x∗

LP[i]⌋ and the other where xi ≥ ⌈x∗
LP[i]⌉. The left child of the root now corresponds

to the IP with a feasible region defined by the first subset and the right child likewise corresponds to
the second subset. B&C then chooses a leaf using a node selection policy and recurses, adding any
number of cutting planes, branching on a variable, and so on. B&C fathoms a node—which means
that it will never branch on that node—if 1) the LP relaxation at the node is infeasible, 2) the optimal
solution to the LP relaxation is integral, or 3) the optimal solution to the LP relaxation is no better than
the best integral solution found thus far. Eventually, B&C will fathom every leaf, at which point it
has found the globally optimal integral solution. We assume there is a bound κ on the size of the tree
we allow B&C to build before we terminate, as is common in prior research [6, 10, 11, 31, 38, 39].

Every step of B&C—including node and variable selection and the choice of whether or not to
fathom—depends crucially on guidance from LP relaxations. Tighter LP relaxations provide more
valuable LP guidance, highlighting the importance of cuts. To give an example, this is true of the
product scoring rule [1], a popular variable selection policy that our results apply to.
Definition 2.2. Let x∗

LP be the solution to the LP relaxation at a node and z∗LP = cTx∗
LP. The

product scoring rule branches on the variable i ∈ [n] that maximizes: max{z∗LP − z∗LP(xi ≤
⌊x∗

LP[i]⌋), 10−6} ·max{z∗LP − z∗LP(xi ≥ ⌈x∗
LP[i]⌉), 10−6}.

Polynomial arrangements in Euclidean space. Let p ∈ R[y1, . . . , yk] be a polynomial of degree
at most d. The polynomial p partitions Rk into connected components that belong to either Rk \
{(y1, . . . , yk) : p(y1, . . . , yk) = 0} or {(y1, . . . , yk) : p(y1, . . . , yk) = 0}. When we discuss the
connected components of Rk induced by p, we include connected components in both these sets.
We make this distinction because previous work on sample complexity for data-driven algorithm
design oftentimes only needed to consider the connected components of the former set. The number
of connected components in both sets is O(dk) [47, 54, 56].

3 Linear programming sensitivity

Our main result in this section addresses a fundamental question in linear programming: how is an
LP’s optimal solution affected by the addition of new constraints? Later in this paper, we use this
result to prove sample complexity bounds for optimizing over the canonical family of GMI cuts.

More formally, fixing an LP with m constraints and n variables, if x∗
LP(α

Tx ≤ β) ∈ Rn denotes the
new LP optimum when the constraint αTx ≤ β is added, we pin down a precise characterization
of x∗

LP(α
Tx ≤ β) as a function of α and β. We show that x∗

LP(α
Tx ≤ β) has a piece-wise closed

form: there are surfaces partitioning Rn+1 such that within each connected component induced by
these surfaces, x∗

LP(α
Tx ≤ β) has a closed form. While the geometric intuition used to establish this

piece-wise structure relies on the basic property that optimal solutions to LPs are achieved at vertices,
the surfaces defining the regions are perhaps surprisingly nonlinear: they are defined by multivariate
degree-2 polynomials in α, β. In Appendix B.1 we illustrate these surfaces for an example LP.

The proof requires us to: (1) track the set of edges of the LP polytope intersected by the new constraint,
and once those edges are fixed, (2) track which edge yields the vertex with the highest objective.

5



Let M = [m] denote the set of m constraints. For E ⊆ M , let AE ∈ R|E|×n and bE ∈ R|E|

denote the restrictions of A and b to E. For α ∈ Rn, β ∈ R, and E ⊆ M with |E| = n − 1, let
AE,α ∈ Rn×n denote the matrix obtained by adding row vector α to AE and let Ai

E,α,β ∈ Rn×n be
the matrix AE,α with the ith column replaced by (bE , β)

T .
Theorem 3.1. Let (c, A, b) be an LP with optimal solution x∗

LP. There are at most mn hyperplanes
and m2n degree-2 polynomial hypersurfaces partitioning Rn+1 into connected components such that
for each component C, either: (1) x∗

LP(α
Tx ≤ β) = x∗

LP, or (2) there is a set of constraints E ⊆ M
with |E| = n− 1 such that x∗

LP(α
Tx ≤ β)[i] = det(Ai

E,α,β)/ det(AE,α) for all (α, β) ∈ C.

Proof. First, if αTx ≤ β does not separate x∗
LP, then x∗

LP(α
Tx ≤ β) = x∗

LP. The set of all such
cuts is the halfspace given by {(α, β) ∈ Rn+1 : αTx∗

LP ≤ β}. All other cuts separate x∗
LP and thus

pass through P = {x ∈ Rn : Ax ≤ b,x ≥ 0}, and the new LP optimum is achieved at a vertex
created by the cut. We consider the new vertices formed by the cut, which lie on edges of P . Each
edge e of P can be identified with a subset E ⊂ M of size n− 1 such that the edge is the set of all
points x such that aT

i x = bi for all i ∈ E and aT
i x ≤ bi for all i ∈ M \E where ai is the ith row of

A. If we drop the inequality constraints defining the edge, the equality constraints define a line in Rn.
The intersection of the cut αTx ≤ β and this line is the solution to the system of n linear equations
in n variables: AEx = bE ,α

Tx = β. By Cramer’s rule, the unique solution x = (x1, . . . , xn) to
this system is given by xi = det(Ai

E,α,β)/ det(AE,α). To ensure that the intersection point lies on
the edge of the polytope, we stipulate that it satisfies the inequality constraints in M \ E. That is,

n∑
j=1

aij ·
det(Aj

E,α,β)

det(AE,α)
≤ bi (2)

for every i ∈ M \ E (if α, β satisfy any of these constraints, it must be that det(AE,α) ̸= 0, which
guarantees that AEx = bE ,α

Tx = β has a unique solution). Multiplying through by det(AE,α)
shows that this constraint is a halfspace in Rn+1, since det(AE,α) and det(Ai

E,α,β) are linear in α
and β. The collection of all the hyperplanes defining the boundaries of these halfspaces over all edges
of P induces a partition of Rn+1 into connected components such that for all (α, β) within a given
component, the (nonempty) set of edges of P that the hyperplane αTx = β intersects is invariant.

Now, consider a single connected component, denoted by C for brevity. Let e1, . . . , ek denote the
edges intersected by cuts in C, and let E1, . . . , Ek ⊂ M denote the sets of constraints that are binding
at each of these edges, respectively. For each pair ep, eq , consider the surface

n∑
i=1

ci ·
det(Ai

Ep,α,β)

det(AEp,α)
=

n∑
i=1

ci ·
det(Ai

Eq,α,β)

det(AEq,α)
. (3)

Clearing the (nonzero) denominators shows this is a degree-2 polynomial hypersurface in α, β in
Rn+1. This hypersurface is the set of all (α, β) for which the LP objective values achieved at the
vertices on edges ep and eq are equal. The collection of these surfaces for each p, q partitions C
into further connected components. Within each component C ′, the edge containing the vertex that
maximizes the objective is invariant. If this edge corresponds to binding constraints E, x∗

LP(α
Tx ≤

β) has the closed form x∗
LP(α

Tx ≤ β)[i] = det(Ai
E,α,β)/ det(AE,α) for all (α, β) ∈ C ′. We now

count the number of surfaces in our decomposition. P has at most
(

m
n−1

)
≤ mn−1 edges, and for

each edge E, Equation (2) defines at most |M \ E| ≤ m hyperplanes for a total of at most mn

hyperplanes. Equation (3) defines a degree-2 polynomial hypersurface for every pair of edges, of
which there are at most

(
mn

2

)
≤ m2n.

In Appendix B.2, we generalize Theorem 3.1 to understand x∗
LP as a function of any K constraints.

In this case, we show that the piecewise structure is given by degree-2K multivariate polynomials.

4 Structure and sensitivity of branch-and-cut

We now use Theorem 3.1 to answer a fundamental question about B&C: what is the structure of the
B&C tree as a function of cuts at the root? Answering this question brings us one step closer toward
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providing sample complexity guarantees for GMI cuts. Said another way, we derive conditions on
α1,α2 ∈ Rn, β1, β2 ∈ R, such that B&C behaves identically on the two IPs

max{cTx : Ax ≤ b,αT
1 x ≤ β1,x ∈ Zn

≥0} and max{cTx : Ax ≤ b,αT
2 x ≤ β2,x ∈ Zn

≥0}.

We prove that the set of all cuts can be partitioned into a finite number of regions where by employing
cuts from any one region, the B&C tree remains exactly the same. We also prove that the boundaries
between regions are defined by low-degree polynomials. Figure 2 is a schematic diagram of our
proof, which breaks the analysis of B&C into four main steps. Each step successively refines the
partition obtained in the previous step, and uses the properties established in the previous step to
analyze the next stage of B&C. We focus on a single cut added to the root and extend to multiple cuts
in Appendix C.2. The full proofs from this section are in Appendix C.

We use the following notation in this section. Given an IP, let τ = ⌈maxx∈P ∥x∥∞⌉ be the maximum
magnitude coordinate of any LP-feasible solution, rounded up. By Cramer’s rule and Hadamard’s
inequality, τ ≤ annn/2 where a = ∥A∥∞,∞. However, τ can be much smaller. For example, if A
contains a row with only positive entries, then τ ≤ ∥b∥∞. Let BC := {x[i] ≤ ℓ,x[i] ≥ ℓ}0≤ℓ≤τ,i∈[n],
which contains the set of all possible branching constraints. Let Aσ and bσ denote A and b with
the constraints in σ ⊆ BC added. For E ⊆ M ∪ σ, let AE,σ ∈ R|E|×n and bE ∈ R|E| denote the
restrictions of Aσ and bσ to E. For α ∈ Rn, β ∈ R and E ⊆ M ∪σ with |E| = n− 1, let AE,α,σ ∈
Rn×n denote the matrix obtained by adding row vector α to AE,σ and let Ai

E,α,β,σ ∈ Rn×n be the
matrix AE,α,σ with the ith column replaced by (bE,σ, β)

T .

4.1 Step 1: Understanding how the cut affects the LP optimum at any node of the B&C tree

Theorem 3.1 gives a (piecewise) closed form for the LP optimum x∗
LP(α

Tx ≤ β) at the root of the
B&C tree as a function of coefficients (α, β) ∈ Rn+1 determining the cut. The first step is to extend
this result to get a handle on the LP optimum at any node of any B&C tree. Suppose σ ⊆ BC is a set
of branching constraints (any node of any B&C tree can be identified with some σ ⊆ BC). We refine
the partition of space obtained in Theorem 3.1 so that within a given region of the new partition,
x∗
LP(α

Tx ≤ β, σ) has a closed form for all σ. This is illustrated by Figure 2a.

Lemma 4.1. For any IP (c, A, b), there are at most (m + 2n)nτ3n hyperplanes and at most
(m+ 2n)2nτ3n degree-2 polynomial hypersurfaces partitioning Rn+1 into connected components
such that for each component C and every σ ⊂ BC, either: (1) x∗

LP(α
Tx ≤ β, σ) = x∗

LP(σ) and
z∗LP(α

Tx ≤ β, σ) = z∗LP(σ), or (2) there is a set of constraints E ⊆ M ∪ σ with |E| = n− 1 such

that x∗
LP(α

Tx ≤ β, σ)[i] =
det(Ai

E,α,β,σ)

det(AE,α,σ)
for all (α, β) ∈ C.

4.2 Step 2: Conditions for branching decisions to be identical

We next refine the decomposition obtained in Lemma 4.1 so that the branching constraints added at
each step of B&C are invariant within a region, as in Figure 2b. For concreteness, we analyze the
product scoring rule (Def. 2.2) used by the leading open-source solver SCIP [14]. The high-level
intuition is that we zoom in on a connected component in the partition of Lemma 4.1. Within this
component, we may express x∗

LP(α
Tx ≤ β, σ) explicitly in terms of α, β, for all σ. This allows us

to unravel the branching rule and derive conditions for invariance.

Lemma 4.2. For any IP (c, A, b), there are at most 3(m+ 2n)nτ3n hyperplanes, 3(m+ 2n)3nτ4n

degree-2 polynomial hypersurfaces, and (m+ 2n)6nτ4n degree-5 polynomial hypersurfaces parti-
tioning Rn+1 into connected components such that within each component, the branching constraints
used at every step of B&C are invariant.

Proof sketch. If we are at a node of B&C represented by σ, the new branching constraints after
expanding that node are of the form xi ≤

⌊
x∗
LP(α

Tx ≤ β, σ)[i]
⌋

and xi ≥
⌈
x∗
LP(α

Tx ≤ β, σ)[i]
⌉
.

Lemma 4.1 gives closed forms for the right-hand-sides of these two constraints, allowing us to control
the rounding aspect of the constraints. The rest of the proof is a careful analysis of the product scoring
rule which allows us to derive conditions ensuring that the branching variable is invariant.
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4.3 Step 3: When do nodes have an integral LP optimum?

We now move to the most critical phase of branch-and-cut: deciding when to fathom a node. The
first reason a node might be fathomed is if the LP relaxation of the IP at that node has an integral
solution. We derive conditions that ensure that nearby cuts have the same effect on the integrality of
the IP at any node in the search tree. Recall PI = P ∩ Zn is the set of integer points in P .
Lemma 4.3. For any IP (c, A, b), there are at most 3(m+ 2n)nτ4n hyperplanes, 3(m+ 2n)3nτ4n

degree-2 polynomial hypersurfaces, and (m + 2n)6nτ4n degree-5 polynomial hypersurfaces par-
titioning Rn+1 into connected components such that for each component C and each σ ⊆ BC,
1
[
x∗
LP

(
αTx ≤ β, σ

)
∈ Zn

]
is invariant for all (α, β) ∈ C.

Proof sketch. For all σ, xI ∈ PI, and i ∈ [n], consider the surface x∗
LP(α

Tx ≤ β, σ)[i] = xI[i]. By
Lemma 4.1, this surface is a hyperplane. If x∗

LP(α
Tx ≤ β, σ) ∈ Zn for some (α, β) in a connected

component induced by these hyperplanes, x∗
LP(α

Tx ≤ β, σ) = xI for some xI ∈ PI(σ) ⊆ PI,
which means that x∗

LP(α
Tx ≤ β, σ) = xI ∈ Zn for all (α, β) in that component.

Lemma 4.3 is illustrated by Figure 2c. Next, suppose for a moment that B&C fathoms a node if and
only if either the LP is infeasible or the LP optimal solution is integral—that is, the “bounding" of
B&C is suppressed. In this case, the tree built by B&C is invariant within each component of the
partition in Lemma 4.3. Equipped with this observation, we now analyze the full behavior of B&C.

4.4 Step 4: Pruning nodes with weak LP bounds

In this final step, we analyze the most important aspect of B&C: pruning nodes when the LP objective
value is smaller than the best-known integral solution. Using the tools we have developed so far,
expressing the question “is the LP value at a node smaller than the best-known integral solution?”
becomes a simple matter of hyperplanes and halfspaces. This final step is illustrated by Figure 2d.

Theorem 4.4. Given an IP (c, A, b), there is a set of at most O(14n(m+ 2n)3n
2

τ5n
2

) polynomial
hypersurfaces of degree ≤ 5 partitioning Rn+1 into connected components such that the B&C tree
built after adding the cut αTx ≤ β at the root is invariant over all (α, β) within a given component.

Proof sketch. Let Q1, . . . , Qi1 , I1, Qi1+1, . . . , Qi2 , I2, Qi2+1, . . . denote the nodes of the B&C tree
in order of exploration, under the assumption that a node is pruned if and only if either the LP at that
node is infeasible or the LP optimal solution is integral. Here, a node is identified by the list σ of
branching constraints added to the input IP. Nodes labeled by Q are either infeasible or have fractional
LP optimal solutions. Nodes labeled by I have integral LP optimal solutions and are candidates for
the incumbent integral solution at the point they are encountered. By Lemma 4.3, this ordered list of
nodes is invariant over any connected component of our partition.

Given an node index ℓ, let I(ℓ) denote the incumbent node with the highest objective value en-
countered up until the ℓth node searched by B&C, and let z(I(ℓ)) denote its objective value. For
each node Qℓ, let σℓ denote the branching constraints added to arrive at node Qℓ. The hyperplane
z∗LP(α

Tx ≤ β, σℓ) = z(I(ℓ)) (which is a hyperplane due to Lemma 4.1) induces two regions. In one
region, z∗LP(α

Tx ≤ β, σℓ) ≤ z(I(ℓ)) and so the subtree rooted at Qℓ is pruned. In the other region,
z∗LP(α

Tx ≤ β, σℓ) > z(I(ℓ)), and Qℓ is branched on further. Therefore, within each component
induced by all such hyperplanes for all ℓ, the set of nodes that are pruned is invariant. Combined with
the surfaces established in Lemma 4.3, these hyperplanes partition Rn+1 into components such that
as (α, β) varies within a given component, the B&C tree is invariant.

5 Sample complexity bounds for Gomory mixed integer cuts

In this section, we show how the results from Section 4 can be used to provide sample complexity
bounds for GMI cuts (Definition 2.1), parameterized by u ∈ U ⊆ Rm. We assume there is an
unknown, application-specific distribution D over IPs. The learner receives a training set S ∼ DN

of N IPs sampled from this distribution. A sample complexity guarantee bounds the number of
samples N sufficient to ensure that for any parameter setting u ∈ U , the B&C tree size on average
over S is close to the expected tree size. More formally, let gu(c, A, b) be the size of the tree
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B&C builds given the input (c, A, b) after applying the cut defined by u at the root. Given ϵ > 0
and δ ∈ (0, 1), a sample complexity guarantee bounds the number of samples N sufficient to
ensure that with probability 1 − δ over the draw S ∼ DN , for every parameter setting u ∈ U ,
| 1N
∑

(c,A,b)∈S gu(c, A, b)− E[gu(c, A, b)]| ≤ ϵ. To derive our sample complexity guarantee, we
use the notion of pseudo-dimension [50]. Let G = {gu : u ∈ U}. The pseudo-dimension of G,
denoted Pdim(G), is the largest integer N for which there exist N IPs (c1, A1, b1), . . . , (cN , AN , bN )
and N thresholds r1, . . . , rN ∈ R such that for every binary vector (σ1, . . . , σN ) ∈ {0, 1}N , there
exists gu ∈ G such that gu(ci, Ai, bi) ≥ ri if and only if σi = 1. The number of samples sufficient
to ensure an error of ε and confidence of 1− δ is N = O(κ

2

ϵ2 (Pdim(G) + log 1
δ )) [50]. Equivalently,

for a given number of samples N , the error-term ε is at most κ
√
(Pdim(G) + log(1/δ))/N .

So far, α, β have been parameters that do not depend on the input instance c, A, b. Suppose now that
they do: α, β are functions of c, A, b and a parameter vector u (as they are for GMI cuts). Despite
the structure established in the previous section, if α, β can depend on (c, A, b) in arbitrary ways,
one cannot even hope for a finite sample complexity, illustrated by the following impossibility result.
The full proofs of all results from this section are in Appendix D.
Theorem 5.1. There exist functions αc,A,b : U → Rn and βc,A,b : U → R such that
Pdim ({gu : u ∈ U}) = ∞, where U is any set with |U | = |R|.

However, in the case of GMI cuts (Def. 2.1), we show that the cutting plane coefficients parameterized
by u are highly structured. Combining this structure with our analysis of B&C allows us to derive
polynomial sample complexity bounds. We assume that u ∈ [−U,U ]m for some U > 0.

Let α : [−U,U ]m → Rn denote the function taking GMI cut parameters u to the corresponding
vector of coefficients determining the resulting cutting plane, and let β : [−U,U ]m → R denote the
offset of the resulting cutting plane. So (after multiplying through by 1− f0),

α(u)[i] =

{
fi(1− f0) if fi ≤ f0
f0(1− fi) if fi > f0

and β(u) = f0(1−f0) (f0 and fi are functions of u, but we suppress this dependence for readability).

To understand the structure of B&C as a function of GMI cut parameters, we study the preimages of
components C ⊆ Rn+1 under the GMI coefficient maps α : [−U,U ]m → Rn, β : [−U,U ]m → R.
If C ⊆ Rn+1 (as in Theorem 4.4) is such that B&C (as a function of α, β) is invariant over C, then
B&C (as a function of GMI parameter u) is invariant over D := {u : (α(u), β(u)) ∈ C}. Our key
structural insight for GMI cuts is that if C is the intersection of degree-d polynomial hypersurfaces in
Rn+1, then D is the intersection of degree-2d polynomial hypersurfaces in [−U,U ]m. We provide
the high-level intuition for this result below—the formal statements and proofs are in Appendix D.

Consider some degree-d polynomial p in variables y1, . . . , yn+1 that defines C, which can be written
as
∑

T⊑[n+1],|T |≤d λT

∏
i∈T yi for some coefficients λT ∈ R, where T ⊑ [n+ 1] means that T is a

multiset of [n+ 1]. Evaluating at (α(u), β(u)), we get∑
|T |≤d λT

∏
i∈T∩S\{n+1} fi(1− f0)

∏
i∈T\S\{n+1} f0(1− fi)

∏
i∈T∩{n+1} f0(1− f0).

Next, substitute fi = uTai − ⌊uTai⌋ and f0 = uT b− ⌊uT b⌋. Restricted to u such that the floor
terms round down to some fixed integers, the above expression is a polynomial in u of degree ≤ 2d.
We run this procedure for every polynomial determining C, for every connected component C in the
partition of Rn+1 established in Theorem 4.4 to derive our main structural result for GMI cuts.
Lemma 5.2. Consider the family of GMI cuts parameterized by u ∈ [−U,U ]m. For any IP
(c, A, b), there are at most O(nU2 ∥A∥1 ∥b∥1) hyperplanes and 2O(n2)(m+2n)O(n3)τO(n3) degree-
10 polynomial hypersurfaces partitioning [−U,U ]m into connected components such that the B&C
tree built after adding the GMI cut defined by u is invariant over all u within a single component.

Bounding Pdim({gu : u ∈ [−U,U ]m}) is a direct application of the main theorem of Balcan et al.
[9] along with standard results bounding the VC dimension of polynomial boundaries [3].
Theorem 5.3. The pseudo-dimension of the class of tree-size functions {gu : u ∈ [−U,U ]m} on the
domain of IPs with ∥A∥1 ≤ a and ∥b∥1 ≤ b is O

(
m log(abU) +mn3 log(m+ n) +mn3 log τ

)
.

We generalize the analysis of this section to multiple GMI cuts at the root of the B&C tree in
Appendix D. We show that if K GMI cuts are sequentially applied at the root, the resulting partition
of the parameter space is induced by polynomials of degree O(K2).
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6 Conclusions

In this paper, we investigated fundamental questions about integer programming: given an integer
program, what is the structure of the branch-and-cut tree as a function of a set of additional feasible
constraints? Through a detailed geometric and combinatorial analysis of how additional constraints
affect the LP relaxation’s optimal solution, we showed that the branch-and-cut tree is piecewise
constant and precisely bounded the number of pieces. We showed that the structural insights that we
developed could be used to prove sample complexity bounds for learning GMI cuts, one of the most
important classes of general-purpose cutting planes in integer programming.

This paper opens up a variety of directions for future research. Our sensitivity analyses in Sections 3
and 4 are fairly general and a promising direction is to explore applications to other important topics
in integer programming such as column generation and lifting. Another important direction is to
further develop algorithmic approaches for choosing GMI (and other) cutting planes. Currently,
solvers employ a subset of GMI cuts derived from the optimal simplex tableau due to computational
efficiency—it would be interesting to see if the theory developed in this paper could expand the
possibilities for efficient cutting plane generation.
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A Further details about plots

The version of the facility location problem we study involves a set of locations J and a set of clients
C. Facilities are to be constructed at some subset of the locations, and the clients in C are served
by these facilities. Each location j ∈ J has a cost fj of being the site of a facility, and a cost sc,j of
serving client c ∈ C. Finally, each location j has a capacity κj which is a limit on the number of
clients j can serve. The goal of the facility location problem is to arrive at a feasible set of locations
for facilities and a feasible assignment of clients to these locations that minimizes the overall cost
incurred.

The facility location problem can be formulated as the following 0, 1 IP:

minimize
∑
j∈J

fjxj +
∑
j∈J

∑
c∈C

sc,jyc,j

subject to
∑
j∈J

yc,j = 1 ∀ c ∈ C∑
c∈C

yc,j ≤ κjxj ∀ j ∈ J

yc,j ∈ {0, 1} ∀ c ∈ C, j ∈ J
xj ∈ {0, 1} ∀ j ∈ J

We consider the following two distributions over facility location IPs.

First distribution Facility location IPs are generated by perturbing the costs and capacities of
a base facility location IP. We generated the base IP with 40 locations and 40 clients by choosing
the location costs and client-location costs uniformly at random from [0, 100] and the capacities
uniformly at random from {0, . . . , 39}. To sample from the distribution, we perturb this base IP
by adding independent Gaussian noise with mean 0 and standard deviation 10 to the cost of each
location, the cost of each client-location pair, and the capacity of each location.

Second distribution Facility location IPs are generated by placing 80 evenly-spaced locations along
the line segment connecting the points (0, 1/2) and (1, 1/2) in the Cartesian plane. The location
costs are all uniformly set to 1. Then, 80 clients are placed uniformly at random in the unit square
[0, 1]2. The cost sc,j of serving client c from location j is the distance between j and c. Location
capacities are chosen uniformly at random from {0, . . . , 43}.

In our experiments, we add five cuts at the root of the B&C tree. These five cuts come from the set of
Chvátal-Gomory and Gomory mixed integer cuts derived from the optimal simplex tableau of the LP
relaxation. The five cuts added are chosen to maximize a weighting of cutting-plane scores:

µ · score1 + (1− µ) · score2. (4)

score1 is the parallelism of a cut, which intuitively measures the angle formed by the objective vector
and the normal vector of the cutting plane—promoting cutting planes that are nearly parallel with
the objective direction. score2 is the efficacy, or depth, of a cut, which measures the perpendicular
distance from the LP optimum to the cut—promoting cutting planes that are “deeper", as measured
with respect to the LP optimum. More details about these scoring rules can be found in Balcan
et al. [10] and references therein. Given an IP, for each µ ∈ [0, 1] (discretized at steps of 0.01)
we choose the five cuts among the set of Chvátal-Gomory and Gomory mixed integer cuts that
maximize (4). Figures 1a and 1b display the average tree size over 1000 samples drawn from the
respective distribution for each value of µ used to choose cuts at the root. We ran our experiments
using the C API of IBM ILOG CPLEX 20.1.0, with default cut generation disabled, and a 64-core
machine with 512 GB of RAM.

B Omitted results and proofs from Section 3

B.1 Example in two dimensions

Consider the LP
max{x+ y : x ≤ 1, y ≥ 0, y ≤ x}.
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Figure 3: Decomposition of the parameter space: the blue region contains the set of (α1, α2) such
that the constraint intersects the feasible region at x = 1 and x = y. The red lines consist of all
(α1, α2) such that the objective value is equal at these intersection points. The red lines partition the
blue region into two components: one where the new optimum is achieved at the intersection of h
and x = y, and one where the new optimum is achieved at the intersection of h and x = 1.

The optimum is at (x∗, y∗) = (1, 1). Consider adding an additional constraint α1x+ α2y ≤ 1. Let
h denote the hyperplane α1x+ α2y = 1. We derive a description of the set of parameters (α1, α2)
such that h intersects the hyperplanes x = 1 and y = x. The intersection of h and x = 1 is given by

(x, y) =

(
1,

1− α1

α2

)
,

which exists if and only if α2 ̸= 0. This intersection point is in the LP feasible region if and only if
0 ≤ 1−α1

α2
≤ 1 (which additionally ensures that α2 ̸= 0). Similarly, h intersects y = x at

(x, y) =

(
1

α1 + α2
,

1

α1 + α2

)
,

which exists if and only if α1+α2 ̸= 0. This intersection point is in the LP feasible region if and only
if 0 ≤ 1

α1+α2
≤ 1. Now, we put down an “indifference" curve in (α1, α2)-space that represents the

set of (α1, α2) such that the value of the objective achieved at the two aforementioned intersection
points is equal. This surface is given by

2

α1 + α2
= 1 +

1− α1

α2
.

Since α1 + α2 ̸= 0 and α2 ̸= 0 (for the relevant α1, α2 in consideration), this is equivalent to
α2
1 − α2

2 − α1 + α2 = 0, which is a degree-2 curve in α1, α2. The left-hand-side can be factored to
write this as (α1 − α2)(α1 + α2 − 1) = 0. Therefore, this curve is given by the two lines α1 = α2

and α1 + α2 = 1. Figure 3 illustrates the resulting partition of (α1, α2)-space.

It turns out that when n = 2 the indifference curve can always be factored into a product of linear
terms. Let the objective of the LP be (c1, c2), and let s1x + s2y = u1 and t1x + t2y = v1 be two
intersecting edges of the LP feasible region. Let α1x + α2y = β be an additional constraint. The
intersection points of this constraint with the two lines, if they exist, are given by(

s2β − uα2

s2α1 − s1α2
,
s1β − uα1

s1α2 − s2α1

)
and

(
t2β − vα2

t2α1 − t1α2
,
t2β − vα1

t1α2 − t2α1

)
.

The indifference surface is thus given by

c1
s2β − uα2

s2α1 − s1α2
+ c2

s1β − uα1

s1α2 − s2α1
= c1

t2β − vα2

t2α1 − t1α2
+ c2

t2β − vα1

t1α2 − t2α1
.
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Figure 4: Indifference surface for two edges of the feasible region of an LP in three variables.

For α1, α2 such that s2α1 − s1α2 ̸= 0 and t2α1 − t1α2 ̸= 0, clearing denominators and some
manipulation yields

(c1α2 − c2α1)((ut1 − vs1)α2 − (ut2 − vs2)α1 + (s2t2 − t1s2)β) = 0.

This curve consists of the two planes c1α2− c2α1 = 0 and (ut1−vs1)α2− (ut2−vs2)α1+(s2t2−
t1s2)β = 0.

This is however not true if n > 2. For example, consider an LP in three variables x, y, z with the
constraints x+ y ≤ 1, x+ z ≤ 1, x ≤ 1, z ≤ 1. Writing out the indifference surface (assuming the
objective is c = (1, 1, 1)T ) for the vertex on the intersection of {x+ y = 1, x = 1} and the vertex
on {x+ z = 1, z = 1} yields

α1α2 − α2β − α2
3 + α3β = 0.

Setting β = 1, we can plot the resulting surface in α1, α2, α3 (Figure 4).

B.2 Linear programming sensitivity for multiple constraints

Lemma B.1. Let (c, A, b) be an LP and let M denote the set of its m constraints. Let x∗
LP and z∗LP

denote the optimal solution and its objective value, respectively. For F ⊆ M , let AF ∈ R|F |×n and
bF ∈ R|F | denote the restrictions of A and b to F . For k ≤ n, α1, . . . ,αk ∈ Rn, β1, . . . , βk ∈ R,
and F ⊆ M with |F | = n− k, let AF,α1,...,αk

∈ Rn×n denote the matrix obtained by adding row
vectors α1, . . . ,αk to AF and let Ai

F,α1,β1,...,αk,βk
∈ Rn×n be the matrix AF,α1,...,αk

∈ Rn×n

with the ith column replaced by [bF β1 · · · βk]
T . There is a set of at most K hyperplanes,

nKnmn degree-K polynomial hypersurfaces, and nKnm2n degree-2K polynomial hypersurfaces
partitioning RK(n+1) into connected components such that for each component C, one of the
following holds: either (1) x∗

LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK) = x∗

LP, or (2) there is a subset of cuts
indexed by ℓ1, . . . , ℓk ∈ [K] and a set of constraints F ⊆ M with |F | = n− k such that

x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK) =

(
det(A1

F,αℓ1
,βℓ1

,...,αℓk
,βℓk

)

det(AF,αℓ1
,...,αℓk

)
, . . . ,

det(An
F,αℓ1

,βℓ1
,...,αℓk

,βℓk
)

det(AF,αℓ1
,...,αℓk

)

)
,

for all (α1, β1, . . . ,αK , βK) ∈ C.

Proof. First, if none of αT
1 x ≤ β1, . . . ,α

T
Kx ≤ βK separate x∗

LP, then x∗
LP(α

T
1 x ≤

β1, . . . ,α
T
Kx ≤ βK) = x∗

LP and z∗LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK) = z∗LP. The set of all such cuts

is given by the intersection of halfspaces in RK(n+1) given by
K⋂
j=1

{
(α1, β1, . . . ,αk, βk) ∈ RK(n+1) : αT

j x
∗
LP ≤ βj

}
. (5)
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All other vectors of K cuts contain at least one cut that separates x∗
LP, and those cuts therefore pass

through P = {x ∈ Rn : Ax ≤ b,x ≥ 0}. The new LP optimum is thus achieved at a vertex created
by the cuts that separate x∗

LP. As in the proof of Theorem 3.1, we consider all possible new vertices
formed by our set of K cuts. In the case of a single cut, these new vertices necessarily were on edges
of P , but now they may lie on higher dimensional faces.

Consider a subset of k ≤ n cuts that separate x∗
LP. Without loss of generality, denote these cuts by

αT
1 x ≤ β1, . . . ,α

T
k x ≤ βk. We now establish conditions for these k cuts to “jointly" form a new

vertex of P . Any vertex created by these cuts must lie on a face f of P with dim(f) = k (in the
case that k = n, the relevant face f with dim(f) = n is P itself). Letting M denote the set of m
constraints that define P , each dimension-k face f of P can be identified with a (potentially empty)
subset F ⊂ M of size n− k such that f is precisely the set of all points x such that

aT
i x = bi ∀ i ∈ F

aT
i x ≤ bi ∀ i ∈ M \ F,

where ai is the ith row of A. Let AF ∈ Rn−k×n denote the restriction of A to only the rows in F ,
and let bF ∈ Rn−k denote the entries of b corresponding to the constraints in F . Consider removing
the inequality constraints defining the face. The intersection of the cuts αT

1 x ≤ β1, . . . ,α
T
k x ≤ βk

and this unbounded surface (if it exists) is precisely the solution to the system of n linear equations

AFx = bF

αT
1 x = β1

...

αT
k x = βk.

Let AF,α1,...,αk
∈ Rn×n denote the matrix obtained by adding row vectors α1, . . . ,αk to AF , and

let Ai
F,α1,β1,...,αk,βk

∈ Rn×n denote the matrix AF,α1,...,αk
where the ith column is replaced by

bF
β1

...
βk

 ∈ Rn.

By Cramer’s rule, the solution to this system is given by

x =

(
det(A1

F,α1,β1,...,αk,βk
)

det(AF,α1,...,αk
)

, . . . ,
det(An

F,α1,β1,...,αk,βk
)

det(AF,α1,...,αk
)

)
,

and the value of the objective at this point is

cTx =
n∑

i=1

ci ·
det(Ai

F,α1,β1,...,αk,βk
)

det(AF,α1,...,αk
)

.

Now, to ensure that the unique intersection point x (1) exists and (2) actually lies on f (or simply lies
in P , in the case that F = ∅) , we stipulate that it satisfies the inequality constraints in M \ F . That
is,

n∑
j=1

aij
det(A1

F,α1,β1,...,αk,βk
)

det(AF,α1,...,αk
)

≤ bi (6)

for every i ∈ M \ F . If α1, β1 . . . ,αk, βk satisfies any of these constraints, it must be that
det(AF,α1,...,αk

) ̸= 0, which guarantees that AFx = bF ,α
T
1 x = β1, . . . ,α

T
k x = βk indeed has

a unique solution. Now, det(AF,α1,...,αk
) is a polynomial in α1, . . . ,αk of degree ≤ k, since it

is multilinear in each coefficient of each αℓ, ℓ = 1, . . . , k. Similarly, det(A1
F,α1,β1,...,αk,βk

) is a
polynomial in α1, β1, . . . ,αk, βk of degree ≤ k, again because it is multilinear in each cut parameter.
Hence, the boundary each constraint of the form given by Equation 6 is a polynomial of degree at
most k.
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The collection of these polynomials for every k, every subset of {αT
1 x ≤ β1, . . . ,α

T
Kx ≤ βK}

of size k, and every face of P of dimension k, along with the hyperplanes determining sepa-
ration constraints (Equation 5), partition RK(n+1) into connected components such that for all
(α1, β1, . . . ,αK , βK) within a given connected component, there is a fixed subset of K and a fixed
set of faces of P such that the cuts with indices in that subset intersect every face in the set at a
common vertex.

Now, consider a single connected component, denoted by C. Let f1, . . . , fℓ denote the faces
intersected by vectors of cuts in C, and let (without loss of generality) 1, . . . , k denote the subset of
cuts that intersect these faces. Let F1, . . . , Fℓ ⊂ M denote the sets of constraints that are binding at
each of these faces, respectively. For each pair fp, fq , consider the surface

n∑
i=1

ci ·
det(Ai

Fp,α1,β1,...,αk,βk
)

det(AFp,α1,...,αk
)

=
n∑

i=1

ci ·
det(Ai

Fq,α1,β1,...,αk,βk
)

det(AFq,α1,...,αk
)

,

which can be equivalently written as
n∑

i=1

ci·det(Ai
Fp,α1,β1,...,αk,βk

) det(AFq,α1,...,αk
) =

n∑
i=1

ci·det(Ai
Fq,α1,β1,...,αk,βk

) det(AFp,α1,...,αk
).

(7)
This is a degree-2k polynomial hypersurface in (α1, β1, . . . ,αK , βK) ∈ RK(n+1). This hypersurface
is precisely the set of all cut vectors for which the LP objective achieved at the vertex on face fp is
equal to the LP objective value achieved at the vertex on face fq . The collection of these surfaces for
each p, q partitions C into further connected components. Within each of these connected components,
the face containing the vertex that maximizes the objective is invariant, and the subset of cuts passing
through that vertex is invariant. If F ⊆ M is the set of binding constraints representing this face, and
ℓ1, . . . , ℓk ∈ [K] represent the subset of cuts intersecting this face, x∗

LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK)

and z∗LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK) have the closed forms:

x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK) =

(
det(A1

F,αℓ1
,βℓ1

,...,αℓk
,βℓk

)

det(AF,αℓ1
,...,αℓk

)
, . . . ,

det(An
F,αℓ1

,βℓ1
,...,αℓk

,βℓk
)

det(AF,αℓ1
,...,αℓk

)

)
,

and

z∗LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK) =

n∑
i=1

ci ·
det(Ai

F,αℓ1
,βℓ1

,...,αℓk
,βℓk

)

det(AF,αℓ1
,...,αℓk

)
.

for all (α1, β1, . . . ,αK , βK) within this component. We now count the number of surfaces used
to obtain our decomposition. First, we added K hyperplanes encoding separation constraints for
each of the K cuts (Equation 5). Then, for every subset S ⊆ K of size ≤ n, and for every face
F of P with dim(F ) = |S|, we first considered at most |M \ F | ≤ m degree-≤ K polynomial
hypersurfaces representing decision boundaries for when cuts in S intersected that face (Equation 6).
The number of k-dimensional faces of P is at most

(
m

n−k

)
≤ mn−k ≤ mn−1, so the total number of

these hypersurfaces is at most (
(
K
0

)
+ · · ·+

(
K
n

)
)mn ≤ nKnmn. Finally, we considered a degree-2K

polynomial hypersurface for every subset of cuts and every pair of faces with degree equal to the size
of the subset, of which there are at most nKn

(
mn

2

)
≤ nKnm2n.

C Omitted results and proofs from Section 4

We first require the following lemma which bounds the number of relevant subsets of BC := {x[i] ≤
ℓ,x[i] ≥ ℓ}0≤ℓ≤τ,i∈[n] that define a possible node expanded by B&C. BC is a set of size 2n(τ + 1)

so naïvely there are at most 22n(τ+1) subsets of branching constraints. The following observation
allows us to greatly reduce the number of sets we consider.
Lemma C.1. Fix an IP (c, A, b). Define an equivalence relation on pairs of branching-constraint
sets σ1, σ2 ⊆ BC, by σ1 ∼ σ2 ⇐⇒ x∗

LP(α
Tx ≤ β, σ1) = x∗

LP(α
Tx ≤ β, σ2) for all possible

cutting planes αTx ≤ β. The number of equivalence classes of ∼ is at most τ3n.

Proof of Lemma C.1. Consider as an example σ1 = {x[1] ≤ 1,x[1] ≤ 5} and σ2 = {x[1] ≤ 1}.
We have x∗

LP(α
Tx ≤ β, σ1) = x∗

LP(α
Tx ≤ β, σ2) for any cut αTx ≤ β, because the constraint

19



x[1] ≤ 5 is redundant in σ1. More generally, any σ ⊆ BC can be reduced by preserving only the
tightest ≤ constraint and tightest ≥ constraint without affecting the resulting LP optimal solutions.
The number of such unique reduced sets is at most ((τ + 2)2)n < τ3n (for each variable, there are
τ + 2 possibilities for the tightest ≤ constraint: no constraint or one of x[i] ≤ 0, . . . ,x[i] ≤ τ , and
similarly τ + 2 possibilities for the ≥ constraint).

Proof of Lemma 4.1. We carry out the same reasoning in the proof of Theorem 3.1 for each reduced
σ. The number of edges of P(σ) is at most

(
m+|σ|
n−1

)
≤ (m+|σ|)n−1. For each edge E, we considered

at most |(M ∪ σ) \ E| ≤ m+ |σ| hyperplanes, for a total of at most (m+ |σ|)n halfspaces. Then,
we had a degree-2 polynomial hypersurface for every pair of edges, of which there are at most(
(m+|σ|)n

2

)
≤ (m+ |σ|)2n. Summing over all reduced σ (of which there are at most τ3n), combined

with the fact that if σ is reduced then |σ| ≤ 2n, we get a total of at most (m+ 2n)nτ3n hyperplanes
and at most (m+ 2n)2nτ3n degree-2 hypersurfaces, as desired.

Let V ⊆ Rn+1 denote the set of all valid cuts for the input IP (c, A, b). The set V is a polyhedron
since it can be expressed as

V =
⋂
x∈PI

{(α, β) ∈ Rn+1 : αTx ≤ β},

and PI is finite as P is bounded. For cuts outside V , we assume the B&C tree takes some special
form denoting an invalid cut. Our goal now is to decompose V into connected components such that
1
[
x∗
LP(α

Tx ≤ β, σ) ∈ Zn
]

is invariant for all (α, β) in each component.

Proof of Lemma 4.3. Fix a connected component C in the decomposition that includes the facets
defining V and the surfaces obtained in Lemma 4.2. For all σ ∈ BC, xI ∈ PI, and i = 1, . . . , n,
consider the surface

x∗
LP(α

Tx ≤ β, σ)[i] = xI[i]. (8)

This surface is a hyperplane, since by Lemma 4.1, either x∗
LP(α

Tx ≤ β, σ)[i] = x∗
LP(σ)[i] or

x∗
LP(α

Tx ≤ β, σ)[i] =
det(Ai

E,α,β,σ)

det(AE,α,σ)
, where E ⊆ M ∪ σ is the subset of constraints corresponding

to σ and C. Clearly, within any connected component of C induced by these hyperplanes, for
every σ and xI ∈ PI, 1[x∗

LP(α
Tx ≤ β, σ) = xI] is invariant. Finally, if x∗

LP(α
Tx ≤ β, σ) ∈ Zn

for some cut αTx ≤ β within a given connected component, x∗
LP(α

Tx ≤ β, σ) = xI for some
xI ∈ PIH(σ) ⊆ PI, which means that x∗

LP(α
Tx ≤ β, σ) = xI ∈ Zn for all cuts αTx ≤ β in that

connected component.

We now count the number of hyperplanes given by Equation 8. For each σ, there are
(
m+|σ|
n−1

)
≤

(m + 2n)n−1 binding edge constraints E ⊆ M ∪ σ defining the formula of Lemma 4.1, and we
have n|PI| hyperplanes for each E. Since τ = maxx∈PI

∥x∥∞, |PI| ≤ τn. So the total number of
hyperplanes given by Equation 8 is at most τ3n(m+ 2n)n−1nτn ≤ (m+ 2n)nτ4n. The number of
facets defining V is at most |PIH| ≤ |PI| ≤ τn. Adding these to the counts obtained in Lemma 4.2
yields the final tallies in the lemma statement.

Proof of Theorem 4.4. Fix a connected component C in the decomposition induced by the set of
hyperplanes and degree-2 hypersurfaces established in Lemma 4.3. Let

Q1, . . . , Qi1 , I1, Qi1+1, . . . , Qi2 , I2, Qi2+1, . . . (9)

denote the nodes of the tree branch-and-cut creates, in order of exploration, under the assumption
that a node is pruned if and only if either the LP at that node is infeasible or the LP optimal solution
is integral (so the “bounding” of branch-and-bound is suppressed). Here, a node is identified by
the list σ of branching constraints added to the input IP. Nodes labeled by Q are either infeasible
or have fractional LP optimal solutions. Nodes labeled by I have integral LP optimal solutions and
are candidates for the incumbent integral solution at the point they are encountered. (The nodes are
functions of α and β, as are the indices i1, i2, . . ..) By Lemma 4.3 and the observation following it,
this ordered list of nodes is invariant over all (α, β) ∈ C.
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Now, given an node index ℓ, let I(ℓ) denote the incumbent node with the highest objective value
encountered up until the ℓth node searched by B&C, and let z(I(ℓ)) denote its objective value. For
each node Qℓ, let σℓ denote the branching constraints added to arrive at node Qℓ. The hyperplane

z∗LP(α
Tx ≤ β, σℓ) = z(I(ℓ)) (10)

(which is a hyperplane due to Lemma 4.1) partitions C into two subregions. In one subregion,
z∗LP(α

Tx ≤ β, σℓ) ≤ z(I(ℓ)), that is, the objective value of the LP optimal solution is no greater
than the objective value of the current incumbent integer solution, and so the subtree rooted at Qℓ

is pruned. In the other subregion, z∗LP(α
Tx ≤ β, σℓ) > z(I(ℓ)), and Qℓ is branched on further.

Therefore, within each connected component of C induced by all hyperplanes given by Equation 10
for all ℓ, the set of node within the list (9) that are pruned is invariant. Combined with the surfaces
established in Lemma 4.3, these hyperplanes partition Rn+1 into connected components such that as
(α, β) varies within a given component, the tree built by branch-and-cut is invariant.

Finally, we count the total number of surfaces inducing this partition. Unlike the counting stages
of the previous lemmas, we will first have to count the number of connected components induced
by the surfaces established in Lemma 4.3. This is because the ordered list of nodes explored by
branch-and-cut (9) can be different across each component, and the hyperplanes given by Equation 10
depend on this list. From Lemma 4.3 we have 3(m+2n)nτ4n hyperplanes, 3(m+2n)3nτ4n degree-2
polynomial hypersurfaces, and (m+2n)6nτ4n degree-5 polynomial hypersurfaces. To determine the
connected components of Rn+1 induced by the zero sets of these polynomials, it suffices to consider
the zero set of the product of all polynomials defining these surfaces. Denote this product polynomial
by p. The degree of the product polynomial is the sum of the degrees of 3(m+ 2n)nτ4n degree-1
polynomials, 3(m + 2n)3nτ4n degree-2 polynomials, and (m + 2n)6nτ4n degree-5 polynomials,
which is at most 3(m+ 2n)nτ4n + 2 · 3(m+ 2n)3nτ4n + 5 · (m+ 2n)6nτ4n < 14(m+ 2n)3nτ4n.
By Warren’s theorem, the number of connected components of Rn+1 \ {(α, β) : p(α, β) = 0} is
O((14(m+2n)3nτ4n)n−1), and by the Milnor-Thom theorem, the number of connected components
of {(α, β) : p(α, β) = 0} is O((14(m + 2n)3nτ4n)n−1) as well. So, the number of connected
components induced by the surfaces in Lemma 4.3 is O(14n(m+ 2n)3n

2

τ4n
2

). For every connected
component C in Lemma 4.3, the closed form of z∗LP(α

Tx ≤ β, σℓ) is already determined due
to Lemma 4.1, and so the number of hyperplanes given by Equation 10 is at most the number
of possible σ ⊆ BC, which is at most τ3n. So across all connected components C, the total
number of hyperplanes given by Equation 10 is O(14n(m+ 2n)3n

2

τ5n
2

). Finally, adding this to the
surface-counts established in Lemma 4.3 yields the lemma statement.

C.1 Product scoring rule for variable selection

Let σ be the set of branching constraints added thus far. The product scoring rule branches on the
variable i ∈ [n] that maximizes:

max{z∗LP(σ)− z∗LP(xi ≤ ⌊x∗
LP(σ)[i]⌋, σ), γ} ·max{z∗LP(σ)− z∗LP(xi ≥ ⌈x∗

LP(σ)[i]⌉, σ), γ},
where γ = 10−6.
Lemma C.2. There is a set of of at most 3(m+ 2n)nτ3n hyperplanes and (m+ 2n)2nτ3n degree-2
polynomial hypersurfaces partitioning Rn+1 into connected components such that for any connected
component C and any σ, the set of branching constraints {xi ≤

⌊
x∗
LP(α

Tx ≤ β, σ)[i]
⌋
, xi ≥⌈

x∗
LP(α

Tx ≤ β, σ)[i]
⌉
| i ∈ [n]} is invariant across all (α, β) ∈ C.

Proof. Fix a connected component C in the decomposition established in Lemma 4.1. By Lemma 4.1,
for each σ, either x∗

LP(α
Tx ≤ β, σ) = x∗

LP(σ) or there exists E ⊆ M ∪ σ such that x∗
LP(α

Tx ≤
β, σ)[i] =

det(Ai
E,α,β,σ)

det(AE,α,σ)
for all (α, β) ∈ C. Fix a variable i ∈ [n], which corresponds to two

branching constraints

xi ≤
⌊
x∗
LP(α

Tx ≤ β, σ)[i]
⌋

and xi ≥
⌈
x∗
LP(α

Tx ≤ β, σ)[i]
⌉
. (11)

If C is a component where x∗
LP(α

Tx ≤ β, σ) = x∗
LP(σ), then these two branching constraints

are trivially invariant over (α, β) ∈ C. Otherwise, in order to further decompose C such that the
right-hand-sides of these constraints are invariant for every σ, we add the two decision boundaries
given by

k ≤
det(Ai

E,α,β,σ)

det(AE,α,σ)
≤ k + 1
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for every i, σ, and every integer k = 0, . . . , τ − 1, where τ = maxx∈P∩Zn ∥x∥∞. This ensures that
within every connected component of C induced by these boundaries (hyperplanes),

⌊
x∗
LP(α

Tx ≤ β, σ)[i]
⌋
=

⌊
det(Ai

E,α,β,σ)

det(AE,α,σ)

⌋
and

⌈
x∗
LP(α

Tx ≤ β, σ)[i]
⌉
=

⌈
det(Ai

E,α,β,σ)

det(AE,α,σ)

⌉
are invariant, so the branching constraints from Equation (11) are invariant. For a fixed σ, there are
two hyperplanes for every E ⊆ M ∪ σ corresponding to an edge of P(σ) and i = 1, . . . , n, for a
total of at most 2n

(
m+|σ|
n−1

)
≤ 2n(m+ |σ|)n−1 hyperplanes. Summing over all reduced σ, we get a

total of 2n(m+ 2n)n−1τ3n < 2(m+ 2n)nτ3n hyperplanes. Adding these hyperplanes to the set of
hyperplanes established in Lemma 4.1 yields the lemma statement.

Proof of Lemma 4.2. Fix a connected component C in the decomposition established in Lemma C.2.
We know that for each set of branching constraints σ:

• By Lemma 4.1, either x∗
LP(α

Tx ≤ β, σ) = x∗
LP(σ) or there exists E ⊆ M ∪ σ such that

x∗
LP(α

Tx ≤ β, σ)[i] =
det(Ai

E,α,β,σ)

det(AE,α,σ)
for all (α, β) ∈ C and all i ∈ [n], and

• The set of branching constraints {xi ≤
⌊
x∗
LP(α

Tx ≤ β, σ)[i]
⌋
, xi ≥⌈

x∗
LP(α

Tx ≤ β, σ)[i]
⌉
| i ∈ [n]} is invariant across all (α, β) ∈ C.

Suppose that σ is the list of branching constraints added so far. For any variable k ∈ [n], let

σ−
k = (xk ≤

⌊
x∗
LP(α

Tx ≤ β, σ)[k]
⌋
, σ) and σ+

k = (xk ≥
⌈
x∗
LP(α

Tx ≤ β, σ)[k]
⌉
, σ).

So long as (α, β) ∈ C, σ−
k and σ+

k are fixed. With this notation, we can write the product scoring
rule as

max{z∗LP(αTx ≤ β, σ)−z∗LP(α
Tx ≤ β, σ−

k ), γ}·max{z∗LP(αTx ≤ β, σ)−z∗LP(α
Tx ≤ β, σ+

k ), γ},

where γ = 10−6.

By Lemma 4.1, we know that across all (α, β) ∈ C, either z∗LP(α
Tx ≤ β, σ+

k ) = z∗LP(σ
+
k ) or there

exists E+
k ⊆ M ∪ σ+

k such that

z∗LP
(
αTx ≤ β, σ+

k

)
=

n∑
i=1

ci ·
det
(
Ai

E+
k ,α,β,σ+

k

)
det
(
AE+

k ,α,σ+
k

) ,

and similarly for σ−
k , defined according to some edge set E−

k ⊆ M ∪σ−
k . Therefore, for each k ∈ [n],

there is a single degree-2 polynomial hypersurface partitioning C into connected components such
that within each connected component, either

z∗LP(α
Tx ≤ β, σ)− z∗LP(α

Tx ≤ β, σ−
k ) ≥ γ (12)

or vice versa, and similarly for σ+
k . In particular, the former hypersurface will have one of four forms:

1. z∗LP(σ)− z∗LP(σ
−
k ) ≥ γ, which is uniformly satisfied or not satisfied across all (α, β) ∈ C,

2. z∗LP(σ)−
∑n

i=1 ci ·
det

(
Ai

E
−
k

,α,β,σ
−
k

)
det

(
A

E
−
k

,α,σ
−
k

) ≥ γ, which is a hyperplane,

3.
∑n

i=1 ci ·
det(Ai

E,α,β,σ)
det(AE,α,σ)

− z∗LP(σ
−
k ) ≥ γ, which is a hyperplane, or

4.
∑n

i=1 ci

det(Ai
E,α,β,σ)

det(AE,α,σ)
−

det

(
Ai

E
−
k

,α,β,σ
−
k

)
det

(
A

E
+
k

,α,σ
−
k

)
 ≥ γ, which is a degree-2 polynomial hyper-

surface.
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Simply said, these are all degree-2 polynomial hypersurfaces.

Within any region induced by these hypersurfaces, the comparison between any two variables xk and
xj will have the form

max{z∗LP(αTx ≤ β, σ)− z∗LP(α
Tx ≤ β, σ−

k ), γ} ·max{z∗LP(αTx ≤ β, σ)− z∗LP(α
Tx ≤ β, σ+

k ), γ}
≥ max{z∗LP(αTx ≤ β, σ)− z∗LP(α

Tx ≤ β, σ−
j ), γ} ·max{z∗LP(αTx ≤ β, σ)− z∗LP(α

Tx ≤ β, σ+
j ), γ}

which at its most complex will equal

n∑
i=1

ci

det
(
Ai

E,α,β,σ

)
det (AE,α,σ)

−
det
(
Ai

E−
k ,α,β,σ−

k

)
det
(
AE−

k ,α,σ−
k

)
 ·

n∑
i=1

ci

det
(
Ai

E,α,β,σ

)
det (AE,α,σ)

−
det
(
Ai

E+
k ,α,β,σ+

k

)
det
(
AE+

k ,α,σ+
k

)


(13)

≥
n∑

i=1

ci

det
(
Ai

E,α,β,σ

)
det (AE,α,σ)

−
det

(
Ai

E−
j ,α,β,σ−

j

)
det
(
AE−

j ,α,σ−
j

)
 ·

n∑
i=1

ci

det
(
Ai

E,α,β,σ

)
det (AE,α,σ)

−
det

(
Ai

E+
j ,α,β,σ+

j

)
det
(
AE+

j ,α,σ+
j

)
 .

This inequality can be written as a degree-5 polynomial hypersurface. In any region induced by these
hypersurfaces, the variable that branch-and-cut branches on will be fixed.

We now count the total number of hypersurfaces. First, we count the number of degree-2 polynomial
hypersurfaces from Equation (12): there is a hypersurface defined by each variable xk, set of
branching constraints σ, cutoff t ∈ [τ ] such that σ−

k = (xk ≤ t, σ), set E ⊆ M ∪ σ corresponding to
an edge of P(σ), and set E−

k ⊆ M ∪ σ−
k (and similarly for σ+

k and E+
k ). For a fixed σ, this amounts

to 2nτ
(
m+|σ|
n−1

)(
m+|σ|+1

n−1

)
≤ 2nτ(m+ |σ|+ 1)2(n−1) hypersurfaces. Summing over all τ3n reduced

σ, we have 2nτ3n+1(m+ 2n+ 1)2(n−1) degree-2 polynomial hypersurfaces.

Next, we count the number of degree-5 polynomial hypersurfaces from Equation (13): there is
a hypersurface defined by each pair of variables xk, xj , set of branching constraints σ, cutoffs
tk, tj ∈ [τ ] such that σ−

k = (xk ≤ tk, σ) and σ−
j = (xj ≤ tj , σ), and sets E,E−

k , E+
k , E−

j , E+
j

corresponding to edges of P(σ),P(σ−
k ),P(σ+

k ),P(σ−
j ),P(σ+

j ). For a fixed σ, this amounts to

n2τ2
(
m+|σ|
n−1

)(
m+|σ|+1

n−1

)4
≤ n2τ2(m+ |σ|+1)5(n−1) hypersurfaces. Summing over all τ3n reduced

σ, we have n2τ3n+2(m+ 2n+ 1)5(n−1) degree-5 polynomial hypersurfaces.

Adding these hypersurfaces to those from Lemma C.2, we get the lemma statement.

C.2 Extension to multiple cutting planes

We can similarly derive a multi-cut version of Lemma 4.1 that controls x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤

βK , σ) for any set of branching constraints. We use the following notation. Let (c, A, b) be an LP
and let M denote the set of its m constraints. For F ⊆ M ∪ σ, let AF,σ ∈ R|F |×n and bF,σ ∈ R|F |

denote the restrictions of Aσ and bσ to F . For α1, . . . ,αk ∈ Rn, β1, . . . , βk ∈ R, and F ⊆ M ∪ σ
with |F | = n − k, let AF,α1,...,αk,σ ∈ Rn×n denote the matrix obtained by adding row vectors
α1, . . . ,αk to AF,σ and let Ai

F,α1,β1,...,αk,βk,σ
∈ Rn×n be the matrix AF,α1,...,αk,σ ∈ Rn×n with

the ith column replaced by [bF,σ β1 · · · βk]
T .

Corollary C.3. Fix an IP (c, A, b). There is a set of at most K hyperplanes, nKn(m + 2n)nτ3n

degree-K polynomial hypersurfaces, and nKn(m+2n)2nτ3n degree-2K polynomial hypersurfaces
partitioning RK(n+1) into connected components such that for each component C and every σ ⊆ BC ,
one of the following holds: either (1) x∗

LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ) = x∗

LP(σ), or (2) there is
a subset of cuts indexed by ℓ1, . . . , ℓk ∈ [K] and a set of constraints F ⊆ M ∪ σ with |F | = n− k
such that

x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ) =

(
det(A1

F,αℓ1
,βℓ1

,...,αℓk
,βℓk

,σ)

det(AF,αℓ1
,...,αℓk

,σ)
, . . . ,

det(An
F,αℓ1

,βℓ1
,...,αℓk

,βℓk
,σ)

det(AF,αℓ1
,...,αℓk

,σ)

)
,

for all (α1, β1, . . . ,αK , βK) ∈ C.
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Proof. The exact same reasoning in the proof of Lemma B.1 applies. We still have K hyperplanes.
Now, for each σ, for each subset S ⊆ K with |S| ≤ n, and for every face F of P(σ) with dim(F ) =
|S|, we have at most m degree-K polynomial hypersurfaces. The number of k-dimensional faces
of P(σ) is at most

(
m+|σ|
n−k

)
≤ (m+ 2n)n−1, so the total number of these hypersurfaces is at most

nKn(m+ 2n)nτ3n. Finally, for every σ, we considered a degree-2K polynomal hypersurfaces for
every subset of cuts and every pair of faces with degree equal to the size of the subset, of which there
are at most nKn(m+ 2n)2nτ3n, as desired.

We now refine the decomposition obtained in Lemma 4.1 so that the branching constraints added
at each step of branch-and-cut are invariant within a region. For ease of exposition, we assume that
branch-and-cut uses a lexicographic variable selection policy. This means that the variable branched
on at each node of the search tree is fixed and given by the lexicographic ordering x1, . . . , xn.
Generalizing the argument to work for other policies, such as the product scoring rule, can be done as
in the single-cut case.

Lemma C.4. Suppose branch-and-cut uses a lexicographic variable selection policy. Then, there
is a set of of at most K hyperplanes, 3n2Kn(m + 2n)nτ3n degree-K polynomial hypersurfaces,
and nKn(m+ 2n)2nτ3n degree-2K polynomial hypersurfaces partitioning Rn+1 into connected
components such that within each connected component, the branching constraints used at every step
of branch-and-cut are invariant.

Proof. Fix a connected component C in the decomposition established in Corollary C.3. Then, by
Corollary C.3, for each σ, either x∗

LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ) = x∗

LP(σ) or there exists cuts
(without less of generality) labeled by indices 1, . . . , k ∈ [K] and there exists F ⊆ M ∪ σ such that

x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ)[i] =

det(Ai
F,α1,β1,...,αk,βk,σ

)

det(AF,α1,...,αk,σ)

for all (α, β) ∈ C and all i ∈ [n]. Now, if we are at a stage in the branch-and-cut tree where σ is
the list of branching constraints added so far, and the ith variable is being branched on next, the two
constraints generated are

xi ≤
⌊
x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ)[i]

⌋
and xi ≥

⌈
x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ)[i]

⌉
,

respectively. If C is a component where x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ) = x∗

LP(σ), then
there is nothing more to do, since the branching constraints at that point are trivially invariant over
(α1, β1, . . . ,αK , βK) ∈ C. Otherwise, in order to further decompose C such that the right-hand-
side of these constraints are invariant for every σ and every i = 1, . . . , n, we add the two decision
boundaries given by

k ≤
det(Ai

F,α1,β1,...,αk,βk,σ
)

det(AF,α1,...,αk,σ)
≤ k + 1

for every i, σ, and every integer k = 0, . . . , τ − 1, where τ = ⌈maxx∈P ∥x∥∞⌉. This ensures
that within every connected component of C induced by these boundaries (degree-K polynomial
hypersurfaces), ⌊

x∗
LP(α

Tx ≤ β, σ)[i]
⌋
=

⌊
det(Ai

F,α1,β1,...,αk,βk,σ
)

det(AF,α1,...,αk,σ)

⌋
and ⌈

x∗
LP(α

Tx ≤ β, σ)[i]
⌉
=

⌈
det(Ai

F,α1,β1,...,αk,βk,σ
)

det(AF,α1,...,αk,σ)

⌉
are invariant, so the branching constraints added by, for example, a lexicographic branching rule,
are invariant. For a fixed σ, there are two hypersurfaces for every subset S ⊆ [K], every F ⊆
M ∪ σ corresponding to a |S|-dimensional face of P(σ), and every i = 1, . . . , n, for a total
of at most 2n2Kn

(
m+|σ|
|S|

)
≤ 2n2Kn(m + 2n)n. Summing over all reduced σ, we get a total

of 2n2Kn(m + 2n)nτ3n hypersurfaces. Adding these hypersurfaces to the set of hypersurfaces
established in Corollary C.3 yields the lemma statement.
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Now, as in the single-cut case, we consider the constraints that ensure that all cuts are valid. Let
V ⊆ RK(n+1) denote the set of all vectors of valid K cuts. As before, V is a polyhedron, since we
may write

V =
K⋂

k=1

⋂
xIH∈PIH

{
(α1, β1, . . . ,αK , βk) ∈ RK(n+1) : αT

k xIH ≤ βk

}
.

We now refine our decomposition further to control the integrality of the various LP solutions at each
node of branch-and-cut.
Lemma C.5. Given an IP (c, A, b), there is a set of at most 2Kτn hyperplanes, 4n2Kn(m+2n)nτ4n

degree-K polynomial hypersurfaces, and nKn(m+2n)2nτ3n degree-2K polynomial hypersurfaces
partitioning RK(n+1) into connected components such that for each component C, and each σ ⊆ BC ,

1
[
x∗
LP

(
αT

1 x ≤ β1, . . . ,α
T
Kx ≤ βK , σ

)
∈ Zn

]
is invariant for all (α1, β1, . . . ,αK , βK) ∈ C.

Proof. Fix a connected component C in the decomposition that includes the facets defining V and
the surfaces obtained in Lemma C.4. For all σ ∈ BC , xI ∈ PI, and i = 1, . . . , n, consider the surface

x∗
LP

(
αT

1 x ≤ β1, . . . ,α
T
Kx ≤ βK , σ

)
[i] = xI[i]. (14)

This surface is a polynomial hypersurface of degree at most K, due to Corollary C.3. Clearly,
within any connected component of C induced by these hyperplanes, for every σ and xI ∈ PI,
1[x∗

LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ) = xI] is invariant. Finally, if x∗

LP(α
T
1 x ≤ β1, . . . ,α

T
Kx ≤

βK , σ) ∈ Zn for some K cuts αT
1 x ≤ β1, . . . ,α

T
Kx ≤ βK within a given connected component,

x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ) = xI for some xI ∈ PIH(σ) ⊆ PI, which means that

x∗
LP(α

T
1 x ≤ β1, . . . ,α

T
Kx ≤ βK , σ) = xI ∈ Zn for all vectors of K cuts αT

1 x ≤ β1, . . . ,α
T
Kx ≤

βK in that connected component.

We now count the number of hyperplanes given by Equation 14. For each σ, there are nKn possible
subsets of cut indices and at most (m+ 2n)n−1 binding face constraints F ⊆ M ∪ σ defining the
formula of Corollary C.3. For each subset-face pair, there are n|PI| ≤ nτn degree-K polynomial
hypersurfaces given by Equation 14. So the total number of such hypersurfaces over all σ is at most
τ3nn2Kn(m+ 2n)n−1τn. The number of facets defining V is at most K|PI| ≤ Kτn. Adding these
to the counts obtained in Lemma C.4 yields the final tallies in the lemma statement.

At this point, as in the single-cut case, if the bounding aspect of branch-and-cut is suppressed, our
decomposition yields connected components over which the branch-and-cut tree built is invariant. We
now prove our main structural theorem for B&C as a function of multiple cutting planes at the root.

Theorem C.6. Given an IP (c, A, b), there is a set of at most O(12nn2nK2n2

(m + 2n)2n
2

τ5n
2

)
polynomial hypersurfaces of degree at most 2K partitioning RK(n+1) into connected components
such that the branch-and-cut tree built after adding the K cuts αT

1 x ≤ β1, . . . ,α
T
k x ≤ βk

at the root is invariant over all (α1, β1, . . . ,αK , βK) within a given component. In particular,
fc,A,b(α1, β1, . . . ,αK , βK) is invariant over each connected component.

Proof. Fix a connected component C in the decomposition induced by the set of hyperplanes,
degree-K hypersurfaces, and degree-2K hypersurfaces established in Lemma C.5. Let

Q1, . . . , Qi1 , I1, Qi1+1, . . . , Qi2 , I2, Qi2+1, . . . (15)

denote the nodes of the tree branch-and-cut creates, in order of exploration, under the assumption
that a node is pruned if and only if either the LP at that node is infeasible or the LP optimal solution
is integral (so the “bounding” of branch-and-bound is suppressed). Here, a node is identified by
the list σ of branching constraints added to the input IP. Nodes labeled by Q are either infeasible
or have fractional LP optimal solutions. Nodes labeled by I have integral LP optimal solutions and
are candidates for the incumbent integral solution at the point they are encountered. (The nodes are
functions of α1, β1, . . . ,αK , βK , as are the indices i1, i2, . . ..) By Lemma C.5, this ordered list of
nodes is invariant for all (α1, β1, . . . ,αK , βk) ∈ C.
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Now, given an node index ℓ, let I(ℓ) denote the incumbent node with the highest objective value
encountered up until the ℓth node searched by B&C, and let z(I(ℓ)) denote its objective value. For
each node Qℓ, let σℓ denote the branching constraints added to arrive at node Qℓ. The hyperplane

z∗LP
(
αT

1 x ≤ β1, . . . ,α
T
Kx ≤ βK , σℓ

)
= z(I(ℓ)) (16)

(which is a hyperplane due to Corollary C.3) partitions C into two subregions. In one subregion,
z∗LP(α

T
1 x ≤ β1, . . . ,α

T
k x ≤ βk, σℓ) ≤ z(I(ℓ)), that is, the objective value of the LP optimal solution

is no greater than the objective value of the current incumbent integer solution, and so the subtree
rooted at Qℓ is pruned. In the other subregion, z∗LP(α

T
1 x ≤ β1, . . . ,α

T
k x ≤ βk, σℓ) > z(I(ℓ)),

and Qℓ is branched on further. Therefore, within each connected component of C induced by all
hyperplanes given by Equation 16 for all ℓ, the set of node within the list (15) that are pruned is
invariant. Combined with the surfaces established in Lemma C.5, these hyperplanes partition RK(n+1)

into connected components such that as (α1, β1 . . . ,αK , βK) varies within a given component, the
tree built by branch-and-cut is invariant.

Finally, we count the total number of surfaces inducing this partition. Unlike the counting stages of
the previous lemmas, we will first have to count the number of connected components induced by the
surfaces established in Lemma C.5. This is because the ordered list of nodes explored by branch-
and-cut (15) can be different across each component, and the hyperplanes given by Equation 16
depend on this list. From Lemma C.5 we have 6n2Kn(m+ 2n)2nτ4n polynomial hypersurfaces of
degree ≤ 2K. The set of all (α1, β1, . . .αK , βk) ∈ RK(n+1) such that (α1, β1, . . . ,αK , βK) lies
on the boundary of any of these surfaces is precisely the zero set of the product of all polynomials
defining these surfaces. Denote this product polynomial by p. The degree of the product polynomial
is the sum of the degrees of 6n2Kn(m+ 2n)2nτ4n polynomials of degree ≤ 2K, which is at most
2K · 6Kn2Kn(m+ 2n)2nτ4n = 12n2Kn+2(m+ 2n)2nτ4n. By Warren’s theorem, the number of
connected components of Rn+1 \ {(α, β) : p(α, β) = 0} is O((12n2Kn+2(m + 2n)2nτ4n)n−1),
and by the Milnor-Thom theorem, the number of connected components of {(α, β) : p(α, β) = 0} is
O((12n2Kn+2(m+ 2n)2nτ4n)n−1) as well. So, the number of connected components induced by
the surfaces in Lemma C.5 is O(12nn2nK2n2

(m+2n)2n
2

τ4n
2

). For every connected component C
in Lemma C.5, the closed form of z∗LP(α

Tx ≤ β, σℓ) is already determined due to Corollary C.3,
and so the number of hyperplanes given by Equation 16 is at most the number of possible σ ⊆ BC,
which is at most τ3n. So across all connected components C, the total number of hyperplanes
given by Equation 16 is O(12nn2nK2n2

(m+2n)2n
2

τ5n
2

). Finally, adding this to the surface-counts
established in Lemma C.5 yields the theorem statement.

D Omitted results from Section 5

Proof of Theorem 5.1. For a set X , X<N denotes the set of finite sequences of elements from X .
There is a bijection between the set of IPs (c, A, b) ∈ I := Rn × Zm×n × Zm and R, so IPs
can be uniquely represented as real numbers (and vice versa). Now, consider the set of all finite
sequences of pairs of IPs and ±1 labels of the form ((c1, A1, b1), ε1), . . . , ((cN , AN , bN ), εN ),
ε1, . . . , εN ∈ {−1, 1}, that is, the set (I × {−1, 1})<N. There is a bijection between this set and
(R × {−1, 1})<N, and in turn there is a bijection between (R × {−1, 1})<N and R. Hence, there
exists a bijection between U and (I × {−1, 1})<N. Fix such a bijection φ : U → (I × {−1, 1})<N,
and let φ−1 : (I × {−1, 1})<N → U denote the inverse of φ, which is well defined and also a
bijection.

Let n be odd. For c ∈ R, let IPc ∈ I denote the IP

maximize c
subject to 2x1 + · · ·+ 2xn = n

x ∈ {0, 1}n.
(17)

Since n is odd, IPc is infeasible, independent of c. Jeroslow [32] showed that without the use of
cutting planes or heuristics, branch-and-bound builds a tree of size 2(n−1)/2 before determining
infeasibility and terminating. The objective c is irrelevant, but is important in generating distinct IPs
with this property. Consider the cut x1+· · ·+xn ≤ ⌊n/2⌋, which is a valid cut for IPc (this is in fact a
Chvátal-Gomory cut [10]). In particular, since n is odd, x1+· · ·+xn ≤ ⌊n/2⌋ =⇒ x1+· · ·+xn ≤
(n− 1)/2 < n/2, so the equality constraint of IPc is violated by this cut. Thus, the feasible region of
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the LP relaxation after adding this cut is empty, and branch-and-bound will terminate immediately
at the root (building a tree of size 1). Denote this cut by (α(−1), β(−1)) = (1, ⌊n/2⌋). On the other
hand, let (α(1), β(1)) = (0, 0) be the trivial cut 0 ≤ 0. Adding this cut to the IP constraints does not
change the feasible region, so branch-and-bound will build a tree of size 2(n−1)/2.

We now define αc,A,b and βc,A,b. Let

(αc,A,b(u), βc,A,b(u)) =


(α(1), β(1)) if ((c, A, b), 1) ∈ φ(u) and ((c, A, b),−1) /∈ φ(u)

(α(−1), β(−1)) if ((c, A, b),−1) ∈ φ(u) and ((c, A, b), 1) /∈ φ(u)

(0, 0) otherwise
.

The choice to use (0, 0) in the case that either ((c, A, b), ε) /∈ φ(u) for each ε ∈ {−1, 1}, or
((c, A, b),−1) ∈ φ(u) and ((c, A, b), 1) ∈ φ(u) is arbitrary and unimportant. Now, for any
integer N > 0, constructing a set of N IPs and N thresholds that is shattered is almost imme-
diate. Let c1, . . . , cN ∈ R be distinct reals, and let 1 < r1, . . . , rN < 2(n−1)/2. Then, the set
{(IPc1 , r1), . . . , (IPcN , rN )} can be shattered. Indeed, given a sign pattern (ε1, . . . , εN ) ∈ {−1, 1}N ,
let

u = φ−1 ((IPc1 , ε1), . . . , (IPcN , εN )) .

Then, if εi = 1, (αIPci
(u), βIPci

(u)) = (α(1), β(1)), so gu(IPci) = 2(n−1)/2 and sign(gu(IPci)−
ri) = 1. If εi = −1, (αIPci

(u), βIPci
(u)) = (α(−1), β(−1)), so gu(IPci) = 1 and sign(gu(IPci)−

ri) = −1. So for any N there is a set of IPs and thresholds that can be shattered, which yields the
theorem statement.

Lemma D.1. Consider the family of GMI cuts parameterized by u ∈ [−U,U ]m. There is a set of at
most O(nU2 ∥A∥1 ∥b∥1) hyperplanes partitioning [−U,U ]m into connected components such that
⌊uTai⌋, ⌊uT b⌋, and 1[fi ≤ f0] are invariant, for every i, within each component.

Proof of Lemma D.1. We have fi = uTai − ⌊uTai⌋, f0 = uT b − ⌊uT b⌋, and since u ∈
[−U,U ]m, ⌊uTai⌋ ∈ [−U ∥ai∥1 , U ∥ai∥1] and ⌊uT b⌋ ∈ [−U ∥b∥1 , U ∥b∥1]. Now, for all i,
ki ∈ [−U ∥ai∥1 , U ∥ai∥1]∩Z and k0 ∈ [−U ∥b∥1 , U ∥b∥1]∩Z, put down the hyperplanes defining
the two halfspaces ⌊

uTai

⌋
= ki ⇐⇒ ki ≤ uTai < ki + 1 (18)

and the hyperplanes defining the two halfspaces⌊
uT b

⌋
= k0 ⇐⇒ k0 ≤ uT b < k0 + 1. (19)

In addition, consider the hyperplane

uTai − ki = uT b− k0 (20)

for each i. Within any connected component of Rm determined by these hyperplanes, ⌊uTai⌋
and ⌊uT b⌋ are constant. Furthermore, 1[fi ≤ f0] is invariant within each connected component,
since if ⌊uTai⌋ = ki and ⌊uT b⌋ = k0, fi ≤ f0 ⇐⇒ uTai − ki ≤ uT b − k0, which is the
hyperplane given by Equation 20. The total number of hyperplanes of type 18 is O(nU ∥A∥1), the
total number of hyperplanes of type 19 is O(U ∥b∥1), and the total number of hyperplanes of type 20
is nU2 ∥A∥1 ∥b∥1. Summing yields the lemma statement.

The next lemma allows us to transfer the polynomial partition of Rn+1 from Theorem 4.4 to a
polynomial partition of [−U,U ]m, incurring only a factor 2 increase in degree.

Lemma D.2. Let p ∈ R[y1, . . . , yn+1] be a polynomial of degree d. Let D ⊆ [−U,U ]m be a
connected component from Lemma D.1. Define q : D → R by q(u) = p(α(u), β(u)). Then q is a
polynomial in u of degree 2d.

Proof. By Lemma D.1, there are integers k0, ki for i ∈ [n] such that ⌊uTai⌋ = ki and ⌊uT b⌋ = k0
for all u ∈ D. Also, the set S = {i : fi ≤ f0} is fixed over all u ∈ D.
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A degree-d polynomial p in variables y1, . . . , yn+1 can be written as
∑

T⊑[n+1],|T |≤d λT

∏
i∈T yi

for some coefficients λT ∈ R, where T ⊑ [n+ 1] means that T is a multiset of [n+ 1]. Evaluating
at (α(u), β(u)), we get∑

|T |≤d

λT

∏
i∈T∩S
i̸=n+1

fi(1− f0)
∏

i∈T\S
i̸=n+1

f0(1− fi)
∏
i∈T

i=n+1

f0(1− f0).

Now, fi = uTai − ki and f0 = uT b− k0 are linear in u. The sum is over all multisets of size at
most d, so each monomial consists of the product of at most d degree-2 terms of the form fi(1− f0),
f0(1− fi), or f0(1− f0). Thus, deg(q) ≤ 2d, as desired.

Proof of Lemma 5.2. Let C ⊆ Rn+1 be a connected component in the partition established in
Theorem 4.4, so C can be written as the intersection of at most 14n(m + 2n)3n

2

τ5n
2

polynomial
constraints of degree at most 5. Let D ⊆ [−U,U ]m be a connected component in the partition
established in Lemma D.1. By Lemma D.2, there are at most 14n(m + 2n)3n

2

τ5n
2

polynomials
of degree at most 10 partitioning D into connected components such that within each component,
1[(α(u), β(u)) ∈ C] is invariant. If we consider the overlay of these polynomial surfaces over all
components C, we will get a partition of [−U,U ]m such that for every C, 1[(α(u), β(u)) ∈ C] is
invariant over each connected component of [−U,U ]m. Once we have this we are done, since all u
in the same connected component of [−U,U ]m will be sent to the same connected component of
Rn+1 by (α(u), β(u)), and thus by Theorem 4.4 the behavior of branch-and-cut will be invariant.

We now tally up the total number of surfaces. The number of connected components C was given
by Warren’s theorem and the Milnor-Thom theorem to be O(14n(n+1)(m+ 2n)3n

2(n+1)τ5n
2(n+1)),

so the total number of degree-10 hypersurfaces is 14n(m+ 2n)3n
2

τ5n
2

times this quantity, which
yields the lemma statement.

D.1 Multiple GMI cuts at the root

In this section we extend our results to allow for multiple GMI cuts at the root of the B&C tree.
These cuts can be added simultaneously, sequentially, or in rounds. If GMI cuts u1, u2 are added
simultaneously, both of them have the same dimension and are defined in the usual way. If GMI cuts
u1, u2 are added sequentially, u2 has one more entry than u1. This is because when cuts are added
sequentially, the LP relaxation is re-solved after the addition of the first cut, and the second cut has a
multiplier for all original constraints as well as for the first cut (this ensures that the second cut can be
chosen in a more informed manner). If K cuts are made at the root, they can be added in sequential
rounds of simultaneous cuts. In the following discussion, we focus on the case where all K cuts are
added sequentially—the other cases can be viewed as instantiations of this. We refer the reader to the
discussion in Balcan et al. [10] for more details.

To prove an analogous result for multiple GMI cuts (in sequence, that is, each successive GMI cut
has one more parameter than the previous), we combine the reasoning used in the single-GMI-cut
case with some technical observations in Balcan et al. [10].

Lemma D.3. Consider the family of K sequential GMI cuts parameterized by u1 ∈ [−U,U ]m,u2 ∈
[−U,U ]m+1, . . . ,uK ∈ [−U,U ]m+K−1. For any IP (c, A, b), there are at most

O
(
nK(1 + U)2K ∥A∥1 ∥b∥1

)
degree-K polynomial hypersurfaces and

2O(n2)KO(n3)(m+ 2n)O(n3)τO(n3)

degree-4K2 polynomial hypersurfaces partitioning [−U,U ]m×· · ·×[−U,U ]m+K−1 connected com-
ponents such that the B&C tree built after sequentially adding the GMI cuts defined by u1, . . . ,uK

is invariant over all (u1, . . . ,uK) within a single component.

Proof. We start with the setup used by Balcan et al. [10] to prove similar results for sequential Chvátal-
Gomory cuts. Let a1, . . . ,an ∈ Rm be the columns of A. We define the following augmented
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columns ã1
i ∈ Rm, . . . , ãK

i ∈ Rm+K−1 for each i ∈ [n], and the augmented constraint vectors
b̃1 ∈ Rm, . . . , b̃K ∈ Rm+K−1 via the following recurrences:

ã1
i = ai

ãk
i =

[
ãk−1
i

uT
k−1ã

k−1
i

]
and

b̃1 = b

b̃k =

[
b̃k−1

uT
k−1b̃

k−1

]

for k = 2, . . . ,K. In other words, ãk
i is the ith column of the constraint matrix of the IP and b̃k

is the constraint vector after applying cuts u1, . . . ,uk−1. An identical induction argument to that
of Balcan et al. [10] shows that for each k ∈ [K],⌊

uT
k ã

k
i

⌋
∈
[
− (1 + U)

k ∥ai∥1 , (1 + U)
k ∥ai∥1

]
and ⌊

uT
k b̃

k
⌋
∈
[
− (1 + U)

k ∥b∥1 , (1 + U)
k ∥b∥1

]
.

Now, as in the single-GMI-cut setting, consider the surfaces⌊
uT
k ã

k
i

⌋
= ℓi ⇐⇒ ℓi ≤ uT

k ã
k
i < ℓi + 1 (21)

and ⌊
uT
k b̃

k
⌋
= ℓ0 ⇐⇒ ℓi ≤ uT

k b̃
k < ℓ0 + 1 (22)

for every i, k, and every integer ℓi ∈ [−(1 + U)k ∥ai∥1 , (1 + U)k ∥ai∥1] ∩ Z and every integer
ℓ0 ∈ [−(1 + U)k ∥b∥1 , (1 + U)k ∥b∥1] ∩ Z. In addition, consider the surfaces

uT
k ã

k
i − ℓi = uT

k b̃
k − ℓ0 (23)

for each i, k, ℓi, ℓ0. As observed by Balcan et al. [10], uT
k ã

k
i is a polynomial in

u1[1], . . . ,u1[m],u2[1], . . . ,u2[m + 1], . . . ,uk[1], . . . ,uk[m + k − 1] of degree at most k (as
is uT

k b̃
k), so surfaces 21, 22, and 23 are all degree-K polynomial hypersurfaces for all i, k. Within

any connected component of [−U,U ]m × · · · × [−U,U ]m+K−1 induced by these hypersurfaces,
⌊uT

k ã
k
i ⌋ and ⌊uT

k b̃
k⌋ are constant. Furthermore 1[fk

i ≤ fk
0 ] is invariant for every i, k, where

fk
i = uT

k ã
k
i − ⌊uT

k ã
k
i ⌋ and fk

0 = uT
k b̃

k − ⌊uT
k b̃

k⌋.

Now, fix a connected component D ⊆ [−U,U ]m × · · · × [−U,U ]m+K−1 induced by the above
hypersurfaces, and let C ⊆ RK(n+1) be the intersection of q polynomial inequalities of degree at
most d. Consider a single degree-d polynomial inequality in K(n+ 1) variables y1, . . . , yK(n+1),
which can be written as∑

T⊑[K(n+1)]
|T |≤d

λT

∏
j∈T

yj =
∑

T1,...,TK⊑[n+1]
|T1|+···+|TK |≤d

λT1,...,TK

∏
j1∈T1

yj1 · · ·
∏

jK∈TK

yjK ≤ γ.

Now, the sets S1, . . . , SK defined by Sk = {i : fk
i ≤ fk

0 } are fixed within D, so we can write this as

∑
T1,...,TK⊑[n+1]
|T1|+···+|TK |≤d

λT1,...,TK

K∏
k=1

[ ∏
j∈Tk∩Sk
j ̸=n+1

fk
j (1− fk

0 )
∏

j∈Tk\Sk

j ̸=n+1

fk
0 (1− fk

j )
∏
j∈Tk
j=n+1

fk
0 (1− fk

0 )

]
≤ γ.

We have that fk
j and fk

0 are degree-k polynomials in u1, . . . ,uk. Since the sum is over all multisets
T1, . . . , TK such that |T1|+ · · ·+ |TK | ≤ d, there are at most d terms across the products, each of
the form fk

j (1− f0)
k, fk

0 (1− fk
j ), or fk

0 (1− f0)
k. Therefore, the left-hand-side is a polynomial of
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degree at most 2dK, and if C ⊆ RK(n+1) is the intersection of q polynomial inequalities each of
degree at most d, the set

{(u1, . . . ,uK) ∈ D : (α (u1, . . . ,uK) , β (u1, . . . ,uK)) ∈ C} ⊆ [−U,U ]m×· · ·×[−U,U ]m+K−1

can be expressed as the intersection of q degree-2dK polynomial inequalities.

To finish, we run this process for every connected component C ⊆ RK(n+1) in the partition es-
tablished by Theorem C.6. This partition consists of O(12nn2nK2n2

(m + 2n)2n
2

τ5n
2

) degree-
2K polynomials over RK(n+1). By Warren’s theorem and the Milnor-Thom theorem, these
polynomials partition RK(n+1) into O(12n(n+1)n2n(n+1)K2n2(n+1)(m + 2n)2n

2(n+1)τ5n
2(n+1))

connected components. Running the above argument for each of these connected compo-
nents of RK(n+1) yields a total of O

(
12n(n+1)n2n(n+1)K2n2(n+1)(m+ 2n)2n

2(n+1)τ5n
2(n+1)

)
·

O
(
12nn2nK2n2

(m+ 2n)2n
2

τ5n
2
)
= 2O(n2)KO(n3)(m+ 2n)O(n3)τO(n3) polynomials of degree

4K2. Finally, we count the surfaces of the form (21), (22), and (23). The total number of degree-K
polynomials of type 21 is at most O(nK(1 + U)K ∥A∥1), the total number of degree-k polynomials
of type 22 is O(K(1 + U)K ∥b∥1), and the total number of degree-K polynomials of type 23 is
O(nK(1 + U)2K ∥A∥1 ∥b∥). Summing these counts yields the desired number of surfaces in the
lemma statement.

In any connected component of [−U,U ]m determined by these surfaces, 1[(α(u), β(u)) ∈ C] is
invariant for every connected component C ⊆ RK(n+1) in the partition of RK(n+1) established in
Theorem C.6. This means that the tree built by branch-and-cut is invariant, which concludes the
proof.

Finally, applying the main result of Balcan et al. [9] to Lemma D.3, we get the following pseudo-
dimension bound for the class of K sequential GMI cuts at the root of the B&C tree.
Theorem D.4. For u1 ∈ [−U,U ]m,u2 ∈ [−U,U ]m+1, . . . ,uK ∈ [−U,U ]m+K−1, let
gu1,...,uK

(c, A, b) denote the number of nodes in the tree B&C builds given the input (c, A, b)
after sequentially applying the GMI cuts defined by u1, . . . ,uK at the root. The pseudo-dimension of
the set of functions {gu1,...,uK

: (u1, . . . ,uK) ∈ [−U,U ]m × · · · × [−U,U ]m+K−1} on the domain
of IPs with ∥A∥1 ≤ a and ∥b∥1 ≤ b is

O
(
mK3 logU +mn3K2 log(mnKτ) +mK2 log(ab)

)
.
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