Attack Detection and Mitigation using Intelligent
Data Planes in SDNs

Aparna Ganesan
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080
Aparna.Ganesan @utdallas.edu

Abstract—Despite its significant advantages over distributed
control in traditional networks, the centralized control used in
software defined networks (SDN) introduces potential security
vulnerabilities. The controller-switch bandwidth, flow tables in
data plane switches, and the controller itself could become
overwhelmed by potential denial of service attacks in SDN.

In this work, we present a machine learning (ML) based
approach to defend SDNs from such attacks. We use decision
tree and logistic regression based ML models to identify decision
boundaries at the controller site. We then translate these decision
boundaries into range compressed match-action table rules.
Next, we dynamically communicate these rules to the data
plane switches using P4 language primitives enabling switches
to filter out attack traffic without needing to consult with the
SDN controller for each new packet. Our solution allows us to
dynamically update the match-action rules based on the changing
behavior of the attack traffic without causing any downtime for
the data plane switches.

Keywords— Machine learning, decision tree, logistic regression,
programmable data plane, semi-smart switches

I. INTRODUCTION

A Software Defined Network (SDN) consists of a control
plane and a data plane. An SDN controller that resides in
the control plane acts as the brain of the network. Switches
that reside in the data plane mainly focus on basic packet
forwarding and are typically configured and controlled by the
SDN controller. When a data plane switch receives a packet
that it does not know how to handle, the switch sends a
PacketIn message to the controller asking for instructions on
how to handle the packet. With this programmability, network
management and event handling become logically centralized
at the controller. The controller then provides a platform to
implement several complex solutions like traffic measurement,
monitoring, intrusion detection, load balancing in the control
plane and translate the instructions to the data plane switches
in the form of flow rule updates. This centralized control of the
network, despite having significant advantages over traditional
distributed control, introduces new security vulnerabilities.
The controller-switch bandwidth, flow tables of the switches,
and the controller itself could become overwhelmed with flood
of incoming packets.

Traditional firewalls typically utilize static features of pack-
ets, e.g., IP addresses, port numbers, flags, etc., to detect
and filter out attack packets. Attackers can often evade such

Kamil Sarac
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080
ksarac @utdallas.edu

detection mechanisms by spoofing various static features to
succeed in their attacks. With the advent of efficient and
robust machine learning (ML) algorithms and the availability
of rich network datasets, we can use ML models for packet
classification. Once we identify the important features, we can
train ML models with those features to classify packets as
benign or attack packets.

With the recent introduction of switch programmability,
in-network computing, performing certain applications like
packet classification in existing network devices, has gathered
attraction. However,the current state of art approaches for
switch programmability does not quite allow us to imple-
ment ML based model training for packet classification at
the switches. However, once the ML model is learned at
the controller site, the corresponding decision boundary, i.e.,
the imaginary (N — 1) dimensional surface that separates
the IV dimensional feature space into different classes for
N chosen features, can be interpreted and the intelligence
can be incorporated into the programmable switch with the
available tools. The controller can proactively feed the decision
boundary if there is any change in the traffic pattern and the
switches can filter the packets as per the loaded rules. This
prevents the attacker from bringing down the controller as the
attack packets will be dropped by the data plane before they
reach the controller.

In this paper, we present two ML based packet classification
approaches that can be implemented at the data plane to
detect attack packets with high accuracy while making sure
that the match-action table sizes in the switches do not
grow drastically. In addition, our solution does not require
downtime for the switches to update rules due to the changing
behavior of the attack traffic. The prospect of using ML based
packet classification implemented on data plane has been
examined in [1]. The authors considered four ML algorithms
to implement packet classification on switches’ match-action
pipeline. However, they reported poor accuracy and signifi-
cant scalability challenges in their implementation. Similarly,
in [2], the authors implemented an intelligent data plane for
packet classification using a decision tree classifier. The model
updates are performed by reinstalling a new P4 code onto the
target every time there is a change in the decision boundary.

Our main contribution in this work is translating linear ML

models in the form of match-action table rules that can be
updated via control plane during network runtime in a scalable
way and without having to restart data plane switches. Here,
we demonstrate this using logistic regression and decision tree
classifiers and transfer the decision boundary of the classifiers
onto the switch. This is done in the form of feature range val-
ues rather than exact feature values as we do not want the size
of the tables to overwhelm the resources in the switch. These
two classifiers were chosen as a first step because we can
interpret the decision boundaries and express it mathematically
as a linear equation when compared to complex classifiers like
random forests or neural networks. The main idea is to utilize
the range tables and the compression of exact value tables to
range type tables. In this way, very large tables with several
thousand entries generated for a logistic regression model
can be substantially compressed to have fewer values such
that the resulting table size is manageable for the switches.
The packets will be processed in a pipeline, progressing each
stage of the pipeline based on a feature value and ultimately
getting classified as benign or malicious. Depending on the
number of features and the type of features, the number of
stages in the pipeline are determined. The accuracy value
of the experiments show promising results while giving the
opportunity for the control plane to add new rules or retract
unused rules dynamically without any network downtime for
the switches.

In this work, (1) we perform packet classification based on
dynamic packet features that will bear the signature of attack
packets; (2) we then use decision tree and logistic regression
models to train our packet classifiers in the control plane and
transform them into match-action rules into the data plane;
(3) we train our models on well-known intrusion detection
datasets including CICIDS [3] and CICDDoS [4]; and (4)
based on the trained model, we generate the ranges of the
features that are deemed malicious and install the match-action
rules into the switch tables in the form of ranges dynamically.
Our evaluations using the match-action table rules show that
the accuracy of classification based on these rules is on par
with the accuracy of the ML model based on sci-kit learn [5]
run offline. This demonstrates that the accuracy of the models
are maintained even when they are interpreted in the form of
a compressed match-action table.

The rest of the paper is organized as follows. Section
IT presents the related work. Section III provides a brief
discussion of the state of the art in switch programming.
Section IV presents the theory behind the proposed solution.
Section V discusses the implementation details. Section VI
presents our evaluations. Section VII concludes the paper.

II. RELATED WORK

With the advent of programmable switches, several works
have been proposed to improve the manageability of SDNs
by capitalizing the programming capabilities of data plane
devices. In case of network security, several studies have
been published for heavy hitter detection using programmable
switches [6],[7]. The ML algorithms open the avenue for

developing better intrusion detection systems that self learn
the changing nature of the attack vector [8], [9].

Combining the capabilities of programmable switches and
the efficiency of ML based methods for intrusion detection,
the idea of implementing ML algorithms in data plane was
explored in [1]. In this work, the authors explore the possibility
of implementing different ML algorithms on a prototype of
their implementation based on both software and hardware
approaches. The authors state that their approach is limited
in classification accuracy. In our work, we focus on working
with decision trees and logistic regression and strive to achieve
high accuracy while performing in-network classification.

In [2], the authors used the decision tree classifier to perform
intrusion detection. The decision tree classifier is implemented
using a ML-to-P4 compiler that takes in the decision tree
as input and generates a P4 program. This program is then
compiled for a specific target by a firmware builder. The
compiled code gets loaded on to the physical device by an
agent deployer every time a new model is generated. The
model updates need the entire P4 program to be reinstalled into
the physical device. In our work, we use logistic regression
and decision tree models and the resulting decision boundaries
are installed via match-action rule updates. Once the basic P4
code with the essential tables are installed onto the switch,
updates from the controller do not require downtime for the
data plane switches.

In [10], the authors propose a new data plane architecture,
called Taurus, to perform per packet ML. The proposed
architecture aims at implementing non linear models like deep
neural networks (DNN), in the data plane. They extend the
current Protocol Independent Switch Architecture (PISA), by
adding a MapReduce block, that works with the existing
blocks like parsers and implements parallelism which is a
major attribute of models like Neural Networks. The Taurus
framework is implemented in hardware and end-to-end perfor-
mance analysis is reported. While this work can be considered
as an initial step towards using complex non linear models
for in-network classification, we have aimed to achieve high
prediction accuracy with linear models without making any
adjustments to the existing architecture or the hardware ASICs.

We see from the current state of art that most of the methods
described here either require complete reloading of software
switch code in order to update the classification model or
need a complex extension to the existing switch architecture.
We aim to work on translating ML models in the form of
match action tables so that it is scalable (not overloading
the switch memory) and updating the model does not cause
any downtime or any additional reprogramming delays in the
switch operation.

III. P4 AND PROGRAMMABILITY

P4 [11] programming language was developed to make data
plane programming flexible in terms of protocols it can handle
and the hardware targets it can be deployed on. P4 attempts to
handle the problem of limited programmability in the switches
due to restrictions the OpenFlow protocol lays on packet
processing and the headers on which it operates. Adding new

protocols and packet processing stages in the form of match-
action tables in P4 gives the network operators the freedom
to define the precise way in which they want the packets
to be handled in the network independent of the underlying
target. The components that are involved in deploying a
reconfigurable data plane are (1) the P4 program that defines
how the packet should be processed, (2) the switch model
architecture and the software switch target used, and (3) the
p4runtime API specification for the communication between
the control plane and the data plane. In a recent survey on data
plane programmability with P4 [12], authors elaborate on the
language fundamentals along with the research advances using
the programmable switches for network programming.

A. P4 Programming Language

The P4 programming language [11] gives the network
programmers the flexibility to define algorithms using the
constructs available. In addition to the usual packet headers
for different protocols, programmers can generate intermediate
data during the execution of the program, called the metadata.
P4 offers support to define user defined metadata that helps
programmers to store variables that are not in the packet
header but are required during packet processing. Features
like counters, registers, meters of the language help with the
implementation of custom protocols based on the network
requirement and to keep track of the network state. In this
work, we capitalize the match-action tables offered by P4 to
add the intelligence learnt from the trained models.

B. P4 Switch

In this work, we use the P4 software switch Behavioral
Model version2 (bmv2) [13] that supports vimodel architec-
ture. The architecture defines the rules that tell the program-
mers the blocks that can be programmed. In the vimodel
architecture, the programmable blocks are parser, deparser,
ingress and egress processing pipelines that have the match-
action tables and a non-programmable traffic manager block.
The bmv2 is a reference P4 software switch that has sev-
eral variations of switch implementations supporting different
architectures. The simple_switch_grpc is a target based on
vimodel. Based on the definitions from the target architectures,
P4 programs are written and compiled using the supported
compilers. The programs written in P4 are compiled into
JSON representations using the p4compiler and are loaded
into the software switch during runtime. In this work, we use
simple_switch_grpc [14] to emulate the data plane switches,
with support to communicate with the p4runtime APIL.

C. P4Runtime

The P4 switches in the data plane are controlled and
managed by a P4 capable SDN controller that uses p4runtime
to communicate with the P4 switches. The p4runtime API [15]
is the control plane specification that is used for managing a
switch that is defined by a P4 program. In this work, we use
the p4runtime_lib python library to write a custom python pro-
gram that defines how we want to manage the data plane and

write match-action rules emulating a controller that supports
P4. The controller program, written in python here, resembles
a full fledged SDN controller that is capable of communicating
to the switches that support P4. The p4runtime control and data
plane communication is facilitated by gRPC[16] framework
with protobuf [17].

IV. PROPOSED SOLUTION

Attacks like DDoS can cause significant damage to SDNs.
Empowering the data plane switches with additional knowl-
edge to successfully filter out malicious packets without having
to consult with the controller for each such packet can be an
effective solution to defend SDNs against these attacks. There
have been several attempts in previous works to implement
such solutions on the switches using static packet features.
But, attackers with large compute resources can launch attacks
in such a way that the required storage space for the solutions
implemented with static features of the packets grows large
overwhelming the switch resources.

In this work, we propose a method to use dynamic features
like packet size (src_bytes), number of packets in a flow (pkts),
etc., along with the static features like source and destination
ports (src_prt, dest_prt), etc., and translate ML models into
the data plane in the form of match-action tables such that the
number of rules required to represent the decision boundary is
tractable. This makes the defense more effective and practical.
In addition, we use P4 switches to implement the packet
filtering rules in the data plane directly so that we can protect
SDN controllers from flooding of PacketIn messages.

We make use of P4 switches due to the flexibility to design
custom packet processing pipelines. The packet is passed down
each block of the pipeline and at the end of the pipeline the
packet is either dropped (if it is classified malicious) or passed
on to the destination (if it is classified benign) depending
on the packet features. With the available features in the P4
language, we focus on using ML algorithms that have linear
decision boundaries only. We look for models that are easily
represented in the form of look up tables. This restriction is
posed because of the P4 language. The current version of P4
language does not support floating point operations making
it difficult to implement ML classifiers that often require
complex mathematical operations like logarithms, polynomi-
als, etc. This shortcoming of P4 has been recorded in the
literature [1], [2] resulting in a need to handle the knowledge
transformation to switches in a smarter way.

Next, we want the implementation to be able to update the
model without having to disrupt the operation of the network.
The presented solution is designed in such a way that the
intelligence from the ML classifiers are not hard coded in
the data plane but can be updated from the control plane at
run time. This is useful when we want to update the decision
boundary when the attack signature changes.

In this work, decision tree (IV-A) and logistic regression
models (IV-B) are used to classify benign and malicious pack-
ets. The workflow is depicted in Fig. 1. All the calculations
are performed in the machine learning and range compression

block and the ML model is transferred to the data plane in
the form of compressed match-action rules through the control
plane. We train the ML classifier with the CICIDS2017 and
CICDDoS2019 datasets and evaluate the performance of the
models implemented as match-action tables in the data plane.

Machine Learning Algorithm and
Range Compression

Control plane

7 Feature 1 LPM
: " Forwardi

Packet In==_» Parser * Matn_:[l;ﬁztmn = 'I":‘; U:E»D'wﬂm‘l . Packet Out
o Class

lngress processing . Data plane

Fig. 1: Proposed solution

A. Decision Tree

Decision trees are supervised learning algorithms that clas-
sify the datapoints based on the threshold values of the features
generated during training. The tree is constructed from the
root and the feature based on which each node splits down
is chosen based on a heuristic like the information gain. The
next level of the tree is reached from the current node based
on its threshold value, for example, all the datapoints that fall
below the threshold value will belong to the left child whereas
the datapoints above the threshold will propagate down the
right child. The threshold value of the feature for each node is
learnt from the training dataset such that it offers the greatest
information gain for that split.

Decision Tree | featurei
o 2105 T
e —
feature i feature j
174.5 115
feature i feature j feature i feature i
85 1.5 9755 1158.0
VAR N - g
class 0 class 0 | class 0 class1 class0 class0 | class 1 class O
(leaf 1) (leaf 2) (leaf3) (leafd) (leaf5) (leaf6) (leaf7) (leafl §)
Decision Rule for each leaf node
Leaf 1: If feature i <= 210.5 AND featurei <= 174.5 AND feaurei< &5 then class 0
Leaf 2: If feature 1 <= 2105 AND featurei <= 1745 AND featurci> 8.5 then class (1
Leaf 3: If feature i == Z10.5 AND featurei = 174.5 AND featurej< 11.5 then class 0
Leaf &: If feature i <= 210.5 AND feature i > 174.5 AND featurej> 11.5 then class 1
Leaf 5: If feature i > 210.5 AND featurej <= 11.5 AND feature i == 9755 then class 0

Leaf 6: If feature i > 210.5 AND featurej <= 11.5 AND featurei > 9755 then class 0
Leaf 7 If feature i > 210.5 AND featurej > 11,5 AND feature1 <= 1158.0 then class |
Leaf 8: If feature i > 210.5 AND featurej > 11.5 AND featurei > 1158 then class 0

Fig. 2: Decision Tree to match-action rules

H S.No l feature i l feature j l Target H
T [0, 8] [0 jmas] | class 0
2 [9,174] [0, Jmaz] class 1
3 [175,210] [0,11] class 0
3 [175,210] | 112, jmas] | class 1
5 [211,975] [0,11] class 1
6 1976, tmax] [0,11] class O
7 211, 1158] | 112, jmaz] | class 0
8 T 11158, imax] | 112, jmas] | class 1

TABLE I: Rules to Range based match-action table

We use the decision tree classifier on the dataset and get the
node values for the chosen features. In this work, we restrict
the number of features to two and height of the generated tree

to three with the leaf nodes being the classes to which a packet
belongs. For a decision tree of height three, there can be up
to eight leaf nodes. Each leaf node corresponds to a unique
decision rule according to which a test point can be classified.
We traverse the tree to each leaf node to get the corresponding
decision rule. From each rule, we obtain the range values of
considered features and the corresponding target value. This
means that the prediction accuracy is achieved with at most
eight table entries for a classifier.

We use pairs of features that provide good prediction
accuracy for the considered attack and use it in the form of
match-action rules to provide the intelligence for the switches.
In case of decision trees, first we gather the decision rule
corresponding to each leaf node as shown in Fig. 2. The
tree shown in this figure is a sample tree with values for
two features as feature i and feature j. We assume that, for
each of the features, the total possible range is [0, i,,4,] and
[0, jmaz] Tespectively. From the decision rule, ranges of the
feature corresponding to each leaf node is obtained as shown
in Table I. The resulting match-action table is loaded on to
the data plane switches to perform in-network classification.

B. Logistic Regression

Logistic regression computes the probability of the outcome
to belong to each class for a given data point. It is a
discriminative classifier model where the decision boundary is
generated from the observed data. Model parameters are learnt
by maximum likelihood estimation. The model learns weights
and bias based on the training data and the probability that a
given test point belongs to default class is estimated using the
formula

1

T ltexp (—wo — w11 — Wa2)

Y

Here, y denotes probability that the test point belongs to
the default class. In this example, the considered dataset has
two features x; and xo. The learnt model parameters are
wp,w; and we where w; and wy are the weights and wy
is the bias. In case of binary classification, the probability
that the test point belongs to the other class is (1 — y). A
test data point is classified belonging to a class which has
the higher prediction probability. In this work, since the P4
language does not support exponential operations, we perform
the training and learning in the machine learning and data
compression block in the control plane as shown in Fig. 1. For
all possible values in the feature range, [0, i) and [0, jimaz]s
we compute the prediction probability and the corresponding
class value, generating a table with ¢,,44 * Jimae, €ntries. From
this table, we capture continuous feature range values with the
same class value and aggregate them together as a single entry
for the match-action table. This optimization is done to limit
the number of entries in the match-action table and to manage
the memory resource of the switches efficiently. Otherwise,
if the rules are added with individual feature values, the size
of the table will be large and intractable. Therefore, without
loss of information, we reduce the size of the flow rule table
substantially by installing them as range match type rules.

For example, Table II, shows how the compressed range table
generated for any attack dataset will look like.

H S.No [feature_1_range [feature_2_range [Target H
1 [i1,72] [j1,J2] class
2 [i3, 4] [j3,74] class
3 . - class
n [22n—1,%2n] [J2n—1,72n] class

TABLE II: Sample range based match-action table

V. IMPLEMENTATION

The proposed solution is implemented on P4 switches,
running on mininet [18] environment. The control plane is
implemented using the pdruntime specification. The sim-
ple_switch_grpc target, based on vlmodel architecture is used
to emulate the data plane switches.

A. Dataset

The datasets used in this work are CICIDS2017 and CI-
CDDoS2019. The CICDDo0S2019 dataset includes several
types of DDoS attacks including, UDP, UDPLag, Syn Flood,
PortMap, NetBIOS, MSSQL. The collected dataset has flow
features as well as packet level features. The DDoS attack files
have proportionally much fewer benign datapoints. Therefore,
we combine the benign datapoints from CICIDS2017 dataset
to train the model. The ratio of benign to malicious points
is kept approximately at 60 : 40 uniformly for all categories
of attacks. The ML classifiers are trained and the models are
installed in the switches in the form of flow rules.

For this analysis, three pairs of features are considered. The
selection of the features are based on the availability of support
in P4 based switches to extract them and the quality of models
that are generated using them. We ran several experiments with
feature pairs and chose the ones that performed well across all
the considered attacks. The parsers in the P4 architecture help
us obtain the length of the incoming packets and counters help
us keep the state for the number of packets between a pair of
source and destination. Similarly, with the help of parsers, it is
straightforward to extract the static features of the packet. The
pairs of features used in the work include (1) src_bytes, pkts,
(2) src_bytes, src_prt, and (3) src_bytes, proto. Here, src_bytes
that denotes the packet size in the forward direction is a packet
based feature whereas pkts denotes the number of packets in
the flow and is a flow based feature; src_prt denotes the value
of the source port value of the incoming packet; and proto
denotes the protocol number of the incoming packet. For the
chosen dataset, these feature sets are considered as the models
trained with them resulted in high classification accuracy.

B. Match-action Table

The main goal of this work is to update the knowledge
from ML models dynamically in such a way that changes
to the model can be performed via the match-action table
update without disrupting the existing system performance.
The match-action rule updates are sent from the control plane
as denoted by the code block in Fig. 3. The feature_i, feature_j
values are given in the form of ranges to generate the table
entry and it is written to the switch via the INSERT update in

the p4runtime. The very first model that is used by the switch
will have updates with the least priority value. Newer models
are updated with higher priority values. This will allow us to
have the newer rules to be elected over the older ones until
the older rules are deleted.

def writeRules(p4info_helper, ingress_sw, feature_i,
feature_j, class_value, priority_value):
table_entry = pdinfo_helper.buildTableEntry(
table_name = "MyIngress.t
priority = priority_value,
match_fields {
ture_1": feature_i,
e_2": feature_j,

1a =t
dbLe_name ,

“"meta.fea

"meta.fea
},
action_name="MyLngress.set_class",
action_params={

'flag": class_value,

1

ingress_sw.WriteTableEntry(table_entry)
Fig. 3: Code block that writes the rules to the switch

action set_class(bit<l4> flag)
{
meta.class: flag;
¥
table table_name{
key = {
meta. feature_i:
meta. featu

range;
¢ range;

}
actions = {
set_class;
NoAction;
+
size = 4896;
default_action = NoAction();

Fig. 4: P4 code to declare range tables

The corresponding tables and actions that need to be defined
in P4 is given by the code block in Fig. 4. Here, the keys
in the match-action tables are declared as type range. The
set_class action sets the class value to be 0 or 1 (benign or
malicious) for a particular entry. In the main processing block,
the feature values are updated in the corresponding metadata
variables. After the values are updated, the match-action rules
are applied on the packet features and the class of the packet
is set. Based on the set class value, the packets are either
dropped or passed to the appropriate interfaces.

The major goal of this work is to renew the data plane
knowledge with newer models that use most recent data to
learn. We do this by means of match-action rule updates.
There are two areas that need to be considered before per-
forming model updates via table rules: (1) the table size grows
drastically if we keep adding rules without purging them; and
(2) if the packet feature matches more than one table entry
with the same priority, this would be undesirable. We mitigate
these issues by purging the outdated table entries by using the
DELETE update from the p4runtime.

VI. EVALUATION RESULTS
The decision tree model was implemented using the Deci-

sionTreeClassifier from the sci-kit learn library. The resulting
decision tree is converted into corresponding match-action
rules and is used to classify the packets in the data plane switch
and report the results for considered six attacks in Table III.
Similarly, we run the LogisticRegression model based on
sci-kit learn and obtain the weights and bias for the considered
pairs of features of the dataset. With the obtained weights and
bias, we generate a table with the predicted class values for
all possible feature values and obtain the continuous ranges
with same class value. With the range compressed table, we
transport the rules in to the data plane switch to perform in-
network classification and report the results in Table I'V.

Results based on Results based on
Attack | sci-kit learn with two features |range tables with two features
src_bytes,|src_bytes, [src_bytes, |src_bytes,|src_bytes, [src_bytes,
pkts src_prt proto pkts src_prt proto
UDPLag| 0.978 0.975 0.981 0.976 0.977 0.981
UDP 0.996 0.995 0.999 0.996 0.995 0.999
Syn 0.938 0.967 0.938 0.938 0.967 0.938
Portmap | 0.996 0.996 0.996 0.996 0.996 0.996
NetBIOS| 0.998 0.999 0.998 0.998 0.999 0.998
MSSQL | 0.999 0.996 0.999 0.999 0.792 0.999

TABLE III: Accuracy values for the Decision Tree

Results based on Results based on
Attack |sci-kit learn with two features|range tables with two features
src_bytes|src_bytes,|src_bytes, [src_bytes,|src_bytes, [src_bytes,
pkts src_prt proto pkts src_prt proto
UDPLag| 0.966 0.841 0.972 0.972 0.836 0.974
UDP 0.993 0.988 0.998 0.992 0.988 0.998
Syn 0.866 0.818 0.847 0.866 0.817 0.846
Portmap| 0.995 0.993 0.994 0.819 0.992 0.994
NetBIOS| 0.997 0.997 0.998 0.995 0.997 0.998
MSSQL | 0.998 0.992 0.999 0.997 0.992 0.999

TABLE IV: Accuracy values for the Logistic Regression

In Table III and IV, we observe the accuracy of the
classification from the sci-kit learn based mathematical model
as well as the accuracy from classifying the packets using the
compressed range tables for both decision tree and logistic
regression models respectively (e.g., compare columns 2, 3, 4
with column 5, 6, 7, respectively, in Table III and IV).

We see that the intelligence is ported to the data plane
without any loss of information in both decision tree and
logistic regression in almost all of the attacks considered,
despite performing compression of the individual entries to
ranges. This demonstrates that for the attack types considered,
there is no loss of information between the actual mathematical
model and the proposed solution that uses range tables to
accommodate the data plane limitations. We see that our
models with fewer features is able to classify packets based on
range based match-action table and the classification accuracy
is on par with the offline run. We evaluated the performance of
the translated models with other metrics like precision, recall,
F1 score and saw that the values follow the sci-kit learn based
models similar to accuracy. The values are not reported due the
page limit. In future work, we will further explore the reasons
for the differences in the accuracy as seen in certain attacks
and translate other ML models on to the data plane devices.

VII. CONCLUSIONS

In this work, we proposed a scalable approach to prevent the
controller from becoming a bottleneck during flooding based
intrusion attacks. We utilized an ML based approach where we
translated the decision boundary of linear ML classifiers to the
data plane devices in the form of range based match-action
table rules to perform in-network classification of packets.
These rules are added dynamically such that there is no
network downtime. Our evaluations show that switches with
the match-action rules from ML models can perform packet
classification with very high accuracy.
This work is partially supported by NSF (DGE-1820640).

REFERENCES

[1] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
toward in-network classification,” in Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, New York, NY, USA, 2019.

[2] B. M. Xavier, R. S. Guimaraes, G. Comarela, and M. Martinello, “Pro-
grammable switches for in-networking classification,” in INFOCOM,
2021.

[3] I Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
in 4th ICISSP, Portugal, 2018.

[4] 1. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping realistic distributed denial of service (ddos) attack dataset and
taxonomy,” in /CCST, Chennai, India, 2019.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825-2830, 2011.

[6] R. Ben Basat, X. Chen, G. Einziger, and O. Rottenstreich, “De-
signing heavy-hitter detection algorithms for programmable switches,”
IEEE/ACM Transactions on Networking, vol. 28, pp. 1172-1185, 2020.

[71 V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, Santa Clara, CA, 2017.

[8] D. Jankowski and M. Amanowicz, “On efficiency of selected machine
learning algorithms for intrusion detection in software defined net-
works,” IJET, vol. 62, pp. 247-252, 2016.

[9] H. Polat, O. Polat, and A. Cetin, “Detecting ddos attacks in software-
defined networks through feature selection methods and machine learn-
ing models,” Sustainability, vol. 12, 2020.

[10] T. Swamy, A. Rucker, M. Shahbaz, 1. Gaur, and K. Olukotun, “Taurus:
a data plane architecture for per-packet ml,” in Proceedings of the 27th
ACM ASPLOS, 2022.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard et al., “P4: Program-
ming protocol-independent packet processors,” ACM SIGCOMM CCR,
vol. 44, p. 87-95, 2014.

[12] F. Hauser, M. Hiberle, D. Merling, and other, “A survey on data plane
programming with p4: Fundamentals, advances, and applied research,”
arXiv preprint arXiv:2101.10632, 2021.

[13] “Behavioral model (bmv2).” [Online]. Available: https://github.com/p4l
ang/behavioral-model

[14] “simple_switch_grpc.” [Online]. Available: https://github.com/p4lang/
behavioral-model/tree/main/targets/simple\ _switch_grpc

[15] “P4runtime specification.” [Online]. Available: https://p4.org/p4-spec/p
4runtime/main/P4Runtime-Spec.html

[16] “grpc,” 2021. [Online]. Available: https://grpc.io/

[17] “Google protocol buffers,” 2021. [Online]. Available: https://developers
.google.com/protocol-buffers/

[18] “Mininet official website.” [Online]. Available: http://mininet.org/

