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Abstract—Modern scientific workflows that require data re-
duction, feature detection, and experiment steering in real time
are becoming more common nowadays. However, efficient and
secure data streaming is challenging to realize in practice,
because of a lack of direct external network connectivity for
scientific instruments and because of authentication and se-
curity requirements of HPC centers. The SciStream toolkit
was proposed as a middlebox-based architecture with control
protocols to enable efficient and secure memory-to-memory data
streaming between producers and consumers that lack direct
network connectivity. However, an initial evaluation uncovered
that a naive implementation of SciStream may add unwanted
jitter to a scientific streaming pipeline. Thus, in this paper we
present implementation approaches for SciStream, and we
evaluate those implementations on the FABRIC national testbed.
Furthermore, we present the first attempt to develop a streaming
application using the QUIC transport protocol and we evaluate
it over a SciStream-enabled real WAN on FABRIC.

Index Terms—Scientific streaming, SciStream, S2DS

I. INTRODUCTION

As scientific instruments generate data at rates in the order
of tens of gigabytes per second [1], real-time analysis of
streaming data has emerged as a solution to cope with this new
paradigm [2]–[5]. Furthermore, rapid analysis of generated
data may permit real-time feedback and experiment steering,
however this often requires computational capabilities greater
than those available at a single experimental facility—and/or
may require the use of specialized computer systems [6].
Thus, the use of remote high-performance computing (HPC)
for analysis is becoming more common in large scientific
streaming workflows.

We note that scientific streaming applications differ from
many other streaming applications in their high throughput
requirements (a single application may require >10 Gbps)
and the fact that the data producers (e.g., data acquisition
applications on scientific instruments, simulations on super-
computers) and consumers (e.g., data analysis applications on
HPC systems) are typically in different security domains (and
thus require bridging of those domains). The SciStream

system described in [7] (a brief overview is provided in
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the next section) establishes the necessary bridging and end-
to-end authentication between source and destination, while
enabling efficient memory-to-memory data streaming. How-
ever, in our preliminary evaluations, we discovered that a
naive implementation of SciStream’s Data Server (S2DS),
can introduce significant jitter into an end-to-end streaming
pipeline. Moreover, measurements obtained from a real testbed
were different from those obtained on an emulated scenario.

To get SciStream ready for production environments,
we first need to evaluate it at scale. Fortunately, the FAB-
RIC [8] national testbed provides a suitable environment to
test SciStream at scale. With a Terabit network supercore
and coast-to-coast 100 Gbps core, FABRIC provides unprece-
dented programmability along with large amounts of compute
and storage built into the core of the network. FABRIC uses
specially designed switching nodes into the footprint of the
Department of Energy’s Energy Sciences Network (ESnet) and
regional networks across the United States.

In this paper we present several implementation approaches
for SciStream’s S2DS that may alleviate the large jitter
introduced by our initial prototype, and we evaluate their
performance on FABRIC under different WAN setups. Fur-
thermore, we present an early prototype of an streaming appli-
cation using the QUIC transport protocol over a SciStream-
enabled infrastructure on FABRIC.

The rest of the paper is organized as follows. We provide
background and motivation in Section II. We describe imple-
mentation approaches for SciStream’s S2DS in Section III,
and we present our evaluation results in Section IV. We
conclude in §V with a brief summary and look at future work.

II. BACKGROUND AND MOTIVATION

SciStream [7] is a federated system in which participat-
ing scientific facilities (typically in independent administrative
domains) make their resources available through program-
matic interfaces to enable wide-area streaming analysis. The
SciStream architecture relies on gateway nodes (GNs) and
control protocols to create on-demand proxies between an
instrument’s LAN and the WAN as shown in Figure 1. The
reasoning behind SciStream use proxies at the transport
layer ensures that the architecture is agnostic of streaming
application libraries and implementations. SciStream has



Fig. 1: SciStream architecture for supporting efficient and
secure data streaming from data producer’s memory to remote
data consumer’s memory using gateway nodes and on-demand
proxies (ODP) [7].

three software components that participate in the control
protocols:

• SciStream User Client (S2UC) is a software with which
the end user and/or workflow engines/tools acting on
behalf of the user interact to orchestrate end-to-end data
streaming.

• SciStream Control Server (S2CS) runs on a GN to
manage resources, including initiating, monitoring, and
terminating on-demand proxy processes.

• SciStream Data Server (S2DS) runs on gateway nodes
and acts as a proxy between the internal network (LAN
or HPC interconnect) and the external WAN.

FABRIC [8] is a suitable infrastructure for evaluating the
efficiency of scientific data streaming enabled by SciStream
from the perspective of throughput achieved and latency
introduced. Currently, FABRIC has many sites connected at
100 Gbps, and experimenters can create network topologies
various values of RTT ranging from LAN environments
(<1 ms) to continental WAN (>100 ms). Existing testbeds
may fall short on different requirements for the type of
evaluations we want to perform on SciStream’s S2DS.
Those that can provide a 100 Gbps WAN link (e.g., Chameleon
Cloud [9]) may lag the diversity of many sites with various
RTT values, while those with many sites do not provide high
capacity in the WAN (e.g., GENI [10]). In this paper we
evaluate several implementations of SciStream’s S2DS over
different FABRIC setups. The following sections describe our
implementation approaches (Section III) and evaluation results
(Section IV).

III. IMPLEMENTATION APPROACHES

In a SciStream-enabled environment, each end-to-end
data stream must traverse three network segments—data pro-
ducer to local S2DS, local S2DS to remote S2DS, and
remote S2DS to data consumer. As SciStream is designed
to work at the transport layer, in this section we describe
implementation approaches for S2DS using both TCP and
QUIC transport protocols.

A. Simple TCP Proxy Implementation
The simplest implementation of S2DS is a TCP port for-

warder. For our SciStream prototype described in [7], we
added a reconfigurable circular buffer. In this port forwarding
strategy, GNs listen on a local TCP port and send all received
data to a remote host that can either be another GN or a

Fig. 2: TCP proxy implementations using the socket program-
ming model: 1) user space buffer, 2) sendfile, and 3) splice(2)

consumer application. This operation utilizes the traditional
listen, bind, and send functions of socket programming. These
functions utilize user space buffers to queue large amounts of
data (see Figure 2 option 1). Although this approach could
handle various types of scientific streaming application, it
introduced a significant amount of jitter. We attribute the high
jitter to variance in context switch and data copy latency
between kernel and user space. High jitter can have negative
impact on streaming applications.

To reduce jitter, we investigated a few kernel operations
and functions to reduce the frequent memory calls. In Linux
systems specifically, we identified two specialized syscalls that
aim to address this problem: sendfile and splice(2). The
sendfile syscall can be used to speed up transferring large
files from disk to a socket (see Figure 2 option 2). However,
this approach keeps the copying operation between two sockets
that increases the load on the proxy as the streaming appli-
cation load increases. On the other hand, the Linux splice(2)
function (see Figure 2 option 3) avoids copying data from
kernel to user space, however it requests syscalls for each
forwarded packet, increasing the operation cost.

In summary, processes that forward large amounts of data
between sockets face three problems:

(i) Making multiple syscalls for every forwarded packet is
costly.

(ii) The user space process must be woken up often to
forward the data. Depending on the scheduler, this may
result in poor tail latency.

(iii) Copying data from kernel to user space and then imme-
diately back to the kernel is not free and accumulates to
a measurable cost.

Thus, in the next section we present a new approach to
building a TCP proxy that circumvent these problems.

B. High-Speed TCP Splicing Proxy using SOCKMAP
In this section we provide an alternative implementation

of a TCP proxy that could potentially reduce the context
switching between kernel and user space, which may translate
in improved jitter performance for scientific streaming applica-
tions. By leveraging the Linux eBPF (Berkeley Packet Filter)
technology [11], we can build a TCP proxy in which all packet
operations will be processed in kernel space only. eBPF is a
technology used to run sandboxed programs in kernel space,
without requiring to change the kernel’s source code.



Fig. 3: High-Speed TCP Splicing Proxy using SOCKMAP.

In the traditional socket programming model, a socket opens
an interface between kernel TCP/IP stack and a task context
in user space. Then, the socket forwards data from the kernel
space to the tasks where the socket is binding. To simplify
this, eBPF introduces sockmap [12], an API that utilizes a
method called Stream Parser to pass packet to other eBPF
tasks. These eBPF tasks can achieve a streaming redirection
operation on kernel space only, this direct operation will speed
up the data transmission compared to the original socket
programming. Figure 3 shows the basic logic on how sockmap
is applied in one GN. Instead of directly loading processes on
user space or communicating with a cache file, TCP socket
descriptors in a GN are now inserted into the SOCKMAP ,
or specifically BPF MAP TY PE SOCKMAP , as a type
of an eBPF map. After the insertion, eBPF will handle the
forwarding procedure, which ensures the processing happens
only in kernel space instead of the user space.

Algorithm 1 Sockmap TCP Proxy

Require: sockmap, proxymap, [IPs, ports]
initialization socket1, socket2, ...
for all index, [IP, port] 2 [IPs, ports]) do

bind [socket] with [IP, port]
sockmap[index] [socket, index]

end for
while True do

congest ctrl() & buf.push(sockmap[index])
proxymap[target port] buf.pop(sockmap[index])

end while

Algorithm 1 shows the pseudocode of a TCP proxy that uses
the sockmap function according to the eBPF specifications.
The sockmap and proxymap are defined as eBPF map struc-
tures with the type of SOCKMAP and HASH , respectively.

C. Implementation of a QUIC Proxy for Secure Streaming
QUIC [13] is a new transport protocol standardized by

the IETF, and developed on top of UDP with the aim of
being encrypted by default. Furthermore, the HTTP/3 [14]
protocol has been developed by the IETF as an application
layer protocol on top of QUIC. In this subsection, we present
our SciStream QUIC proxy solution that remains at the
transport layer using QUIC stream mode. Unlike the datagram
mode used for video or game streaming purposes, steam mode
provides reliable data streaming.

Fig. 4: QUIC proxy implementation with encryption streaming
by default.

To develop a general QUIC proxy, we first tried to im-
plement a plain UDP proxy. However, due the features of
the QUIC standard [15], an address validation is periodically
performed either on the long datagram header or short QUIC
header. As a result, the QUIC handshake procedure fails when
passing across a plain UDP proxy. To overcome this issue, we
implemented a QUIC proxy that creates two separate QUIC
connections at each GN: one for LAN and one for WAN.
In our QUIC proxy, streaming data will be buffered at the
system level inside the proxy node itself and forwarded to
the pre-assigned target. Specifically, two GNs first establish a
secure QUIC connection on WAN and remain idle waiting
for connection requests from the application side. Once a
producer or consumer application initiates a connection to
their corresponding GN, a new QUIC connection is established
and data is forwarded to the target node. However, QUIC
transfers over high-bandwidth links can be limited by the size
of the system default UDP receive buffer. This buffer holds
packets that have been received by the kernel, but have not yet
been read by the application. For high-throughput streaming
applications, a small buffer size may cause a significant packet
drop or even stop the connection. To solve this limitation,
before instantiating the QUIC proxy, we must first increase
the UDP buffer size in the operating system. Figure 4 shows
the end-to-end data flow of our SciStream QUIC proxy
implementation.

IV. EVALUATION

In this section we evaluate the implementation approaches
for SciStream’s S2DS described in Section III on the
FABRIC testbed. For our experiments, we are interested
in evaluating scientific data streaming over different WAN
configurations.

A. Experimental Setup
Figure 5 shows the logical topology of our experimental

setup, as drawn by FABRIC’s GUI. In general, we request
FABRIC resources from two sites and connect them via a
WAN link and a separate control network. For the example
in Figure 5, we are using Salt Lake City (SALT) and Utah
(UTAH) sites. Inside each site, we request at least two compute
nodes that are connected by a LAN link (prod_lan_net



and cons_lan_net in the topology diagram). Two of
these nodes are also connected to the WAN (GN_WAN_NET
in the case of the illustration). We also need an out-of-
band network for running the SciStream control protocol
(control_net). Note that one site (UTAH) has three com-
pute nodes, we use this third node to execute SciStream’s
S2UC for the control protocol. Each compute node runs Linux
Ubuntu 20.04 as the OS, with Linux source code version 5.4.0-
97 for eBPF support. Python 3.8 is used for emulating the
data generation and consumption processes, and ZeroMQ [16]
is used for implementing a Pub/Sub streaming application
pipeline in Python. We use HTCP as the congestion control in
all our nodes, and tune the TCP setting for WAN scenarios.
Our QUIC proxy implementation is based on GoLang version
1.18.3 and quic-go version 0.28.0.

Fig. 5: Experimental setup topology on FABRIC

FABRIC provides granularity for reserving even the type
of network interface card (NIC) per compute node. For our
experiments, the nodes running producer and consumer appli-
cations on each site have one ConnectX-6 Dx 100GbE dual
Ethernet NIC card for the following purposes: i) establish a
link to the control network and ii) connect to their local GN
for data streaming. On the other hand, each GN has three basic
100GbE single NIC cards. The first two NICs are used for the
same purpose as indicated for the nodes running the producer
and consumer application, while the third NIC card is used
for establishing a WAN link between remote GNs.

1) Methodology: To evaluate the performance of S2DS

implementation approaches on different WAN settings, we
compare the application goodput of SciStream with a sce-
nario in which producer and consumer have direct connectivity
over the network (we call this scenario “No-SciStream”). We
also evaluate how different implementations of S2DS affect
the jitter of a scientific streaming analysis pipeline.

We conduct our evaluation on five setups with RTTs rep-
resentative of scientific streaming scenarios (see Table I for
details). We chose a LAN setup between FABRIC’s Utah and
Salt Lake City sites (RTT < 1 ms), a metro setup between
Michigan and StarLight in Chicago (RTT < 10 ms), a short
WAN between StarLight and Dallas sites (RTT ⇠ 25 ms),
a WAN between Utah and the MAX Gigapop in Maryland
(RTT < 60 ms), and a long WAN between Michigan and
TACC (RTT < 150 ms). We assume that cross-traffic from
other experimenters using FABRIC is present in the network.

TABLE I: Avg. RTT (ms) for various FABRIC WAN setups.

LAN Metro Short WAN WAN Long WAN

Prod LAN 0.087 0.092 0.167 0.165 0.161
Cons LAN 0.100 0.105 0.179 0.148 0.160
GN WAN 0.253 5.293 23.998 57.848 143.370

Overall 0.440 5.490 24.344 58.161 143.691

For the all experiments, the producer generates samples as
fast as possible (i.e., no sampling delay). In each experiment
we transfer 10 GB for a fixed sample size, which we vary
across experiments from 512 bytes to 1 MB in power-of-two
increments. For each experiment we compute goodput as the
size of the received dataset (num samples ⇥ sample size)
divided by the elapsed time between the arrival of the first
sample and the arrival of the STOP message (� t = tstop �
tfirst sample). We compute the application latency and jitter
by subtracting the arrival time of a message to the consumer
minus the arrival time of the previous message (ti+1 � ti)
and store the result in an array. At the end of the experi-
ment we compute the average and standard deviation of our
measurements to obtain the latency and jitter, respectively.
We configure the circular buffer of the Legacy S2DS to be
10 MB for all experiments, corresponding to 10 messages for
the largest sample size.

B. Results

Figure 6 shows the goodput performance results for our
two TCP implementations of SciStream S2DS (legacy
and sockmap proxies) compared to the No-SciStream case,
over the five FABRIC setups described in Section IV-A1. To
saturate the 100 Gbps WAN links, we simultaneously run
five Pub/Sub processes (paired with five instances of S2DS).
In the best case scenario, the maximum throughput that a
streaming application with direct connectivity (No-SciStream)
can achieve is ⇠78 Gbps. For the LAN, metro, and short
WAN scenarios (Figures 6a, 6b, and 6c), we observe that no
significant difference exist between the No-SciStream scheme
and any of the S2DS implementations for small sample sizes.
On the contrary, for large sample sizes, the sockmap approach
provider higher goodput than the legacy proxy approach.
Furthermore, in the case of the metro setup, sockmap is able to
even outperform the No-SciStream scheme. For both WAN and
long WAN setups, the legacy proxy achieves higher goodput
for very large sample sizes (> 256KB).

Due to space constraints, we have omitted the application
latency results. However, we can comment that for legacy
and sockmap implementations, the application perceived by
the consumer application remains in the order of hundreds
of microseconds. The jitter performance results for all TCP
implementations are shown in Figure 7. In general, we observe
that the average jitter remains relatively constant regardless
of the RTT of the setup, with average values under 200 µs.
The only exception is the Metro setup, in which average
jitter values for both legacy and sockmap proxies are almost
doubled. This can be attributed to a transient event in the
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Fig. 6: Goodput performance of two TCP implementations of SciStream S2DS (legacy and sockmap proxies) compared to
the No-SciStream case over five network setups: (a) LAN, (b) metro, (c) short WAN, (d) WAN, and (e) long WAN.

network. For future work, we will increase the repetition of
the experiments to reduce the effects of network transients.
For all network setups (except for the Metro case), any
implementation of S2DS provides a smaller jitter on average
compared to the No-SciStream configuration. This is explained
by the fact that SciStream breaks the end-to-end connection
into three connections with smaller RTT and it also add buffers
in the path.
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Fig. 7: Jitter performance of two TCP implementations of
SciStream S2DS (legacy and sockmap proxies) compared
to the No-SciStream case.

Figure 8 shows the goodput evaluation results for our QUIC
proxy implementation. We determined that by default, QUIC
assumes a minimum IP packet size of 1280 bytes. However,
for all of our experiments, we configure jumbo frames (9000
bytes) in all links of our network topology. Although the
maximum goodput in the LAN is ⇠22 Gbps and the goodput
decreases as the RTT in the WAN increases, we observe
that our QUIC proxy implementation provides a goodput
comparable to the No-SciStream case. In the case of jitter
results (see Figure 9), we observe lower jitter for our QUIC
proxy compared to the No-SciStream case. Compared to the
TCP case, both application latency (data not shown) and jitter
for QUIC are an order of magnitude larger.

V. CONCLUSION

In this paper we evaluated several implementation ap-
proaches of SciStream’s S2DS over the FABRIC national
testbed, evaluating scientific data streaming over different
WAN configurations. We compared the application goodput of

LAN Metro Short WAN WAN Long WAN

5

10

15

20

25

A
v

g
-S

tr
ea

m
in

g
 G

o
o

d
p

u
t 

(G
b

p
s)

Direct QUIC

QUIC Proxy

Fig. 8: Average goodput performance of a QUIC application
with direct connectivity and over a SciStream-enabled
QUIC proxy.
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Fig. 9: Jitter performance of a QUIC application with direct
connectivity and over a SciStream-enabled QUIC proxy.

SciStream with a scenario in which producer and consumer
have direct connectivity over the network, and we observed
no significant difference exist between any implementation of
S2DS and the direct connectivity case. We also evaluated how
different implementations of S2DS affect the jitter of a scien-
tific streaming analysis pipeline, and we demonstrated that the
sockmap implementation provides lower jitter in comparison to
a legacy implementation based on socket programming model.
Finally, we presented an early prototype of an streaming appli-
cation using the QUIC transport protocol over a SciStream-
enabled infrastructure. For our future work, we will continue
improving the performance of SciStream using FABRIC.
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