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Abstract

A shrinking market is a ubiquitous challenge faced by various industries. In this
paper we formulate the first formal model of shrinking markets in multi-item set-
tings, and study how mechanism design and machine learning can help preserve
revenue in an uncertain, shrinking market. Via a sample-based learning mecha-
nism, we prove the first guarantees on how much revenue can be preserved by
truthful multi-item, multi-bidder auctions (for limited supply) when only a random
unknown fraction of the population participates in the market. We first present a
general reduction that converts any sufficiently rich auction class into a randomized
auction robust to market shrinkage. Our main technique is a novel combinatorial
construction called a winner diagram that concisely represents all possible execu-
tions of an auction on an uncertain set of bidders. Via a probabilistic analysis of
winner diagrams, we derive a general possibility result: a sufficiently rich class
of auctions always contains an auction that is robust to market shrinkage and
market uncertainty. Our result has applications to important practically-constrained
settings such as auctions with a limited number of winners. We then show how
to efficiently learn an auction that is robust to market shrinkage by leveraging
practically-efficient routines for solving the winner determination problem.

1 Introduction

A shrinking market with uncertain buyer participation is a natural phase of products’ and services’
lifecycles. Current examples of great importance include media consumers—known as cord cutters—
who cancel cable-TV subscriptions in favor of streaming services [29], a thinning customer base for
department stores due to online retailers like Amazon [11, 16], and reduced capacities for restaurants
during the COVID-19 pandemic [43]. In this paper we study how mechanism design can help preserve
revenue in this ubiquitous challenge of a shrinking market, specifically for combinatorial auctions for
limited supply. The seller has m indivisible items to allocate to a set S of n bidders. The bidders can
express how much they value each possible bundle b ⊆ {1, . . . ,m} of items. Combinatorial auctions
have had wide reach in practice, from strategic sourcing to spectrum auctions to estate auctions.
Cramton et al. [10] provide a survey of various aspects of combinatorial auctions. The design of
revenue-maximizing combinatorial auctions in multi-item, multi-bidder settings is an elusive and
difficult problem that has spurred a long and active line of research combining techniques from
economics, artificial intelligence, and theoretical computer science. This is still largely an open
question and a very active research area.
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In this paper we start a new strand within that topic area, namely the study of shrinking markets with
uncertain buyer participation. We introduce the first formal model of market shrinkage in multi-item
settings, and prove the first revenue guarantees. Specifically, we show how much revenue can be
preserved when only a random unknown fraction of the set S of bidders participates in the market.

1.1 Summary of the contributions of this paper

We present the first formal analysis of how much revenue can be preserved in a shrinking market,
for multi-item settings. More precisely, there is a set S of n bidders that is known to the mechanism
designer. Each bidder participates in the market independently with probability p, but the valuations
of the bidders who participate in the market, denoted by S0 ⊆ S, are unknown (what is known is that
they belong to S). We present a learning-based method for designing a mechanism that satisfies the
first known revenue-preservation guarantees in this setting.

In Section 2 we provide a formal description of the problem setting, including formal definitions of
the auction settings we consider. We precisely show how to reckon with subtleties that arise when
auctions are run among a shrunken market of unknown size.

In Section 3 we provide and discuss a simple example of a market where reduced competition in a
shrinking market drives revenue to a lower threshold than one might expect. We furthermore show
that if bidders’s valuation functions can depend on what items other bidders receive, there exist
scenarios in which only an exponentially small (in the number of items) fraction of the revenue
obtainable by even the vanilla Vickrey-Clarke-Groves (VCG) auction on S can be guaranteed on a
random subset of bidders, even if a large fraction of the market shows up. For example, if 50 items
are for sale and each bidder shows up independently with 90% probability, our construction yields a
maximum expected revenue of roughly 7% of the VCG revenue on S. If 100 items are for sale, at
most 0.52% of the VCG revenue on S can be guaranteed.

Our main theorem is the following revenue guarantee obtained via a sample-based learning algorithm.
Delineability is a structural assumption introduced by Balcan et al. [3] satisfied by nearly all commonly
studied auction classes. WM(S) denotes the maximum welfare achievable by mechanisms inM, k
is a term that depends on the number of winners in any mechanism inM, and γ is a constant that
depends on S. RevM denotes the revenue function induced by M . All notation and formal definitions
are in the following sections. Sections 4 and 5 are dedicated to proving Theorem 1.1.

Theorem 1.1. LetM be (d, h)-delineable class of mechanisms. A mechanism M̃ ∈M such that

E[Rev
M̃

(S0)] ≥ Ω
(

p2

k
1+log1/γ (4/p)

)
WM(S)− ε

with probability at least 1 − δ can be computed in NhT + (Nh)O(d) time, where T is the time
required to generate any given hyperplane witnessing delineability of any mechanism inM and
N = O

(d log(dh)
ε2 log( 1

δ )
)
.

In Section 4 we prove that supM∈M E[RevM (S0)] ≥ Ω( p2

k
1+log1/γ (4/p) )WM(S), which is the major

technical contribution of this paper. Our main technique is the analysis of a novel combinatorial
structure we construct called a winner diagram, which is a graph that concisely captures all possible
executions of an auction on an uncertain set of bidders. Via a probabilistic method argument that
randomizes over a subgraph of the winner diagram, we arrive at a general possibility result: if
M is a sufficiently rich class of mechanisms, there always exists an M ∈ M that is robust to
uncertainty/shrinkage in the market. This implies our bound on supE[RevM (S0)]. We primarily
focus on the case where bidders participate in the market independently with probability p, but show
how to generalize our results to any distribution over submarkets. Our bound is a parameterized
guarantee that has interesting applications to practically motivated auction constraints: (1) limiting
the number of winners and (2) bundling constraints on items.

In Section 5 we present a learning algorithm to compute a mechanism M̃ such that E[Rev
M̃

(S0)] ≥
supM E[RevM (S0)]− ε with high probability, which proves Theorem 1.1. Our algorithm exploits
geometric structure and a linear-programming approach over hyperplane arrangements. We show
the run-time of our procedure is computationally tractable for a specific auction class by leveraging
practically-efficient routines for solving the winner determination problem.
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1.2 Related work

Shrinking markets and uncertainty Shrinking markets have been studied by various researchers
in the context of oil companies [47], cable TV [1, 29], labor markets [23], telecom markets [31],
housing markets [24], and in combinatorial settings including a thinning customer base for department
stores due to online retailers like Amazon [11, 16] and reduced capacities for restaurants during
the COVID-19 pandemic [43]. Most of this existing research is extremely domain specific, and
provides advisory content based on historical observations, data, and general economic knowledge.
We introduce the first formal model of market shrinkage in multi-item settings, and prove the first
known guarantees for how much revenue can be preserved in a shrinking market. Our guarantee on
the revenue preserved in a shrinking market provides a positive contrast to recent work of Dobzinski
and Uziely [12], who study the effect of market shrinkage on revenue loss. They show that even
in the case of selling a single item to n buyers with known valuation distributions, the absence of
a single buyer with a fixed “low” value can surprisingly result in a (multiplicative) revenue loss of

1
e+1 (in expectation). We tackle the significantly more complex multi-item setting. Furthermore, our
main results are prior-free (in that they are tailored to the specific set S of bidders and do not require
bidders to come from a distribution) and thus provide a strong positive contrast to this negative result.

Our results can also be viewed from the perspective of an uncertain market, since at the point of
the mechanism design the subset of bidders that participates in the market is unknown. Mechanism
design with uncertainty about bidder valuations has previously studied [28, 45], but to the best of our
knowledge the prior-free setting for combinatorial auctions has not been considered.

Revenue in combinatorial auctions We prove guarantees when the seller limits the number of
winners and when the seller places bundling constraints on the items (for example, by enforcing
that certain items must be sold together). Reasons for limiting the number of winners include: (1)
avoiding the logistical hassle of having a large number of winners – this constraint is commonly used
in sourcing auctions [21, 36, 37, 41] and (2) increasing competition to boost revenue, as is studied by
Roughgarden et al. [34] (though in a different setting than ours). Kroer and Sandholm [25] show that
the VCG auction run with bundling constraints can yield significant revenue gains.

Furthermore, catalyzed by the seminal work of Bulow and Klemperer [7], a recent line of work studies
the competition complexity of auctions, and provides results that compare the optimal (expected)
revenue to the revenue of mechanisms like VCG when the number of bidders is augmented [6, 8, 14,
15, 34]. Competition complexity results can be seen as tackling the “opposite” situation of a growing
market. However, existing work in this area uses the very different objective of expected revenue over
buyer valuation distributions, and moreover has only tackled restrictive classes of valuation functions
(such as unit-demand and additive valuations). Also related is the work of Rastegari et al. [32], who
study settings where revenue can counterintuitively be boosted by dropping bidders.

Learning for auction design Our algorithm for designing a mechanism robust to uncertain market
shrinkage is a sample-based learning algorithm. Such sample-based automated mechanism design
methods were introduced by Sandholm and Likhodedov [26, 27, 42], with the first generalization
guarantees for machine learning based mechanism design appearing in Balcan et al. [2]. Machine
learning for auction design has since grown into a rich field blending theory and practice [3, 4, 13, 30].
Unlike most prior work on machine learning for auction design, our setting is prior-free and does
not have access to samples. In our learning algorithm, the mechanism designer produces samples
himself that simulate the shrunken market, which is along the lines of the learning-within-an-instance
paradigm of Balcan et al. [5]. For simplicity, we use the term sample-based as a catch-all for any
algorithm that uses samples, prior-free or not. Furthermore, while our algorithm is a sample-based,
the techniques we use to prove our main guarantee are fundamentally new. The aforementioned
literature seeks to find a near-optimal mechanism from samples—in contrast our goal is to prove
concrete revenue guarantees on the optimal mechanism.

2 Problem formulation

Combinatorial auctions A seller has m indivisible items to allocate among a set S of n bidders.
Each bidder is described by her combinatorial valuation function vi : 2{1,...,m} → R≥0. We assume
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bidders’ valuations satisfy free-disposal, that is, vi(b) ≤ vi(b
′) for all b ⊆ b′ ⊆ {1, . . . ,m}, and

vi(∅) = 0. For an allocation α, vi(α) is bidder i’s value for the bundle she receives under α.

A mechanism M specifies, given a set of bidders S, an allocation α of the items and a payment pi to
be collected from each bidder i ∈ S. The welfare of M when run on S is WM (S) =

∑
i∈S vi(α),

and its revenue on S is RevM (S) =
∑
i∈S pi. M is incentive compatible if no bidder i may strictly

increase her utility (value minus payment) by misreporting her true valuation function vi to M .
M is individually rational if vi(α) ≥ pi for all i. All mechanisms considered in this paper are
assumed to be incentive compatible and individually rational. The classical Vickrey-Clarke-Groves
(VCG) auction [9, 17, 48] uses an efficient allocation α∗ (one that maximizes

∑
i∈S vi(α)), and

charges bidder i a payment of maxα
∑
j 6=i vj(α)−

∑
j 6=i vj(α

∗). The VCG auction is truthful and
individually rational. It is well known that the VCG auction can yield low revenue in many scenarios.

Market-size uncertainty In our model, the mechanism designer has full knowledge of the entire
population of bidders S (described by their valuation functions). An unknown random subset of
S participates in the market. We write S0 ∼p S to denote a subset S0 that is sampled from S by
including each bidder in S0 independently with probability p. More generally, for a distribution D
over 2S , we write S0 ∼D S to denote a random subset of S chosen according to D. We are interested
in what happens to the maximum revenue achievable when only a random fraction of the set S of
bidders participates in the auction, that is, supM∈M ES0∼DS [RevM (S0)].

Since a variable group of bidders of variable size can participate in the auction mechanisms we
run, we require the important assumption that auctions inM can be run on variable-size sets of
bidders in a well-defined manner. Various well-studied classes of auctions satisfy this property:
examples include the class of VCG auctions with reserve prices, λ-auctions [22], affine-maximizer
auctions [33], and various population-size-independent auctions in Balcan et al. [5]. We assume that
the mechanism designer knows the valuations of the bidders in S to begin with. So, each bidder can
be thought of having an identity (for example, “the bidder who values apples at x and oranges at y”, or
“the bidder with valuation function v4”), and the mechanism designer knows the identities/valuations
v1, . . . , vn of all bidders in S. An allocation, formally, is a mapping from items to bidder identities.

The sequence of mechanism design and revelation in our setting is the same as in the standard
mechanism design setting. Specifically, the mechanism design (computation of a mechanism from
M) takes place before the bidders in the shrunken market are asked to reveal their valuations. This is
important for incentive compatibility, that is, for motivating the bidders to reveal their true valuations.
If the design/choice of M ∈M is allowed to be based on the revealed valuations, the auction might
not be incentive compatible. (The class of second price auctions with reserve prices for a single
item serves as an illustrative example. Choosing the reserve price to maximize revenue after the
shrunken market is revealed clearly violates incentive compatibility.) Because the designer does not
know exactly which bidders are in the shrunken market S0, the designer has uncertainty about the
valuations of the bidders. He only knows that they belong to S.

Assumptions onM and S For any S′ ⊆ S, letWM(S′) = maxM∈MWM (S′) and RevM(S′) =
maxM∈M RevM (S′). Let winM (S′) denote the set of bidders in S′ that win a nonempty bundle of
items per M . Let winM(S′) denote the set of bidders in S′ that win a nonempty bundle of items per
the mechanism in M achieving WM(S′). The following two assumptions are the most critical ones.

Welfare submodularity For all S1, S2 ⊆ S,WM(S1)+WM(S2) ≥WM(S1∪S2)+WM(S1∩S2).
Winner monotonicity For all S′′ ⊆ S′ ⊆ S and all i ∈ S′′, i ∈ winM(S′) =⇒ i ∈ winM(S′′).

Suppose WM(S′) = WV CG(S′) for any S′ ⊆ S, that is,M is sufficiently rich to be able to allocate
items efficiently (as is the case with all mechanisms in the hierarchies discussed by Balcan et al.
[3, 5]). Then, welfare submodularity implies winner monotonicity [19]. If the valuation functions
of bidders in S satisfy the gross-substitutes property, then both welfare submodularity and winner
monotonicity hold [18, 19, 49].

The final assumptions stipulate thatM is a sufficiently rich class of mechanisms. We assume that
RevM(S′) = WM(S′) = WV CG(S′) for all S′ ⊆ S, and further thatM satisfies the following
“global VCG-like” property: RevM(S′) depends only on winM(S′) and winM(S′ \ {i}) for each
i ∈ winM(S′). In words, these conditions stipulate the following: (1) M is sufficiently rich
such that in a non-truthful full-information setting, M can always extract the full social surplus

4



WM(S′) = WV CG(S′) as revenue and (2) for any S′, the payments collected by the revenue-
maximizing mechanism M that achieves RevM(S′) depend only on WM(S) and the maximum
welfares WM(S \ {i}) achievable when each bidder drops out.

As a concrete example, if S is a set of bidders with gross-substitutes valuations, then the class of
λ-auctions and the class of affine-maximizer auctions satisfy all of the above properties (we prove
this fact in Appendix A, and provide more details about these auction classes).

3 Revenue loss can be drastic

At first glance it might appear that the expected revenue preserved by a mechanism M when each
bidder participates independently with probability p should simply be p · RevM (S) (or more if
one thinks of revenue as having diminishing returns in the number of bidders). This intuition is
indeed accurate if RevM is a submodular function (which captures the diminishing returns property).
However, revenue can shrink by more than this when mechanisms inM do not have submodular
revenue. One reason for greater revenue loss is reduced competition among buyers. For example,
suppose there are m items and 2m bidders, where bidder i for 1 ≤ i ≤ m has valuation vi(b) = c if
i ∈ b and vi(b) = 0 otherwise, and bidder m+ i for 1 ≤ i ≤ m has valuation vm+i(b) = c− ε/m
if i ∈ b and vm+i(b) = 0 otherwise (bidders have combinatorial valuations in this example, so
valuation functions only depend on the bundle of items received). The VCG auction will allocate
item i ∈ {1, . . . ,m} to bidder i. The payment collected from bidder i will be c− ε/m, which is the
second highest value for item i. The revenue from VCG is thus mc− ε = W (S)− ε. Now, suppose
each bidder participates in the auction independently with probability p. The expected revenue can
be computed by breaking it up across items:

E[RevV CG(S0)] =
∑m
i=1 E[Revenue from item i] =

∑m
i=1 p

2(c− ε/m) = p2(W (S)− ε).

The third equality is due to the fact that VCG generates nonzero revenue from item i if and only if
both bidders i and m+ i participate, since if at most one of them shows up there is no competition
for that item. So E[RevV CG(S0)] = p2 · RevV CG(S).

Furthermore, if bidders’ valuations are allocational, that is, vi(α) can depend on what items other
bidders receive, revenue loss can be even more dramatic.

Theorem 3.1. For any ε > 0 there exists a set S of bidders with allocational valuations such that for
S0 ∼p S, E[RevM (S0)] ≤ pm/2 · (RevV CG(S) + 2ε) + ε for any individually rational auction M .

The exponential revenue decay in the number of items means that even if the shrunken market is large
in expectation, the revenue loss can be dramatic. For example, if 50 items are for sale and each bidder
shows up independently with 90% probability, our construction shows that any auction can guarantee
only at most roughly 7% of the VCG revenue on S. If 100 items are for sale, at most 0.52% of the
VCG revenue on S can be guaranteed.

4 Main guarantee on preserved revenue

We now present our main revenue guarantee when each bidder participates in the auction indepen-
dently with probability p. For a set of bidders S′ ⊆ S, let ω(S′) = winM(S′)∪(∪i∈S′winM(S′\{i}))
be the set of bidders in S′ whose valuations determine RevM(S′). Define an equivalence relation
≡ on subsets of S by S1 ≡ S2 if and only if ω(S1) = ω(S2). Let ϕ(S′) = 1

n

∑n
i=1WM(S′ \ {i}).

ϕ serves as a potential function in the proof of the following theorem and represents the average
max-welfare of S′ when a uniformly random bidder in S drops out.

Mechanism A
(1) Let S1, . . . , S` be an enumeration of the equivalence classes with ϕ(Si) >

p
4WM(S).

(2) Let M1, . . . ,M` denote the mechanisms that achieve RevM(S1), . . . ,RevM(S`).
(3) Choose M uniformly at random from {M1, . . . ,M`}, and run M .

The main challenge in analyzing this mechanism is bounding `. Before we do that, we analyze the
revenue guarantee it satisfies in terms of `.
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{v1,v2,v3,v4}
{v3,v4}

{v1,v2,v4}
{v2,v4}

{v1,v2,v3}
{v2,v3}

{v1,v4}
{v1,v4}

{v1,v2}
{v1,v2}

{v1,v3}
{v1,v3}

{v4}
{v4}

{v1}
{v1}

{v2}
{v2}

{v3}
{v3}

Figure 1: A winner diagram representing a second-price auction with a single item and four bidders
with valuations S = {v1 = 1, v2 = 2, v3 = 4, v4 = 8}. At each node, the top set S′ is the set of
remaining bidders, and the bottom set is the set of bidders ω(S′) that actually determine revenue.
Boxed nodes represent heavy equivalence classes for p = 8/9, which is the subgraph of the winner
diagram A randomizes over.

Lemma 4.1. Let |S| ≥ 2. For S0 ∼p S, E[RevA(S0)] ≥ Ω(p2/`)WM(S).

Proof. By definition of ω, if S1 ≡ S2, then WM(S1) = WM(S2), ϕ(S1) = ϕ(S2), and
RevM(S1) = RevM(S2) (and the maximum revenue is achieved by the same M ∈M for both sets).
Call a set of bidders S′ ⊆ S heavy if ϕ(S′) > p

4WM(S). If S0 is heavy, there isM ∈ {M1, . . . ,M`}
such that RevM (S0) = WM(S0), so EA[RevA(S0)] ≥ 1

`W (S0) ≥ 1
`ϕ(S0) > p/4

` WM(S). Let H
denote the event that S0 is heavy. Then,

EA[ES0
[RevA(S0)]] = ES0

[EA [RevA(S0)]] ≥ ES0
[EA [RevA(S0)|H]]·Pr(H) ≥ p/4

` W (S)·Pr(H).

We now derive a lower bound on Pr(H). We have

ES0
[ϕ(S0)] = ES0

[
1
n

∑n
i=1WM(S0 \ {i})

]
= Ei∼S [ES0

[WM(S0 \ {i})]] ≥ p
2WM(S)

where in the final inequality we use the fact that |S| ≥ 2 and that WM is submodular, and so
by Hartline et al. [20], ES0

[WM(S0)] ≥ pWM(S). By Markov’s inequality on the (nonnegative)
random variable WM(S)− ϕ(S0),

Pr(S0 is heavy) ≥ (p/2)WM(S)−(p/4)WM(S)
WM(S)−(p/4)WM(S) = p/4

1−p/4 ≥
p
4 .

Substituting this into our previous bound yields EA[ES0 [RevA(S0)]] ≥ p2

16`WM(S), as desired.

We now bound the number of heavy equivalence classes `. In order to do this, we introduce the notion
of a winner diagram, which is a subgraph of the Hasse diagram of S. The winner diagram for S is
the following directed graph G: each node is labeled (S′, ω(S′)) for some subset S′ ⊂ S. The root
node is labeled (S, ω(S)). The children of node (S′, ω(S′)) are given by (S′ \ {i}, ω(S′ \ {i})) for
each i ∈ ω(S′). Figure 1 illustrates the winner diagram corresponding to a second-price auction for a
single item with four bidders. Winner monotonicity will allow us to show that G contains a node that
represents every equivalence class of ≡.
Lemma 4.2. G contains all equivalence classes of ≡.

Proof. Let S∗ ⊆ S be a set of bidders that arises as a winner set, that is, S∗ = ω(S′′) for some
S′′ ⊇ S∗. The set S′ ⊃ S′′ ⊃ S∗ is maximal for S∗ if ω(S′) = S∗ and ω(S′ ∪ {i}) 6= S∗ for every
i /∈ S′. We show that for a given winner set of bidders S∗, there is a unique maximal set of bidders
S′ ⊇ S∗ such that ω(S′) = S∗. Initialize S′ = S∗, and greedily add bidders from S to S′ while
ω(S′) = S∗ does not change. Due to winner monotonicity, if i /∈ ω(S′), then i /∈ ω(S′ ∪ {j}) for
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S′ ∪ {i} S′′

S′′ \ {j1}

...

S′ S′′ \ {j1, . . . , jr}

S′′ maximal s.t. ω(S′′)=ω(S′∪{i})

i∈S\S′ s.t. i∈ω(S′∪{i})

Figure 2: Illustration of the inductive step in Lemma 4.2. Boxed sets correspond to representative
elements of equivalence classes in G . Solid arrows represent directed edges in G from parent to child.

any bidder j. Hence, the order in which bidders are added by the greedy procedure does not matter,
and therefore the final set S′ is the unique maximal set for S∗. Let the representative element of each
equivalence class [(S′, ω(S′))] be the one such that S′ is maximal for ω(S′).

We prove the lemma by backwards induction on the size of the representative set S′ of any equivalence
class. The base case of |S′| = n is immediate since the root (S, ω(S)) is the only node for which
the representative set has size n. For the inductive step suppose that G contains a node for every
equivalence class for which the representative set is of size at least n′. Let (S′, ω(S′)) be the
representative of an equivalence class with |S′| = n′ − 1. Let i /∈ S′ be a bidder such that
i ∈ ω(S′ ∪ {i}). Such an i exists due to winner monotonicity: if i ∈ ω(S), then i ∈ ω(S′ ∪ {i}),
since S′ ∪ {i} ⊂ S. Let S′′ be the maximal set such that ω(S′′) = ω(S′ ∪ {i}). We have
|S′′| ≥ |S′ ∪ {i}| > |S′|, so by the induction hypothesis G contains a node labelled (S′′, ω(S′′)).
Now, there must exist a bidder j1 ∈ S′′ \ S′ such that j1 ∈ ω(S′′). If not, adding all the bidders in
S′′ \ S′ to S′ would not introduce any new winners, that is, ω (S′ ∪ (S′′ \ S′)) = ω (S′′) = ω (S′) ,
which contradicts the maximality of S′ for ω(S′). Therefore, the node (S′′, ω(S′′)) has a child

(S′′ \ {j1}, ω (S′′ \ {j1}))

(S′′ \ {j1} is maximal due to winner monotonicity). We may now find a bidder j2 ∈ S′′ \ {j1} \ S′
such that j2 ∈ ω(S′′ \ {j1} \ S′) for the same reason as before. Continuing in this fashion yields a
path from (S′′, ω(S′′)) to (S′, ω(S′)), so (S′, ω(S′)) ∈ G, as desired.

Combining Lemmas 4.1 and 4.2 yields our main guarantee. Let γ = maxS′,i∈ω(S′)
ϕ(S′\{i})
ϕ(S′) and

let k = maxS′ |ω(S′)|. We have k ≤ 2m. The parameter γ measures the smallest decrease in ϕ
between any two levels of G, which we use to control the depth of nodes considered by our main
mechanism A. We stipulate that γ < 1. In Appendix C, we discuss how to remove this assumption
and replace γ with an appropriate parameter that is unconditionally strictly less than 1.
Theorem 4.3. Let |S| ≥ 2 and S0 ∼p S. We have

EA[ES0
[RevA(S0)]] ≥ Ω

(
p2

k
1+log1/γ (4/p)

)
WM(S).

IfM consists of revenue-monotonic mechanisms the slightly improved bound Ω( p2

k
log1/γ (4/p) )WM(S)

holds. In particular, there exist mechanisms inM achieving the above guarantees in expectation.

Proof. Let G ′ denote the restriction of the winner diagram G to nodes representing heavy equivalence
classes. Each node of G ′ has out-degree at most k = maxS′ |ω(S′)|, and the depth of G ′ is at most
log1/γ

(
WM(S)

(p/4)WM(S)

)
= log1/γ(4/p) since ϕ decreases by a factor of at least γ when passing from

a parent node to a child node (and G is truncated at nodes that are not heavy). Hence the number
of nodes in G ′ is at most k1+log1/γ(4/p). If mechanisms inM are revenue monotonic, then we may
modify A to randomize only over mechanisms corresponding to nodes of G ′ with out-degree 0. The
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number of such nodes is at most klog1/γ(4/p). By Lemma 4.2, we may substitute this quantity for ` in
Lemma 4.1, which completes the proof.

We have thus shown, via an application of the probabilistic method, that if M is a sufficiently
rich mechanism class, there always exists M ∈ M that is robust to uncertainty in the market.
Thus, supM∈M E[RevM (S0)] ≥ Ω( p2

k
1+log1/γ (4/p) )WM(S), with a slight improvement under revenue

monotonicity.

In Section 3 we showed that if bidders can have allocational valuations there exist scenarios where
only an exponentially small fraction of revenue can be guaranteed. Theorem 4.3 also holds in this
setting under a stronger version of winner monotonicity, which we show in Appendix C.

4.1 Applications

The dependence of Theorem 4.3 on maxS′ |ω(S′)| allows us to derive interesting families of guar-
antees when the seller places practical constraints on the auction setting. The first is a constraint
on the number of winners, and the second is a bundling constraint that favors allocations that sell
certain items together. Reasons for limiting the number of winners include: (1) avoiding the logistical
hassle of having a large number of winners – this constraint is commonly used in sourcing auc-
tions [21, 36, 37, 41] and (2) increasing competition to boost revenue, as is studied in Roughgarden
et al. [34] (though in a different setting than ours). Kroer and Sandholm [25] show that even the
vanilla VCG auction run with bundling constraints can yield significant revenue gains compared to
VCG with no bundling constraints.

4.1.1 Limiting the number of winners

SupposeM is a class of mechanisms such that |winM (S)| ≤ n0 for all M ∈M such that WM is
submodular, winner-monotonic, and satisfies the global-VCG-like property discussed previously. The
proofs of all previous theorems go through with this constraint taken into account, with parameters
modified correspondingly. Let ϕ, γ be defined as previously.

Theorem 4.4. Let |S| ≥ 2 and S0 ∼ p, and letM be a class of mechanisms that sell to at most n0

bidders. Then, there exists M ∈M such that

E[RevM (S0)] ≥ Ω

(
p2

(2n0)
1+log1/γ (4/p)

)
WM(S).

In practical settings the auction designer might limit the number of bidders that can win a nonempty
bundle of items – and in such cases n0 can potentially be treated as a constant relative to m and n.

In Appendix C, we consider VCG-like auctions that favor allocations that bundle certain items
together. For such auctions, we obtain a guarantee in terms of the relevant bundling constraints.

4.2 General distribution over submarkets

So far we have stated our guarantees under the assumption that each bidder participates in the
auction independently with probability p. When bidders participated independently with probability
p, welfare submodularity was required to ensure that E[WM(S0)] ≥ pWM(S). In Appendix C we
give a more general guarantee in terms of E[WM(S0)] which only requires winner monotonicity.

5 How to choose an auction

Computing the mechanism M ∈ M that achieves the revenue guarantee of Theorem 4.3 can be
accomplished by searching over the set {M1, . . . ,M`} that A randomizes over, but this would
potentially be a highly-inefficient procedure. Moreover, A itself is not computationally-efficient:
determining the heavy sets of bidders, and determining the mechanisms M1, . . . ,M` that are revenue
maximizing for the heavy sets is an exhaustive procedure that would require enumerating over a
potentially exponential number of subsets of S.
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A more natural way for the mechanism designer to arrive at a mechanism is to learn from samples,
which ensures that the mechanism designer uses the auction that (nearly) optimizes the expected
preserved revenue, which could be significantly higher than what Theorem 4.3 guarantees.

We give a learning algorithm that the mechanism designer can use to learn a mechanism M̃ ∈M that
achieves an expected revenue of nearly supM∈M E[RevM (S0)]. Our algorithm is similar in spirit to
the learning-within-an-instance paradigm of Balcan et al. [5]. To describe the algorithm, we require
the following structural notion of mechanism delineability introduced by Balcan et al. [3].

Definition 5.1 (Balcan et al. [3]). Let d, h ∈ N. A mechanism M is (d, h)-delineable if (1) each
mechanism M ∈M can be parameterized by a d-dimensional vector θ ∈ Rd and (2) for any set
S′ ⊆ S of bidder valuations, there is a set H of at most h hyperplanes in Rd such that Revθ(S) is
linear in θ over any given connected component of Rd \H.

Theorem 1.1. LetM be (d, h)-delineable class of mechanisms. A mechanism M̃ ∈M such that

E[Rev
M̃

(S0)] ≥ Ω
(

p2

k
1+log1/γ (4/p)

)
WM(S)− ε

with probability at least 1 − δ can be computed in NhT + (Nh)O(d) time, where T is the time
required to generate any given hyperplane witnessing delineability of any mechanism inM and
N = O

(d log(dh)
ε2 log( 1

δ )
)
.

Proof. We design a mechanism M̃ such that E[Rev
M̃

(S0)] ≥ supM∈M E[RevM (S0)]− ε with high
probability. The theorem statement then follows from Theorem 4.3. Our algorithm is based on the
framework of empirical risk minimization from machine learning. The mechanism designer samples
S1, . . . , SN ⊆ S independently and identically according to distribution D on 2S . (We assume
for simplicity that sampling according to D can be done in a computationally efficient manner. If
bidders participate independently with probability p, then the mechanism designer simply needs
to flip N coins of bias p for each of the n bidders in S.) The auction used will be the one that
maximizes empirical revenue M̃ = argmaxM∈M

1
N

∑N
t=1 RevM (St). Balcan et al. [3] show that

N = O
(d log(dh)

ε2 log( 1
δ )
)

samples suffice to guarantee that the expected revenue of M̃ is ε-close to
optimal with probability at least 1− δ over the draw of S1, . . . , SN .

We now determine the computational complexity of maximizing empirical revenue. Our algorithm
exploits similar geometric intuition that was used by Balcan et al. [3] to derive the above sample
complexity guarantee. A similar approach has been used in other settings as well [4, 5].

For each St ∈ {S1, . . . , Sn}, let Ht denote the set of at most h hyperplanes witnessing (d, h)-
delineability ofM, and let H = ∪tHt, so |H| ≤ Nh. The number of connected components of
Rd \H is at most |H|d ≤ (Nh)d. Each connected component is a convex polyhedron that is the
intersection of at most |H| halfspaces. Representations of these regions as 0/1 constraint-vectors of
length H (a 0 in entry h ∈ H corresponds to one side of h, a 1 corresponds to the other side) can
be computed in poly(|H|d) time using standard techniques [46]. Empirical revenue is linear as a
function of θ in each connected component due to delineability, so the parameter θ that maximizes
empirical revenue within a given component can be found by solving a linear program that involves d
variables and at most |H| constraints, which can be done in poly(|H|, d) time.

Our algorithm has a run-time that is exponential in the number of parameters d required to describe
mechanisms inM. In Appendix D, we study a class of sparse λ-auctions that can be described by
a constant number of parameters. By leveraging practically-efficient routines for winner determi-
nation [35, 39, 40] (a generalization of the problem of computing welfare-maximizing allocations),
we show how our empirical revenue maximization is computationally tractable for this setting (in
particular, the run-time T of computing the hyperplanes witnessing delineability is in terms of the
run-time of winner determination).

6 Conclusions and future research

Our work is the first to formally study the problem of preserving revenue in a shrinking market.
We gave a sample-based learning algorithm to design a mechanism that is robust to shrinkage
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and uncertainty in the market. The crux of our analysis was a new combinatorial construction we
introduced called a winner diagram. Our model of a shrinking market is simple and natural, and can
serve as a testbed for many exciting mechanism design questions.

There are several open questions and new interesting research directions that stem from this study.
The most immediate question is to derive tight bounds on revenue loss. There is a gap between the
bound of Theorem 4.3 and the (1− p2)-fraction revenue loss of the simple example of a market with
competition. Where does the true answer lie? Another interesting, and seemingly more difficult,
setting is the one where the mechanism designer does not know the distributionD over 2S beforehand.
Can he still arrive at an auction that is robust to the shrinking market? If the mechanism designer
knows that each bidder participates independently with probability p, but does not know p, is it
still possible to design a robust auction? Finally, we believe that the combinatorial bidder structure
uncovered by our notion of a winner diagram could have interesting applications to other areas in
mechanism design. While our analysis required a number of assumptions on the set of bidders, it
would be interesting to extend the concept of a winner diagram to prove more general results with
weaker assumptions. It would be interesting to extend our techniques to understand market shrinkage
in other settings including objectives beyond revenue, other auction classes, and unlimited supply.
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A Omitted results from Section 2

A λ-auction is an incentive-compatible parameterized generalization of the VCG auction where the
mechanism designer may specify additive boosts to specific allocations. λ-auctions were introduced
by Jehiel et al. [22]. The class of λ-auctions is a rich class of auctions and has been studied towards
designing high-revenue combinatorial auctions [3, 38]. We use the notation W (α) =

∑n
i=1 vi(α),

and W (S) = maxαW (α). Formally, a λ-auction run among n buyers is specified by a vector
λ ∈ R(n+1)m indexed by the (n+ 1)m possible allocations. The overall allocation chosen is

α∗ = argmax
α

W (α) + λ(α)

and bidder i is charged a payment of

max
α

(W−i(α) + λ(α))− (W−i(α
∗) + λ(α∗)).

An affine-maximizer auction [33] is a generalization of a λ-auction with multiplicative bidder-specific
weights. We do not define them here, but all subsequent discussions on λ-auctions apply to affine
maximizers as well.

The following proposition shows that λ-auctions are rich enough (and hence so are affine maximizers)
to extract the entire social surplus as revenue if the bidders’ valuations are known beforehand.
Proposition A.1. For any set of bidders S, there exists a λ-auction, in the full-information setting
with no incentive-compatibility constraints, with revenue equal to W (S).

Proof. Let α denote the efficient allocation among bidders in S and let α−i denote the efficient
allocation among bidders in S \ {i}. We show that the λ-auction with λ(α) = 0, λ(α−i) =
W (α)−W−i(α−i), and λ(β) = −∞ for all other allocations β collects a payment of vi(α) from
each bidder, and thus extracts a revenue of W (S). First, note that α is the overall allocation used
since W (α) + λ(α) ≥W (α−i) + λ(α−i) for each i. To show that α−i is the allocation used when
bidder i is absent, observe that

W−i(α−i) + λ(α−i) = W (α)

≥W (α)− vi(α)

= W−i(α) + λ(α)

and

W−i(α−i) + λ(α−i) = W (α)

≥W (α)− vi(α−j)
= W (α) + vj(α−j)− vi(α−j)
= W−i(α−j) +W (α)−W−j(α−j)
= W−i(α−j) + λ(α−j)

for any j 6= i. (We use the fact that if α allocates nothing to i, then vi(α) = 0.)

Thus the allocations used by this λ-auction are precisely the VCG allocations. The payment of bidder
i is therefore (W−i(α−i) +λ(α−i))− (W−i(α) +λ(α)) = W (α)− (W (α)− vi(α)) = vi(α), and
so the total revenue is W (α).

As a consequence of the above proof, λ-auctions and affine-maximizer auctions both satisfy the
global-VCG-like property discussed in Section 2.

Since a variable group of bidders of variable size can participate in the λ-auctions we run, it is
important to formalize how to distinguish between allocations since the λ-auction adds “boosts” to
allocations specifically. We assume that the mechanism designer knows the valuations of the bidders
in S to begin with. So, each bidder can be thought of having an identity (for example, “the bidder who
values apples at x and oranges at y”, or “the bidder with valuation function v4”), and the mechanism
designer knows the identities/valuations v1, . . . , vn of all bidders in S. An allocation, formally, is a
mapping from items to bidder identities. Traditionally λ-auctions assume that the number of bidders
is fixed, so allocations are usually interpreted as mappings from items to the position/index of a given

14



bidder. So, we, too, will consider λ-auctions run among all bidders, so an auction is parameterized
by a (n+ 1)m-dimensional vector that specifies boosts for allocations among all n identities in S.
However, our auctions also have to be well defined in the case of a shrinking market that has only
a subset of the bidders. We address that as follows. If a λ-auction is run among a subset of bidder
identities S0 and chooses an allocation that allocates an item to a bidder identity not in S0, we assume
that the seller keeps that item.

B Omitted proof from Section 3

When bidder valuations can depend on what items the other bidders receive, we can construct a
simple example where a random fraction of bidders participating incurs a much more significant
revenue loss than the (1− p2) fraction in our example for the combinatorial setting. Suppose there
is a distinguished set of k bidders (who can be viewed as unwealthy bidders) with negligibly low
valuations for each bundle. All other bidders’ (who can be viewed as wealthy bidders) valuation
functions are defined to be above some threshold only on allocations that give a nonempty bundle to
each of the k distinguished bidders (and zero otherwise). In other words, while the wealthy bidders
would like to receive items, they are not willing to participate unless unwealthy bidders are also
guaranteed items. Then, for any nontrivial fraction of the revenue to be preserved, all distinguished
bidders must participate in the auction, which occurs with probability pk. Thus, any auction can
preserve revenue at most pk ·W (S). The number of distinguished bidders k can be taken to be
as large as, for example, m/2. We now give a formal construction of the described example. Our
construction satisfies the property that even the vanilla VCG auction extracts revenue nearly equal to
the entire social surplus on the full set S of bidders.
Theorem B.1. For any ε > 0 there exists a set S of bidders with allocational valuations such that

sup
M∈M

E
S0∼pS

[RevM (S0)] ≤ pm/2 · (RevV CG(S) + 2ε) + ε

for any auction classM.

Proof. For each item 1 ≤ i ≤ m/2 we introduce two buyers with valuations vi,1, vi,2. For each item
m/2+1 ≤ j ≤ mwe introduce a single buyer with valuation vj . For 1 ≤ i ≤ m/2 valuations vi,1 are
defined by vi,1(α) = c if bidder (i, 1) is allocated item i and bidders j = m/2+1, . . . ,m each receive
at least one item, and vi,1(α) = 0 otherwise. Valuations vi,2 are defined by vi,2(α) = c − 2ε/m
if bidder (i, 2) is allocated item i and bidders j = m/2 + 1, . . . ,m each receive at least one item,
and vi,2(α) = 0 otherwise. The only requirement on the valuations of bidders j = m/2 + 1, . . . ,m
is that vj(α) ≤ 2ε/m for all α. The VCG auction would allocate item i to bidder (i, 1) for each
i = 1, . . . ,m/2, and allocate the remainingm/2 items to bidders j = m/2+1, . . . ,m such that each
bidder j receives exactly one item. The welfare of this (efficient) allocation is at most cm/2 + ε. The
revenue obtained by VCG is at least cm/2−ε = W (S)−2ε. Let S∗ denote the set of small-valuation
bidders j = m/2 + 1, . . . ,m. If each bidder shows up independently with probability p, the expected
revenue of any auction M is

E[RevM (S0)] = E[RevM (S0) | S∗ ⊆ S0] · Pr(S∗ ⊆ S0) + E[RevM (S0) | S∗ * S0] · Pr(S∗ * S0)

≤ pm/2 · E[RevM (S0) | S∗ ⊆ S0] + E[RevM (S0) | S∗ * S0]

≤ pm/2 · E[W (S0) | S∗ ⊆ S0] +W (S∗)

≤ pm/2 ·W (S) + ε,

as desired.

C Omitted results and proofs from Section 4

C.1 More details on γ

If γ = 1, we simply replace it with

γ := max

{
ϕ(S′ \ {i})
ϕ(S′)

: i ∈ ω(S′),
ϕ(S′ \ {i})
ϕ(S′)

< 1

}
< 1
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which is the worst-case non-trivial decrease in ϕ across any two levels of the winner diagram. We are
able to enforce that γ < 1 in this way because if S′ is such that ϕ(S′) = ϕ(S′ \ {i}), then the same
mechanism achieves optimal revenue on both S′ and S′ \ {i}. So these nodes can be considered
jointly as a single node in the winner diagram, without incurring any penalty in the number of heavy
equivalence classes A randomizes over.

C.2 Allocational valuations

All of our results hold when bidders have allocational valuations. The only modification is that
we require a stronger version of winner monotonicity, which states that if i wins bundle b under
the mechanism that achieves WM(S′), then i must win a bundle b′ ⊇ b under the mechanism that
achieves WM(S′′) for any i ∈ S′′ ⊆ S′. The weaker notion of winner monotonicity implies the
stronger version when bidders have combinatorial valuations, but this is not necessarily the case when
bidders have allocational valuations.

C.3 Limiting the number of winners

Proof of Theorem 4.4. Given a set S′ ⊆ S of bidders, if a bidder in win(S′) is removed, at most one
new bidder can win a nonempty bundle per the efficient allocation, due to winner monotonicity and
the limit on the number of bidders. Thus, maxS′ |ω(S′)| ≤ 2n0. The remainder of the proof follows
from the same arguments used to prove Theorem 4.3.

C.4 Bundling constraints

A bundling is a partition of the set of items {1, . . . ,m}. An allocation α respects a bundling φ if no
two items in the same bundle according to φ are allocated to different buyers. For a set of bundlings
Φ, the class of Φ-boosted λ-auctions consists of all λ-auctions satisfying λ(α) ≥ 0 for all α that
respects a bundling in Φ and λ(α) = 0 otherwise. Let WΦ(S) denote the maximum welfare of any
allocation that respects a bundling in Φ. Proposition A.1 holds withWΦ(S) for the class of Φ-boosted
λ-auctions (the λ-auction constructed in Proposition A.1 can be shifted by a constant additive factor to
make all boosts nonnegative). In the following theorem statement, ϕ(S′) = 1

n

∑n
i=1W

Φ(S′ \ {i}).
Theorem C.1. Let Φ be a set of bundlings. Let S be a set of n ≥ 2 bidders with valuations such that
WΦ : 2S → R≥0 is submodular. Let γ = maxS′,i∈ω(S′)

ϕ(S′\{i})
ϕ(S′) . Let m0 be the greatest number

of bundles in any bundling in Φ. LetM be the class of Φ-boosted λ-auctions. Then,

sup
λ∈M

E
S0∼pS

[Revλ(S0)] ≥ Ω

(
p2

(2m0)1+log1/γ(4/p)

)
WΦ(S).

Proof. At most m0 bidders can win a nonempty bundle of items, so maxS′ |ω(S′)| ≤ 2m0 by the
same reasoning used to prove Theorem 4.4. The arguments used to prove Theorem 4.3 yield the
desired bound.

C.5 General distribution over submarkets

Our proof techniques easily generalize to handle any distribution D over subsets of bidders since
the only statistic of the distribution required is the expected welfare of a random subset of bidders
ES0∼DS [WM(S0)]. When bidders participated independently with probability p, submodularity of
the welfare function was required to ensure that E[WM(S0)] ≥ pWM(S). In the following more
general guarantee, which is in terms of E[WM(S0)], we only need the more general condition of
winner monotonicity.
Theorem C.2. Let S be a set of n ≥ 2 bidders with valuations that satisfy winner monotonic-
ity. Let D be a distribution supported on 2S with ES0∼DS [WM(S0)] = µ · WM(S). Let
γ = maxS′,i∈ω(S′)

ϕ(S′\{i})
ϕ(S′) and let k = maxS′ |ω(S′)|. We have

sup
M∈M

E
S0∼DS

[RevM (S0)] ≥ ηµ

k1+log1/γ(1/ηµ)

(
µ− 2ηµ

2(1− ηµ)

)
·WM(S)

for all 0 ≤ η ≤ 1/2.
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Proof. The proof is nearly identical to that of Theorem 4.3. The main modification is that S′ ⊂ S
is heavy if ϕ(S′) ≥ ηµ · WM(S), and A randomizes over mechanisms corresponding to sets
S′ with this property. Then, ES0∼DS [ϕ(S0)] ≥ µ

2WM(S) and so Markov’s inequality yields
Pr(S0 is heavy) ≥ µ/2−η

1−η . The remainder of the proof is identical.

Versions of Theorems 4.4 and Theorems C.1 for general distributions can be similarly obtained.

D Omitted results from Section 5

Learning a high-revenue λ-auction would require a number of samples on the order of (n+ 1)m [3].
However, for sparse λ-auctions that are restricted to boost only a constant number of allocations, we
can perform sample and computationally efficient learning while satisfying a similar guarantee to the
ones derived for the entire class.

D.1 λ auctions with limited boosting

Let Γ ⊆ {1, . . . , (n + 1)m} be a set of allocations. The class of Γ-boosted λ-auctions consists of
all λ-auctions satisfying λ(α) ≥ 0 for all α ∈ Γ and λ(α) = 0 for all α /∈ Γ (and can be specified
by vectors in R|Γ|). Γ-boosted λ-auctions were introduced by Balcan, Sandholm, and Vitercik [3].
Let WΓ(S) = maxα∈ΓW (α). We may derive a guarantee for this class of auctions analogous to
Theorem 4.3. In the following theorem statement, ϕ(S′) = 1

n

∑n
i=1W

Γ(S′ \ {i}).

Theorem D.1. Let S be a set of n ≥ 2 bidders with valuations such that WΓ : 2S → R≥0 is
submodular. Let γ = maxS′,i∈ω(S′)

ϕ(S′\{i})
ϕ(S′) and let k be the maximum number of winners in any

allocation in Γ. The classM of Γ-boosted λ-auctions satisfies

sup
λ∈M

E
S0∼pS

[Revλ(S0)] ≥ Ω

(
p2

(2k)1+log1/γ(4/p)

)
WΓ(S).

D.2 Algorithm for learning an auction from samples

We now give an algorithm that the mechanism designer can use to compute a Γ-boosted λ-auction
that nearly achieves an expected revenue of supλ∈M ES0∼pS [Revλ(S0)]. Our algorithm leverages
practically-efficient routines for solving winner determination, which is a generalization of the
problem of computing welfare-maximizing allocations. The mechanism designer samples several
subsets of bidders according to D, and computes the Γ-boosted λ-auction that maximizes empirical
revenue over the samples.

While computing the empirical-revenue-maximizing auction is NP-hard in general, since winner
determination is NP-hard, winner determination can be efficiently solved in practice [35, 39, 40].
Furthermore, when bidders have gross-substitutes valuations, winner determination can be solved in
polynomial time [10]. The run-time of our algorithm is exponential only in |Γ| but polynomial in all
other problem parameters (including the run-time required to solve winner determination with m
items and n bidders).

Theorem D.2. LetM be the class of Γ-boosted λ-auctions. A λ̂ ∈M such that

E
S0∼S

[Revλ̂(S0)] ≥ sup
λ∈M

E
S0∼S

[Revλ(S0)]− ε

with probability at least 1− δ can be computed in N(min{m,n}+ 1)w(m,n) + (Nn|Γ|)O(|Γ|) time,
where w(m,n) is the time required to solve winner determination for n buyers with valuations over

m items and N = O
(
|Γ| ln(n|Γ|)

ε2 ln( 1
δ )
)

.

Proof. The algorithm and proof are similar to Theorem 1.1. M is (|Γ|, O(n|Γ|2))-delineable [3]
Now, we explicitly describe how to generate the hyperplanes witnessing delineability. For each
1 ≤ t ≤ N let αt denote the efficient allocation among bidders in St. For each 1 ≤ t ≤ N and
each i ∈ win(St) let αt−i denote the efficient allocation among bidders in St \ {i}. For i /∈ win(St),
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αt−i = αt. Determining these allocations requires at most N +N ·min{m,n} calls to the winner
determination routine, since |win(St)| ≤ m. The allocation used by any Γ-boosted λ-auction on St
is in Γ ∪ {αt}, and the allocation used to determine the payment by bidder i ∈ St by any Γ-boosted
λ-auction on St is in Γ ∪ {αt−i}.

For each t and each pair of allocations α, α′ ∈ Γ ∪ {αt}, let H(t, α, α′) denote the hyperplane∑
i∈St

vi(α) + λ(α) =
∑
i∈St

vi(α
′) + λ(α′).

For each t, each i ∈ St, and each pair of allocations α, α′ ∈ Γ ∪ {αt−i}, let let H−i(t, α, α′) denote
the hyperplane ∑

j∈St\{i}

vj(α) + λ(α) =
∑

j∈St\{i}

vj(α
′) + λ(α′).

LetH denote the collection of these hyperplanes. The total number of such hyperplanes is at most
N(|Γ| + 1)2 + Nn(|Γ| + 1)2. It is a basic combinatorial fact that H partitions R|Γ| into at most
|H||Γ| ≤ (N(n+ 1)(|Γ|+ 1)2)|Γ| regions. Each region is a convex polytope that is the intersection
of at most |H| halfspaces. Representations of these regions as 0/1 constraint-vectors of length |H|
can be computed in poly(|H||Γ|) time using standard techniques [46]. Empirical revenue is linear as
a function of λ in each region, since the allocations used by λ are constant within as λ varies in a
given region. Thus, the auction maximizes empirical revenue within a given region can be found by
solving a linear program that involves |Γ| variables and at most |H| constraints, which can be done in
poly(|H|, |Γ|) time.

One special case is when all allocations in Γ are given the same boost. Then, the parameter space is R,
the number of relevant regions (subinteverals of R) is O(Nn|Γ|2), and the algorithm in Theorem 1.1
has a run-time of O(N min{m,n}w(m,n) + Nn|Γ|2). Mixed bundling auctions [22, 44] are an
instance of this with |Γ| = n.

D.3 Structural revenue maximization

Let Γ1 ⊂ Γ2 be collections of allocations, and letM1 andM2 denote the classes of Γ1-boosted
λ-auctions and Γ2-boosted λ-auctions, respectively. Suppose the mechanism designer has drawn
some number of samples N , and observes that the empirical-revenue-maximizing auction λ2 over
M2 yields slightly higher revenue than the empirical-revenue-maximizing auction λ1 overM1, but
λ2 assigns nonzero boosts to significantly more allocations than λ1 and is much more complex to
describe. M2 is a richer auction class thanM1, so it always yields higher empirical revenue, but
there is the risk that it overfits to the samples. Structural revenue maximization allows the mechanism
designer to precisely choose between such auctions by quantifying the tradeoff between empirical
revenue maximization and overfitting [2, 3]. Instead of choosing λ2 by default, the mechanism
designer should choose λk, k ∈ {1, 2} that maximizes empirical revenue minus a regularization term
εMk

(N, δ). The correct regularization term is precisely the error term

εMk
(N, δ) = O

(
|Γk| ln(n|Γk|)

ε2
ln

(
1

δ

))
in the generalization guarantee for Γ-boosted λ-auctions obtained by Balcan, Sandholm, and Viter-
cik [3], which is fine-tuned to the intrinsic complexity of the auction class. Structural revenue
maximization can be especially useful to the mechanism designer when there is a limit on the number
of samples he can draw (due to a run-time constraint, for example). In this case, he may run the exact
same geometric algorithm given in Theorem 1.1 with the modified objective of empirical revenue
minus the regularizer described above. In particular, the algorithm may be run over the entire class of
λ-auctions, and the mechanism designer effectively learns the best set Γ of allocations to boost in
order to guarantee high expected revenue while also generalizing well with high confidence.
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