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Abstract

Web pages today commonly include large amounts of

JavaScript code in order to offer users a dynamic experience.

These scripts often make pages slow to load, partly due to a

fundamental inefficiency in how browsers process JavaScript

content: browsers make it easy for web developers to reason

about page state by serially executing all scripts on any frame

in a page, but as a result, fail to leverage the multiple CPU

cores that are readily available even on low-end phones.

In this paper, we show how to address this inefficiency

without requiring pages to be rewritten or browsers to be

modified. The key to our solution, Horcrux, is to account

for the non-determinism intrinsic to web page loads and

the constraints placed by the browser’s API for parallelism.

Horcrux-compliant web servers perform offline analysis of

all the JavaScript code on any frame they serve to conserva-

tively identify, for every JavaScript function, the union of the

page state that the function could access across all loads of

that page. Horcrux’s JavaScript scheduler then uses this in-

formation to judiciously parallelize JavaScript execution on

the client-side so that the end-state is identical to that of a se-

rial execution, while minimizing coordination and offloading

overheads. Across a wide range of pages, phones, and mo-

bile networks covering web workloads in both developed and

emerging regions, Horcrux reduces median browser compu-

tation delays by 31-44% and page load times by 18-37%.

1 INTRODUCTION

Despite accounting for over half of all global web traf-

fic [28, 30, 76], mobile browsing in the wild continues to

operate far slower than what users can endure [17, 18, 34],

with page loads often taking upwards of 10 seconds [14, 79].

Since users are more likely to abandon pages that are slow to

load [39], the current sub-optimal state of mobile web per-

formance negatively impacts not only user experience, but

also the revenue of content providers [31].

A key contributor to slow page loads on mobile devices

is the computation that browsers must perform to load a

page [85, 62, 64, 22], most of which is accounted for by the

execution of JavaScript code (§2). Numerous solutions have

attempted to reduce the amount of necessary client-side com-

putation, either by requiring developers to manually rewrite

pages [37] or by having clients offload page load computa-

tions to more powerful servers [68, 67, 71, 13, 64, 32]. How-

ever, solutions of the former class come at the expense of

manual effort and page functionality, while those in the latter

class are largely unviable in practice (§7). Offloading to prox-

ies [68, 67, 71] is infeasible in today’s HTTPS-by-default

web, while systems [64] in which origin servers return post-

processed pages that elide computations risk compromising

correctness since servers lack visibility into client-side state

(e.g., localStorage) that can affect control flow in a page load.

We pursue an alternative and complementary approach:

instead of attempting to reduce the amount of computation

that web clients must perform, we seek to execute the neces-

sary computation on client devices more efficiently. In partic-

ular, we observe that there exists a fundamental inefficiency

in the computation model that browsers employ (§2). To

simplify page development, JavaScript execution is single-

threaded [65, 64], and worse, JavaScript and rendering tasks

are forced to share a single “main” thread per frame in a

page [38]. Consequently, browsers are unable to take advan-

tage of the growing number of CPU cores available on popu-

lar phones in both developed and emerging regions [24, 25].

This inefficiency will only worsen as, due to energy con-

straints, increased core counts have become the main source

of compute resource improvements on phones [77, 35].

A natural solution to this inefficiency is to parallelize

JavaScript computations across a device’s available cores.

Browsers have included support for pages to spin up paral-

lel JavaScript computation threads in the form of Web Work-

ers [55, 2] for over 8 years now. Yet, only a handful of the top

1,000 sites use Workers on their landing pages, largely due to

the challenges of writing efficient, concurrent code [15, 45].

These challenges manifest in two ways for the web.

• Determining which JavaScript executions on a page frame

can be safely parallelized requires a precise understanding

of the page state accessed by every script, due to the lan-

guage’s lack of synchronization mechanisms (e.g., locks).

Placing the onus of this task on web developers [53, 6]

is impractical, while reliance on browsers to speculatively

make parallelism decisions [21, 56] is inefficient (§6.3).

• How to efficiently execute scripts in parallel is also not

straightforward due to the restrictions that browsers im-

pose on Workers. In particular, they cannot access a page’s

JavaScript heap or DOM tree, and coordinating with the

main thread, which has these privileges, adds overheads.

Our goal is to automatically parallelize JavaScript compu-

tations for legacy pages on unmodified browsers, thereby ad-

dressing the cognitive and operational overheads involved in

explicitly making parallelism decisions. Our solution, Hor-

crux, achieves these goals by employing a judicious split
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between clients and servers, hence preserving HTTPS’ end-

to-end content integrity and privacy guarantees [67]. Servers

perform the heavy lifting of finding parallelism opportunities

and embed that information in their pages. Clients then run

a JavaScript scheduler that efficiently manages parallelism

using runtime information that servers lack, i.e., number of

available threads, control flows taken in the current load.

Three primary insights guide our design of Horcrux.

First, we ensure that any introduced parallelism preserves

the final page state that developers expected when they wrote

the page. For this, Horcrux forces computations that exhibit

state dependencies (e.g., a read-write dependency on a global

variable) to run serially in an order that matches the legacy

load, while allowing other computations to run in parallel.

Key to enabling this is Horcrux’s offline use of concolic exe-

cution [48, 36, 80] on servers to explore all possible control

flows on a page and identify all state that each JavaScript

function might access, irrespective of how client-side nonde-

terminism could affect any particular load.

Second, Horcrux minimizes client-side coordination over-

heads by carefully partitioning responsibilities between the

main browser thread and the Web Workers it spawns. Hor-

crux reserves the main thread for coordinating Worker of-

floads, managing global page state, and running DOM com-

putations (which Workers cannot); all other computations are

offloaded. This yields two benefits. First, scripts typically in-

terleave computations that can and cannot be offloaded; Hor-

crux maximally parallelizes the former while carefully me-

diating the latter. Second, by keeping the main thread largely

idle, Horcrux quickly adapts the parallelization schedule to

the runtimes of JavaScript computations, offloading the next

computation as soon as a Worker becomes available.

Third, the granularity at which Horcrux parallelizes

JavaScript execution is crucial with respect to overheads and

potential parallelism. A natural solution would be to offload

the invocations of JavaScript functions, which account for

94% of JavaScript source code. However, the sheer number

of invocations in a typical page load makes this too costly. In-

stead, we observe that functions are typically invoked hierar-

chically (i.e., nested functions), with significant state sharing

within a hierarchy, but less across them. Therefore, Horcrux

offloads at the granularity of root function invocations, or

the root of each hierarchy along with its nested constituents.

Compared to per-function offloading, this requires 4× fewer

offloads while achieving 73% of the potential speedup.

We evaluated Horcrux using over 650 diverse pages, live

mobile networks (LTE and WiFi), and three phones, that col-

lectively represent browsing scenarios in both developed and

emerging regions. Our experiments across these conditions

reveal that Horcrux reduces median browser computation de-

lays by 31-44% (0.9-1.5 secs), which translates to page load

time and Speed Index speedups of 18-29% and 24-37%, re-

spectively. Further, Horcrux’s median benefits are 1.3-2.1×
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Figure 1: Load times often exceed user tolerance levels (3 sec-

onds) even when all network delays are removed.
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Figure 2: JavaScript’s role in browser computation delays.

larger than prior compute-focused web accelerators, and 1.4-

2.1× more than (complementary) network optimizations.

Taken together, our results highlight that, despite being

written for a serial browser computation model, existing

pages are surprisingly ripe with parallelization opportunities.

Horcrux shows how such opportunities can be exploited un-

der the hood, without having developers manually rewrite

their pages. Source code and datasets for Horcrux are avail-

able at https://github.com/ShaghayeghMrdn/horcrux-osdi21.

2 MOTIVATION AND BACKGROUND

Numerous studies have reported that client-side (browser)

computation is a significant contributor to poor mobile web

performance [85, 62, 79, 64]. We reproduce this finding

below (§2.1), present measurements to elucidate why such

delays are so pronounced (§2.1), and trace the origins for

this poor performance to the computation model used by

browsers today (§2.2). Our experimental setup (§6.1) covers

web workloads in both developed and emerging markets by

considering popular pages in the US and Pakistan and load-

ing those pages on common phones in each region. Pages in

the emerging region generally involve less JavaScript code,

but are loaded on phones with fewer compute resources.

2.1 Web Computation Delays

Computation delays are significant. To quantify the com-

putation delays in page loads, we replayed each page locally,

without any network emulation, i.e., all object fetches took

≈ 0 ms. As shown in Figure 1, even without network delays,

popular pages in developed and emerging markets have me-

dian load times of 2.7 and 3.8 seconds, respectively. Worse,

48% and 63% of pages require more than the 3 second load

462    15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



0.0

2.5

5.0

7.5

10.0

1 2 3 4 5 6 7 8

Number of Enabled Cores

P
a

g
e

 L
o

a
d

 T
im

e
 (

s
)

Region: Developed Emerging
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times. The developed and emerging region phones have 8 and 4

cores. Bars list medians, with error bars for 25-75th percentiles.

times that users tolerate [3]. These intolerable delays per-

sist with metrics evaluating page visibility (i.e., Speed In-

dex [40]), with 39% and 52% of pages in the developed and

emerging regions taking more than 3 seconds to fully render.

JavaScript execution is the main culprit. To break down

these high computation delays, we analyzed data from the

browser’s in-built profiler which lists the time spent perform-

ing various browser tasks including JavaScript execution,

HTML parsing, rendering, and so on. Figure 2 illustrates our

finding that JavaScript computation is the primary contrib-

utor, accounting for 52% and 58% of overall computation

time for the median page in the two settings.

Browsers make poor use of CPU cores. Computation re-

sources on mobile phones have globally increased in recent

years, with improvements in both CPU clock speeds and total

CPU cores. However, due to the energy constraints on mo-

bile devices, increased core counts have been (and likely will

continue to be) the primary source of improvements [77, 35].

For example, since their inception in 2016, Google’s Pixel

smartphones (our developed region phone) have improved

clock speeds from 1.88 GHz to 2.15 GHz, while doubling

the number of CPU cores (from 4 to 8). Similarly, the pop-

ular Redmi A series in India and Pakistan [4] (our emerging

market phone) observed the same doubling in CPU cores (2

to 4) during that time period, while seeing only a modest

clock speed improvement from 1.4 GHz to 1.75 GHz.

Unfortunately, although browsers can automatically bene-

fit from clock speed improvements, we find that they fail to

leverage available cores. To illustrate this, we iteratively dis-

abled CPU cores on the phones in each setting and observed

the impact on page load times. As shown in Figure 3, ad-

ditional CPU cores yield minimal load time improvements,

e.g., going from 1 to 8 cores on the Pixel 3 resulted in only a

8% speedup for the median page.

2.2 Browser Computation Model

To determine the origin of these computation inefficiencies,

we must consider the computation model that browsers use

today. Our discussion will be based on the Chromium frame-

work [38], which powers the Chrome, Brave, Opera, and

Edge browsers that account for 70% of the global market
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Figure 4: Computation model for Chromium browsers.

share [8, 5]. Figure 4 depicts Chromium’s multi-process ar-

chitecture. We focus on the renderer process which houses

the Rendering and JavaScript engines, and thus embeds the

core functionality for parsing and rendering pages.

The Rendering engine parses HTML code, issues fetches

for referenced files (e.g., CSS, JavaScript, images), applies

CSS styles, and renders content to the screen. During the

HTML parse, the rendering engine builds a native represen-

tation of the HTML tree called the DOM tree, which con-

tains a node per HTML tag. As the DOM tree is updated,

the rendering engine recomputes a layout tree specifying on-

screen positions for page content, and issues the correspond-

ing paint updates to the browser process.

The JavaScript engine is responsible for parsing and in-

terpreting JavaScript code specified in HTML <script>

tags, either as inline code or referenced external files. Dur-

ing the page load, the JavaScript engine maintains a managed

heap which stores both custom, page-defined JavaScript state

and native JavaScript objects (e.g., Dates and RegExps).

JavaScript code can initiate network fetches via the browser

process (e.g., using XMLHttpRequests), and can also ac-

cess the rendering engine’s DOM tree (to update the UI)

using the DOM interface. The DOM interface provides na-

tive methods for adding/removing nodes and altering node

attributes; DOM nodes accessed via these methods are rep-

resented as native objects on the JavaScript heap.

The problem: single-threaded execution. JavaScript ex-

ecution is single-threaded and non-preemptive [65, 64].

Worse, within a renderer process, all tasks across the two

engines are coordinated to run on a single thread, called the

main thread.1 This lack of parallelism largely explains the

poor use of CPU cores in §2.1. A primary reason for this

suboptimal computation model is that the JavaScript lan-

guage and DOM data structure (shared between the two en-

gines) lack synchronization mechanisms (e.g., locks) to en-

able safe concurrency. Adding thread safety is feasible, but

browsers have continually opted for a serial-access model

to simplify page development. Browsers do create a separate

renderer process per cross-domain iframe in a page (as per

1Some Chromium implementations move final-stage rendering tasks to

raster/composite threads that create bitmaps of tiles to paint to the screen.
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# of Cores % Speedup in Total JavaScript Runtime

2 cores 54%

4 cores 79%

8 cores 88%

Table 1: Potential parallelism speedups with varying numbers

of cores. Results list median speedups in total time to run all

JavaScript computations per page in the developed region.

the Same-origin content sharing policy [7]). However, for the

median page in the Alexa top 10,000, the top-level frame ac-

counts for 100% of JavaScript execution delays.

In summary, despite benefits regarding simplified page

development, the single-threaded execution model that

browsers impose results in significant underutilization of

mobile device CPU cores, inflated computation delays, and

degraded page load times. We expect this negative interac-

tion to persist (and worsen) moving forward given the steady

and unrelenting increase in the number of JavaScript bytes

included in mobile web pages, e.g., there has been a 680%

increase over the last 10 years [44].

3 OVERVIEW

Given the results in §2, a natural solution to alleviate client-

side computation delays in mobile page loads is to paral-

lelize JavaScript execution across a device’s available CPU

cores. However, not all workloads are amenable to parallel

execution. In particular, we face the restriction that any in-

troduced parallelism should preserve the page load behavior

(and the final page state) that developers expected when writ-

ing their legacy pages—we call this property safety.

3.1 Potential Benefits

To estimate the potential benefits of parallelism with legacy

pages, we analyzed the JavaScript code for each page in our

corpus; in this section, we focus on page loads representa-

tive of those in developed regions, and we show later in §6

that similar benefits are achievable for page loads in emerg-

ing markets. Since JavaScript functions account for 94% of

the JavaScript source code on the median page, our analysis

operates at the granularity of functions, i.e., when splitting

computations on a page across CPU cores, all code within a

function runs sequentially on the same core. For complete-

ness, we convert all code outside of functions into anony-

mous functions. For each function, we recorded both its run-

time in a single load, as well as all accesses that it made to

page state (in the JavaScript heap or DOM tree, as described

below) in that load; §4.1.1 details the data collection process.

Using these logs, we estimated an upper bound on paral-

lelism benefits by maximally packing function invocations to

available cores and recording the resulting end-to-end com-

putation times. To ensure safety (defined above), our analy-

sis respects two constraints: 1) functions can run in parallel

if they access disjoint subsets of page state or only read the

same state, and 2) functions that exhibit state dependencies

(i.e., access the same state and at least one writes to that state)

execute in an order matching that in the legacy page load.

As shown in Table 1, legacy pages are highly amenable to

safely reaping parallelism speedups. For example, distribut-

ing computation across 4 cores could bring a 75% reduction

in the total time required to complete all JavaScript computa-

tions on the median page. These resources are now common

in both developed and emerging markets [24].

3.2 Goals and Approach

To realize these benefits in practice, we seek an approach that

minimizes the bar to adoption. As a result, requiring develop-

ers to rewrite pages [53] is a non-starter, given the complexi-

ties involved in manually reasoning about the impact of con-

currently running portions of the JavaScript code on a page.

Moreover, approaches that only require changes to browsers

would either have to speculatively parallelize code [21, 56]

or perform client-side analysis of JavaScript code (akin to the

analysis that informed our estimated benefits above). As we

show in §6.3, the overheads imposed by either strategy make

them untenable, especially on energy-constrained phones.

Therefore, we pursue an approach which can safely par-

allelize JavaScript execution on legacy web pages with un-

modified browsers. As shown in Figure 5, our solution, Hor-
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Delay type 0.5 KB 1 KB 100 KB 1 MB

Startup 128 ms 155 ms 237 ms 317 ms

Value I/O 0 ms 1 ms 1 ms 7 ms

Table 2: Web Worker overheads for different sizes of state

transfers, i.e., source code size for startup delays and JavaScript

object size for I/O delays.

crux, only necessitates server-side changes that do not re-

quire developer participation to rewrite pages. Web servers

perform the expensive task of tracking the state accessed (in

the JavaScript heap or DOM tree) by every JavaScript func-

tion in a page frame, and include this information in that

frame in the form of per-function signatures. Servers also

embed a JavaScript (JS) scheduler library in the frames they

serve, which enables unmodified client browsers to perform

the cheap task of managing parallelism using function sig-

natures obtained from servers. Dynamically determining the

parallelization schedule at the client helps Horcrux account

for information only available at runtime, e.g., the number of

available threads and the control flows in the current load.

3.3 Challenges

The key building block in Horcrux is the widespread sup-

port in browsers for the Web Workers API [55], which al-

lows the JavaScript engine to employ additional computation

threads (Figure 4), as specified by a page’s source code. Us-

ing Web Workers to parallelize JavaScript execution, how-

ever, presents numerous challenges that complicate achiev-

ing the idealistic parallelism benefits from above.

1. Ensuring correctness. Determining what JavaScript

code can be safely offloaded requires a comprehensive

understanding of how that code will access JavaScript

heap and DOM state in the current page load. This,

in turn, depends on the traversed control flows, which

can vary due to both client-side (e.g., Math.Random)

and server-side (e.g., cookies) sources of nondetermin-

ism in JavaScript execution [59]. Missed state accesses

can lead to dependency violations and broken pages.

2. Constrained API. Web Workers impose restricted

computation models in two ways. First, due to the lack

of synchronization mechanisms in JavaScript, Workers

cannot access the JavaScript heap, and instead can only

operate on values explicitly passed in by the browser’s

main thread (via postMessages). Thus, offloading

computations to a Worker requires knowledge of pre-

cisely what state is required for those computations.

Workers must then communicate computation results

back to the main thread, which applies the results to the

heap. Second, regardless of the state passed in, Workers

cannot perform any DOM computations, including in-

vocations of native DOM methods or operations on live

DOM nodes referenced in the heap. We note that Work-

ers can spawn and manage other Workers, but still must

rely on the main thread for access to any global state.

3. Offloading costs. Lastly, operating Web Workers is not

free. Instead, as shown in Table 2, spinning up a Web

Worker can take over 100 ms, even for small amounts of

source code being passed in. Pass-by-value I/O adds an

additional several milliseconds, depending on the size

of the transferred state. Moreover, JavaScript execution

is non-preemptive; so, Workers that finish their tasks

may go idle for long durations if the thread responsi-

ble for assigning them more tasks is busy.

We posit that, it is for these reasons that only a handful of

the Alexa top 1,000 pages use Workers, despite support by

commodity browsers for over 8 years. We next describe how

Horcrux overcomes these issues to automatically parallelize

JavaScript execution for legacy pages.

4 DESIGN

In designing Horcrux, we primarily need to answer two ques-

tions: 1) how to determine which JavaScript functions on a

page can be executed in parallel without compromising cor-

rectness?, and 2) how to realize parallel execution at low

overhead despite constraints placed by the browser’s API?

We present our solutions to these issues by separately de-

scribing server-side and client-side operation in Horcrux. Ta-

ble 3 summarizes the main techniques underlying our design.

4.1 Server-side Operation

The goal of Horcrux’s server-side component is to annotate

page frames with per-function signatures that list the state

that each function might access. Operating at a frame level,

rather than at the granularity of entire pages, is in accordance

with the browser’s content sharing model [7, 64]. As in prior

web optimizations that involve page alterations [63, 64, 54],

Horcrux assumes access to a frame’s source files. These files

can be quickly collected either using a headless browser2 or

via integration into content management systems (for local

files) [27, 89]. Source file collection and signature genera-

tion is retriggered based on hooks that many content man-

agement systems fire any time a (local) file-altering change

is pushed [27, 89, 47, 54], e.g., for A/B testing; we discuss

third-party content changes and personalization in §4.2.2.

4.1.1 Generating signatures

Since web servers cannot precisely predict the control flows

that will arise in any particular page load (e.g., due to client-

side nondeterminism), each function’s signature must con-

servatively list all possible state accesses for that function.

For this reason, we cannot directly apply recent web depen-

dency tracking tools [63, 64] that rely purely on dynamic

analysis to track data flows in a given page load. At the

same time, pure static analysis approaches are ill-suited for

JavaScript’s dynamic typing, use of blackbox browser APIs,

2A headless browser performs all of the tasks that a normal browser

performs during a page load except those that involve a GUI.
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Goal Techniques Section

Ensure For each function, use concolic execution to identify union of the state it accesses across all control flows §4.1.1

correctness Adapt offloading schedule during a page load to account for control flow in current load §4.2.2

Account for

API

Main browser thread centrally manages global page state, coordinates offloads, and performs unoffloadable

(DOM) computations

§4.2.1,

§4.2.3

restrictions Intercept any Web Worker’s DOM tree accesses and relay to the main thread §4.2.3

Use function signatures to determine what heap values to pass-by-value from main thread to workers and back §4.2.3

Minimize Offline server-side generation of per-function signatures §4.1.1

overheads Offload at the granularity of root functions §4.1.2

Dynamically determine offloading schedule based on function runtimes in current page load §4.2.1

Table 3: Overview of the main insights that Horcrux uses to address the challenges outlined in §3.

and event-driven/asynchronous execution [75, 52]. For ex-

ample, static analysis of variable name resolution is compli-

cated by JavaScript statements that push objects to the front

of the scope resolution chain (with(obj){}), or dynam-

ically generate code (eval()). Similar issues arise from

JavaScript’s extensive use of variable aliasing for DOM ob-

jects, and the fact that property names are routinely accessed

via dynamically-generated strings instead of static ones.

Thus, we turn to concolic execution [36, 80, 48], a vari-

ant of symbolic execution that executes programs concretely

(rather than symbolically) while ensuring complete cover-

age of all control paths. A concolic execution engine loads

a program with a concrete set of input values and observes

its execution; §5 describes the inputs we consider, including

browser state (e.g., cookies, screen size) and nondeterminis-

tic functions. Each input value and program-generated value

is also given a symbolic expression constrained only by its

type. For example, an input integer a may get a concrete

value of 10 and an expression of 0 ≤ a ≤ 232 − 1; sym-

bolic expressions for a given variable are inherited by oth-

ers via assignment statements. At each branch condition, the

execution follows the appropriate path based on the current

program state. In addition, the engine restricts the symbolic

expressions for the values that influenced the chosen path ac-

cording to the branching predicate. Once the program com-

pletes, the engine performs a backwards scan through the

executed code, selects branching decisions to invert, and in-

verts the relevant symbolic expressions; an SMT solver [26]

then generates concrete input values that satisfy the new con-

straints. This process repeats until all paths are explored.

Note that, for efficiency, many recent symbolic execution

tools opt for a form of concolic execution, rather than a

purely symoblic approach [20]. More specifically, concolic

execution engines consult the expensive constraint solver

only at the end of each path (rather than at intermediate

branches), and eliminate the need to accurately model each

input source to a program (and the ensuing traversal of paths

that arise due to modeling errors).

To generate function signatures, in addition to the default

output of a concolic execution engine – a list of potential

control paths, with a concrete set of inputs to force each

one – we must also log the state accessed by each path. To

do this, prior to concolic execution, Horcrux instruments the

JavaScript source code to log all accesses to state in both the

JavaScript heap and DOM tree; our instrumentation matches

recent dynamic analysis tools [63, 66, 64], but with the fol-

lowing differences based on our parallelism use case.

• First, we care not just about the state that remains at the

end of the page load [64], but also any state accessible by

multiple functions during a page load. Hence, in addition

to global heap objects, Horcrux tracks all accesses to clo-

sure state: non-global state that is defined by a function

X and is accessible by all nested functions that execute in

X’s enclosed scope (anytime during the page load) [57].

• Since signatures will ultimately be used for pass-by-value

offloading to Workers, only the finest granularity of ac-

cesses are logged. For instance, if object a’s “foo” prop-

erty is read, Horcrux would log a read to a.foo, not a.

• For the DOM tree, Horcrux adopts a coarser approach than

prior work. Instead of logging reads and writes to individ-

ual nodes in the DOM tree, Horcrux only logs whether a

function accesses any live DOM nodes, either via DOM

methods or references on the heap, and if so, whether they

are reads or writes. Tracking at the coarse granularity of

accesses to the entire DOM tree is conservative with re-

spect to parallelism. However, finer-grained tracking is not

beneficial because, as we explain later, our design has the

browser’s main thread serialize all DOM operations.

4.1.2 Signature granularity

Ideally, to limit client-side bookkeeping overheads, signa-

tures should match the granularity at which computation is

offloaded. However, determining the appropriate offloading

granularity is challenging. On the one hand, fine-grained of-

floading reduces the chance that offloadable computations

access shared state, thereby improving the potential paral-

lelism and use of available Workers. On the other hand, finer

granularities imply increased coordination overheads.

To address this tradeoff, Horcrux generates signatures

(and offloads computation) at the granularity of root function

invocations, i.e., invocations made directly from the global

JavaScript scope. The signature for each root function invo-

cation includes the state accessed not only by that function,
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but also by any nested functions that are invoked in the call

chain until the global scope is reached again.

Root function signatures are desirable for two reasons.

First, they leverage our finding that functions already ac-

count for 94% of JavaScript code on the median page (§3)

and thus provide a natural granularity for offloading; as in

§3, Horcrux servers wrap all JavaScript code outside of any

function into anonymous functions. Second, and more im-

portantly, root functions impose far smaller offloading over-

heads compared to finer-grained function-level offloading,

while enabling comparable parallelism benefits: the number

of offloads drops by 4×, while the median potential benefits

remain within 27% of those in Table 1. The reason is that

there often exists significant state sharing within the invoca-

tions for a given root function (and its nested components),

but less so across root functions, enabling parallelism.

4.2 Client-side Operation

Even with function signatures, a server cannot precompute a

parallel execution schedule because the precise control flow,

and hence, the set of functions executed and their runtimes,

will vary across loads. Instead, Horcrux employs a client-

side JavaScript computation scheduling library that unmodi-

fied browsers can run to dynamically make parallelism deci-

sions based on signatures and the aforementioned runtime in-

formation. The key challenges are in efficiently ensuring cor-

rectness while offloading to multiple Workers, and handling

the fact that signatures may be missing for certain functions.

We next discuss how Horcrux addresses these challenges.

4.2.1 Dynamic scheduling

To load a page frame, any unmodified browser first down-

loads the top-level HTML, whose initial tag is an inline

<script> housing Horcrux’s scheduler library and all root

function signatures. The scheduler runs on the browser’s

main thread and begins by asynchronously creating a pool

of uninitialized Workers. This helps hide the primary over-

head of spawning Workers amongst unavoidable delays for

parsing initial HTML tags and fetching files they reference.

The scheduler then operates entirely in event-driven mode,

whereby it waits for incoming postmessages specifying com-

putations to perform or those that have completed, and makes

subsequent offloading decisions. Importantly, to keep the

main thread as idle as possible, the scheduler offloads all

computations that Web Workers can support, and is primar-

ily responsible for managing Workers and maintaining the

page’s global JavaScript heap and DOM state. This helps

adapt the parallelization schedule within any page load to

the runtimes of every root function in that load. The reason

is that the main thread will be available to quickly assign a

new function invocation (if one exists) to any worker that

completes executing the function previously assigned to it.

Once the scheduler is defined, the browser operates

normally, recursively fetching and evaluating referenced

HTML, JavaScript, CSS, and image files. However, all

JavaScript function invocations are modified to pass through

the scheduler for offloading. More specifically, each root

function is rewritten such that, upon invocation, the function

sends a post message to the scheduler specifying its original

source code and that of any nested functions. Special care is

taken for asynchronous functions (e.g., timers) whose invo-

cations are regulated by the browser’s internal event queue

which the scheduler does not have access to. To ensure visi-

bility to such functions, the downloaded page includes shims

around registration mechanisms for asynchronous functions,

e.g., setTimeout(). Each shim modifies registered func-

tions to send messages to the scheduler upon invocation.

Each time a root function is invoked, the scheduler uses

its signature to determine whether or not it can be immedi-

ately offloaded. If not, the function is stored in an in-memory

queue of ordered, to-be-invoked functions along with its sig-

nature. Functions are not offloadable if there are no available

Workers, or if they might access state that is being modified

by an already-offloaded or queued function. Note that func-

tions that may access the DOM can be offloaded in parallel;

we will discuss how to ensure safety in these cases shortly.

Regardless of the decision for a given invocation, the

browser continues its execution. At first glance, it may ap-

pear that continuation after a queued invocation may gener-

ate errors since the queued function could alter the set of

downstream invocations. However, recall that Horcrux of-

floads at the granularity of root functions—any nested invo-

cations are already offloaded, and the ordering of root func-

tions is mostly predefined by the page’s source code. There

are two exceptions. First, a function can alter downstream

source code using document.write(); to handle this,

the scheduler synchronously offloads such functions, thereby

blocking downstream execution. Second, a root function can

register an asynchronous function with a 0-ms timer—such

functions are intended to run immediately after the current

invocation. For this, the root signature includes state accesses

for the 0-ms timeout functions they define. Once the root

function is discovered, the scheduler adds a placeholder for

the timeout function to its queue, thereby blocking down-

stream invocations that share state with the timeout function.

4.2.2 Handling Missing Signatures

We have assumed so far that the HTML file of every page

frame includes accurate signatures for all JavaScript func-

tions executed in that frame. This may not always hold.

• Stale signatures. A frame can include JavaScript content

from multiple origins, and to preserve HTTPS content in-

tegrity and security [67], Horcrux has each origin serve its

own files directly to clients. A third-party origin may up-

date a script without explicitly informing the top-level ori-

gin to regenerate signatures. We expect this to be rare for

two reasons. First, JavaScript files often have long cache

lives (median of 1 day in our corpus), indicating infrequent

changes. Second, scripts in a frame can share state [7].
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Thus, even today, if a third-party origin significantly alters

a script it serves, this should be communicated to other

origins to avoid unexpected or broken behavior.

• Dynamically-generated or personalized scripts.

JavaScript files may be created or personalized in

response to user requests [54], e.g., based on Cook-

ies. Unfortunately, generating signatures during client

page loads would be far too slow. To handle this, for

dynamically-generated or personalized first-party content,

Horcrux could perform concolic execution on server-side

content generation logic to determine the execution paths

for all variants of a given response (§5). Third-party

content of this type may result in missing signatures

since the top-level origin does not have access to a user’s

third-party Cookies (or personalized content). However,

many browsers preclude third-party Cookies in frames to

prevent the tracking of users across sites [23].

• Timeouts of concolic execution. Given infinite time, con-

colic execution is guaranteed to explore all possible

JavaScript execution paths in a page [36, 80]. However,

the process may timeout, either during the execution of a

given path (if the SMT solver cannot invert a branch con-

dition), or less likely, due to a time bound placed on overall

signature generation. Regardless of the reason, the effect is

a potentially missing or incomplete signature. Such time-

outs did not arise (i.e., concolic execution completed) for

any pages in our experiments (§6.1). However, in the event

that concolic execution does not complete, Horcrux could

detect such timeouts prior to serving content to clients,

and could thus address the corresponding missing signa-

tures (described below) or revert to a normal page load.

Horcrux accounts for missing or inaccurate signatures in

two ways. First, any underexplored function X is assigned a

signature of *, indicating that X may access all page state.

This overconstrains the client’s load, but ensures correct-

ness: the client will execute X serially, and will also serialize

downstream functions since X might alter the state they ac-

cess. Second, signatures are keyed by a hash of the function’s

source code. Invocations without matching signatures are as-

signed signatures of * by Horcrux’s client-side scheduler.

4.2.3 Function Offloading and Execution

Lastly, we discuss the mechanics of how every function invo-

cation that is offloaded by the Horcrux scheduler is executed

in a Web Worker. Figure 6 illustrates this process.

For each offloadable function, the scheduler uses its sig-

nature to generate a JSON package listing the information

that the Worker will require for execution, i.e., the source

code (including nested functions) and the current values for

the function’s read state. The source code is modified such

that, upon completion, values in the write state are gathered

and sent to the main thread (as execution results). In addi-

tion, closure values in the read state are embedded into the

corresponding function’s source code. Upon reception, the
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Figure 6: A single function offload with Horcrux.

post message handler inside the Worker sets up the read state

in the Worker’s global scope via assignment statements, and

runs the code using the browser’s Function constructor.

For the most part, functions execute normally, with

JavaScript heap accesses hitting in the Worker’s global

scope, or for nested functions, in the scope of their parents–

recall that Horcrux offloads entire root functions so nesting

relationships are preserved. However, the key difference is

with respect to DOM accesses: workers cannot call native

DOM methods or operate on live DOM nodes referenced

in the heap (§3.2). To handle this, all DOM computations

are mediated by the scheduler and are serially applied to the

live DOM tree. To intercept DOM computations, Horcrux

includes shims around all DOM methods in each Worker en-

vironment; returned DOM nodes are replaced with proxy ob-

jects to interpose on direct accesses. Each intercepted DOM

access blocks execution in the Worker, and is sent to the

scheduler where it is queued; blocking is enforced using

JavaScript generator functions [58].

The scheduler grants readers-writer locks to each Worker

that may need to access the DOM tree (as per their signa-

tures). Locks are granted in the order that the scheduler re-

ceives function invocations; note that this may not match

the order in which functions are offloaded, but it preserves

the relative ordering of DOM updates seen in a normal page

load. As a concrete example, consider a function a that reads

from the DOM, and a later function b that writes to the

DOM. b may attempt to access the DOM first (e.g., if it

is offloaded earlier or its DOM access occurs early in the

function), but the scheduler will block it and wait to grant

the lock to a first. Workers release DOM locks at the end of

their execution. In essence, root functions that only read from

the DOM tree can run in parallel, although their constituent

DOM accesses are serialized on the browser’s main thread.

Root functions that write to the DOM are run serially with

respect to other DOM-accessing root functions (to match the

relative ordering of DOM updates in an unmodified load); for

context, only 7.4% of the root functions on the median page

in our corpus involve DOM writes, mitigating the effects of

such serialization. Importantly, locking is done at the gran-

ularity of entire root invocations because the scheduler does

not definitively know whether a given function will access
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the DOM in the current load (and if so, how many times);

signatures only list that a DOM access may occur.

Once a function completes execution, the Web Worker

sends its computation results (i.e., its write state) to the

scheduler. The Worker then clears any state in its scope in

order to be ready for the next offload. Upon receiving com-

putation results, the scheduler applies the writes to the global

JavaScript heap; recall that DOM writes have already been

made. One subtlety here is with respect to scope, and closure

state in particular. The scheduler can access and apply com-

putation results to the global scope’s heap. However, root

functions can also modify shared closure variables which are

not accessible from the global scope (§4.1). For such writes,

the scheduler maintains a global hash map listing the lat-

est closure values. This map is updated as Workers complete

computations, and is also queried to obtain read values when

offloading; note that correctness is ensured because all of-

floads and computation results pass through the scheduler.

Finally, once the scheduler applies computation results to

the JavaScript heap, it scans through its queue of ordered,

to-be-executed functions and offloads the next one that can

safely run. Given the serialization of DOM computations de-

scribed above, if a function that writes to the DOM is queued,

the scheduler prioritizes queued functions that do not access

the DOM (and thus won’t incur locking delays).

4.3 Discussion

Key to Horcrux’s operation is the decision to maximally of-

fload and parallelize JavaScript computations at the granular-

ity of root functions. Recall that this decision was motivated

by our analysis of the JavaScript computation on the pages in

our experimental corpus (§3.1 and §4.2), which revealed that

root function offloading favorably balances client-side over-

heads (e.g., pass-by-value I/O, main thread responsiveness)

with the achievable speedups from parallelization.

However, these decisions may not deliver the largest

speedups for certain pages. For example, root function-level

offloading might be too restrictive and forego significant par-

allelism benefits, e.g., if a root function includes two nested

functions that access entirely disjoint state but both involve

significant runtime. Similarly, the root functions for cer-

tain pages could each embed only a single nested function,

thereby inflating offloading costs relative to parallelization

speedups, and potentially harming overall performance.

Although we did not observe these behaviors for any of

the pages in our experiments (§6), we note that developers

could perform analyses similar to the one presented in §3.1

to determine whether automatic parallelization of JavaScript

code is desirable for (i.e., can speed up) their pages, and if

so, what the best offloading granularity is. Importantly, these

analyses do not require further instrumentation of web pages,

and instead can directly leverage Horcrux’s signatures, the

per-function runtimes reported by in-built browser profilers,

and the relatively stable offloading costs reported in Table 2.

5 IMPLEMENTATION

Horcrux instruments JavaScript source code to generate sig-

natures and prepare frames using Beautiful Soup [78], Es-

prima [43], and Estraverse [84]. To employ concolic exe-

cution, we use a modified version of Oblique [48], which

runs atop a headless version of Google Chrome (v85) and

the ExpoSE JavaScript concolic execution engine [50]. Our

Oblique implementation considers inputs specified by HTTP

headers (e.g., Cookie, User-Agent, Origin, Host), the device

(e.g., screen coordinates), and built-in browser APIs includ-

ing nondeterministic functions [59] (e.g., Math.Random)

and DOM methods. Input values suggested by the SMT

solver are fed into the page load via either 1) rewritten HTTP

headers, or 2) shims for browser APIs.

We grant Oblique a maximum of 10 mins to consider a

given execution path, and 45 mins to explore all paths for a

given page; we find that these time values are sufficient to en-

sure that concolic execution completes for all of the pages in

our experimental corpora (§6.1). Signatures from each load

are sent to a dedicated analysis server for aggregation. Since

our current implementation operates directly on downloaded

page source code and not live web backends (§6.1), Horcrux

eschews Oblique’s ability to perform concolic execution on

server-side application logic. In total, Horcrux’s implemen-

tation involves 5.6k LOC in addition to Oblique, including

4.5k for dynamic tracing (both static instrumentation and

runtime tracking) and 1.1k for client-side scheduling.

Overheads. On the client-side, Horcrux inflates page sizes

by 13 KB at the median (when using Brotli compres-

sion [41]). The scheduler accounts for 3 KB of that.

6 EVALUATION

We empirically evaluate Horcrux across a wide range of real

pages, live mobile networks, and phones from both devel-

oped and emerging markets. Our key findings are:

• Horcrux reduces median browser computation delays by

31-44% (0.9-1.5 secs), which translates to page load time

and Speed Index improvements of 18-29% and 24-37%.

Improvements grow with warm browser caches (§6.2).

• Horcrux delivers larger speedups than prior web optimiza-

tions that 1) reduce required computations (by 1.7-2.1×),

2) speculatively parallelize computations (by 1.3-1.6×),

and 3) mask network round trips (by 1.4-2.1×); Horcrux

is complementary to network optimizations and running

them together lowers load times by 31-45% (§6.3).

• Although the median page has 12 possible execution

paths, Horcrux’s reliance on conservative signatures (for

correctness) only foregoes 7-10% of speedups compared

to using signatures that target a specific load (§6.4).

• Horcrux is highly amenable to partial deployment: bene-

fits are within 2% of total adoption when only a page’s

top-level origin runs Horcrux. Benefits persist for person-

alized pages and desktop settings (§6.5).
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6.1 Methodology

We evaluated Horcrux in two different scenarios:

• Developed regions. We consider 700 US pages, randomly

selected from and equally distributed amongst the follow-

ing sources: popular landing pages from the Alexa [12]

and Tranco [49] top 1000 lists, popular interior pages from

the Hispar 100,000 list [16], and less popular pages (land-

ing and interior) from the 0.5 million-site DMOZ direc-

tory [1]. Thus, our corpus involves diversity in terms of

both page popularity and location within a website (i.e.,

landing vs. interior). From this set, we report results for

the 582 pages that our current implementation could gen-

erate accurate signatures for. More specifically, we re-

moved pages for the following reasons: 1) inaccurate sig-

natures due to unsupported language features, which led

to premature JavaScript termination (92) or rendering de-

fects (22), and 2) unsupported features with Oblique (4).

For all of the remaining pages, Horcrux’s concolic execu-

tion and overall signature generation completes, the total

JavaScript runtime with Horcrux falls within a standard

deviation of that in default loads, and the final rendered

page is unchanged. Our experiments consider two pow-

erful phones, a Pixel 3 (Android Pie; 2.0 GHz octa-core

processor; 4 GB RAM) and a Galaxy Note 8 (Android

Oreo; 2.4 GHz octa-core; 6 GB RAM). For space, we only

present results for the Pixel 3, but note comparable results

with the Galaxy Note 8.

• Emerging regions. Web experiences in emerging regions

often comprise different page compositions and devices

than those considered above [24, 10, 11, 90]. To mimic

such scenarios, we focus on a single emerging region: Pak-

istan. We consider a corpus of 100 landing and interior

pages (50 each) selected from the Alexa Top 500 sites in

Pakistan. Our evaluation uses the Redmi 6A phone (An-

droid Oreo; 2.0 GHz quad-core processor; 2 GB RAM)

that is popular in the region [4]. As per the same correct-

ness checks as above, we report numbers on 91 pages.

Unless otherwise noted, page loads were run with Google

Chrome for Android (v85). Mobile-optimized (including

AMP [37]) pages were always used when available.

To create a reproducible test environment, and because

Horcrux involves page rewriting, we use the Mahimahi web

record-and-replay tool [68]. Emerging regions pages were

recorded using a VPN to mimic a client in Pakistan. As

described in §4, Horcrux’s signature generation and page

rewriting were performed offline. To replay pages, we hosted

the Mahimahi replay environment on a desktop machine.

Our phones were connected to the desktop via USB tethering

and live Verizon LTE and WiFi networks with strong signal

strength; LTE speeds for emerging regions experiments were

throttled to Pakistan’s 7 Mbps average [70]. We used Light-

house [42] to initiate page loads via the USB connection, and

all page load traffic traversed the wireless networks.
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Figure 7: Cold cache TCT improvements over default page

loads. Bars list medians, with error bars for 25-75th percentiles.
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Figure 8: Distributions of cold cache per-page improvements

with Horcrux vs. default page loads.

We evaluated Horcrux on multiple web performance met-

rics: 1) Total Computation Time (TCT), or the critical path

of time spent parsing/executing source files and rendering

the page, 2) Page Load Time (PLT) measured as the time

between the navigationStart and onload JavaScript

events, and 3) Speed Index (SI) [40] which captures the time

required to progressively render the pixels in the initial view-

port to their final form. TCT and PLT are measured using the

browser profiler, while SI was reported by Lighthouse. In all

experiments, we load each page three times with each system

under test, rotating amongst them in a round robin; we report

numbers per system from the load with the median TCT.

6.2 Page Load Speedups

Cold cache. Figure 7 illustrates Horcrux’s ability to reduce

browser computation delays compared to default page loads.

TCT reductions were 41% (1.0 sec) and 44% (1.5 sec) for the

median page in the developed and emerging region’s WiFi

settings, respectively. Improvements were 34% and 31%

with LTE. Figure 8 shows how these computation speedups

translate into faster end-to-end (i.e., including network de-

lays) loads. For example, on WiFi, median improvements in

the developed region setting were 27% for PLT and 35% for

SI. Despite the lower CPU clock speeds, these numbers only

marginally increase to 29% and 37% in the emerging region.

Further improvements were hindered primarily by the lower

number of available cores (and thus ability to parallelize).

Benefits with Horcrux on LTE were comparable, but consis-

tently lower than with WiFi. For example, in the developed

region, PLT and SI speedups were 22% and 29%. The rea-

son is that network delays (which Horcrux does not improve)

account for larger fractions of end-to-end load times on LTE.
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Figure 9: Warm cache speedups over default page loads on

LTE. Bars list medians, with error bars for 25-75th percentiles.
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Figure 10: Horcrux vs. Vroom [79] over LTE networks. Bars

list medians, with error bars for 25-75th percentiles.

Warm cache. Figure 9 shows Horcrux’s speedups in dif-

ferent browser caching scenarios. We consider back-to-back

page loads, as well as those separated by 12 and 24 hours.

As shown, Horcrux’s improvements grow as browsers house

more objects in their caches. For example, in the back-to-

back scenario, PLT and SI improvements in the developed

region’s LTE setting were 35% and 44%; for context, these

improvements were 22% and 29% with cold caches. Im-

provements drop to 27% and 39% in the 24-hour warm cache

scenario. The reason is that more cache hits lead to lower net-

work delays and computation dominating end-to-end perfor-

mance. In addition, cache hits enable browsers to begin pro-

cessing JavaScript files earlier. This, in turn, provides Hor-

crux’s scheduler with more invocation options at any time,

thereby increasing the amount of potential parallelism.

6.3 Comparison to State-of-the-Art

Network optimizations. We first considered Vroom [79],

a system in which web servers intelligently use HTTP/2’s

server push and preload features to aid clients in discover-

ing (and downloading) required files ahead of time. Thus,

Vroom is primarily a network-focused optimization. How-

ever, key to Vroom’s benefits is the improved CPU utiliza-

tion that results from eliminating blocking network fetches.

As shown in Figure 10, Horcrux delivers larger speedups

than Vroom. For example, in the developed region, median

PLT speedups with Horcrux are 2.1× and 1.3× higher than

Vroom’s on WiFi and LTE, respectively. In the LTE setting,

Vroom delivers larger PLT speedups for 9% of pages. The

reason is that network delays play a larger role in end-to-end

load times for these pages, either due to less computation

or more required network fetches. This drops to 1% and 3%

when we move to the developed region’s WiFi network or the

emerging market’s LTE network; in both cases, compute be-

System Developed Emerging

Horcrux 1.63 (1.98) 2.15 (2.37)

Prepack [32] 2.19 (2.47) 2.82 (3.36)

Speculative parallelization 2.01 (2.28) 2.50 (3.07)

Table 4: Comparing Horcrux with prior compute optimiza-

tions. Results are for WiFi networks and list median (75th) per-

centile TCTs in seconds.

comes more of a determinant of overall delays. Importantly,

Figure 10 also confirms that Horcrux and Vroom are largely

complementary to one another, with the combined systems

outperforming each in isolation.

Reducing required computations. Prepack [32] is a server-

side system that reduces the amount of JavaScript com-

putation that clients must perform to load pages. To do

this, Prepack performs static analysis on a page’s JavaScript

code, identifies expressions whose results are statically com-

putable, and replaces those expressions with equivalent but

simpler versions that remove intermediate computations. Im-

portantly, computations involving client-side or nondeter-

ministic state are unmodified; this helps Prepack preserve

page behavior and correctness, unlike other computation re-

duction systems (§7). As shown in Table 4, Horcrux is more

effective at reducing computation delays than Prepack: me-

dian TCTs are 26% and 24% lower with Horcrux in the de-

veloped and emerging regions, respectively.

Speculative parallelism. Prior efforts to increase paral-

lelism in page loads (§7) primarily rely on speculative de-

cisions about what can run in parallel, and runtime checks

to detect (and revert from) dependency violations. Although

these systems do not target all JavaScript execution, we con-

sidered a baseline that employs a similar parallelism strategy

for JavaScript computation. Our baseline opportunistically

parallelizes all root function invocations, and uses JavaScript

proxy objects to track state accesses in each Worker. Any

parallelized computations that share state are discarded, and

the corresponding functions are rerun serially on the main

browser thread. As shown in Table 4, Horcrux delivers su-

perior median TCT values that are 14-19% lower across the

two regions. The reason is twofold. First, proxy-based track-

ing to ensure correctness adds 10% overhead to JavaScript

runtimes. Second, any speculation errors result in serial exe-

cution on the main thread and wasted computation (and thus,

more overall computation). Using the setup in §6.5, we ob-

serve that this wasted computation inflates mobile device en-

ergy consumption by 9% for the median page on WiFi.

6.4 Understanding Horcrux’s Benefits

Dissecting Horcrux’s speedups. We analyzed Horcrux’s be-

havior (and improvements) along three different axes. We fo-

cus on the developed region, but note that the trends hold for

the emerging region setting. First, as expected, Horcrux’s im-

provements are larger for pages that require more computa-

tion to load. For instance, with WiFi, median PLT improve-
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ments with Horcrux were 35% for pages with more than 3

seconds of computation time, as compared to 23% for pages

that did not meet that criteria. This divide carries over to dif-

ferent page types as well: improvements were 15% higher for

interior pages than landing pages. The reason is that interior

pages often involve more computation [16, 64].

Second, within each load, we investigated the degree of

parallelism that Horcrux achieves for JavaScript computa-

tion. For the median page, when loaded over WiFi, Horcrux

reaches a maximum of 6 concurrent Web Workers; this drops

to 4 on LTE due to the aforementioned network delays lim-

iting the scheduler’s parallelism options.

Third, in addition to JavaScript parallelization, Horcrux

reduces TCT by freeing the browser’s main thread for ren-

dering tasks. To understand the contribution of each source to

Horcrux’s speedups, we analyzed the browser’s computation

profiler. Overall, we find that both sources provide substan-

tial benefits. For instance, on WiFi, Horcrux shrinks effective

JavaScript computation times by a median of 42% (557 ms),

and decreases end-to-end rendering delays by 36% (465 ms).

Server-side overheads. Signature generation took 33 min-

utes for the median page, and involved two primary over-

heads: the median page involved exploring 12 different ex-

ecution paths via concolic execution, and our dynamic in-

strumentation (incurred in each load) inflated load times by

44%. These non-negligible delays are why Horcrux performs

comprehensive signature generation offline, on servers. To

understand how often servers have to incur these overheads,

we recorded a random set of 50 pages from our emerging re-

gion’s corpus every 12 hours for 1 week. The median page’s

signatures remained unchanged for the entire duration, in

part due to Horcrux’s coarse-grained DOM tracking which

is unaffected by changes to HTML state (e.g., headlines).

Cost of conservative signatures. Horcrux relies on conser-

vative signatures that list the state accesses across all possible

control flows. While this ensures correctness, it may over-

constrain a client load that traverses only a subset of those

control flows. To understand the impact of this conservative

strategy, we compared Horcrux with a variant that generates

signatures for the precise control flows traversed in the target

client load. Surprisingly, we observe that Horcrux’s conser-

vative behavior results in only mild performance degrada-

tions: improvements drop by 10% and 7% for PLT and SI,

respectively, for the developed region WiFi setting. The rea-

son is that conservative signatures typically either add only

a few extra state accesses to a given root function, or many

that are only accessed for short durations (i.e., within a root

function)—neither significantly restricts parallelism.

6.5 Additional Results

Partial deployment. Our results thus far assumed that each

frame in a page adopts Horcrux, i.e., embeds Horcrux’s

scheduler and signatures in the HTML. Figure 11 shows Hor-

crux’s benefits when only the top-level origin for the page

0.00

0.25

0.50

0.75

1.00

0 25 50 75
% Improvement in SI

C
D

F

Developed (Partial)
Developed (Total)
Emerging (Partial)
Emerging (Total)

100

Figure 11: Evaluating Horcrux when only a page’s top-level

origin participates. Results are for WiFi networks.

participates—this represents the simplest deployment sce-

nario as the top-level origin is directly incentivized to accel-

erate loads of its pages. In this scenario, all JavaScript code

in third-party-owned frames runs serially; JavaScript in the

main frame can still be safely parallelized as browsers pre-

vent cross-frame state sharing [7]. As shown, most of Hor-

crux’s benefits persist, despite the lack of adoption by third-

party frames. For example, in the developed region’s WiFi

setting, median SI benefits are within 2% of those with total

adoption. The reason is that most JavaScript runtime (100%

on the median page) resides in the page’s main frame.

Personalized pages. To evaluate Horcrux in settings where

pages dynamically generate or personalize their content, we

selected 20 pages from our developed region’s corpus that

supported user accounts. For each page, we created two user

accounts, selecting different preferences when possible, e.g.,

order results based on time or popularity. For every file that

does not appear in both loads, or whose content is different

across the page versions, we assign its constituent functions

signatures of * (§4.2.2). Overall, we observe that such per-

sonalization has minimal impact on Horcrux’s speedups: in

the WiFi setting, Horcrux’s median load time benefits drop

by only 4%. The reason is that only 6% of computation de-

lays are accounted for by personalized scripts.

Energy savings. We connected our Pixel 3 phone to a Mon-

soon power monitor [60] and loaded the pages in our devel-

oped region corpus. With cold caches, Horcrux’s speedups

drop median per-page energy usage by 12% and 15% on

WiFi and LTE. Savings are primarily from accelerating end-

to-end computation (and load times), which results in lower

active durations for WiFi or LTE radios.

Desktop page loads. Horcrux’s acceleration techniques can

also speed up desktop page loads. To evaluate this, we

recorded desktop versions for the pages in our developed re-

gion corpus, and loaded them using a Dell G5 desktop and

a wired network connection. We find that Horcrux reduces

median TCT by 39% (0.52 secs). These speedups translate to

PLT and SI improvements of 25% and 31%, respectively. At

first glance, these improvements may appear surprising given

the faster CPU clock speeds that desktops possess. However,

desktops also possess more cores and load pages with more

JavaScript computation [44], enabling more parallelism.
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Parallelization efforts. ParaScript [56] and others [61]

leverage new runtimes and compiler information to specu-

latively parallelize iterations for hot loops in long-running

JavaScript code (not page loads, where compilation over-

heads are too costly). In contrast, Horcrux operates with un-

modified browsers, targets parallelism for general JavaScript

code beyond loop iterations, and sidesteps the signifi-

cant overheads of speculation errors and runtime checks

(§6.3) by using conservative signatures. Zoomm [21] and

Adrenaline [53] leave JavaScript execution unchanged, and

instead parallelize tasks such as CSS rule parsing. These

systems are orthogonal to Horcrux, which focuses entirely

on JavaScript parallelization. Lastly, several libraries [6, 9]

aid developers in writing parallel JavaScript code by ab-

stracting inter-worker messaging. However, developers are

responsible for identifying and enforcing (safe) parallelism

decisions—Horcrux automates these tasks for legacy pages.

Reducing web computation overheads. Prior measure-

ment studies have analyzed the performance of mobile web

browsers [85, 62, 24, 73]. Like us (§2), they find that browser

computations are a primary contributor to high page load

times. In response to these studies, three separate lines

of work have aimed to alleviate browser computation de-

lays. First, certain sites have manually developed mobile-

optimized versions of their pages using restricted forms of

HTML, JavaScript, and CSS, e.g., according to the Google

AMP standard [37, 46]. In contrast, Horcrux accelerates

legacy pages without developer effort. Further, we find that

Horcrux is able to accelerate the loading of AMP pages,

which constitute 27% of our corpora.

Second, some systems [13, 87, 71, 22] offload computa-

tion tasks to well-provisioned proxy servers, which return

computation results that are fast to apply. Though effective,

such systems pose significant scalability challenges to sup-

port large numbers of mobile clients [82]. Worse, by relying

on (often third-party) proxy servers, these systems violate

HTTPS’ end-to-end security guarantees [67]; clients must

trust proxies to preserve the integrity of their HTTPS objects,

and also must share private Cookies to accelerate personal-

ized page content. In contrast, Horcrux is HTTPS-compliant.

Third, systems like Prophecy [64] enable servers to re-

turn post-processed page files that elide intermediate com-

putations. However, content alterations with these systems

may break page functionality [10], particularly for pages that

adapt execution based on client-side state that servers are un-

aware of, e.g., localStorage. In contrast, Horcrux does not

alter the set of computations required to load a page, and in-

stead aims to execute those computations more efficiently.

Network optimizations for the web. Systems such as

Alohamora [47], Vroom [79], and others [29, 86] lever-

age HTTP/2’s server push and preload features to proac-

tively serve files to clients in anticipation of future re-

quests (thereby hiding download delays). Fawkes [54] de-

velops static HTML templates that can be rendered while

dynamic data is fetched. Polaris [63] and Klotski [19] re-

order network requests to minimize the number of effec-

tive round trips while respecting inter-object dependencies.

Cloud browsers [83, 67, 68] shift network round trips to

wired proxy server links. Content delivery networks [69, 33]

serve popular objects from proxy servers that are geographi-

cally close to clients, while compression proxies [10, 81, 72]

selectively compress objects in-flight between servers and

clients. Lastly, a handful of systems prefetch content ac-

cording to predicted user browsing behavior [74, 51, 88]. As

shown in §6.3, these efforts are complementary to Horcrux,

which reduces browser computation delays by parallelizing

JavaScript execution. Further, recall that computation delays

often exceed user tolerance levels on their own (§2).

Concolic execution for web optimization. Like Horcrux,

Oblique [48] uses concolic execution to accelerate web page

loads. Indeed, Horcrux’s server-side component builds atop

Oblique’s JavaScript concolic execution engine by adding

dynamic instrumentation to capture per-function signatures

(§5). However, despite this similarity, Oblique and Horcrux

target different delays in the page load process: Oblique en-

ables third-party servers to securely prefetch URLs that a

client will need during a page load (hiding the associated net-

work fetch delays), while Horcrux parallelizes the JavaScript

execution required to load a page (reducing the associated

computation delays). Consequently, as with other network-

focused optimizations (§6.3), Oblique can run alongside

Horcrux to provide complementary benefits.

8 CONCLUSION

Horcrux automatically parallelizes JavaScript computations

in legacy pages to enable unmodified browsers to leverage

the multiple CPU cores available on commodity phones. To

account for the non-determinism in page loads and the con-

straints of the browser’s API for parallelism, Horcrux em-

ploys a judicious split between clients and servers. Servers

perform concolic execution of JavaScript code to conser-

vatively identify parallelism opportunities based on poten-

tial state accesses, while clients use those insights along

with runtime information to efficiently manage parallelism.

Across browsing scenarios in developed and emerging re-

gions, Horcrux reduced median browser computation delays

and load times by 31-44% and 18-37%.
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