é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

SecSMT: Securing SMT Processors against
Contention-Based Covert Channels

Mohammadkazem Taram, University of California San Diego; Xida Ren and
Ashish Venkat, University of Virginia; Dean Tullsen, University of California San Diego

https://www.usenix.org/conference/usenixsecurity22/presentation/taram

This paper is included in the Proceedings of the
31st USENIX Security Symposium.
August 10-12, 2022 « Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is
sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

SecSMT: Securing SMT Processors against Contention-Based Covert Channels

Mohammadkazem Taram’, Xida Ren*, Ashish Venkat*, Dean Tullsen’
YUniversity of California San Diego, * University of Virginia

Abstract

This paper presents the first comprehensive analysis
of contention-based security vulnerabilities in a high-
performance simultaneous mulithreaded (SMT) processor.
It features a characterization of contention throughout the
shared pipeline, and potential resulting leakage channels for
each resource. Further, it presents a set of unified mitiga-
tion/isolation strategies that dramatically cut that leakage
while preserving most of the performance of a full, insecure
SMT implementation. These results lay the groundwork for
considering SMT execution, with its performance benefits, a
reasonable choice even for security-sensitive applications.

1 Introduction

The pursuit of secure computation has always featured a clear
tension between performance and security. Security mitiga-
tions often come with a high performance [1] impact that
can be manifested in serious environmental and economic
impacts [2] if they are employed, and in disastrous security
and privacy breaches [3-5] if they are not. In the context of
processor architectures, this security-performance tension is
only growing as new attacks appear, each exploiting a cru-
cial performance optimization in the processor, threatening to
unwind decades of architectural gains.

Microarchitectural attacks exploit different architectural
features. Speculative execution [6], shared caches [7], branch
prediction [8], execution units [9], and I/O throughput opti-
mizations [10] are examples of the features that are exploited
in both well-established attacks and more recent instances [6].
Turning off any of these features could be crippling to perfor-
mance, so we typically seek ways to continue to enable the
optimization but with higher levels of protection.

One performance optimization, however, is often switched
off in the name of security, at significant performance cost:
Simultaneous Multithreading (SMT) [11, 12]. SMT enables a
processor core to issue instructions from multiple threads to
the execution units in the same core in the same cycle. With
a small investment in hardware, the processor can greatly
increase the throughput/utilization of the pipeline, more effec-
tively hiding latencies and stalls of all types. The substantial
benefits of SMT have led to its widespread adoption by virtu-
ally all the major players in the high-performance processor
market, i.e., Intel, AMD, IBM, and ARM.

SMT achieves its high level of execution efficiency by dy-
namically allocating resources to threads as they are needed,
effectively utilizing resources not needed by one thread to
accelerate another. Virtually every part of the pipeline is po-
tentially shared and contended for in some way. This creates

a performance coupling between co-resident threads that is
an enormous challenge for security. Some have suggested
turning off SMT altogether [13]. Google, as a response to
MBDS attacks, has disabled SMT by default on Chrome OS 74
and later [13]. OpenBSD takes a similar measure by disabling
SMT by default on version 6.4 and later [14]. Red Hat has
announced [15] kernels with updated controls allowing users
to choose whether to disable the feature or not.

Security researchers and architecture researchers are ac-
tively working to preserve many of the optimizations recently
under attack (speculative execution, caches, branch prediction,
store-load forwarding, etc.). This paper makes the case that it
is time to add SMT to the set of features we should preserve
even for secure execution. This research seeks to identify the
extent of the vulnerability of current SMT processors, and to
begin to navigate the middle ground — that is, how much of
SMT’s performance benefits can we retain while providing
vastly greater performance decoupling?

This paper seeks to provide an exhaustive evaluation of
resource contention across the entire pipeline for recent
offerings from both Intel and AMD. We find that those
two providers already take very different approaches to the
security/performance tradeoffs. Both, however, provide a
number of high-bandwidth channels of potential leakage,
including several never before identified. By focusing on the
bandwidth of covert channels utilizing the various resources,
we are able to perform a unified, systematic, and exhaustive
study of pipeline resource vulnerabilities.

In a similar way, we also seek to examine more secure
approaches to multithreading that can be applied in a more
holistic and comprehensive manner. We identify three
different approaches to partitioning that can be applied to
all contended resources with slight variation, and evaluate
their ability to restore the performance of a fully dynamically
shared SMT processor.

These approaches include full static partitioning (the ap-
proach applied already to several pipeline resources) and two
new approaches. Adaptive partitioning provides a temporary,
hard partition between threads for a particular resource, but
that partition can move at regular intervals to adapt to long-
term program behavior, preserving some of SMT’s ability
to adapt to changing execution needs with minimal leakage
between threads. Asymmetric SMT enables the system to
prevent leakage to an untrusted thread, but without sacrificing
the performance of the trusted thread. Our results show that
these secure multithreading approaches provide high isolation
between threads while retaining most of the performance of a
dynamically shared, insecure SMT implementation.

USENIX Association

31st USENIX Security Symposium 3165

2 Background and Related Work

This section provides background on modern x86 processor
architectures, SMT architectures, and microarchitectural side-
channels, with a focus on SMT-enabled attacks.

2.1 The x86 Pipeline Resources/Structures

Figure la shows a modern x86 processor’s frontend. The
frontend is responsible for fetching, decoding, and delivering
operations to the backend. In x86 processors, this is accom-
plished using one of the following three methods:

1) The legacy decode pipeline. Each cycle, the frontend
reads a 16-byte block from the instruction cache into the fetch
buffer, which then feeds into the predecoder that demarcates
individual variable-length x86 instructions (also called macro-
ops). These macro-ops are then inserted into a small buffer
(the macro-op queue). Instructions in this queue are then
distributed to one of the instruction decoders, which translate
each instruction into internal RISC (Reduced Instruction Set
Computing)-like micro-ops. Modern Intel processors feature
one complex decoder that is able to translate the instructions
into up to four micro-ops, plus simple decoders that can only
translate instructions that decompose into a single micro-op.
Any instruction that translates to more than four micro-ops
is handled via a Micro Sequencing ROM (MSROM). The
decoded micro-ops then get queued up in a small structure
called the micro-op queue — also called the instruction decode
queue — until they get issued into the backend.

2) The micro-op cache. Due to the complexity of the de-
coding process, the legacy decode pipeline can be a major
performance bottleneck. To alleviate this, most modern x86
processors cache decoded micro-ops in a special structure
called the micro-op cache or the decoded stream buffer. This
cache enables the frontend to bypass the slow and power-
hungry legacy decode pipeline whenever the translated micro-
ops of an address are already available in the micro-op cache.
Due to the streaming nature of the micro-op cache, the proces-
sors often impose special placement rules [16]. For example,
in Intel processors, the micro-ops of a 32-byte region of the
code can be placed in the micro-op cache only if the region
gets translated into less than 18 micro-ops.

3) The loop stream detector. Intel processors feature an-
other optimization called a loop stream detector (LSD). The
LSD further improves bandwidth and power consumption by
bypassing both the legacy decode pipeline and the micro-op
cache. The LSD identifies small loops within the micro-op
queue and then locks down the micro-ops in the queue. It then
delivers the micro-ops from the micro-op queue until an unex-
pected control flow (i.e., branch misprediction) occurs [16].

Figure 1b shows the main components of a modern x86 out-
of-order superscalar backend. First, the backend renames the
architectural registers of the issued micro-ops and allocates an
entry in the reorder buffer for each. They are then forwarded to
the scheduler, also called reservation stations or the instruction
queue, which is responsible for identifying micro-ops ready

Toop

Instruction
Cache

Macro-Op Queue
M/C

Stream
D(‘n'(‘h)l“\
: 3 Micro-Op Queue
Ll 16 Pro | [~ AMNERH, [Complex b Q
Branch Decode || [EERERRRY [0l) oy 110ps Tssue to
s

Prediction Simple [| Backend

Next Micro-Op Micro Si i —
ROM (MSROM) Simple

Address Cache
Logic L,
TnOps

(a) Frontend

Scheduler/RF

61005 | 1 5 wOps |LPort] . Data
SR [= ad Quene Cache
Port3 Store Queue >
Vet (o | IR

Common Data Bus

(b) Backend
Figure 1: Simplified Architecture of a Modern X86 Processor.

for execution (i.e., whose operands are ready) and dispatching
them into available execution units. Intel groups the execution
units into execution ports, and the scheduler can dispatch as
many micro-ops per cycle as allowed by the superscalar width
of the processor, with the restriction that only one micro-op
is dispatched to a free port in any given cycle.

2.2 Simultaneous Multithreading

Simultaneous Multithreading (SMT) [11, 12] is an architec-
ture that allows for multiple hardware execution contexts in
a single out-of-order superscalar pipeline. In an SMT pro-
cessor, instructions from multiple threads can be dispatched
on any cycle. An SMT processor significantly improves the
pipeline utilization since it allows continued forward progress
if one thread experiences a temporary stall in the pipeline due
to long latency (e.g., a cache miss), or even several tightly-
dependent short latency operations. Its performance benefit
comes from its ability to dynamically assign resources to the
thread that needs them each cycle. But this level of sharing
provides heavy exposure of one thread’s performance to the
characteristics of the other.

Contention is possible in various ways throughout the en-
tire pipeline. Consider the Reservation Stations (RS). Ivy
Bridge has 54 entries available for instructions to wait for
their operands to become available before being eligible for
execution. The number of RS entries available to a thread
define the window over which the processor can look for out-
of-order parallelism, and significantly impacts performance.
This resource could be shared between threads in various
ways, with very different security implications. RS entries
could be duplicated, where each thread would have access to
exactly 27 entries (assuming two thread contexts). The RS
could be partitioned, where in SMT mode each thread has
access to 27, but when only a single context is running, it has
access to 54. In that case, the only effect one thread sees is
whether the other thread is running or not. It could be fully
shared (this was the general assumption in the original SMT
literature), where RS entries are allocated to whichever thread

3166 31st USENIX Security Symposium

USENIX Association

asks for them, with the fetch unit guiding instruction entry
so that neither thread would fill the structure and starve the
other [12, 17]. Full sharing typically, but not always, max-
imizes performance; however, a thread that put significant
pressure on the RS would have its performance constantly
vary according to the RS utilization of the other thread, and
completely saturating the RS could have a dramatic impact
on the other thread’s performance. An intermediate solution
is thresholding, where either thread is allowed to use up to,
say 44 entries, ensuring that at least 10 are always available
to the other thread even if it’s not currently using them. In
theory, thresholding can leak just as much information as full
sharing, but in practice it is much more difficult to success-
fully execute an attack because of the difficulty of keeping
resource utilization right near the edge of the threshold.

In Figure 1, we can see examples of shared structures (e.g.,
Instruction Cache), duplicated structures (Macro-op Queue),
and partitioned structures (Micro-op Queue).

2.3 Microarchitectural Covert/ Side Channels

The literature abounds with security attacks that leak in-
formation through a shared microarchitectural structure or
feature [6, 18-20]. Shared caches [21-26], branch predic-
tors [8, 27-30], store-to-load forwarding [31], Translation
Lookaside Buffers (TLB) [32,33], I/O throughput optimiza-
tions [10,34,35], and the processor execution ports [9,36,37]
are a few examples that are exploited as a source of side-
channel leakage. Most of these attacks leak information
through a timing difference that is caused by contention
on a shared resource. The recent transient execution at-
tacks [6,38—41] also rely on a microarchitectural side-channel
to leak the information to the attacker’s domain. Previous
work also uses timing measurements to infer different proces-
sor’s features such as the size of the ROB [42].

Previous work [43,44] has used information-theoretic and
mathematical approaches to study information leakage from
microarchitectural channels. For example, Hunger et al. [44]
develop an abstract mathematical model for microarchitec-
tural channels, with the end goal of devising an attack detec-
tion mechanism. Our characterization study, however, targets
a different goal. It aims to compare and contrast resource
sharing between threads in different implementations of SMT,
to then evaluate the inherent vulnerability of sharing of each
resource, and to guide the design of SMT security measures.

Previous work has also shown covert and side channels
constructed on GPU resources [45—47]. Naghibijouybari et
al. [46] exploit contention on GPU resources to infer victim’s
web browsing activities. Dutta et al. [45] target Intel’s inte-
grated GPU architectures and present covert channels that
put contention on the CPU-GPU bus as well as the shared
last-level cache. Similar to the CPU-based channels, these
channels also leak information through the timing variation
caused by resource contention. However, the list of possible
targets for a GPU channel is limited to co-locating kernels

from two different applications on a GPU. In contrast, CPU,
and in particular SMT-based channels can leak more fine-
grained information from a vastly larger set of targets, and
thus pose a more imminent threat.

2.4 SMT Covert and Side Channels

SMT, with the sheer amount of shared resources, potentially
greatly expands the microarchitectural attack surface, as
nearly every structure could be contended for at some level.
However, while SMT facilitates the exploitation of many side
channels, not all of these channels are fundamentally tied to
SMT. Cache side-channels [22,48,49], which include the vast
majority of these attacks, for example, are almost as effective
in a cross-core setting [50]. Some of the SMT-specific attacks
are the result of a design bug [39], not an inherent SMT issue,
which can be mitigated without much performance cost in
future generations. Nevertheless, the core principles of SMT
have already been targeted in some of these side-channel
attacks.

The SMT execution port timing channels have a long his-
tory [37,51]. But more recently, PortSmash [9] exploits, in
an end-to-end attack, the timing variation caused by the con-
tention of the SMT threads on specific execution ports to leak
the private key of a TLS server. SmotherSpectre [36] also
exploits the contention on the execution ports but combines
it with speculative execution to mount a transient execution
attack. SmotherSpectre uses speculation to steer the execu-
tion to a gadget that includes a data-dependent branch that
accesses a specific port based on the value of a secret.

Other attacks target other shared resources in SMT proces-
sors. TLBleed [32] exploits shared TLBs in SMT processors
to leak a victim’s memory activity. CacheBleed [23] uses con-
tention of the sibling SMT threads on the cache banks as the
source of the leakage to break a constant-time RSA implemen-
tation. Similarly, MemJam [52] targets the shared memory-
dependency detection unit to leak information about memory
accesses of a victim. Ren, et al. [53] develop multiple attacks
exploiting the micro-op cache of Intel and AMD processors to
leak information across different security domains, including
colocated SMT threads. Shared branch predictors are also
extensively exploited to leak secret information [8,54,55] and
also to steer speculation to attacker-desired addresses [6].

There are also efforts to automatically construct covert
channels in SMT processors. Covert Shotgun [56] proposes
an automated framework to examine possible pairs of instruc-
tions in an ISA for building covert channels. Covert Shotgun
compares the execution time of the instructions in single-
threaded and SMT mode to detect if there is a possible covert
channel. More recently, ABSynthe [57] conducts a similar
study that expands Covert Shotgun to include all instructions
in x86 and ARM ISAs and compares the results for a va-
riety of architectures. While these approaches can discover
covert channels in an SMT processor, the exact source of the
leakage for the discovered covert channels remains unknown.

USENIX Association

31st USENIX Security Symposium 3167

This work, in contrast, characterizes different covert channels
based on the actual source of leakage.

2.5 Side-Channel Mitigation

The research community is increasingly active on coun-
termeasures for microarchitectural side-channels. Similar
to the microachitectural attacks, the defense research also
leans heavily toward mitigations for cache-based side chan-
nels [58-63]. A diverse set of strategies has been proposed
to mitigate side channels. Partitioning [60, 64—67], random-
ization [65, 68-70], detection [67, 71-73], oblivious execu-
tion [74], and encryption [75] are among frequently suggested
high-level approaches. Many of the more recent defenses fo-
cus on a mitigation in the context of speculative execution
vulnerabilities [76—82].

However, much less attention is given to defenses for non-
cache microarchitectural side channels. SMT-COP [83] intro-
duces a temporal and spatial partitioning scheme for execution
ports in SMT. SMT-COP also introduces a selective approach
where it selectively enables and disables functional unit parti-
tioning for some regions of the code. Unlike this work, SMT-
COP’s partitioning, once enabled, is entirely static, failing
to take advantage of the benefits of an SMT architecture.
Moreover, our study is not limited to execution ports, and
we examine mitigations on a comprehensive set of pipeline
resources.

Hyperspace [84] secures SGX execution against SMT chan-
nels by creating a trusted shadow SGX thread that runs on the
same physical core as the main thread. Hyperspace verifies
the co-location of the main and the shadow threads using a
cache covert channel. The sole purpose of the shadow thread
is to prevent any untrusted thread being scheduled on the
same core as the main thread. Therefore, in terms of resource
utilization this approach is similar to, and in some cases worse
than, turning off SMT.

Xu et al. [67] propose a mitigation strategy for GPU-based
covert channels. It relies on a decision tree classifier to de-
tect a potential attack, and then enables temporal and spatial
partitioning of GPU resources to mitigate the contention.

3 Assumptions and Threat Model

The main focus of this work is on covert channels constructed
by contention on the main pipeline structures between the
co-located threads on an SMT processor. These channels are
the dominant form of leakage introduced by simultaneous
multithreading, and until mitigated, will likely dominate other
channels. We principally study covert channels, because the
goal of this work is to provide, among other things, a com-
prehensive and systematic analysis of the vulnerability of
existing SMT processors. Such an approach would not be
possible if we were to try to analyze all specific side-channel
attacks customized to each feature, and would become out of
date quickly as new attacks are devised. By concentrating on
covert channels, we can evaluate the inherent vulnerability

Table 1: Sharing Mechanism of Pipeline Resources
Intel (Skylake) AMD (Zen2)

Resource Sharing BW (bps) Sharing BW (bps)
L1 iCache S 742K S 1.27M
Branch Target Buffer S 796K S 478K
2 Micro-Op Cache P <24K S 604K
E”L Fetch Bandwidth S 1.64M S 833K
§ Decode/Issue Bandwidth S 1.15M S 1.03M
= iTLB P <24K S 820K
Micro Sequencing ROM M - S 353K
Loop Stream Detector P <24K - -
= Reservation Station T - N 56K
‘;ﬂ Reorder Buffer P <24K P -
S Physical Register File P <24K S 40K
A Execution Port S 1.22M S 715K
dTLB S 982K N 964K
£ Ll dCache S 1.13M S 902K
£ LI dCache Read Bandwidth S 1.36M S 1.64M
= Load Queue P <24K S 36K
Store Queue P <24K P -

S:Shared, P:Partitioned, T:Thresholded, M: Time Multiplexed
<:Limited by the maximum switching frequency between single-threaded and SMT modes

of each feature and have some basis for comparing them and
understanding where the greatest vulnerabilities lie.

Furthermore, by closing these covert channels we also close
any potential side channel that exploits them, including those
used in speculative execution attacks. To be successful, most
speculative attacks need to effectively perform two tasks: (1)
steer the execution to attacker-desired locations, and (2) leak
information to the attacker domain using a covert channel. To
stop such attacks, it is sufficient to prevent the latter, which
we aim to do by denying unauthorized information leakage —
speculative or otherwise — between SMT threads.

We, then, propose mitigations against the covert channels
with the following assumptions. We assume an SMT proces-
sor on which two threads, T1 and T2, can share the pipeline.
We assume T1 and T2 are running on separate processes and
are prohibited from any form of direct communication, but
they can run any non-privileged instruction on the SMT core.
Any of the threads are allowed to make artificial contention on
any of the shared pipeline resources to leak information about
the usage of the other thread. We consider multiple scenarios:

e T1 and T2 are mutually untrusted: in such scenarios, any
information flow from T1 to T2 and from T2 to T1 should
not be allowed.

e The trust is asymmetric, i.e., T1 is untrusted, and T2 is
trusted: in such scenarios, the information flow from T1 to
T2 is allowed, while the information flow from T2 to T1
should be blocked.

¢ The threads are mutually trusted: any covert communication
between T1 and T2 is allowed.

The main focus of this work is on closing timing chan-
nels engendered by resource contention between SMT
threads. Therefore, this work does not consider power, volt-
age/frequency, and thermal channels.

3168 31st USENIX Security Symposium

USENIX Association

4 Covert Channel Characterization

The goal of this paper is to make SMT processors more secure
against contention-based side-channel attacks. To that end, we
first conduct a rigorous analysis on current SMT processors to
assess the degree to which they share each pipeline resource
between threads, and to also measure the potential informa-
tion leakage resulting from sharing each of these pipeline re-
sources. This analysis then guides the design of SMT security
measures (Section 5). This study also leads to the discovery
of multiple previously unreported and high-bandwidth covert
channels.

4.1 Overview

The first step in our analysis is to deconstruct how the pro-
cessor manages resource sharing between the SMT threads.
We go through an exhaustive list of pipeline resources and
reverse-engineer the sharing mechanism that the processor
uses for each of the pipeline resources. We broadly categorize
each pipeline resource into statically partitioned, dynamically
shared, and duplicated resources based on our experimen-
tal analysis. We note that partitioned resources can either by
spatially shared (half assigned to each thread in SMT mode)
or time-multiplexed (one thread uses all resources one cycle,
the other thread the next). We consider thresholding, where
the partition is dynamic, but neither thread can completely
exhaust the resource, as a special case of dynamically shared.

To reverse engineer the sharing mechanism of a pipeline
resource, we craft a set of assembly instructions that create
artificial contention on that resource. This set of assembly
instructions needs to have four features: (1) it should saturate
the structure-under-test, (2) the amount of saturation should
be controllable, (3) it must not create high contention on any
other pipeline resources/structures, and (4) it should put the
contention on the critical path, so the effect of the contention
is exposed via performance. Then we run this test code simul-
taneously on the sibling threads and measure the effects.

If increasing the saturation in one thread affects the execu-
tion time or the usage of the other thread, we conclude that
the structure is dynamically shared. For dynamically shared
resources, we can typically use the same code to construct
a covert channel by selectively saturating or freeing the re-
source. Finally, we measure the bandwidth and error rate of
the constructed covert channel.

We also explore the possibility of constructing covert chan-
nels on statically partitioned resources. Table | shows the list
of the pipeline resources that we examine along with their dis-
covered sharing mechanism and the achieved covert-channel
bandwidth on two different implementations of SMT: AMD
Zen2 and Intel Skylake. The table shows that while AMD
allows most of the pipeline resources to be competitively
shared, Intel Skylake employs some kind of partitioning or
time multiplexing for most key pipeline resources.

In addition to Intel Skylake, we also study the sharing
mechanism of pipeline resources on Ivy Bridge, an older Intel

microarchitecture. Running our microbenchmarks on these
microarchitectures shows that Intel uses similar sharing mech-
anism across these different microarchitectures. Similarly, we
also examine whether any of our channels are impacted by
different versions of the microcode. In an exhaustive analy-
sis on the Ivy Bridge processor (because the older processor
naturally offers updates spanning a longer time period), we
observe no change in any of the discovered sharing mech-
anisms across all available microcode versions. Details of
the methodology are discussed in Section 6. The rest of this
section examines key pipeline structures, moving from front
to back of the pipeline.

4.2 Instruction Fetch Bandwidth

To reverse-engineer the sharing policy of the instruction fetch
unit in an SMT processor, we develop a microbenchmark
that creates artificial contention on the instruction cache read
bandwidth, while ensuring that there is no contention for the
rest of the pipeline resources. To this end, we take advantage
of the fact that NOP instructions have a minimal footprint,
as they get eliminated early in the pipeline and consume few
backend resources, if any.

However, the most commonly used x86 NOPs are 1-byte
instructions. These do not suit our purposes because they
saturate the decoders long before they saturate the fetch unit
(which can fetch 16 NOPs per cycle). To circumvent this,
we leverage a special 15-byte long NOP [16] instruction that
allows us to effectively saturate the instruction cache read
bandwidth, limiting the throughput of the fetch unit to just
one instruction per cycle. Further, we ensure that these NOP15
instructions always miss in the micro-op cache and actually
use the instruction cache read bandwidth, by using large loops
of static NOP15 instructions in our microbenchmark that
exceed the micro-op cache capacity.

Through performance counter measurements, we find that
the Intel frontend sustains a throughput of one NOP per cycle
when our microbenchmark is run in single-threaded mode.
AMD Zen2 also provides the same throughput, despite en-
joying an instruction cache bandwidth of 32 bytes per cycle.
This is because Zen?2 requires instructions that are larger than
8 bytes to be in the first 16 bytes of the fetch buffer. When
our microbenchmark is run in SMT mode along with a com-
peting SMT thread that executes the same code, the frontend
throughput is exactly halved, delivering one instruction every
two cycles, for each thread. However, if the code that runs on
the competing thread (T2) delivers its micro-ops through the
micro-op cache or the loop stream detector, T1 gains back its
original one NOP per cycle throughput. This shows that the
instruction fetch bandwidth is dynamically shared between
the threads as we observe a direct impact on the execution
time of its sibling thread when they contend for the fetch unit.

Listing 1 shows the sender and receiver routines for a covert
channel implementation that exploits the performance differ-

USENIX Association

31st USENIX Security Symposium 3169

MOV RAX, 100 MOV RAX, 100 TIME #Record Time
NOP15 #15-Byte NOP
NOP8 #8-Byte NOP #I1-Byte

NOP15 #15-Byte NOP

... #N<LSD .

NOP8 #8-Byte NOP #1-Byte TIME #Record Time
DEC RAX DEC RAX JMP RECEIVER

JNZ LO JNZ L1

Listing 1: Fetch Bandwidth Covert Channel on Intel Proces-
sors. The total number of micro-ops in the receiver loop is
larger than the size of micro-op cache to ensure a zero percent
hit rate. NOP8 and NOP15 are aliases for multi-byte NOP
instructions [16].

ences that arise due to contention for the instruction fetch
bandwidth in Intel. The sender thread transmits ‘zero’ by ex-
ecuting a set of NOP instructions that are delivered by the
loop stream detector or the micro-op cache, creating no fetch
contention. The sender thread transmits ‘one’ by executing
a set of regular 1-byte NOP instructions, maximizing fetch
contention — note that 1-byte NOP instructions will miss in
the micro-op cache as the micro-op cache of Intel processors
does not cache the line if there are more than 18 micro-ops in
a 32-byte region of the code [16,53]. The receiver thread then
measures the execution time of long NOPs that miss in the
micro-op cache to detect that contention. The total number of
the micro-ops within the receiver loop is set to be larger than
the size of the micro-op cache, ensuring that every instruc-
tion uses the fetch bandwidth. This covert channel, as Table 1
shows, can achieve a bandwidth as high as 1640 kbps on an
Intel Skylake processor and as high as 833 kbps on Zen?2.

4.3 Decode/Issue Bandwidth

After fetching instructions into the fetch buffer, the x86 fron-
tend translates the instructions into micro-ops (decode) and
delivers those micro-ops to the backend (issue).

To contend for these decoders, we choose regular 1-byte
NOPs. Not only do they not consume backend resources, but
they also do not saturate the fetch bandwidth as described
above, putting decode/issue bandwidth on the critical path.
Thus, when we run regular NOPs on a single thread, the de-
code pipeline is able to deliver 4 NOPs (micro-ops) per cycle
to the backend of the processor. However, this throughput is
reduced to 2 NOPs per cycle if we co-locate this thread (T1)
with a sibling thread (T2) that executes the same set of NOPs,
thereby contending for the decoder resources.

To construct a covert channel that exploits the decode/issue
bandwidth, we need to identify the conditions upon which
the processor assigns more decode bandwidth to T1. If we
switch T2’s instructions to large NOPs (maximum of one
instruction every two cycles), T1 still observes half of its
single-thread throughput, suggesting that on each cycle the
instruction decoders are assigned to one thread as a whole,
i.e., the decode bandwidth is time-multiplexed between the
threads, rather than being statically partitioned. We note that
this is consistent with the details laid out in Intel patents [85].

MOV RAX, 100 MOV RAX, 100 TIME #Record Time

CLFLUSH [RCX] NOP

MFENCE NOP

#N>LSD NOP
TIME #Record Time

#N>LSD

#Cache Miss: NOP

MOV RCX, [RCX] DEC RAX JMP RECEIVER
DEC RAX JNZ L1
JNZ LO

Listing 2: Decode/Issue Bandwidth Covert Channel on Intel.

Further, while one would expect T1 to gain back its single-
thread throughput if T2 does not use the legacy decode
pipeline (because it is using the micro-op cache or the LSD
which both bypass the decoder), we observe that even in such
cases the throughput of T1 remains half of its single-threaded
throughput, indicating that the decoders remain time-shared
between the threads, regardless of whether the threads actu-
ally contend for them. On the other hand, if T2 is stalled due
to a bottleneck in the backend (full reservation stations, for
example), we observe that T2 does give up its decode slots
and T1 goes back to its full original 4 NOPs per cycle.

As Listing 2 shows, to slow the backend, we exploit a
data cache miss followed by a sequence of instructions that
are dependent on the long-latency load. This enables a high-
bandwidth covert channel on both the AMD and the Intel
architectures with a bandwidth as high as 1150 kbps on Intel
and 1030 kbps on AMD. Exploiting the frontend covert
channels bolsters the adversary’s ability to fingerprint various
activities (e.g., cache misses, micro-op cache usage pattern)
of a co-located victim thread, without any cache accesses, just
by measuring the execution time of NOPs.

4.4 Register File

Next, we examine the sharing mechanism of physical regis-
ter files of the Intel and AMD processors. Our register file
characterization microbenchmark, shown in Listing 3, con-
sists of two memory read instructions that always miss in the
caches. Between these loads, we have a variable number of
instructions that each consume a physical register, i.e., they
have a destination register. When a thread’s partition fills, no
more instructions can be renamed, placing a limit on the win-
dow for out-of-order execution. If the second memory read
is not renamed, it is then serialized (not renamed until the
former commits). If there is sufficient space to rename it, the
loads execute in parallel and performance is significantly im-
proved. By increasing the number of the register-consuming
MOVs we can identify the exact point where we exhaust the
renaming registers before the second load instruction arrives.

The impact on the execution time is visible in our results of
figure 2. These figures (one for Intel, one for AMD) each show
four lines, representing two threads. This more detailed result
is representative of the analysis done for each of the pipeline
resources, although those discussions have mostly been con-
densed for space reasons. Here, T1 is varied in the number
of registers that are occupied before the second high-latency

3170 31st USENIX Security Symposium

USENIX Association

CLFLUSH [RDI]

CLFLUSH [RSI]

MFENCE

MOV RAX, [RSI] #Long-Latency Load

MOV RBX, 88 #Consumes One Phys. Reg
#Use N Phys Regs
MOV RBX, 88 #Consumes One Phys. Reg

MOV RAX, [RDI] #Long-Latency Load

Listing 3: Microbenchmark for Making Contention on Regis-
ter Files. When N is larger than available physical registers
the two loads cannot be issued in parallel.

led led

Single-Thread T1 .0 — SMT - T1 with T2
-~ Single-Thread T2 SMT - T2 with T1

$7.00 — SMT -- T1 with T2
65 SMT - T2 with T1

Single-Thread T1
~-- Single-Thread T2

Execution Time (Cycles)

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Register Consuming Instructions in T1 Register Consuming Instructions in T1

(a) Intel (b) AMD
Figure 2: Reverse Engineering the physical register file shar-
ing mechanism.

load, while T2 is kept constant (at 50). For Intel, when T1 runs
in single-threaded mode, we see that it can use about 128 reg-
isters before performance plummets, while in SMT mode that
happens at 64. Further, we see that T2 in SMT mode (dashed
orange line) is relatively unaffected by the size of T1. For
AMD, however, we see that T2 in SMT mode (again, dashed
orange) is clearly sensitive to the varying register pressure of
T1. From this, we conclude that Intel’s physical register file
is statically partitioned, and AMD’s is dynamically shared.

We observe a similar pattern when we change the consum-
ing instructions to instructions that consume vector, vector
mask, or floating point registers. That means the same policy
is applied to those register files as well. We are able to exploit
the contention on physical registers in AMD to construct a
covert channel with a bandwidth of 40 kbps with less than 5%
error rate.

4.5 Reservation Station (RS)/Scheduler

To contend for reservation stations, we use a microbenchmark
similar to the previous section (Listing 3); however, we use
cmp instructions which do not consume a physical register,
but are still dependent on the first load instruction, so the
instructions will consume an RS entry and cannot be issued
until the first load completes execution and makes the result
available to dependent instructions, causing them to quickly
release RS entries. If we have enough entries in the reservation
station available to the thread, the second load can be issued
an RS entry and then dispatched to execution in parallel with
the first load. Therefore, we see a spike in the execution time
when the length of the dependency chain becomes greater
than the number of reservation station entries, as the two
loads become serialized.

In SMT mode, we observe that Ivy Bridge does not let one
thread use all of the 54 RS entries and it always limits the max-
imum number of allocated RS entries to 40, even when the
other thread does not consume any RS entries, e.g., only exe-
cutes NOPs. We refer to this type of sharing as thresholding.
More details on this experiment are provided in Section A.1.

While in theory it should be possible to construct a covert
channel on the 26 shared entries, it imposes considerable
noise and we are not able to construct a reliable channel
on the Intel processor. On the other hand, AMD Zen?2 uses
a shared reservation station with which we can construct a
covert channel with a bandwidth of 56 kbps.

4.6 Reorder Buffer, Load/Store Queues

We use slightly different variations of the microbenchmark
shown in Listing 3 to reverse engineer the sharing mechanism
of the ROB and the load and store queues. For the ROB,
we replace the register-consuming instructions with NOPs.
NOPs serve our purpose to isolate the ROB because they
consume ROB entries, but not reservation stations or physical
registers. For the load and store queues, we leverage load
or store instructions that always hit in the cache to isolate
those queues. These instructions each occupy a load/store
queue entry and cannot be issued until the long-latency load
executes. Therefore, at some point, by increasing the number
of load/store instructions, the dispatch cannot progress due
to lack of load/store queue entries. This then forces the long-
latency loads to be serialized. Section A.l provides more
details on these microbenchmarks. Our experiments show that
the ROB, load, and store queues are all statically partitioned
in Intel processors; ROB and store queue are also partitioned
in AMD Zen2, but the load queue is shared in Zen2.

4.7 Covert Channel on Partitioned Structures

As shown in Table 1, we find that many of the pipeline re-
sources in Intel processors, and some in AMD processors,
are statically partitioned between the threads. For the sake of
completeness, we investigate the potential information leak-
age via these partitioned resources (even though we know
shared resources will be the highest bandwidth channels). We
construct a covert channel where the sender goes in and out of
SMT mode, allowing the receiver to observe the state of the
particular resource in question. The key here is our ability to
enter and exit SMT mode as quickly as possible. To this end,
we examine several x86 instructions used for busy waiting.

We first look at the pause instruction, originally introduced
in Intel’s Pentium 4 processor to improve the power and per-
formance of the spin-wait loops [16], so that the spinning
thread could free resources while waiting. However, our ex-
periments with the pause instruction suggest that the resources
remain partitioned even in the presence of a pause — that is,
pause only releases shared resources, not partitioned.

We also consider mwait, which is a privileged instruction
that provides a hint to the processor so it can enter a spec-
ified target low-power state [16]. In fact, this does release

USENIX Association

31st USENIX Security Symposium 3171

partitioned resources, and we are able to successfully create
a channel, but we do not consider this the most useful attack
vector since there are so many other attacks possible for a
user with privileged access.

Finally, we examine Linux’s nanosleep system call which
is a non-privileged call that deschedules the caller thread until
the time specified by the user has elapsed. We observe that,
on Intel processors, calling nanosleep causes the processor
to unpartition resources, allowing the sibling thread to mo-
nopolize them. The nanosleep syscall causes the Linux kernel
to schedule an idle task on the logical core, which then exe-
cutes the aforementioned mwait instruction. This enables a
covert channel for transmitting information even via statically
partitioned resources. The bandwidth of this covert channel,
however, is limited to the minimum latency of the nanosleep
system call. As shown in Table 1, using the nanosleep system
call, we can achieve a bandwidth as high as 24 kbps on the In-
tel processor. On the AMD processor, however, the nanosleep
syscall does not cause the resources to become unpartitioned.

In Section 5, we examine multiple partitioning schemes
that provide greatly increased thread isolation. However, all
are still potentially vulnerable to this channel (fast enter/exit
of SMT mode) if they release all resources to a single thread.
Thus, for the balance of this paper, we assume a simple solu-
tion that provides a countdown timer that limits the frequency
at which the pipeline can release partitioned resources, even
upon exiting SMT mode.

4.8 Other Pipeline Resources

For completeness, we also measure most of the other pipeline
resources that have been covered extensively in the literature,
such as caches [86], TLBs [32], and execution ports [9]. Those
results appear in Table 1, but without extensive discussion.
However, there are other well-studied SMT resources such as
Pattern History Table (PHT) [27] that we do not re-measure
as we focus more on lesser known channels. Our mitigations,
nevertheless, can be readily applied to these structures as
well.

Constructing covert channels on most of the cache-like
structures requires some information about internal structures
of these resources such as the indexing function and asso-
ciativity. Also, the knowledge of the replacement policy of a
cache-like resource can greatly affect the channel bandwidth
as the attacker can exploit that to minimize the size of the
probe set. It is, however, still quite possible to create a high-
bandwidth channel on a cache-like structure without access
to detailed information on the replacement policy, as the at-
tacker only needs to create enough accesses to cause a single
eviction to the other thread’s entries. For example, for any
LRU-like structure (e.g., tree-PLRU, bit-PLRU) with associa-
tivity of n, accessing n new entries guarantees an eviction to
the existing entries of a particular set.

5 Mitigations

This section introduces a suite of mitigation schemes we
examine to eliminate or reduce the leakage across the SMT
pipeline. Prior work has focused on identifying and solving
SMT leaks one at a time [65,70,83]. However, in keeping with
our systematic characterization study of pipeline resources,
we will focus on systematic mitigation solutions that can be
employed broadly across each individual contended structure.
The solutions described in this section include static parti-
tioning, adaptive partitioning, and asymmetric SMT.

5.1 Static Partitioning

The most basic partitioning scheme, already employed heav-
ily, statically divides a resource into equal-sized partitions.
Static partitioning can be applied in two forms: spatial or tem-
poral. Spatial partitioning assigns a resource to a thread and
that assignment does not change through time. This can only
be applied to resources for which the processor has multiple
instances, such as ROB entries. If the number of instances
of a resource is less than the number of SMT threads (e.g.,
some functional units), the processor cannot statically assign
the resource to a thread. In such cases, the processor employs
temporal partitioning (also called time multiplexing). Tempo-
ral partitioning assigns a single resource to each thread in a
round-robin fashion. These basic partitioning schemes ensure
that dynamic contention cannot occur between the threads,
eliminating leakage. For example, in a strictly round-robin
resource, the time slot assigned to thread T1 does not depend,
in any way, on the usage of thread T2. T1 only gets one out of
two slots whether or not T2 uses its slot. This completely in-
hibits a thread from inferring any information from the usage
of the other thread.

5.2 Adaptive Partitioning

While static partitioning can eliminate dynamic contention
between SMT threads, it typically results in underutilization
of pipeline resources, sacrificing overall performance — the
fundamental benefit of SMT processors is allowing resources
to be better utilized by dynamically assigning each resource
to the context that needs it. However, we show that it is possi-
ble to gain back much of the full performance of SMT if we
can adapt to the varied needs of contending threads, but more
slowly. Adaptive partitioning is an on-demand partitioning
scheme that allows for the dynamic reconfiguration of parti-
tion size, once per adaptation interval. This not only improves
resource utilization and overall performance, but also limits
the information leakage to at most one bit per adaptation. In
fact, our results show that even a very long adaptation interval
(of 100,000 cycles) can be effective in recovering much of
the full performance benefits of a fully shared SMT pipeline.

Our adaptive partitioning design augments each resource
with a set of counters: (1) the current size of the partitions,
(2) counters that track the number of “full” events that each
thread encounters, and (3) a countdown timer until the next

3172 31st USENIX Security Symposium

USENIX Association

adaptation interval. Note that in our experiments we assume
a single countdown timer for all resources to help simplify
presentation of the results. It also takes three parameters that
are set at design time: adaptation interval, adaptation step, and
adaptation threshold. Figure 3a shows an example for adaptive
partitioning of the instruction queue. For every adaptation
period, we select a thread that has faced more full events in
that period. We then increase the size of the partition of the
selected thread by the adaptation step size. We increase the
partition size only if the new partition size is still smaller than
the adaptation threshold.

We can also apply adaptive partitioning for temporally
shared resources, deviating from a completely symmetric
round-robin assignment. For example, we might adaptively
modify the assignment process for a resource that alternates
between two threads each cycle, in such a way that the re-
source is assigned to a more hungry thread two out of every
three cycles. If it needs more, we could again alter the policy
such that the resource is assigned to the hungry thread three
out of four cycles. At each adaptation interval, we examine
the number of full events of each thread and increase the share
of the thread with the highest full event count. If that thread
is more resource hungry, we increase its count (subject to the
threshold), otherwise we decrease its count. Figure 3b shows
an example of adaptive temporal partitioning.

Adaptive partitioning severely restricts the leakage. Now,
for each resource, the attacker can only leak at most approx-
imately 1 bit (adaptation without threshold) per adaptation
interval (100,000 cycles). For example, an attacker can probe
the size of its own reservation station in two consecutive
adaptation intervals. If the RS shrunk, the attacker infers that
the victim’s RS usage exceeds that of the attacker. This is
orders of magnitude below known channels across cores on
non-SMT processors.

While adaptive partitioning limits leakage to a single bit
per interval, the values of the counters could potentially be
exposed when a thread crosses protection domain boundaries,
and it is therefore critical to reset all such counters at domain
crossings. Resetting the adaptation counters stops the current
context’s behavior from affecting that of the next context. By
doing so, we might miss one opportunity to adapt. But we
find that in steady-state, partition sizes do not change dramat-
ically, and the performance effect of missing one adaptation
opportunity is minimal.

5.3 Asymmetric SMT

While the adaptive partitioning scheme can help recover a
significant chunk of the performance lost due to partitioning,
it is still restrictive as it limits the pipeline resource utilization
even in scenarios where at least one of the threads running
on the processor are trusted or when no sensitive code is
running and cross-thread information leakage may not be
of concern. In this section, we describe a mitigation called
Asymmetric SMT that allows two threads with asymmetric

Full Events (T1) > Full Events(T2) [} Full Events (T1) > Full Events(12) [} Full Events (T1) < Full Events(T2)
Adaptation Interval Adaptation Interval Adaptation Interval
Partition Size (T1) = Max Size
1Q 1Q 1Q 1Q
[r1 Entries [T2 Entries

(a) Spatial

T2) Full Events (T1) > Full Events(T2) Full Events (T1) < Full Events(T2)

D:. Adaptation Interval D]:. Adaptation Interval D:.

Time

Full Events (T1) > Full

E. Adaptation Interval

P=2 P=3 P=4 P=3

Er1 cyere .'1‘2 Cycle

Time

(b) Temporal
Figure 3: Adaptive Partitioning Examples.

trust levels to securely share resources in an SMT processor,
while preventing unauthorized information leakage from a
higher security domain to a lower security domain.

With Asymmetric SMT, then, assuming active threads T_H
and T_L, where T_H is at a higher security level than T_L,
we have the ability to block the leakage from T_H to T_L, but
allow leakage from T_L to T_H. An example where this is
useful is sandboxing in web browsers. While it is not secure
to leak information from the browser thread to the sandbox
thread, it is safe to leak information from the sandbox to the
browser thread. Similarly, it might be safe to leak informa-
tion from a user process to a kernel process, from a guest
virtual machine to the hypervisor, etc. Asymmetric SMT en-
ables lost resource utilization due to partitioning, but the only
beneficiary is the trusted thread. The performance of trusted
threads is on the critical path for many applications, such as
a web browser that runs untrusted Javascript. A study by the
Google v8 team [87] shows that only 20% of Chrome’s page
processing time is spent in running untrusted Javascript code,
while the rest is spent in trusted browser code that performs
tasks such as parsing, compilation, and garbage collection.
Therefore, by improving the performance of the trusted part
of the execution, Asymmetric SMT can significantly impact
overall performance.

The key to Asymmetric SMT is that it allows the trusted
thread to borrow unused pipeline resources from the untrusted
user, only in cases where it can instantly return the resource
when the untrusted thread needs it back. Fortunately, this
instantaneous return is possible for many of the pipeline re-
sources as the out-of-order pipeline is already well-equipped
with mechanisms to deal with various squash events.

The rest of this section discusses how Asymmetric SMT
can be enabled for various pipeline resources. We categorize
the resources into stateful (e.g., ROB), stateless (e.g., func-
tional units), and cache-like resources.

5.3.1 Stateful Resources

We refer to the resources that hold the transient execution
state of a thread’s instructions across multiple cycles and then
get released, as stateful resources — this includes physical
registers, IQ entries, ROB entries, and load/store queue entries.
Asymmetric SMT allows the borrowing thread to use a free
unused entry from the other thread’s partition. Here, we use

USENIX Association

31st USENIX Security Symposium 3173

Physical Register File (PRF) as an example.

Figure 4 depicts two example scenarios for borrowing a
physical register. In the initial state, three out of eight entries
are assigned to T_H (assuming PRF already uses an adaptive
partitioning scheme). Note that Asymmetric SMT is orthogo-
nal to the other two partitioning schemes (static and adaptive)
and can be added to either. Once Asymmetric SMT receives a
request from the trusted thread, T_H, which has exhausted all
of the entries in its partition, it checks if T_H can borrow an
unused entry from T_L. Asymmetric SMT permits borrow-
ing only if the number of T_L’s free entries is larger than a
threshold (MIN_FREE), i.e., it always leaves some free slack
registers. This condition is helpful at reducing the number
of expensive squashes which results when T_L runs out of
resources and one must be freed immediately by T_H.

Figure 4a shows the common-case scenario where we com-
mit one of T_H’s instructions before T_L’s partition gets full.
Note that in this case we are not borrowing a specific regis-
ter, but rather allowing T_H’s count to exceed its threshold.
Thus, any T_H instruction that commits and frees a register
will restore it to T_L. Figure 4b shows a scenario where T_L
takes up all of the free entries in its partition before T_H
gets the chance to return the borrowed register. In such a sce-
nario, Asymmetric SMT immediately returns the borrowed
register to T_L. It selects the youngest T_H instruction that
holds a physical register and assigns that register to T_L. T_H
then needs to squash that instruction and all of its subsequent
instructions and restart execution from there.

Similarly, it is possible to allow a trusted thread to borrow
instruction queue and load/store queue entries. During issue,
if the trusted partition is full but the untrusted partition has
more than MIN_FREE free entries, the trusted thread can
borrow unused entries. If the untrusted partition becomes full
before the trusted partition returns the borrowed instruction
queue entry, the trusted thread should immediately return the
borrowed entry.

Not all stateful resources are suitable for borrowing. For
example, we can only allow borrowing of a limited number of
ROB entries due to the instantaneous return requirement. If
we borrow from the ROB more entries than what we can free
per cycle (retire bandwidth), then the borrowing becomes vis-
ible to the owner thread and that leads to information leakage.

5.3.2 Stateless Resources

Examples of stateless resources include execution ports, func-
tional units, fetch bandwidth, and commit bandwidth. Asym-
metric SMT works well with stateless resources, as borrowing
a stateless resource will not ever require an expensive squash.
Here we use execution ports to describe Asymmetric SMT in
stateless resources.

Figure 5 illustrates different temporal partitioning (mul-
tiplexing) schemes for execution ports. We can assign the
whole dispatch bandwidth to one thread each cycle, which
reverts the pipeline to fine-grain multithreading [88] and sacri-

PRF

T _H Comm

nstruction

T_L Entry
BT _H Entry
ZZBorrowed by T_H
Full Entry

ng T_H Request

if (Policy == Asymmetric)
i) > MIN_FREE)

POpoaN
£194000Yy ON (®)

Time

//

if (Policy == Asymmetric)
if (Free_Bntrics (T_L) > MIN_FREE)
Allow_Borrowing()

-Immediately Return Borrowed Reg
-Squash and Restart T_H

EEEEN

L

ing T_H Request Incoming T_L Request

Figure 4: Borrowing a Physical Register in Asymmetric SMT.
It shows the state of the physical register file over time for
two scenarios.

PI P2 P3 P4 P5

Cyele 1 1) [[[[[

Pl P2 P3 P4 P5 Pl P2 P3 P4 P5 Pl P2 P3 P4 P5

[0 77

ST 3 5 3 o 2 o 777 o

Multiplexing Dispatch BW Multiplexing Execution Ports Adaptive Adaptive { Asymmetric

[assigned to T_L [l Assigned to T_H [Borrowed to T_H Full

Figure 5: Partitioning Schemes for Execution Units/Ports. Our
adaptive partitioning and Asymmetric SMT architecture can
reclaim the unused execution slots caused partitioning.

fices the benefits of SMT in eliminating horizontal waste [89].
A better approach is to multiplex individual execution ports
each cycle, which can either be partitioned evenly or unevenly
using our adaptive partitioning methodology. However, even
with adaptive partitioning, there are cycles where T_L cannot
fully utilize the ports that are assigned to it. In such cases,
Asymmetric SMT utilizes the unused ports and borrows them
for T_H. The scheduler for Asymmetric SMT, at each cycle,
first tries to schedule all the ready instructions of T_L to the
execution ports that are assigned to T_L at that cycle, then it
assigns any unused T_L slots to T_H and schedules T_H’s
ready instructions. Note that for brevity, we do not show the
non-pipelined functional units in Figure 5. Non-pipelined
functional units (e.g., Intel’s divider unit) are also borrowable,
but as soon as we receive a request from the owner thread, we
abort the execution of the borrowing thread and immediately
start execution of the owner instruction. Most of the functional
units in the Intel and AMD processors are pipelined.

5.3.3 Cache-like Structures

Cache-like structures are a special type of stateful resource.
In the context of Asymmetric SMT, the major difference be-
tween these and other stateful resources is that caches, once
warmed-up, do not have empty entries. Structures that fit in
this category are the micro-op cache, the private TLBs, and
the private data and instruction caches.

For these structures, Asymmetric SMT cannot enable bor-
rowing of blocks without leaving a visible effect. To address
this, we introduce a mechanism that invalidates entries in the
untrusted (owner) thread’s partition. This invalidation mecha-
nism must be deterministic and independent of any requests
by the trusted thread. Therefore, it does not leak information.

Similar to some of the methods proposed in architecture

3174 31st USENIX Security Symposium

USENIX Association

literature on cache dead block prediction [90-92], we dynam-
ically calculate the average reuse distance of cache blocks of
the untrusted partition. Then, we multiply that average with a
static parameter (distance_coefficient > 1) and use that as a
threshold to distinguish between live and dead cache blocks.
If the last access to a cache block is greater than the threshold,
we invalidate that cache block so that it can be lent to the other
thread. Again, only cache accesses of the untrusted thread
can influence this invalidation, so it does not leak information
about the access pattern of the other thread. We use a simple
dead block detection mechanism that is only influenced by
accesses, but more sophisticated dead block elimination meth-
ods can also be used [90-92]. Unlike other stateful resources,
in caches returning a borrowed cache line does not incur any
"squash" cost — it is a simple eviction. As soon as we receive
an access from the owner thread, we invalidate one of the bor-
rowing thread’s cache lines (based on the cache replacement
policy) and return it to the owner partition. For a write-back
cache, we only allow a borrowed line to become dirty if the
cache features a write-out-buffer (WOB) [93] — a buffer that
handles the writes down to the memory hierarchy — so that
we can guarantee the process of returning a dirty borrowed
line is still instantaneous. In addition, we do not allow the
number of dirty borrowed lines to grow larger than the size
of the WOB.

5.3.4 Overheads

Overall, we find that borrowing from stateless resources (func-
tional units and fetch bandwidth) does not impose significant
overheads on the processor pipeline. In terms of area over-
head, we only need to (1) make sure that instructions are
tagged with one bit of thread ID across the pipeline (already
necessary for other reasons), and (2) add very simple logic
that checks if borrowing of a specific resource is allowed in
each cycle, i.e., it checks that the current instruction belongs
to the borrowing (trusted) thread and also there is no demand
for the resource from the untrusted thread. This simple logic,
as shown in Section A.2, does not impose any overhead on
the cycle time, and has negligible power and area overheads.
For stateless resources, Asymmetric SMT only uses an un-
used resource which will be lost if not utilized by borrowing.
Therefore, the performance effect will always be positive. Bor-
rowing stateful resources, however, may require additional
flushing if the untrusted thread requests a borrowed resource.
While this flushing imposes performance overhead to the bor-
rowing thread, our results show that the improved utilization
brought by borrowing greatly outstrips the flushing costs.
5.3.5 More than Two Threads

While SMT implementations with more than two threads are
not common, our asymmetric SMT can be extended to those
processors as well. In those cases, we can define a security
lattice between trust domains and allow threads with higher
trust levels to borrow from threads with lower trust levels. For
example, a kernel thread can borrow from both a sandbox
thread and a browser thread, while a browser thread can only

Table 2: Architecture Detail for the Baseline x86 Core

Baseline Processor
Frequency 3.3 GHz I cache 32 KB, 8 way
Fetch Width 16 B D cache 32 KB, 8 way
Fetch Policy 1Q count Retire Width 8 uops
Issue Width 8 uops Decode Width | 5 uops
INT/FP Regfile 186/144 regs 1Q 97 entries
LQ/SQ Size 64/36 entries Functional Int ALU(4), Mult(1),
ROB Size 224 entries Units FPALU/Mult(2)

borrow from the sandbox.

5.3.6 HW/SW Interface

Asymmetric SMT requires knowledge of the trust level of
active threads running on the SMT processor. We envision
two possible modes of operation for Asymmetric SMT. In the
first mode, Asymmetric SMT relies on existing privilege lev-
els. That is, without any software change, Asymmetric SMT
enables the kernel to borrow resources from a user thread,
or let the hypervisor borrow resources from any of the guest
threads. The second mode allows the software to specify more
fine-grain trust levels for the SMT threads. Thus, Asymmetric
SMT needs to add and maintain new control registers that rep-
resent the trust level of an active thread. Privileged software
would update the control register via a privileged instruction
(e.g., x86’s wrmsr). The second mode also does not require
extensive software changes as all the modifications required
will be contained in the thread/process creation logic.

5.3.7 Quality of Service (QoS)

In addition to the evident security use case, Asymmetric SMT
can also be leveraged for better and more versatile perfor-
mance isolation (i.e., better QoS guarantees). The OS could
mark a latency-critical thread as a high security/priority thread.
Asymmetric SMT, then, improves QoS by assigning more
resources to the latency-sensitive job with guaranteed (perfor-
mance) protection of other jobs.

6 Methodology

This section details the experimental methodology for per-
formance evaluation of the proposed partitioning schemes,
including the Asymmetric SMT architecture. We also discuss
the methodology we use for our covert-channel characteriza-
tion framework presented in Section 4.

For performance evaluation, we model our partitioning
scheme and Asymmetric SMT architecture in the gem5 v20
architectural simulator [94]. We add full support for SMT in
gem5’s out-of-order CPU model. We choose the parameters
of our baseline architectures to resemble an Intel Skylake,
except that, for a more intuitive comparison of partitioning
schemes, our baseline architecture dynamically shares all the
pipeline resources between the threads. The other exception
is that the assignment of the functional units to the execution
ports are slightly different than Skylake and more closely
resembles AMD processors where floating-point and integer
units do not share a single port. Table 2 describes the detailed
architectural configuration.

To characterize performance, we use the C and C++ bench-
marks from the SPEC CPU2017 suite. These benchmarks

USENIX Association

31st USENIX Security Symposium 3175

are compiled at the -O3 optimization level using the LLVM
compiler. Following the prevalent methodology for creating
accurate and representative simulation points [95-97], we use
PinPlay [98] and Simpoint [99] to select representative re-
gions for simulation. For each of these benchmarks, we select
the Simpoint region with the highest weight — the most repre-
sentative region. We then make one multi-threaded checkpoint
for every possible pair of the benchmark programs by combin-
ing their selected Simpoints. We run each pair twice: In the
first experiment, we simulate until we complete 100 Million
instructions from the first thread, then swap the threads and
repeat. For example, we will run I[bm and perl together twice.
The effect of perl on Ibm performance will be factored into
the I[bm bars in our graphs, and the effect of /bm on perl will
appear in the per! bars.

The speedup numbers of different schemes are calculated
as the ratio of the combined instruction per cycle (IPC) for
each pair of the programs over the combined IPC of that pair
of programs in the dynamically shared processor. Thus, for
the Asymmetric SMT results, it accounts for both the sped-up
trusted thread and the unaffected untrusted thread in the over-
all results. This is also equivalent to weighted speedup [100], a
well-established performance metric for multiprogram work-
loads, where in this case the baseline is that thread’s perfor-
mance in a dynamically shared SMT processor. Weighted
speedup more accurately reflects useful performance gains,
and avoids over-rewarding speedup of high-IPC threads. For
adaptive partitioning we use at least 100,000-cycle adapta-
tion intervals, unless otherwise noted. The performance bars
that represent Asymmetric SMT are the results of applying
Asymmetric SMT together with adaptive partitioning.

In addition to the SPEC benchmarks, to evaluate Asym-
metric SMT in a more realistic scenario, we model a set-
ting that resembles the computation of web browsers: run-
ning untrusted Javascript codes on one thread and sensitive
cryptography computations on the other. On the first thread,
we run Javascript programs from SunSpider [101] bench-
marks on Duktape [102] Javascript engine, and on the second
thread, we run RSA and AES GSM benchmarks from Wolf
SSL v4.5.0 [103].

We evaluate the performance of our proposed mitigations
by applying them to a wide range of pipeline resources, in-
cluding the Instruction Queue, the Load Queue, the Store
Queue, the integer and vector physical register files, the ROB
(Adaptive only), the instruction and data TLBs, the instruc-
tion and data caches, Branch Target Buffer, fetch and decode
bandwidth, commit bandwidth, and the execution units.

We use Verilog HDL to implement different partitioning
schemes on an example structure (Dispatch Unit). To that end,
We use Synopsis Design Compiler Q-2019.12-SP5-3 with the
45 nm NanGate standard cell library [104] to synthesize and
obtain timing, area, and power information. The results of this
analysis are discussed in Section A.2.

For covert-channel characterization experiments we build

Partitioned —— Adaptive —— Asymmetric

0 200 400 600 800 1000
Measurement Index

Figure 6: Covert Channels between a Spy (T0) and a Tro-
jan (T1) Thread. In a fully shared pipeline the instructions
executed on T1 have a clear effect on TO’s execution time.
Partitioned, Adaptive and Asymmetric are always constant
and share the same straight line.

our microbenchmarks on Agner’s test infrastructure [105]. We
run our experiments on various processors. Specifically, we
use AMD Ryzen Threadripper 3960X (Zen2), Intel Xeon E3-
1230 (Ivy Bridge), and Intel Core i7-6770HQ (Skylake). To
measure the bandwidth and error rate of the covert channels,
we transfer a pseudorandom bit sequence which is generated
using a 15-bit wide linear feedback shift register (LFSR). This
allows us to identify various errors that might happen during
the transmission, including bit loss, multiple insertions of
bits, or bit swaps [106]. To estimate the error rate, we use
Levenshtein edit distance between the sent and received data
for the pseudorandom bit sequence.

7 Results

This section characterizes our mitigation strategies. We first
present the security evaluation, followed by performance.

7.1 Security Evaluation

To show the effectiveness of our mitigation strategies in stop-
ping covert channels, we perform a study similar to Covert
Shotgun [56]. In this experiment, a spy thread constantly ex-
ecutes one type of instruction and measures its timing. The
trojan thread tries to send a signal by executing different in-
structions, thereby varying the contention on various pipeline
resources. Figure 6 shows the results for just one instance
of this experiment where the spy thread constantly executes
the movb instruction. In a fully shared pipeline, the timings
of the spy process can be clearly influenced by the trojan’s
instructions. An attacker, therefore, can pick any pair of in-
structions that show a different effect on the spy process to
create a covert channel. When we enable any of our mitigation
strategies, the spy thread timings become constant, effectively
stopping all identified covert channels. For adaptive partition-
ing, all measurements are within one adaptation period. For
Asymmetric SMT, the trust levels are set so that only the tro-
jan thread can borrow resources. Further examination of the
experiments shows that the covert channels in the fully shared
pipeline are created by contention on mainly two resources:
the fetch bandwidth and the functional units. We observe
similar results when the spy uses different instructions.

Note that while this study shows that our mitigation strate-
gies completely stop the covert channels that can be found
with this approach, this test does not give complete coverage

3176 31st USENIX Security Symposium

USENIX Association

[Shared

[Partitioned

[0 Adaptive HEE Asymmetric

3
[
S ©
o=
g [9p]
=
n >
o
perl gcce mcf namd xalan xchg deep leela XZ Ibm nab wrf ray foton GMean GMean
no lbm
Figure 7: Performance of the Proposed Schemes.
= Shared Partitioned ~ mmm Adaptive WS Asymmetric] Partitioned ~EZH Adaptive EEE Asymmetric
o Trusted Thread = RSA Trusted Thread = AES GCM 08
E ®1.04
wmw1.0 £1.00
%2}
g = 5 % 0.96
2 E 5 = & 20.92
0.5 5)
o _g 0.88
% I I I I zoo
200 @'0.80
o <t (=}) [© Sy Q () []
@ g 5 ¢ £ £ e £ ¢ = £ 0.76 ,
2 s é g T e g g £ T, S ¢ & & & \@@& SE PSP & & o@\& &
< I © 3] % Q I @ 3] = & F € S
I < o @ o v < o > 3] ¢ S
g) El oy = g g = 5 = g
£ E ® = £ E ™ = Figure 10: Partitioning Schemes for Fetch Bandwidth.
12} 12}

Figure 8: Running Trusted Cryptography Computation with
Untrusted JavaScript Code.

[Multiplexing Dispatch BW 31 Multiplexing FUs [Adaptive B Asymmetric
© 1.00
j]
=
5 0.96
@
=
2092
2]
80.88
>
5]
2.0.84
=]
g
& 0.80
&
0.76 . N &
> LS > @ O @ 4 > 8 ¥ S
& & &y FOFTE TS EFTS
¢ S F ¥ ¢ 0

Pl ¥

Figure 9: Partitioning Schemes for Functional Units.

of all shared resources, particularly structures not documented
by Intel or AMD. Also, these are the results of simulation
(the only way to evaluate most new hardware mitigation tech-
niques), and a real processor may contain other leaks not
simulated.

7.2 Performance Evaluation

Figure 7 shows the results of our mitigation schemes applied
to the pipeline resources mentioned in Section 6. Each bar
represents the average results of running a benchmark on one
thread with each of the other benchmarks on the other SMT
thread. Static partitioning of the pipeline resources, as ex-
pected, imposes a significant performance cost. On average, it
slows the execution by 10% compared to dynamically-shared
resources. The performance overhead goes as high as 24%
for some benchmarks (mcf). However, for one program (Ibm),
static partitioning significantly improves the performance.
That is because /bm frequently exhausts the entire store queue
on a dynamically shared pipeline, which causes the other
thread to stall due to lack of store queue entries. In this case,
Ibm gets no benefit from more queue entries, and only gets
extra interference by causing the other thread to get backed up.

[Partitioned 3 Adaptive B Asymmetric

= 1.00

2

EO.QG

7]

= 0.92

3]

>

©0.88

5

< 0.84

@

15

2.0.80

[72)

0.76
Q> © & > > @ S @) & &4 % >
2 Gy SR g > & & N i
N [R x»§ & A Qoé ‘@o Cﬁ@

Figure 11: Partitioning Schemes for Caches.

Therefore, statically partitioning the store queue achieves bet-
ter performance for [bm, and our schemes further accentuate
that advantage. Our adaptive partitioning reduces the perfor-
mance overhead of partitioning to only 2% on average (5%
if we ignore /bm), and consistently reduces the performance
overhead of partitioning across all the benchmarks.
Asymmetric SMT further improves the performance and
even provides a 2% speed-up over the shared pipeline (thanks
again to /bm). But even excluding /bm, Asymmetric SMT al-
most fully restores the performance of a fully shared pipeline.
These results show that opportunistically borrowing resources
is highly effective at maintaining high utilization of parti-
tioned resources. Note that, as mentioned in Section 6, for
each pair of the benchmarks, we run the experiment twice. In
each run, a different benchmark is considered as the trusted
(borrower) thread in the Asymmetric SMT experiments.
Figure 8 shows the performance of the Asymmetric SMT ar-
chitecture in a different, more realistic setting. On one thread,
the SMT processor runs the SunSpider Javascript benchmark
on Duktape engine, and on the other thread, it runs a trusted
cryptography benchmark from the WolfSSL suit. This resem-
bles computation that a web browser might perform. Asym-
metric SMT allows the trusted threads (AES and RSA in this
case) to borrow resources from the untrusted threads. The

USENIX Association

31st USENIX Security Symposium 3177

combination of our adaptive partitioning and Asymmetric
SMT, on average, reduces the overhead of partitioning from
24% to 11% for RSA. For the AES benchmark, Asymmetric
SMT not only completely restores the performance overhead
of static partitioning, but also outperforms the fully shared
baseline by 7% on average. The performance gain mostly
comes from the pairs of benchmarks for which static parti-
tioning performs better than the fully shared pipeline, such as
regexp-dna. These benchmarks exhibit frequent resource full
events (e.g., high number of physical register full in regexp-
dna) that stall both threads in a shared pipeline. In such cases,
partitioning allows one thread to continue execution and thus
improves overall performance.

Next, we take a closer look at the performance of the pro-
posed schemes by examining their effects on the individual
pipeline resources. Among the resources that we partition, we
find that the most significant contributor to the performance
cost is the execution ports/functional units. Figure 9 shows the
results of an isolated experiment where all resources are dy-
namically shared except the execution ports. We examine four
partitioning schemes for the execution ports: two different
static partitioning schemes as well as our proposed adaptive
and asymmetric SMT.

Multiplexing the dispatch bandwidth refers to the method
where we only dispatch instructions from one thread each cy-
cle. It severely impacts performance. On average, it reduces
the performance by 12%, compared to dynamically shared
execution ports, and is as high as 19% for some benchmarks.
The main reason for such poor performance is that, at each
cycle, there are not enough instructions from only one thread
to fully utilize the execution ports. Another scheme is mul-
tiplexing individual functional units instead of the dispatch
bandwidth as a whole (described in Section 5.3.2). This is
also the default static partitioning scheme used for the sum-
mary results of Figure 7. This improves the utilization of the
execution ports over dispatch bandwidth multiplexing. How-
ever, the cost of static multiplexing of the functional units is
still high (10%, on average) compared to shared execution
ports. Adaptive partitioning is able to reduce that overhead
to only 6%. Adaptive partitioning, even with extremely long
adaptation intervals, is highly effective for the execution ports
as different programs naturally exhibit different usage dis-
tributions for different functional units. Asymmetric SMT
reduces this overhead even further to only 1%.

The next big contributor to the performance cost is the fetch
bandwidth. Figure 10 shows the results of another isolated
experiment where we only partition the fetch bandwidth and
keep other resources dynamically shared. The baseline shared
architecture uses ICount [12] to dynamically determine the
best thread to fetch from. However, as Section 4.2 shows, this
can be used to construct covert channels. One way to mitigate
that is to use a strict round-robin scheme (partitioned bars in
the figure) where the fetch unit alternates between the threads
each cycle. A partitioned fetch policy does not have the ability

to choose the fetching thread based on dynamic conditions
each cycle; therefore, it loses 7% performance overhead, on
average. We get small gains from adapting the partition (and
so restore some small amount of the dynamic adaptation),
then a bit more from asymmetric SMT, which enables us to
retrieve some of the unused fetch bandwidth.

Figure 11 shows the effect of our partitioning scheme ap-
plied to the cache hierarchy (L1 instruction and data, and L2
caches). On average, the static partitioning of the cache sets
into two equally sized partitions imposes 6% performance
overhead. This is greatly influenced by one benchmark (mcf)
that has a large cache working set. Adaptive partitioning re-
duces the overhead to only 2%. It allocates more cache ways
in each set to the thread that shows more misses during the
adaptation period. Asymmetric SMT further reduces the over-
head to only 1%.

One interesting aspect of these results, compared to Fig-
ure 7, especially considering results not shown for other indi-
vidual resources, is that the performance costs incurred overall
are far less than the sum of the costs for individual mitigations.
This is expected on a well-balanced architecture, as these pro-
cessors are designed to be. In a well-balanced architecture,
restricting one resource but not others will always make that
resource a bottleneck. But in a (hypothetically) perfectly bal-
anced architecture, restricting all resources may have no more
negative impact than restricting one.

8 Conclusion

This paper provides the first comprehensive and exhaustive
analysis of sharing-based security vulnerabilities in modern,
high-performance SMT processors. This analysis shows that
despite the fact that many resources are statically partitioned,
there still remain many resources that are dynamically shared
and present high bandwidth leakage channels. Among the
channels identified are some previously unknown, including
fetch bandwidth dynamic sharing and dynamically shared
issue bandwidth, each enabling channels of over 500 Kbps.

This work also examines some novel, unified approaches to
mitigation that can be applied throughout the pipeline. These
provide high isolation between threads (allowing collectively
a few bits of leakage over, for example, 100,000 cycles) while
retaining most of the performance of a fully dynamically
shared, insecure SMT implementation. Adaptive partitioning
gets within 5% of shared SMT, and asymmetric SMT, which
further enables unfettered performance of a trusted thread
in the presence of an untrusted, all but eliminates the loss.

It is common for SMT execution to be disabled in security-
critical code, or in the presence of frequent untrusted execu-
tion streams. This work shows that SMT contention-based
vulnerabilities can be reduced below the level of other known
vulnerabilities, making SMT execution a viable alternative
for secure execution. We do so while still preserving the bulk
of the performance benefit of SMT.

3178 31st USENIX Security Symposium

USENIX Association

le2 le2
—— SMT - T1 with T2

SMT -- T2 with T1

Execution Time (Cycles)
Now e 0 oo a

46 48 58 10 20 30 40 50 60

Nusrgnber sz Instiﬁctiors;g Instructions in T1
(a) Single Thread (b) SMT
Figure 12: Reverse Engineering the Reservation Station Shar-
ing Mechanism.
le3

~13

23 —— SMT --T1 Single-Thread

=212

5

o111 v\,{/ \
© 1.0

g i
i 0.9

Sos

S

507

Q

$0.6

24}

4 8 12 16 20 24 28 32 36 40 44 48 52 56
Store Instructions in T1

Figure 13: Reverse Engineering the SQ Sharing Mechanism.
In single-thread mode, we see a spike in the execution time
at 36, exactly the size of our SQ. In SMT mode, T2 only
executes NOPs, but still causes T1’s SQ to be halved.

Acknowledgment

The authors would like to thank the anonymous reviewers for
their helpful comments. This research was supported by NSF
Grant CNS-1850436, NSF/Intel Foundational Microarchitec-
ture Research Grants CCF-1823444 and CCF1912608, and
DARPA contract HR0011-18-C-0020.

A Appendix
A.1 Extra Details on Covert Channels

Listing 4 and Listing 5 show the microbenchmarks that we
use for isolating contention on the Reservation Station and
the Store Queue.

Figure 12 shows the results of running Listing 4 (described
in Section 4.5) in single-thread mode and in SMT mode on Ivy
Bridge. In single-threaded mode, we observe a spike in the ex-
ecution time if the code consumes more than 54 RS entries. In
SMT mode, on one thread we run the same microbenchmark,
while the other thread executes NOP instructions. We observe
that Ivy Bridge limits the maximum number of allocated RS
entries to 40 entries, and does not let one thread use all of the
54 RS entries.

Similarly, Figure 13 shows the results of running Listing 5
in both single-thread and SMT modes. This microbenchmark
includes a series of stores which are dependent on the first
long-latency load. When the number of store instructions ex-
ceeds the size of the store queue, the processor cannot issue
the store instruction for which we do not have an available SQ
entry, nor any of the following instructions. That is because
even in an out-of-order Intel processor, the rename and allo-
cation stages happen in order. If you run out of out-of-order
resources such as physical registers, IQ, ROB, or SQ entries,

Table 3: Delay, Area, and Power Results for Different Imple-
mentation of the Dispatch Unit.

Module Delay (ns) Area (pmz) Static Power (mW) Dyn. Power (mW)
Shared Dispatch 0.955 7567 0.168 4.118
Partitioned Dispatch 0.951 7660 0.170 4.900
Asymmetric Dispatch 1.037 12147 0.284 6.508
Mult 32x32 1.318 7597 0.163 6.835

the rename and/or allocation will be stalled. It is only after
these stages that the processor can identify the dependencies
between the instructions and dispatch the instructions out of
order to the execution units. Thus, if a store instruction cannot
proceed due to lack of SQ entries, the store and all younger
instructions—independent of their type—will be stalled. As a
result, in single-thread mode we see a spike in the execution
time at 36 stores, which is precisely the size of the store queue
in our Ivy Bridge processor. We also run the same code in
SMT mode, along with another thread that does not consume
any SQ entries, i.e., it only executes NOPs. In that experiment,
we observe that the number of SQ entries available for T1 is
exactly half of the SQ, suggesting a static partitioning scheme
for the SQ.

A.2 RTL Model of Asymmetric SMT

To fully evaluate the effects of resource borrowing on cy-
cle time, power, and area (and to supplement our simulation-
based performance results), we implement different partition-
ing schemes on an example resource in Verilog HDL. To
that end, we choose the dispatch unit, the biggest contributor
to the performance loss of partitioning and likely the most
latency-critical, for which we implement three different shar-
ing schemes: fully shared dispatch, partitioned dispatch, and

CLFLUSH [RDI]
CLFLUSH [RSI]
MFENCE
MOV RAX, [RSI] #Long-Latency Load
CMP RBX, RAX #Waits in RS
#Consume N RS entries
CMP RBX, RAX
MOV RAX, [RDI] #Long-Latency Load
Listing 4: Microbenchmark for Making Contention on Reser-
vation Station. When N is larger than available reservation
station entries the two loads cannot be issued in parallel.
CLFLUSH [RDI]

CLFLUSH [RSI]

MFENCE

MOV RAX, [RSI] #Long-Latency Load

MOV [RBX], RAX #Consumes a SQ entry
#Consume N SQ entries

MOV [RBX], RAX #Consumes a SQ entry

MOV RAX, [RDI] #Long-Latency Load

Listing 5: Microbenchmark for Making Contention on Store
Queue. When N is larger than available store queue entries
the two loads cannot be issued in parallel.

USENIX Association

31st USENIX Security Symposium 3179

Asymmetric dispatch. Fully shared dispatch assigns the func-
tional units to the instructions marked "ready" in the queue,
in a simple first-in-first-out fashion. The partitioned dispatch
is similar to the shared, but it only dispatches instructions
from a single thread each cycle. The Asymmetric dispatch
is similar to the partitioned dispatch, but it assigns any un-
used functional units to the trusted thread. We then use the
Synopsis Design Compiler Q-2019.12-SP5-3 with the 45 nm
NanGate standard cell library [104] to synthesize and obtain
timing, area, and power information.

Table 3 shows the post-synthesize analysis of different im-
plementations of the dispatch unit. Our Asymmetric scheme
increases the delay of the dispatch unit from 0.955 ns to
1.037 ns. However, this 8.6% extra overhead does not af-
fect the processor’s cycle time, as it is not enough to put the
dispatch unit on the critical path of the whole processor core.
As an example, we show that the (pipelined) integer multipli-
cation unit has a longer delay. To see this, we implement a
three-cycle multiplication module [107], imitating Skylake’s
three-cycle integer multiplication design. Our results show
that the delay of our Asymmetric dispatch is still significantly
smaller than the cycle time determined by the multiplier (the
longest of the three stages); thus, our Asymmetric dispatch
will not affect the cycle time.

Asymmetric dispatch covers a 16% larger area compared
to a shared dispatch unit. However, this is also not a matter of
concern as the dispatch unit constitutes only a tiny fraction of
a modern processor’s die area. The Skylake core, for example,
has an area of 8.73 mm? [108]. The asymmetric dispatch over-
head, thus, will be only 0.051% of the core area (calculated
conservatively, not accounting for the technology node differ-
ences). Similarly, the power overhead is also not considerable
compared to the total power consumption of an out-of-order
core, which could be in the order of tens of Watts.

References

[1] L. Bowen and C. Lupo, “The performance cost of software-based
security mitigations,” in Proceedings of the ACM/SPEC International
Conference on Performance Engineering (ICPE), 2020.

[2] N. Jones, “How to stop data centres from gobbling up the world’s
electricity,” Nature, vol. 561, no. 7722, pp. 163-167, 2018.

[3] L. Cheng, F. Liu, and D. D. Yao, “Enterprise data breach: causes,
challenges, prevention, and future directions,” WIREs Data Mining
and Knowledge Discovery, vol. 7, no. 5, p. e1211, 2017.

[4] T. Armerding, “The 18 biggest data breaches of the 21st century,”
2018.

[5] F. Mireshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar, and
H. Esmaeilzadeh, “Privacy in deep learning: A survey,” 2020.

[6] P.Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 40th IEEE Sym-
posium on Security and Privacy (S&P), 2019.

[7]1 D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush:
A fast and stealthy cache attack,” in Proceedings of the 13th Inter-
national Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2016.

[8] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
aslr: Attacking branch predictors to bypass aslr,” in International

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Symposium on Microarchitecture (MICRO), 2016.

A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida Garcia, and
N. Tuveri, “Port contention for fun and profit,” in JEEE Symposium
on Security and Privacy (S&P), 2019.

M. Taram, A. Venkat, and D. Tullsen, “Packet chasing: Spying on net-
work packets over a cache side-channel,” in International Symposium
on Computer Architecture (ISCA), 2020.

D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multi-
threading: Maximizing on-chip parallelism,” International Symposium
on Computer Architecture (ISCA), 1995.

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L.
Stamm, “Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor,” in International
Symposium on Computer Architecture (ISCA), 1996.

Google, “Product status: Microarchitectural data sampling (mds),”
2019. [Online]. Available: https://support.google.com/fags/answer/
93302507hl=en

M. Larabel, “Openbsd disabling smt / hyper threading due to security
concerns,” 2018. [Online]. Available: https://www.phoronix.com/
scan.php?page=news_item&px=0penBSD-Disabling-SMT

Red Hat, “Simultaneous multithreading in red hat enterprise linux,”
2019. [Online]. Available: https://access.redhat.com/solutions/rhel-
smt

Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel
Corporation, August 2011.

D. M. Tullsen and J. A. Brown, “Handling long-latency loads in a
simultaneous multithreading processor,” in International Symposium
on Microarchitecture (MICRO), 2001.

D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and
C. W. Fletcher, “Microscope: Enabling microarchitectural replay at-
tacks,” in International Symposium on Computer Architecture (ISCA),
2020.

R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic

»

classification of side-channel attacks: A case study for mobile devices,
IEEE Communications Surveys & Tutorials, vol. 20, p. 465-488, 2018.
1. Puddu, M. Schneider, M. Haller, and S. Capkun, “Frontal attack:
Leaking control-flow in sgx via the cpu frontend,” in USENIX Security
Symposium (USENIX Security), 2021.

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francil-
lon, “Reverse engineering intel last-level cache complex addressing
using performance counters,” in Research in Attacks, Intrusions, and
Defenses (RAID), 2015.

C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: Cross-
cores cache covert channel,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
2015.

Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: a timing attack
on openssl constant-time rsa,” Journal of Cryptographic Engineering,
vol. 7, no. 2, pp. 99-112, 2017.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and
their implications,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software grand exposure: SGX cache attacks are
practical,” in USENIX Workshop on Offensive Technologies (WOOT),
2017.

P. Vila, A. Abel, M. Guarnieri, B. Kopf, and J. Reineke, “Flushgeist:
Cache leaks from beyond the flush,” 2020, [arXiv preprint
arXiv:1409.0876].

D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Pono-
marev, “Branchscope: A new side-channel attack on directional branch
predictor,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2018.
D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An empirical

3180 31st USENIX Security Symposium

USENIX Association

https://support.google.com/faqs/answer/9330250?hl=en
https://support.google.com/faqs/answer/9330250?hl=en
https://www.phoronix.com/scan.php?page=news_item&px=OpenBSD-Disabling-SMT
https://www.phoronix.com/scan.php?page=news_item&px=OpenBSD-Disabling-SMT
https://access.redhat.com/solutions/rhel-smt
https://access.redhat.com/solutions/rhel-smt
http://arxiv.org/abs/2005.13853

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

study of timing channels on sel4,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014.

0. Aciigmez, S. Gueron, and J.-P. Seifert, “New branch prediction
vulnerabilities in openssl and necessary software countermeasures,”
in IMA International Conference on Cryptography and Coding, 2007.
Y. Bulygin, “Cpu side-channels vs. virtualization malware: the good,
the bad or the ugly,” ToorCon: Seattle, Seattle, WA, US, 2008.

D. Sullivan, O. Arias, T. Meade, and Y. Jin, “Microarchitectural mine-
fields: 4k-aliasing covert channel and multi-tenant detection in iaas
clouds.” in Network and Distributed System Security Symposium
(NDSS), 2018.

B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in USENIX Security Symposium (USENIX Security), 2018.

R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space aslr,” in IEEE Symposium on Security
and Privacy (S&P), 2013.

M. Li, Y. Zhang, Z. Lin, and Y. Solihin, “Exploiting unprotected
i/o operations in amd’s secure encrypted virtualization,” in USENIX
Security Symposium (USENIX Security), 2019.

M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“NetCAT: Practical Cache Attacks from the Network,” in /JEEE Sym-
posium on Security and Privacy (S&P), 2020.

A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: Exploiting
speculative execution through port contention,” in ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2019.

O. Aciicmez and J. Seifert, “Cheap hardware parallelism implies
cheap security,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2007.

J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI: Hi-
jacking Transient Execution through Microarchitectural Load Value
Injection,” in IEEE Symposium on Security and Privacy (S&P), 2020.
M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Melt-
down: Reading kernel memory from user space,” in USENIX Security
Symposium (USENIX Security), 2018.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” in USENIX Security Symposium
(USENIX Security), 2018.

S. van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data
load,” in IEEE Symposium on Security and Privacy (S&P), 2019.

H. Wong, “Measuring reorder buffer capacity,” may 2013.
[Online]. Available: http://blog.stuffedcow.net/2013/05/measuring-
rob-capacity/

J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-
channel vulnerability factor: A metric for measuring information leak-
age,” in International Symposium on Computer Architecture (ISCA),
2012.

C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath, and
M. Tiwari, “Understanding contention-based channels and using them
for defense,” in International Symposium on High Performance Com-
puter Architecture (HPCA), 2015.

S. B. Dutta, H. Naghibijouybari, N. Abu-Ghazaleh, A. Marquez, and
K. Barker, “Leaky buddies: Cross-component covert channels on inte-
grated cpu-gpu systems,” in International Symposium on Computer
Architecture (ISCA), 2021.

H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in ACM
SIGSAC Conference on Computer and Communications Security
(CCS),2018.

(471

(48]

[49]

[50]

[51]

[52]

[53

—

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh, “Con-
structing and characterizing covert channels on gpgpus,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2017.

E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
aes, and countermeasures,” Journal of Cryptology, vol. 23, no. 1, p.
37-71, Jan. 2010.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: The case of aes,” in the RSA Conference on Topics in
Cryptology, 2006.

G. Saileshwar, C. W. Fletcher, and M. K. Qureshi, “Streamline: A fast,
flushless cache covert-channel attack by enabling asynchronous col-
lusion,” in Proceedings of the Twenty-sixth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2021.

Z. Wang and R. B. Lee, “Covert and side channels due to processor ar-
chitecture,” in Computer Security Applications Conference (ACSAC),
2006.

A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “Memjam:
A false dependency attack against constant-time crypto implemen-
tations,” Int. J. Parallel Program., vol. 47, no. 4, p. 538-570, Aug.
2019.

X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and A. Venkat,
“I see dead pops: Leaking secrets via intel/amd micro-op caches,” in
International Symposium on Computer Architecture (ISCA), 2021.
0. Aciigmez, c. K. Kog, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Cryptographers’ Track at the RSA Conference
on Topics in Cryptology (CT-RSA), 2007.

0. Aciigmez, c. K. Kog, and J.-P. Seifert, “On the power of simple
branch prediction analysis,” in ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS), 2007.

A. Fogh, “Covert shotgun,” 2016. [Online]. Available: https:
/lcyber.wtf/2016/09/27/covert-shotgun/

B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi, “Absynthe:
Automatic blackbox side-channel synthesis on commodity microar-
chitectures,” in Network and Distributed Systems Security Symposium
(NDSS), 2020.

G. Saileshwar and M. K. Qureshi, “Lookout for zombies: Mitigating
flush+reload attack on shared caches by monitoring invalidated lines,”
[arXiv preprint 1906.02362].

M. Yan, J. Wen, C. W. Fletcher, and J. Torrellas, “Secdir: A secure
directory to defeat directory side-channel attacks,” in International
Symposium on Computer Architecture (ISCA), 2019.

G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “Hybcache: Hybrid
side-channel-resilient caches for trusted execution environments,” in
USENIX Security Symposium (USENIX Security), 2020.

M. Taram, A. Venkat, and D. M. Tullsen, “Context-sensitive decod-
ing: On-demand microcode customization for security and energy
management,” I[EEE Micro, vol. 39, no. 3, pp. 75-83, 2019.

M. Taram, A. Venkat, and D. Tullsen, “Mobilizing the micro-ops: Ex-
ploiting context sensitive decoding for security and energy efficiency,”
in International Symposium on Computer Architecture (ISCA), 2018.
M. Taram, D. Tullsen, A. Venkat, H. Sayadi, H. Wang, S. Manoj, and
H. Homayoun, “Fast and efficient deployment of security defenses via
context sensitive decoding,” in Government Microcircuit Applications
and Critical Technology Conference (GOMACTech), 2019.

I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst, B. M. Al-
Hashimi, and G. V. Merrett, “Brb: Mitigating branch predictor side-
channels.” in IEEFE International Symposium on High Performance
Computer Architecture (HPCA), 2019.

S. Deng, W. Xiong, and J. Szefer, “Secure tlbs,” in International
Symposium on Computer Architecture (ISCA), 2019.

H. Cho, J. Park, D. Kim, Z. Zhao, Y. Shoshitaishvili, A. Doupé, and
G.-J. Ahn, “Smokebomb: Effective mitigation against cache side-
channel attacks on the arm architecture,” in International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2020.

USENIX Association

31st USENIX Security Symposium 3181

http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/
http://blog.stuffedcow.net/2013/05/measuring-rob-capacity/
https://cyber.wtf/2016/09/27/covert-shotgun/
https://cyber.wtf/2016/09/27/covert-shotgun/
http://arxiv.org/abs/1906.02362

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Q. Xu, H. Naghibijouybari, S. Wang, N. Abu-Ghazaleh, and M. An-
navaram, “Gpuguard: Mitigating contention based side and covert
channel attacks on gpus,” in Proceedings of the ACM International
Conference on Supercomputing (ICS), 2019.

A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic anal-
ysis of randomization-based protected cache architectures,” in IEEE
Symposium on Security and Privacy (S&P), 2021.

L. Zhao, P. Li, R. Hou, M. C. Huang, J. Li, L. Zhang, X. Qian, and
D. Meng, “A lightweight isolation mechanism for secure branch pre-
dictors,” 2020, [arXiv preprint arXiv:2005.08183].

Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in International Symposium on
Computer Architecture (ISCA), 2007.

T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Sympo-
sium on Research in Attacks, Intrusions, and Defenses (RAID), 2016.
S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “Cached: Identifying
cache-based timing channels in production software,” in USENIX
Security Symposium (USENIX Security), 2017.

M. Yan, Y. Shalabi, and J. Torrellas, “Replayconfusion: Detecting
cache-based covert channel attacks using record and replay,” in Inter-
national Symposium on Microarchitecture (MICRO), 2016.

F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi, “Dr.sgx: Automated and adjustable side-channel
protection for sgx using data location randomization,” in Annual
Computer Security Applications Conference (ACSAC), 2019.

M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in International Symposium on Computer Architecture (ISCA), 2019.

A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda, W. Robert-
son, and A. Kurmus, “Speculator: A tool to analyze speculative exe-
cution attacks and mitigations,” in Annual Computer Security Appli-
cations Conference (ACSAC), 2019.

G. Saileshwar and M. K. Qureshi, “Cleanupspec: An "undo" approach
to safe speculation,” in International Symposium on Microarchitecture
(MICRO), 2019.

S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in International
Symposium on Computer Architecture (ISCA), 2020.

M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), 2019.

O. Weisse, 1. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “Nda:
Preventing speculative execution attacks at their source,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2019.

J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative taint tracking (stt): A comprehensive protection for spec-
ulatively accessed data,” in International Symposium on Microarchi-
tecture (MICRO), 2019.

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrel-
las, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in International Symposium on Microarchitecture (MI-
CRO), 2018.

D. Townley and D. Ponomarev, “Smt-cop: Defeating side-channel
attacks on execution units in smt processors,” in International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT),
2019.

G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T.-H. Lai,
and D. Lin, “Racing in hyperspace: Closing hyper-threading side
channels on sgx with contrived data races,” in IEEE Symposium on
Security and Privacy (S&P), 2018.

P. P. Lai, E. Schuchman, D. Keppel, D. M. Khartikov, P. Xekalakis,
J. B. Fryman, A. D. Knies, N. Neelakantam, G. Stellpflug, J. H. Kelm
et al., “Apparatus and method for efficiently implementing a processor

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

pipeline,” US Patent 10409 763, Sep. 10, 2019.

C. Percival, “Cache missing for fun and profit,” 2005.

G. V. team, “How v8 measures real-world performance,” 2016.
[Online]. Available: https://v8.dev/blog/real-world-performance

B. J. Smith, “Architecture and applications of the hep multiprocessor
computer system,” Real-Time signal processing IV, vol. 298, pp. 241-
248, 1982.

M. Nemirovsky and D. M. Tullsen, “Multithreading architecture,”
Synthesis Lectures on Computer Architecture, vol. 8, no. 1, pp. 1-109,
2013.

H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency,”
in International Symposium on Microarchitecture (MICRO), 2008.
N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V.
Veidenbaum, “Improving cache management policies using dynamic
reuse distances,” in International Symposium on Microarchitecture
(MICRO), 2012.

Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the memory
system: Predicting and optimizing memory behavior,” in International
Symposium on Computer Architecture (ISCA), 2002.

H. H. Hum, “Dirty line cache,” US Patent 6 078 992, Jun. 20, 2000.
J. Lowe-Power et al., “The gem5 simulator: Version 20.0+,” 2020,
[arXiv preprint arXiv:2007.03152].

R. Sharifi and A. Venkat, “Chex86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in International
Symposium on Computer Architecture (ISCA), 2020.

G. H. Loh, “3d-stacked memory architectures for multi-core proces-
sors,” in International Symposium on Computer Architecture (ISCA),
2008.

A. Akram and L. Sawalha, “A survey of computer architecture simu-
lation techniques and tools,” IEEE Access, vol. 7, pp. 78 120-78 145,
2019.

H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “Pinplay:
A framework for deterministic replay and reproducible analysis of
parallel programs,” in IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2010.

G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction
Level Parallelism, vol. 7, no. 4, pp. 1-28, 2005.

A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a si-
multaneous multithreaded processor,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2000.

SunSpider, “Sunspider javascript benchmarks,” 2020. [Online].
Available: https://webkit.org/perf/sunspider/sunspider.html
Duktape, “Duktape javascript engine,” 2020. [Online]. Available:
https://duktape.org

wolfSSL, “wolfssl cryptography librar,” 2020. [Online]. Available:
https://www.wolfssl.com/docs/benchmarks/

Nangate open cell library. [Online]. Available: https://si2.org/open-
cell-library/

A. Fog, “Test programs for measuring clock cycles and performance
monitoring,” 2020. [Online]. Available: https://www.agner.org/
optimize/

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE Symposium on Security
and Privacy (S&P), 2015.

R. Aneesh and S. K. Mohan, “Design and analysis of high speed,
area optimized 32x32-bit multiply accumulate unit based on vedic
mathematics,” International Journal of Engineering Research and
Technology, vol. 3, no. 4, 2014.

WikiChip, “Skylake (client),” 2020. [Online].
Available: https://en.wikichip.org/wiki/intel/microarchitectures/
skylake_(client)#Core_2

3182 31st USENIX Security Symposium

USENIX Association

http://arxiv.org/abs/2005.08183
https://v8.dev/blog/real-world-performance
http://arxiv.org/abs/2007.03152
https://webkit.org/perf/sunspider/sunspider.html
https://duktape.org
https://www.wolfssl.com/docs/benchmarks/
https://si2.org/open-cell-library/
https://si2.org/open-cell-library/
https://www.agner.org/optimize/
https://www.agner.org/optimize/
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)#Core_2
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)#Core_2

	Introduction
	Background and Related Work
	The x86 Pipeline Resources/Structures
	Simultaneous Multithreading
	Microarchitectural Covert/ Side Channels
	SMT Covert and Side Channels
	Side-Channel Mitigation

	Assumptions and Threat Model
	Covert Channel Characterization
	Overview
	Instruction Fetch Bandwidth
	Decode/Issue Bandwidth
	Register File
	Reservation Station (RS)/Scheduler
	Reorder Buffer, Load/Store Queues
	Covert Channel on Partitioned Structures
	Other Pipeline Resources

	Mitigations
	Static Partitioning
	Adaptive Partitioning
	Asymmetric SMT
	Stateful Resources
	Stateless Resources
	Cache-like Structures
	Overheads
	More than Two Threads
	HW/SW Interface
	Quality of Service (QoS)

	Methodology
	Results
	Security Evaluation
	Performance Evaluation

	Conclusion
	Appendix
	Extra Details on Covert Channels
	RTL Model of Asymmetric SMT

