Can contrastive learning avoid shortcut solutions?

Joshua Robinson Li Sun Ke Yu
MIT CSAIL & LIDS University of Pittsburgh University of Pittsburgh
joshrob@mit.edu 1lis118Qpitt.edu yu.ke@pitt.edu
Kayhan Batmanghelich Stefanie Jegelka Suvrit Sra
University of Pittsburgh MIT CSAIL MIT LIDS
kayhan@pitt.edu stefje@csail.mit.edu suvrit@mit.edu
Abstract

The generalization of representations learned via contrastive learning depends
crucially on what features of the data are extracted. However, we observe that the
contrastive loss does not always sufficiently guide which features are extracted,
a behavior that can negatively impact the performance on downstream tasks via
“shortcuts”, i.e., by inadvertently suppressing important predictive features. We
find that feature extraction is influenced by the difficulty of the so-called instance
discrimination task (i.e., the task of discriminating pairs of similar points from
pairs of dissimilar ones). Although harder pairs improve the representation of
some features, the improvement comes at the cost of suppressing previously well
represented features. In response, we propose implicit feature modification 1IFM),
a method for altering positive and negative samples in order to guide contrastive
models towards capturing a wider variety of predictive features. Empirically, we
observe that IFM reduces feature suppression, and as a result improves performance
on vision and medical imaging tasks. The code is available at: https://github.
com/joshr17/IFM.

1 Introduction

Representations trained with contrastive learning are adept at solving various vision tasks including
classification, object detection, instance segmentation, and more [5, 15, 44]. In contrastive learning,
encoders are trained to discriminate pairs of positive (similar) inputs from a selection of negative
(dissimilar) pairs. This task is called instance discrimination: It is often framed using the InfoNCE
loss [14, 33], whose minimization forces encoders to extract input features that are sufficient to
discriminate similar and dissimilar pairs.

However, learning features that are discriminative during training does not guarantee a model will
generalize. Many studies find inductive biases in supervised learning toward simple “shortcut” features
and decision rules [16, 21, 32] which result in unpredictable model behavior under perturbations
[22, 43] and failure outside the training distribution [2, 37]. Simplicity bias has various potential
sources [ | 1] including training methods [8, 29, 41] and architecture design [10, 17]. Bias towards
shortcut decision rules also hampers transferability in contrastive learning [4], where it is in addition
influenced by the instance discrimination task. These difficulties lead us to ask: can the contrastive
instance discrimination task itself be modified to avoid learning shortcut solutions?

We approach this question by studying the relation between contrastive instance discrimination and
feature learning. First, we theoretically explain why optimizing the InfoNCE loss alone does not
guarantee avoidance of shortcut solutions that suppress (i.e., discard) certain input features [4, | 1].
Second, despite this negative result, we show that it is still possible to trade off representation of
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Figure 1: An ideal encoder would discriminate between instances using multiple distinguishing
features instead of finding simple shortcuts that suppress features. We show that InfoNCE-trained
encoders can suppress features (Sec. 2.2). However, making instance discrimination harder during
training can trade off representation of different features (Sec. 2.3). To avoid the need for trade-offs
we propose implicit feature modification (Sec. 3), which reduces suppression in general, and improves
generalization (Sec. 4).

one feature for another using simple methods for adjusting the difficulty of instance discrimination.
However, these methods have an important drawback: improved learning of one feature often comes
at the cost of harming another. That is, feature suppression is still prevalent. In response, we
propose implicit feature modification, a technique that encourages encoders to discriminate instances
using multiple input features. Our method introduces no computational overhead, reduces feature
suppression (without trade-offs), and improves generalization on various downstream tasks.

Contributions. In summary, this paper makes the following main contributions:

1. It analyzes feature suppression in contrastive learning, and explains why feature suppression
can occur when optimizing the InfoNCE loss.

2. It studies the relation between instance discrimination tasks and feature learning; concretely,
adjustments to instance discrimination difficulty leads to different features being learned.

3. It proposes implicit feature modification, a simple and efficient method that reduces the
tendency to use feature suppressing shortcut solutions and improves generalization.

1.1 Related work

Unsupervised representation learning is enjoying a renaissance driven by steady advances in effective

frameworks [3, 5, 15, 18, 33, 44,45, 51]. As well as many effective contrastive methods, Siamese
approaches that avoid representation collapse without explicitly use of negatives have also been
proposed [6, 13, 51]. Pretext task design has been at the core of progress in self-supervised learning.

Previously popular tasks include image colorization [54] and inpainting [35], and theoretical work
shows pre-trained encoders can provably generalize if a pretext task necessitates the learning of
features that solve downstream tasks [27, 39]. In contrastive learning, augmentation strategies are a
key design component [5, 48, 50], as are negative mining techniques [9, 15, 25, 40]. While feature
learning in contrastive learning has received less attention, recent work finds that low- and mid-level
features are more important for transfer learning [55], and feature suppression can occur [4] just as
with supervised learning [10, 16]. Combining contrastive learning with an auto-encoder has also been
considered [28], but was found to harm representation of some features in order to avoid suppression
of others. Our work is distinguished from prior work through our focus on how the design of the
instance discrimination task itself affects which features are learned.

2 Feature suppression in contrastive learning

Feature suppression refers to the phenomenon where, in the presence of multiple predictive input
features, a model uses only a subset of them and ignores the others. The selected subset often
corresponds to intuitively “simpler” features, e.g., color as opposed to shape. Such features lead to
“shortcut” decision rules that might perform well on training data, but can harm generalization and
lead to poor robustness to data shifts. Feature suppression has been identified as a common problem
in deep learning [ 1], and both supervised and contrastive learning suffer from biases induced by
the choice of optimizer and architecture. However, contrastive learning bears an additional potential
source of bias: the choice of instance discrimination task. Which positive and negative pairs are
presented critically affects which features are discriminative, and hence which features are learned.
In this work we study the relation between feature suppression and instance discrimination.



First, we explain why optimizing the InfoNCE loss is insufficient in general to avoid feature suppres-
sion, and show how it can lead to counter-intuitive generalization (Sec. 2.2). Given this negative
result, we then ask if it is at least possible to control which features a contrastive encoder learns?
We find that this is indeed the case, and that adjustments to the instance discrimination task lead to
different features being learned (Sec. 2.3). However, the primary drawback of these adjustments
is that improving one feature often comes at the cost of harming representation of another. That is,
feature suppression is still prevalent. Addressing this drawback is the focus of Sec. 3.

2.1 Setup and definition of feature suppression

Formally, we assume that the data has underlying feature spaces Z', ..., Z" with a distribution p;
on each Z7. Each j € [n], corresponding to a latent space Z7, models a distinct feature. We write
the product as Z5 = [Lies Z7, and simply write Z instead of Z[" where [n] = {1,...,n}. A set
of features z = (27) je[n) € Z is generated by sampling each coordinate 2J € ZJ independently, and
we denote the measure on Z induced by z by \. Further, let A(-|z¥) denote the conditional measure
on Z for fixed z°. For S C [n] we use z° to denote the projection of z onto Z°. Finally, an injective
map g : £ — X produces observations x = g(z).

Our aim is to train an encoder f : X — S%~! to map input data z to the surface of the unit sphere
S = {u € R?: ||lu||s = 1} in such a way that f extracts useful information. To formally define
feature suppression, we need the pushforward h#v (V) = v(h=1(V)) of a measure v on a space U
for a measurable map h : U/ — V and measurable V' C V), where h =1 (V') denotes the preimage.

Consider an encoder f : X — S?~! and features S C [n]. For each 2% € 2%, let u(-|2°) =
(f o 9)#A(-|2®) be the pushforward measure on S?~! by f o g of the conditional A(-|z*).

1. f suppresses S if for any pair 2,25 € Z9, we have pu(-|2°) = u(-|2%).

2. f distinguishes S if for any pair of distinct 2, 2% € Z5, measures p(-|2%), pu(

disjoint support.

Feature suppression is thus captured in a distributional manner, stating that S is suppressed if
the encoder distributes inputs in a way that is invariant to the value z°. Distinguishing features,
meanwhile, asks that the encoder f separates points with different features z° into disjoint regions.
We consider training an encoder f : X — Sd-1 (o optimize the InfoNCE loss [33, 14],
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where 7 is known as the temperature. Positive pairs =, z+ are generated by first sampling z ~ )\, then
independently sampling two random augmentations a,a™ ~ A, a : X — X from a distribution A,
and setting z = a(g(z)) and z* = a™(g(z)). We assume A samples the identity function a(x) = x
with non-zero probability (“z is similar to itself”), and that there are no collisions: a(z) # a’(z') for
alla,a’, and all x # 2’. Each negative example z; is generated as x; = a;(g(%;)), by independently
sampling features z; ~ A and an augmentation a; ~ A.

2.2 Why optimizing the InfoNCE loss can still lead to feature suppression

Do optimal solutions to the InfoNCE loss automatically avoid shortcut solutions? Unfortunately,
as we show in this section, this is not the case in general; there exist both optimal solutions of the
InfoNCE loss that do and solutions that do not suppress a given feature. Following previous work
[40, 49, 56], we analyze the loss as the number of negatives goes to infinity,

L= lim {Ln(f)—logm—2} = LE, .+ | f(x) = f(a")? + Eqs log [E, e/ S0/,

We subtract logm to ensure the limit is finite, and use ~ to denote a random sample with the
same distribution as x; . Prop. 2.2 (proved in App. A) shows that, assuming the marginals p; are
uniform, the InfoNCE loss is optimized both by encoders that suppress feature j, and by encoders
that distinguish j.

Suppose that p; is uniform on Z/ = S9! for all j € [n]. Then for any feature j € [n] there
exists an encoder fqpp that suppresses feature j and encoder fgs that discriminates j but both attain
rninf: measurable L(f :

The condition that p; is uniformly distributed on Z7 = S4-1 is similar to conditions used in previous
work [56]. Prop. 2.2 shows that empirical observations of feature suppression [4] (see also Fig. 3)



are not simply due to a failure to sufficiently optimize the loss, but that the possibility of feature
suppression is built into the loss. What does Prop. 2.2 imply for the generalization behavior of
encoders? Besides explaining why feature suppression can occur, Prop. 2.2 also suggests another
counter-intuitive possibility: lower InfoNCE loss may actually lead to worse performance on some
tasks.

To empirically study whether this possibility
manifests in practice, we use two datasets
with known semantic features: (1) In the
Trifeature data, [ 16] each image is 128 x 128
and has three features: color, shape, and
texture, each taking possible 10 values. See
Fig. 10, App. C for sample images. (2)
In the STL-digits data, samples combine
MNIST digits and STL10 objects by placing 105° 00 @ y20® 105 St g0
copies of a randomly selected MNIST digit Trifeature STL-digits
on top of an STL10 image. See Fig. 11
App. C for sample images.
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Figure 2: Linear readout error on different downstream
tasks can be negatively correlated. Further, lower In-
We train encoders with ResNet-18 backbone  foNCE loss does not always yield not lower error: error
using SImCLR [5]. To study correlations  rates on texture, shape and STL10 prediction are nega-
between the loss value and error on down-  fively correlated with InfoNCE loss.

stream tasks, we train 33 encoders on Trifea-

ture and 7 encoders on STL-digits with different hyperparameter settings (see App. C.2 for full details
on training and hyperparameters). For Trifeature, we compute the Pearson correlation between In-
foNCE loss and linear readout error when predicting {color, shape, texture}. Likewise, for STL-digits
we compute correlations between the InfoNCE loss and MNIST and STL10 prediction error.

Fig. 2 shows that performance on different downstream tasks is not always positively correlated. For
Trifeature, color error is negatively correlated with shape and texture, while for STL-digits there is a
strong negative correlation between MNIST digit error and STL10 error. Importantly, lower InfoNCE
loss is correlated with lower prediction error for color and MNIST-digit, but with larger error for
shape, texture and STL10. Hence, lower InfoNCE loss can improve representation of some features
(color, MNIST digit), but may actually Aurt others. This conflict is likely due to the simpler color
and MNIST digit features being used as shortcuts. Our observation is an important addition to the
statement of Wang and Isola [49] that lower InfoNCE loss improves generalization: the situation is
more subtle — whether lower InfoNCE helps generalization on a task depends on the use of shortcuts.

2.3 Controlling feature learning via the difficulty of instance discrimination

The previous section showed that the InfoNCE objective has solutions that suppress features. Next,
we ask what factors determine which features are suppressed? Is there a way to target specific features
and ensure they are encoded? One idea is to use harder positive and negative examples. Hard
examples are precisely those that are not easily distinguishable using the currently extracted features.
So, a focus on hard examples may change the scope of the captured features. To test this hypothesis,
we consider two methods for adjusting the difficulty of positive and negative samples:

1. Temperature 7 in the InfoNCE loss (Eqn. 1). Smaller 7 places higher importance on positive
an negative pairs with high similarity [47].

2. Hard negative sampling method of Robinson et al. [40], which uses importance sampling to
sample harder negatives. The method introduces a hardness concentration parameter 3, with
larger (8 corresponding to harder negatives (see [40] for full details).

Results reported in Fig. 3 (also Fig. 13 in App. C.2) show that varying instance discrimination
difficulty—i.e., varying temperature 7 or hardness concentration S—enables trade-offs between
which features are represented. On Trifeature, easier instance discrimination (large 7, small j3) yields
good performance on ‘color’—an “easy” feature for which a randomly initialized encoder already
has high linear readout accuracy—while generalization on the harder texture and shape features is
poor. The situation reverses for harder instance discrimination (small 7, large 3). We hypothesize
that the use of “easy” features with easy instance discrimination is analogous to simplicity biases
in supervised deep networks [17, 21]. As with supervised learning [10, 17], we observe a bias for
texture over shape in convolutional networks, with texture prediction always outperforming shape.
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Figure 3: Trifeature dataset [16]. The difficulty of instance discrimination affects which features
are learned (Sec. 2.3). When instance discrimination is easy (big 7, small (3), encoders represent
color well and other features badly. When instance discrimination is hard (small 7, big 3), encoders
represent more challenging shape and texture features well, at the expense of color.

That there are simple levers for controlling which features are learned already distinguishes contrastive
learning from supervised learning, where attaining such control is less easy (though efforts have
been made [23]). However, these results show that representation of one feature must be sacrificed
in exchange for learning another one better. To understand how to develop methods for improving
feature representation without suppressing others, the next result (proof in App. A) examines more
closely why there is a relationship between (hard) instance discrimination tasks and feature learning.

[Informal] Suppose that p; is uniform on Z4 = S~ for all j € [n]. Further, for S C [n] suppose

that z, 2+, {z; }, are conditioned on the event that they have the same features S. Then any f that
minimizes the (limiting) InfoNCE loss suppresses features S.

The positive and negative instances in Prop. 2.3 must be distinguished with features in S¢. Relating
this point to the above observations, assume that an encoder exclusively uses features S. Any positives
and negatives that do not (much) differ in features S are difficult for the encoder. By Prop. 2.3,
focusing the training on these difficult examples pushes the encoder to instead use features in .S¢,
i.e., to learn new features. But at the same time, the proposition also says that a strong focus on such
hard negative pairs leads to suppressing the originally used features .S, explaining the results in Fig. 3.
While the two techniques for adjusting instance difficulty we studied were unable to avoid feature
suppression, this insight forms the motivation for implicit feature modification, which we introduce
next.

3 Implicit feature modification for reducing feature suppression

The previous section found that simple adjustments to instance discrimination difficulty could signifi-
cantly alter which features a model learns. Prop. 2.3 suggests that this ability to modify which features
are learned stems from holding features constant across positive and negative samples. However,
these methods were unable to avoid trade-offs in feature representation (Fig. 3) since features that are
held constant are themselves suppressed (Prop. 2.3).

To avoid this effect, we develop a technique that adaptively modifies samples to remove whichever
features are used to discriminate a particular positive pair from negatives, then trains an encoder to
discriminate instances using both the original features, and the features left over after modification.
While a natural method for modifying features is to directly transform raw input data, it is very
challenging to modify the semantics of an input in this way. So instead we propose modifying features
by applying transformations to encoded samples v = f(z). Since we modify the encoded samples,
instead of raw inputs z, we describe our method as implicit.

We set up our notation. Given batch z,z, {z; }7, we write v = f(z), v* = f(z"), and
v; = f(z; ) to denote the corresponding embeddings. As in Eqn. 1, the point-wise InfoNCE loss is,

evTv+/T

ev vt /T + 2211 eV /T ’

K(v,v'ﬂ {U:}Zl) = _IOg



[Tmplicit feature modification] Given budget ¢ € R, and encoder f : X — S? an adversary
removes features from f that discriminates batch z,z ", {z; }7™, by maximizing the point-wise
InfoNCE loss, £ (v, v, {v; } ) = MaXsiep , (57 €B., ), Lo, ot + 0% {v; +6; }m)).

Here B. denotes the ¢5-ball of radius €. Implicit feature modification (IFM) removes components of
the current representations that are used to discriminate positive and negative pairs. In other words,
the embeddings of positive and negative samples are modified to remove well represented features.
So, if the encoder is currently using a simple shortcut solution, IFM removes the features used,
thereby encouraging the encoder to also discriminate instances using other features. By applying
perturbations in the embedding space IFM can modify high level semantic features (see Fig. 4), which
is extremely challenging when applying perturbations in input space. In order to learn new features
using the perturbed loss while still learning potentially complementary information using the original
InfoNCE objective, we propose optimizing the the multi-task objective min {L(f) + oL (f)}/2
where £, = E/. is the adversarial perturbed loss, and £ the standard InfoNCE loss. For simplicity,
all experiments set the balancing parameter o = 1 unless explicitly noted, and all take e, &, to be
equal, and denote this single value by ¢. Crucially, /. can be computed analytically and efficiently.
For any v, v", {v; }7, € R we have,

T o

v el Y /T v 4 T eUT’U+/T ) v

v T evlvt/T + Zm €UTU;/T . ; an LA evvt/T + Zm eUTU;/T B . ;
i=1 i=1

In particular, V, - £ o< v and V,+ £ o< —v. This expression shows that the adversary perturbs v~
(resp. v1) in the direction of the anchor v (resp —v). Since the derivative directions are independent
of {v; }1", and v, we can analytically compute optimal perturbations in .. Indeed, following the
constant ascent direction shows the optimal updates are simply v; < v; +¢&;v and v vt —eto,
The positive (resp. negative) perturbations increase (resp. decrease) cosine similarity to the anchor
sim(v,v; +&;v) — 1ase; — oo (resp. sim(v,vt —etv) - —1aset — o). In Fig. 4 we
visualize the newly synthesized v; , v and find meaningful interpolation of semantics. Plugging the
update rules for v and v; into the point-wise InfoNCE loss yields,

e(vT'u"' —etY)/T

! T o) =—1 )
E(U, v, {Uz 1,—1) og e(’UT’U‘*'fE‘*')/T + Z?;l e(”T”i_+5i)/T
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In other words, IFM amounts to simply perturbing the logits — reduce the positive logit by et /7
and increase negative logits by &; /7. From this we see that £, is automatically symmetrized in the
positive samples: perturbing v instead of v results in the exact same objective. Eqn. 2 shows that

IFM re-weights each negative sample by a factor /™ and positive samples by e/,

3.1 Visualizing implicit feature modification

With implicit feature modification, newly synthesized data points do not directly correspond to
any “true” input data point. However it is still possible to visualize the effects of implicit feature
modification. To do this, assume access to a memory bank of input data M = {z;};. A newly
synthesized sample s can be approximately visualized by retrieving the 1-nearest neighbour using
cosine similarity arg min,e o sim(s, f(x)) and viewing the image x as an approximation to s.

Fig. 4 shows results using a ResNet-50 encoder trained using MoCo-v2 on ImageNet1K using the
training set as the memory bank. For positive pair v, vT increasing ¢ causes the semantics of v and
vT to diverge. For ¢ = 0.1 a different car with similar pose and color is generated, for ¢ = 0.2
the pose and color then changes, and finally for € = 1 the pose, color and type of vehicle changes.
For negative pair v, v~ the reverse occurs. For ¢ = 0.1, v~ is a vehicle with similar characteristics
(number of windows, color etc.), and with e = 0.2, the pose of the vehicle v™ aligns with v. Finally
for ¢ = 1 the pose and color of the perturbed negative sample become aligned to the anchor v. In
summary, implicit feature modification successfully modifies the feature content in positive and
negative samples, thereby altering which features can be used to discriminate instances.

Related Work. Several works consider adversarial contrastive learning [19, 24, 26] using PGD
(e.g. FGSM) attacks to alter samples in input space. Unlike our approach, PGD-based attacks require
costly inner-loop optimization. Other work takes an adversarial viewpoint in input space for other
self-supervised tasks e.g., rotations and jigsaws but uses an image-to-image network to simulate
FGSM/PGD attacks [31], introducing comparable computation overheads. They note that low-level
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Figure 6: Trifeature dataset. Implicit feature modification reduces feature suppression, enhancing
the representation of texture, shape and color features simultaneously. All results are average linear
readout accuracy over three seeds and use a fixed value € = 0.1 to illustrate robustness to €.

(i.e., pixel-level) shortcuts can be avoided using their method. All of these works differ from ours
by applying attacks in input space, thereby focusing on lower-level features, whereas ours aims to
modify high-level features. Fig. 5 compares IFM to this family of input-space adversarial methods by
comparing to a top performing method ACL(DS) [24]. We find that ACL improves robust accuracy
under /. -attack on input space (see [24] for protocol details), whereas IFM improves standard
accuracy (full details and discussion in Appdx. C.3). Synthesizing harder negatives in latent space
using Mixup [53] has also been considered [25] but does not take an adversarial perspective. Other
work, AdCo [20], also takes an adversarial viewpoint in latent space. There are several differences to
our approach. AdCo perturbs all negatives using the same weighted combination of all the queries,
whereas IFM perturbations are query specific. In other words, IFM makes instance discrimination
harder point-wise, whereas AdCo perturbation makes the InfoNCE loss larger on average (see Fig.
4 for visualizations of instance dependent perturbation using IFM). AdCo also treats the negatives
as learnable parameters, introducing ~ 1M more parameters and ~ 7% computational overhead,
while IFM has no computational overhead and is implemented with only two lines of code (see Tab.
1 for empirical comparison). Finally, no previous work makes the connection between suppression of
semantic features and adversarial methods in contrastive learning (see Fig. 6).

4 Experimental results

Implicit feature modification (IFM) can be used with any InfoNCE-based contrastive framework,
and we write IFM-SimCLR, IFM-MoCo-v2 etc. to denote IFM applied within a specific framework.
Code for IFM will be released publicly, and is also available in the supplementary material.

4.1 Does implicit feature modification help avoid feature suppression?

We study the effect IFM has on feature suppression by training ResNet-18 encoders for 200 epochs
with 7 € {0.05,0.2,0.5} on the Trifeature dataset [16]. Results are averaged over three seeds, with
IFM using € = 0.1 for simplicity. Fig. 6 shows that IFM improves the linear readout accuracy across
all three features for all temperature settings. The capability of IFM to enhance the representation
of all features — i.e. reduce reliance on shortcut solutions — is an important contrast with tuning
temperature 7 or using hard negatives, which Fig. 3 shows only trades-off which features are learned.
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compared to baselines. Protocol uses 400 epochs of training with ResNet-50 backbone.

4.2 Performance on downstream tasks

Sec. 3.1 and Sec. 4.1 demonstrate that implicit feature modification is adept at altering high-level
features of an input, and combats feature suppression. This section shows that these desirable traits
translate into improved performance on object classification and medical imaging tasks.

Experimental setup for classification tasks. Having observed the positive effect IFM has on
feature suppression, we next test if this feeds through to improved performance on real tasks of
interest. We benchmark using both SImCLR and MoCo-v2 [5, 7] with standard data augmentation
[5]. All encoders have ResNet-50 backbones and are trained for 400 epochs (with the exception of on
ImageNet100, which is trained for 200 epochs). All encoders are evaluated using the test accuracy of
a linear classifier trained on the full training dataset (see Appdx. C.4 for full setup details).

Classification tasks.
Results given in Flg 7 - MoCo-v2 AdCO[ ] IFM-MoCo-v2
and Tab. 1 find that every € N/A N/A 0.05 0.1 0.2

<
value of 0 < ¢ - 0.2 tOp—l 80.4i0,11 78.9i0,21 81.1i0‘02 80.9i0,25 80.7i0,13

improves  performance

across all datasets using  Taple 1: Linear readout (%) on ImageNet100, averaged over five seeds.

both MoCo-v2 and Sim- [EM improves over MoCo-v2 for all settings of .
CLR frameworks. We find

that optimizing L. (76.0% average score across all eight runs in Fig. 7) performs similarly to the
standard contrastive loss (75.9% average score), and does worse than the IFM loss (£ + £.)/2. This
suggests that £ and £, learn complementary features. Tab. 1 benchmarks IFM on ImageNet100
[44] using MoCo-v2, observing improvements of 0.9%. We also compare results on ImageNet100
to AdCo [20], another adversarial method for contrastive learning. We adopt the official code and
use the exact same training and finetuning hyperparameters as for MoCo-v2 and IFM. For the
AdCo-specific hyperparamters — negatives learning rate [, and negatives temperature 7yc, — We use
a grid search over all combinations lrye, € {1,2,3,4} and 7y, € {0.02,0.1}, which includes the
AdCo default ImageNet1K recommendations l7eg = 3 and T = 0.02 [20]. The resulting AdCo
performance of 78.9% is slightly below MoCo-v2. However using their respective ImageNet1 K
default parameters AdCo and MoCo-v2 achieve 72.4% and 71.8% respectively, suggesting that the
discrepancy between AdCo and MoCo-v2 may in part be due to the use of improved hyperparameters
tuned on MoCo-v2. Note importantly, IFM is robust to the choice of e: all values ¢ € {0.05,0.1,0.2}
were found to boost performance across all datasets and all frameworks. We emphasize that the
MoCo-v2 baseline performance of 80.5% on ImageNet100 is strong. Our hyperparameters, which we
detail in Appdx. C.4.1, may be of interest to other works benchmarking MoCo-v2 on ImageNet100.

Medical images. To evaluate our method on a modality differing significantly from object-based
images we consider the task of learning representations of medical images. We benchmark using the
approach proposed by [42] which is a variant of MoCo-v2 that incorporates the anatomical context in
the medical images. We evaluate our method on the COPDGene dataset [38], which is a multi-center
observational study focused on the genetic epidemiology of Chronic obstructive pulmonary disease
(COPD). See Appdx. C.5 for full background details on the COPDGene dataset, the five COPD
related outcomes we use for evaluation, and our implementation. We perform regression analysis
for continuous outcomes in terms of coefficient of determination (R-square), and logistic regression
to predict ordinal outcomes and report the classification accuracy and the /-off accuracy, i.e., the
probability of the predicted category is within one class of true value.

Tab. 2 reports results. For fair comparison we use same experimental configuration for the baseline
approach [42] and our method. We find that IFM yields improvements on all outcome predictions.



Method logFEVipp logFEV;FVC CLE CLE I-off Para-septal Para-septal /-off mMRC mMRC /-off

Loss R-Square Accuracy (%)

L (baseline)  0.5664 g5  0.6611 005 49.6104 81.8405 55.7+0.3 84.440.2 50.440.5 72.540.3
Le,e=0.1 0.591+ 008  0.681100s 494104 81.9103 55.610.3 85.140.2 50.310.8 72.7+0.4
IFM, e=0.1 0.615i_()05 046911_006 48-2i().8 80.610.4 55.310_4 84471[)_3 50.41(),5 72-8i0.2
IFM,e =0.2 0.5951 006 0.6831.006 48.5:06 80.5+0.6 55.310.3 85.1101 49.810.8 72.0103
IFM, e = 0.5 0~607i.006 0‘683i_005 49.6i0.4 82'0i0.3 54.9i0.2 84.710.2 50.6i0.4 73'1i0.2
IFM, e=1.0 0.583i_005 0-675i.006 50~0i0.5 82~9i0_4 56~3i0.6 85-710.2 50~3i0.6 719i03

Table 2: Linear readout performance on COPDGene dataset. The values are the average of 5-fold
cross validation with standard deviations. The bold face indicates the best average performance. IFM
yields improvements on all phenotype predictions.
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Figure 8: Label {D, D, Dnr} indicates which dataset was used to train the linear readout function.
Improved performance of IFM on standard data D can be attributed to improved representation of
robust features Dg. See Sec. 4.3 for construction of robust (Dg) and non-robust (Dng) datasets.

The gain is largest on spirometry outcome prediction, particularly logFEV 1pp with improvement
of 8.7% with ¢ = 0.1. We found that at least ¢ = 0.5 and 1.0 improve performance on all tasks.
However, we note that not all features yield a statistically significant improvement with IFM.

4.3 Further study on the impact of IFM on feature learning

This section further studies the effect implicit feature modification has on what type of features are
extracted. Specifically, we consider the impact on learning of robust (higher-level) vs. non-robust
features (pixel-level features). Our methodology, which is similar to that of Ilyas et al. [22] for deep
supervised learning, involves carefully perturbing inputs to obtain non-robust features.

Constructing non-robust features. Given encoder f we finetune a linear probe (classifier) h on-
top of f using training data (we do not use data augmentation). Once h is trained, we consider each
labeled example (x,y) from training data Dy, € {tinylmageNet, STL10, CIFAR10, CIFAR100}.
A hallucinated target label ¢ is sampled uniformly at random, and we perturb x = x¢ until h o f
predicts ¢ using repeated FGSM attacks [12] zy + xp—1 — esign(V €(h o f(xk—1),t)). At each
step we check if argmax; h o f(zy); = t (we use the maximum of logits for inference) and stop
iterating and set x,qy = xj, for the first k£ for which the prediction is ¢. This usually takes no more
than a few FGSM steps with e = 0.01. We form a dataset of “robust” features by adding (z.qy, y) to
Dr, and a dataset of “non-robust” features by adding (Zaay,t) to Dng. To a human the pair (2,qy, t)
will look mislabeled, but for the encoder x4, contains features predictive of ¢. Finally, we re-finetune
(i.e. re-train) linear classifier g using Dg (resp. Dy R).

Fig. 8 compares accuracy of the re-finetuned models on a test set of standard Dy examples (no
perturbations are applied to the test set). Note that D, D depend on the original encoder f. When
re-finetuning f we always use datasets Dg, Dy g formed via FGSM attacks on f itself. So there is
one set Dr, Dy for SImCLR, and another set for IFM. Fig. 8 shows that IFM achieves superior
generalization (D) compared to SImCLR by better representing robust features (D). Representation
of non-robust features (D g) is similar for IFM (55.5% average across all datasets) and SimCLR
(56.7% average). IFM is juxtaposed to the supervised adversarial training of Madry et al., which
sacrifices standard supervised performance in exchange for not using non-robust features [30, 46].

5 Discussion

This work studies the relation between contrastive instance discrimination and feature learning. While
we focus specifically on contrastive learning, it would be of interest to also study feature learning
for other empirically successful self-supervised methods [1, 6, 13, 51]. Understanding differences in
feature learning biases between different methods may inform which methods are best suited for a
given task, as well as point the way to further improved self-supervised techniques.
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