
On the Convergence of Continuous Constrained Optimization for
Structure Learning

Ignavier Ng1, Sébastien Lachapelle2, Nan Rosemary Ke3, Simon Lacoste-Julien2,4, Kun Zhang1,5

1 Carnegie Mellon University
2 Mila, Université de Montréal

3 DeepMind
4 Canada CIFAR AI Chair

5 Mohamed bin Zayed University of Artificial Intelligence

Abstract

Recently, structure learning of directed acyclic
graphs (DAGs) has been formulated as a
continuous optimization problem by leverag-
ing an algebraic characterization of acyclicity.
The constrained problem is solved using the
augmented Lagrangian method (ALM) which
is often preferred to the quadratic penalty
method (QPM) by virtue of its standard
convergence result that does not require the
penalty coefficient to go to infinity, hence
avoiding ill-conditioning. However, the con-
vergence properties of these methods for struc-
ture learning, including whether they are guar-
anteed to return a DAG solution, remain un-
clear, which might limit their practical appli-
cations. In this work, we examine the conver-
gence of ALM and QPM for structure learning
in the linear, nonlinear, and confounded cases.
We show that the standard convergence re-
sult of ALM does not hold in these settings,
and demonstrate empirically that its behavior
is akin to that of the QPM which is prone
to ill-conditioning. We further establish the
convergence guarantee of QPM to a DAG
solution, under mild conditions. Lastly, we
connect our theoretical results with existing
approaches to help resolve the convergence
issue, and verify our findings in light of an
empirical comparison of them.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

1 Introduction

Structure learning of directed acyclic graphs (DAGs)
is a fundamental problem in many scientific endeav-
ors, such as biology (Sachs et al., 2005) and economics
(Koller and Friedman, 2009). Traditionally, score-based
structure learning methods cast the problem into a dis-
crete optimization program using a predefined score
function. Most of these methods, such as GES (Chick-
ering, 2002), involve local heuristics owing to the large
search space of graphs (Chickering, 1996).

A recent work by Zheng et al. (2018) has reformulated
score-based learning of linear DAGs as a continuous
constrained optimization problem. At the heart of the
method is an algebraic characterization of acyclicity
expressed as a nonlinear constraint and used to min-
imize the least squares loss while enforcing acyclicity.
In the context of structure learning, various works have
adopted this continuous constrained formulation to sup-
port linear non-Gaussian models (Zheng, 2020), nonlin-
ear models (Yu et al., 2019; Ng et al., 2019; Lachapelle
et al., 2020; Zheng et al., 2020; Gao et al., 2021b; Ng
et al., 2022b; Geffner et al., 2022), time series (Pamfil
et al., 2020; Sun et al., 2021; Hsieh et al., 2021), unob-
served confounding (Bhattacharya et al., 2021; Bellot
and van der Schaar, 2021), interventional data (Brouil-
lard et al., 2020; Faria et al., 2022), multi-domain data
(Zeng et al., 2021), mixed data (Zeng et al., 2022), low
rank DAGs (Fang et al., 2020), incomplete data (Wang
et al., 2020), prior knowledge (Cai et al., 2021), feder-
ated learning (Ng et al., 2022a; Gao et al., 2021a), and
multi-task learning (Chen et al., 2021). The continuous
constrained formulation has also been applied to other
domains, e.g., reinforcement learning (Pruthi et al.,
2020; Ruan et al., 2022), normalizing flows (Wehenkel
and Louppe, 2020; Dai and Chen, 2022), domain adap-
tation (Yang et al., 2021b), recommendation system
(Wang et al., 2022), and computer vision (Cui et al.,
2020; Yang et al., 2021a; Zhang et al., 2021, 2022).

On the Convergence of Continuous Constrained Optimization for Structure Learning

Like in the original work, most of these extensions rely
on the augmented Lagrangian method (ALM) (Bert-
sekas, 1982, 1999) to solve the continuous constrained
optimization problem. This choice of algorithm was
originally motivated by the convergence result of ALM,
which, unlike the classical quadratic penalty method
(QPM) (Powell, 1969; Fletcher, 1987), does not require
increasing the penalty coefficient to infinity (Zheng
et al., 2018, Proposition 3). Despite abundant exten-
sions and applications of the continuous constrained
formulation, it remains unclear whether the required
conditions for the standard convergence result of ALM,
or more specifically, the regularity conditions, are sat-
isfied in these settings, and whether the continuous
constrained formulation is guaranteed to converge to a
DAG solution, which is a key to structure learning.

Contributions. We examine the convergence prop-
erties of ALM and QPM for structure learning in the
linear, nonlinear, and confounded cases. We conclude
(i) that, unfortunately, the conditions behind standard
convergence result of ALM are not satisfied in these
settings, (ii) that, furthermore, the empirical behavior
of ALM is similar to QPM that requires the penalty co-
efficient to go to infinity and is prone to ill-conditioning,
and (iii) that, interestingly, QPM is guaranteed to con-
verge to a DAG solution, under mild conditions. We
then provide the implications of our theoretical results
for existing approaches to help resolve the convergence
issue, with an empirical comparison of them that veri-
fies our findings and makes them more intuitive.

We note that the problem has received considerable
attention. For instance, Wei et al. (2020) studied a
related problem, involving the regularity conditions of
the continuous constrained formulation. It is worth
mentioning that our contributions are different and
more complete in terms of the technical development
and results. Specifically, Wei et al. (2020) focused on
the Karush-Kuhn-Tucker (KKT) conditions, while our
study focuses on the convergence of specific constrained
optimization methods (i.e., ALM and QPM), which
provides practical insight for solving the optimization
problem. Furthermore, they focused on the linear case,
while our results also apply to the nonlinear and con-
founded cases, under the same umbrella.

Organization of the paper. We give an overview
of score-based learning, continuous constrained formu-
lation of structure learning, and the ALM in Section 2.
In Section 3, we examine the convergence of ALM and
QPM for structure learning in the linear and nonlinear
cases. We extend the results to the confounded case in
Section 4, and connect them with different approaches
to resolve the convergence issue in Section 5. We pro-
vide empirical studies in Section 6 to verify our results,
and conclude our work in Section 7.

2 Background

We provide a brief review of score-based structure learn-
ing, the NOTEARS method (Zheng et al., 2018) and
the standard convergence result of ALM.

2.1 Score-Based Structure Learning

Structure learning refers to the problem of learning
a graphical structure (in our case a DAG) from data.
Given the random vector X = (X1, . . . , Xd) consist-
ing of d random variables, we assume that the cor-
responding design matrix X = [X1| · · · |Xd] ∈ Rn×d
is generated from a joint distribution P (X) (with
a density p(x)) that is Markov with respect to the
ground truth DAG G and can be factorized as p(x) =∏d
i=1 pi(xi|xPAGi), where PAGi designates the set of par-

ents of Xi in the DAG G. In general, the underlying
DAG is only identifiable up to Markov equivalence un-
der the faithfulness (Spirtes et al., 2000) or the sparsest
Markov representation assumption (Raskutti and Uh-
ler, 2018). Under certain assumptions on the data
distribution, the DAG G is fully identifiable, such as
the linear non-Gaussian model (Shimizu et al., 2006),
linear Gaussian model with equal noise variances (Pe-
ters and Bühlmann, 2013a), nonlinear additive noise
model (Hoyer et al., 2009; Peters et al., 2014), and
post-nonlinear model (Zhang and Hyvärinen, 2009).

To recover the structure G or its Markov equivalence
class, a major class of structure learning methods
are the score-based methods that solves an optimiza-
tion problem over the space of graphs using some
goodness-of-fit measure with a sparsity regularization
term. Some examples include GES (Chickering, 2002),
`0-regularized likelihood (Van de Geer and Bühlmann,
2013), integer linear programming (Jaakkola et al.,
2010; Cussens, 2011), dynamic programming (Koivisto
and Sood, 2004; Ott et al., 2004; Singh and Moore,
2005), and A* (Yuan and Malone, 2013). Most of
these methods tackle the structure search problem in
its natural discrete form.

2.2 Continuous Constrained Optimization for
Structure Learning

NOTEARS. Zheng et al. (2018) proposed a contin-
uous constrained formulation for score-based learning
of linear DAGs. In particular, the linear DAG model is
equivalently represented by the linear structural equa-
tion model (SEM)

X = WTX +N, (1)

where W is the weighted adjacency matrix of a DAG,
andN is a noise vector characterized by the noise covari-
ance matrix Ω. We assume here that the elements of N

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

are mutually independent, and there is no unobserved
confounder. Denoting by � the element-wise product,
and by eM the matrix exponential of a square matrix
M , the authors have shown that tr(eW�W) − d = 0
holds if and only if W represents a DAG. The resulting
continuous constrained optimization problem is

min
W∈Rd×d

1

2n
‖X−XW‖22 + λ‖W‖1

subject to tr(eW�W)− d = 0,

where ‖ · ‖2 and ‖ · ‖1 denote the element-wise `2 and
`1 norms, respectively, and λ is the regularization coef-
ficient. Here, (1/2n)‖X −XW‖22 is the least squares
objective and is equal, up to a constant, to the log-
likelihood of linear Gaussian DAGs assuming equal
noise variances. The `1 regularization term ‖W‖1 is
useful for enforcing sparsity on the matrix W .

NOTEARS-MLP. To generalize the above formu-
lation to the nonlinear case, Zheng et al. (2020) used
multi-layer perceptrons (MLPs) to model nonlinear re-
lationships. For each variable Xi, let MLP(u;Ai) be
the corresponding MLP with input row vector u, `
layers, weights Ai = (A

(1)
i , . . . , A

(`)
i), and element-wise

activation function σ(·), defined as follows:

MLP(u;Ai) = σ(· · ·σ(σ(uA
(1)
i)A

(2)
i) · · ·)A(`)

i ,

A
(t)
i ∈ Rst−1×st , s0 = d, s` = 1.

Let A = (A1, . . . , Ad) denote the weights of MLPs corre-
sponding to all variables. The authors defined an equiv-
alent adjacency matrix (B(A))ji = ‖jth-row(A

(1)
i)‖2

and proposed to solve the optimization problem

min
A

1

n

d∑
i=1

‖Xi −MLP(X;Ai)‖22 + λ‖A(1)
i ‖1

subject to tr(eB(A)�B(A))− d = 0.

As described in Section 1, there are several other ex-
tensions of NOTEARS to the nonlinear case that also
adopt the continuous constrained formulation, e.g.,
DAG-GNN (Yu et al., 2019), GraN-DAG (Lachapelle
et al., 2020), and MCSL (Ng et al., 2022b). In this work
we focus on NOTEARS-MLP for convergence analysis,
since it is conceptually simple compared to the others.
We leave the analysis for the others for future work.

Optimization. The above optimization problems
involve a hard DAG constraint and are solved via ALM,
a general method for continuous constrained optimiza-
tion, which we review next.

2.3 Augmented Lagrangian Method

Consider the generic constrained optimization problem

min
θ∈Rm

f(θ) subject to h(θ) = 0, (2)

Algorithm 1 Augmented Lagrangian Method (No-
cedal and Wright, 2006, Framework 17.3)

Require: starting penalty coefficient ρ1 > 0; starting
Lagrange multiplier α1; multiplicative factor β > 1;
reduction factor γ < 1; nonnegative sequence {τk};
starting point θ0

1: for k = 1, 2, . . . do
2: Find an approximate minimizer θk of

L(·, αk; ρk), starting at point θk−1, and
terminating when ‖∇θL(θ, αk; ρk)‖2 ≤ τk

3: if final convergence test satisfied then
4: stop with approximate solution θk
5: end if
6: Update multiplier αk+1 = αk + ρkh(θk)
7: if ‖h(θk)‖2 > γ‖h(θk−1)‖2 then
8: Update penalty coefficient ρk+1 = βρk
9: else

10: Update penalty coefficient ρk+1 = ρk
11: end if
12: end for

where the functions f : Rm → R and h : Rm → Rp are
both twice continuously differentiable.

The ALM transforms a constrained optimization prob-
lem like (2) into a sequence of unconstrained ones
with solutions converging to a solution of the original
problem. The key idea is to combine the Lagrangian
formulation with QPM, yielding an augmented problem

min
θ∈Rm

f(θ) +
ρ

2
‖h(θ)‖22 subject to h(θ) = 0,

where ρ > 0 is the penalty coefficient. The augmented
Lagrangian function of the formulation above is

L(θ, α; ρ) = f(θ) + αTh(θ) +
ρ

2
‖h(θ)‖22,

where α ∈ Rp is an estimate of the Lagrange multiplier.
A version of the procedure is described in Algorithm
1, which is essentially based on dual ascent. The mini-
mization problem of L(θ, α; ρ) can sometimes be solved
only to stationarity, if, for example, it is nonconvex, as
is the case in the formulation of NOTEARS owing to
the nonconvexity of its specific constraint function.

Based on the procedure of ALM outlined above, we re-
view one of its standard convergence results (Bertsekas,
1982, 1999; Nocedal and Wright, 2006). The following
definition is required to state this result and is crucial
to the contribution of our work.

Definition 1 (Regular point). We say that a point
θ∗ is regular, or that it satisfies the linear independence
constraint qualification (LICQ), if the rows of the Ja-
cobian matrix of h evaluated at θ∗, ∇θh(θ∗) ∈ Rp×m,
are linearly independent.

On the Convergence of Continuous Constrained Optimization for Structure Learning

Theorem 1 (Nocedal and Wright (2006, Theo-
rem 17.5 & 17.6)). Let θ∗ be a regular point of (2)
that satisfies the second-order sufficient conditions (see
Appendix A) with vector α∗. Then there exist positive
scalars ρ̄ (sufficiently large), δ, ε, and M such that for
all αk and ρk satisfying

‖αk − α∗‖2 ≤ ρkδ, ρk ≥ ρ̄,

the problem

min
θ∈Rm

L(θ, αk; ρk) subject to ‖θ − θ∗‖2 ≤ ε

has a unique solution θk. Moreover, we have

‖θk − θ∗‖2 ≤M‖αk − α∗‖2/ρk (3)

and
‖αk+1 − α∗‖2 ≤M‖αk − α∗‖2/ρk , (4)

where αk+1 = αk + ρkh(θk).

An important consequence of Theorem 1 is that if
the penalty coefficient ρk is larger than both ρ̄ and
‖αk − α∗‖2/δ, then the inequalities (3) and (4) hold.
If, in addition, ρk > M , then αk → α∗ by (4) and
θk → θ∗ by (3), without increasing the coefficient ρk
to infinity. This property often motivates the usage of
the ALM over the other approaches, e.g., QPM, for
constrained optimization. Specifically, this was the
original motivation provided by Zheng et al. (2018,
Proposition 3) for using the ALM. The reason is that
the QPM requires bringing the penalty coefficient ρk to
infinity, which may lead to ill-conditioning issue when
solving the minimization problem. In the next section,
we examine the required conditions and show that
Theorem 1 does not apply to the continuous constrained
formulation proposed by Zheng et al. (2018, 2020).

3 Convergence of the Continuous
Constrained Optimization Methods

In this section, we take a closer look at the convergence
of ALM and QPM for learning DAGs in the linear and
nonlinear cases. We assume that there is no unobserved
confounder and focus on the formulation of NOTEARS
and NOTEARS-MLP. We will show in Section 4 that
our analysis generalizes to the confounded case. We
consider the constrained optimization problem

min
θ

f(θ) subject to h(B(θ)) = 0, (5)

where f(θ) is the objective function and h(B(θ)) is a
(scalar-valued) constraint function that enforces acyclic-
ity on the (equivalent) weighted adjacency matrix B(θ).
We assume here that the functions f , h, and B are con-
tinuously differentiable. Specifically, the constraint

term proposed by Zheng et al. (2018) is given by
hexp(B(θ)) = tr(eB(θ)�B(θ))− d. As described in Sec-
tion 2.2, in the linear case, the parameter θ corre-
sponds to the weighted adjacency matrix of the lin-
ear SEM, i.e., we have θ = W and B(W) = W . In
the nonlinear case, the parameter θ corresponds to
the weights of the MLPs. That is, we have θ = A

and (B(A))ji = ‖jth-row(A
(1)
i)‖2. Hereafter we use

f(W) and hexp(W) to refer to the objective and DAG
constraint term in the linear case, and f(A) and
hexp(B(A)) to refer to those in the nonlinear case.

By assuming that function f is continuously differen-
tiable, our analysis does not consider the `1 regulariza-
tion for simplicity. In Section 6, we study empirically
the constrained formulation with and without the ex-
cluded regularization term, and show that our analysis
appears to generalize to the `1-regularized case.

3.1 Regularity of DAG Constraint Term

To investigate whether Theorem 1 applies to problem
(5), one has to first verify if the DAG constraint term
h(B(θ)) satisfies the regularity conditions. The follow-
ing condition is required for our analysis.
Assumption 1. The function h(B(θ)) = 0 if and only
if its gradient ∇θh(B(θ)) = 0.

Both DAG constraint terms in the linear and nonlin-
ear cases satisfy the assumption above, with a proof
provided in Appendix B.1.
Theorem 2. The functions hexp(W) and hexp(B(A))
satisfy Assumption 1.

Assumption 1 implies that the Jacobian matrix of func-
tion h(B(θ)) (after reshaping) evaluated at any feasible
point of problem (5) corresponds to a zero row vector,
which is itself is not linearly independent and therefore
leads to the following remark.
Remark 1. If the function h(B(θ)) satisfies Assump-
tion 1, any feasible solution of problem (5) is not regular
and Theorem 1 does not apply.

With Theorem 2, this shows that the advantage of
ALM (illustrated by Theorem 1) does not apply to
the DAG constraints developed by Zheng et al. (2018,
2020) in the linear and nonlinear cases. Hence, we are
left with no guarantee that the penalty coefficient ρ
does not have to go to infinity for ALM to converge. In
Section 6.1, we show empirically that ρ grows without
converging just like it would in QPM that is prone to
ill-conditioning, which we describe in the next section.

3.2 Quadratic Penalty Method

Apart from ALM, QPM is another method for solving
the constrained optimization problem (5), whose con-

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

Algorithm 2 Quadratic Penalty Method (Nocedal
and Wright, 2006, Framework 17.1)

Require: starting penalty coefficient ρ1 > 0; multi-
plicative factor β > 1; nonnegative sequence {τk};
starting point θ0

1: for k = 1, 2, . . . do
2: Find an approximate minimizer θk of Q(·; ρk),

starting at point θk−1, and terminating
when ‖∇θQ(θ; ρk)‖2 ≤ τk

3: if final convergence test satisfied then
4: stop with approximate solution θk
5: end if
6: Update penalty coefficient ρk+1 = βρk
7: end for

vergence property is studied in this section. We first
define the quadratic penalty function

Q(θ; ρ) = f(θ) +
ρ

2
h(B(θ))2, (6)

and describe the procedure of QPM in Algorithm 2.
Note that it is essentially the same as ALM but without
the Lagrangian part, and thus has a simpler procedure.

This approach adds a quadratic penalty term for the
constraint violation to the objective f(θ). By gradually
increasing the penalty coefficient ρ, we penalize the
constraint violation with increasing severity. Therefore,
it makes intuitive sense to think that the procedure
converges to a feasible solution (i.e., a DAG solution) as
we bring ρ to infinity. However, this is not necessarily
true: in general, Algorithm 2 returns only a stationary
point of the quadratic penalty term h(B(θ))2 (Nocedal
and Wright, 2006, Theorem 17.2). Fortunately, if the
DAG constraint term h(B(θ)) satisfies Assumption 1,
the procedure is guaranteed to converge to a feasible
solution, under mild conditions, formally stated in
Theorem 3. The proof is provided in Appendix B.2.
Note that this theorem and its proof are adapted from
Theorem 17.2 in Nocedal and Wright (2006).
Theorem 3. Suppose in Algorithm 2 that the penalty
coefficients satisfy ρk →∞ and the sequence of nonneg-
ative tolerances {τk} is bounded.1 Suppose also that the
function h(B(θ)) satisfies Assumption 1. Then every
limit point θ∗ of the sequence {θk} is feasible.
Remark 2. With the constraint terms hexp(W) and
hexp(B(A)), Theorems 3 and 2 guarantee that, under
mild conditions, Algorithm 2 returns a DAG solution
as ρk →∞ based on inexact minimizations of Q(·; ρk).

Although the standard convergence result of ALM (i.e.,
Theorem 1) does not hold as the DAG constraint terms

1A stricter condition τk → 0 is often used in the analysis
of QPM (Nocedal and Wright, 2006, Theorem 17.2) but is
not required here.

proposed by Zheng et al. (2018, 2020) satisfy Assump-
tion 1, this property ensures that QPM returns a DAG,
which is indeed a key to structure learning. The remark
above also explains why the implementations of ALM
with these two constraints often return DAG solutions
in practice (after thresholding). Furthermore, if As-
sumption 1 is satisfied, Theorem 3 verifies that one can
directly use the value of DAG constraint term as an
indicator for the final convergence test in Algorithm 2,
i.e., h(B(θk)) ≤ ε with ε > 0 being a small tolerance.
It is worth noting that this convergence test has been
adopted in the current implementation of NOTEARS
(Zheng et al., 2018) and most of its extensions.

Practical issue. In practice, one is, at most, only
able to increase the penalty coefficient ρ to a very
large value, e.g., of order 1016. Therefore, the final
solution can only satisfy h(B(θ)) ≤ ε up to numerical
precision with ε > 0 being a small tolerance, e.g., of
order 10−8. In this case, the solution may contain
many entries close to zero and does not correspond
exactly to a DAG. Following Zheng et al. (2018), a
thresholding step on the estimated entries is needed to
convert the solution into a DAG; the experiments in
Section 6.1 suggest that a small threshold (e.g., 0.05)
suffices. However, a moderately large threshold (e.g.,
0.3) can still be useful for reducing the false discoveries.

3.3 Other DAG Constraint Term

Apart from the matrix exponential term proposed by
Zheng et al. (2018), Yu et al. (2019) developed a poly-
nomial alternative that may have better numerical
stability with a proper choice of µ > 0:

hpoly(B(θ)) = tr
(
(I + µB(θ)�B(θ))d

)
− d.

Our analysis generalizes to the above constraint term.

Corollary 1. The functions hpoly(W) and hpoly(B(A))
satisfy Assumption 1.

4 With Unobserved Confounding

We study whether our convergence analysis is appli-
cable to the confounded case. Recently, Bhattacharya
et al. (2021) applied the continuous constrained for-
mulation proposed by Zheng et al. (2018) to estimate
structures with unobserved confounding, by deriving al-
gebraic characterizations for different classes of acyclic
directed mixed graphs (ADMGs), i.e., ancestral, arid,
and bow-free graphs. Here we consider the bow-free
graphs that are the least restrictive for our further
analysis. Note that a bow-free ADMG refers to an
ADMG in which the directed and bidirected edges do
not both appear for any pair of vertices.

On the Convergence of Continuous Constrained Optimization for Structure Learning

Denote by W and Ω the weighted adjacency matrix
and noise covariance matrix of the linear SEM defined
in Eq. (1). In the confounded case, there exist un-
observed variables that are parents of more than one
observed variable, implying that the noise terms are
correlated (Pearl, 2009). Since Ω is symmetric, we have
Xi ↔ Xj , i 6= j in the ADMG if and only if Ωji 6= 0.
In other words, the weighted adjacency matrix W and
noise covariance matrix Ω represent the directed and
bidirected edges in the ADMG, respectively. Bhat-
tacharya et al. (2021) adopted the ALM to solve the
constrained optimization problem (5) with the approx-
imate BIC score (Su et al., 2016), where θ corresponds
to the parameters W and Ω. In this case, the algebraic
constraint term of bow-free ADMGs is given by

hbf(W,Ω) = tr(eW�W)− d+ sum(W �W � Ω� Ω).

The authors have shown that hbf(W,Ω) = 0 if and only
if the ADMG defined by W and Ω corresponds to a
bow-free graph. To study the convergence property of
ALM in this case, we have the following result regarding
its regularity, with a proof given in Appendix B.3.
Theorem 4. hbf(W,Ω) satisfies Assumption 1.

Similar result also holds for the polynomial constraint
term proposed by Yu et al. (2019).
Corollary 2. Theorems 4 holds if the matrix exponen-
tial eW�W in the function hbf(W,Ω) is replaced with
the matrix polynomial (I + µW �W)d for any µ > 0.

As a consequence, similar to the setting of NOTEARS
and NOTEARS-MLP studied in Section 3, Remark 1
indicates there is no guarantee such that the penalty
coefficient ρ does not have to go to infinity for ALM
to converge. Fortunately, with Theorem 3, using QPM
to solve the constrained optimization problem is guar-
anteed to return a solution that satisfies hbf(W,Ω) ≤ ε
up to numerical precision, under mild conditions.

5 Resolving the Convergence Issue

The analysis in Sections 3 and 4 implies that the advan-
tage of ALM illustrated by Theorem 1 does not hold
in the continuous constrained formulation for structure
learning. Specifically, it is not guaranteed that the
penalty coefficient does not have to be increased indefi-
nitely for the convergence of ALM. The experiments
in Section 6.1 verify this study and show empirically
that ALM requires increasing the coefficient to a very
large value to converge to a DAG solution, similar to
QPM. This is known to cause numerical difficulties and
ill-conditioning issues on the objective landscape (Bert-
sekas, 1999; Nocedal and Wright, 2006). The reason is
that when the penalty term is large, the Hessian matrix
is ill-conditioned and has a high condition number. In

this case, the function contour is stretched out, and
the gradients may not be the best direction to descend
to the minimum, leading to a zigzag path. This is
illustrated by a bivariate example in Appendix C.

In light of our theoretical results, we give a brief
overview on different approaches that help resolve the
convergence issue, and provide an empirical comparison
of them in Sections 6.2 and 6.3 to illustrate our findings.
In particular, the first approach uses a second-order
method that is less susceptible to ill-conditioning, while
the second approach devises an alternative algebraic
DAG constraint with a local search procedure. The
last two approaches adopt a different unconstrained
formulation, thus avoiding the convergence issue caused
by the hard DAG constraint in problem (5).

It is worth noting that the effectiveness of some of
the approaches below have been studied separately in
the papers that proposed them. To the best of our
knowledge, some of these approaches have not been
connected with the convergence issue of NOTEARS,
which is the focus of this section as well as Sections
6.2 and 6.3 . Doing so allows one to understand which
approach better resolves the convergence issue.

Second-order method. As pointed out by Bert-
sekas (1999); Antoniou and Lu (2007); Bottou et al.
(2018), one may consider using a second-order method
such as the quasi-Newton method (Nocedal and Wright,
2006) that handles ill-conditioning better by incorporat-
ing curvature information through approximations of
the Hessian matrix. This is consistent with the recent
works (Zheng et al., 2018, 2020; Pamfil et al., 2020)
that adopt L-BFGS (Byrd et al., 2003) to solve the
optimization subproblems. However, the original moti-
vation of using quasi-Newton method was mainly about
efficiency consideration, or, specifically, to reduce the
number of evaluations of the matrix exponential that
takes O(d3) cost (Al-Mohy and Higham, 2009; Zheng
et al., 2018). We note here that another key advan-
tage of using L-BFGS is, interestingly, to help resolve
ill-conditioning issue, as verified by the experiments in
Section 6.2 and a bivariate example in Appendix C.

Absolute value adjacency matrix and KKT-
informed local search. In contrast to the quadratic
adjacency matrix B(θ)�B(θ) in the DAG constraint
term hexp(B(θ)), the Abs-KKTS method proposed by
Wei et al. (2020) adopts an absolute value adjacency
matrix given by h′exp(B(θ)) = tr(e|B(θ)|)− d, where | · |
denotes the element-wise absolute value of a matrix,
together with a local search procedure informed by the
KKT conditions as a post-processing step. The result-
ing procedure returns a solution that satisfies the KKT
conditions, and leads to improvement in the structure
learning performance of NOTEARS.

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

Soft constraints. Ng et al. (2020) showed that
soft sparsity and DAG constraints suffice to asymp-
totically estimate a DAG equivalent to the true DAG
under mild conditions when using the likelihood of
linear Gaussian directed graphical models (possibly
cyclic) as the objective function instead of the least
squares loss that corresponds to the likelihood of linear
Gaussian DAGs. This gives rise to the following un-
constrained optimization problem in the case of equal
noise variances, denoted as GOLEM-EV:

min
W∈Rd×d

d

2
log ‖X−XW‖22 − log | det(I −W)|

+ λ1‖W‖1 + λ2hexp(W),

where λ1 and λ2 are the regularization coeffi-
cients. With this unconstrained formulation, the ill-
conditioning issue caused by the hard DAG constraint
in problem (5) can be completely avoided, since one is
able to directly solve the above problem using continu-
ous optimization, without the need of any constrained
optimization method like ALM or QPM.

Direct optimization in DAG space. Yu et al.
(2021) developed an algebraic representation of DAGs
based on graph Hodge theory (Jiang et al., 2011; Bang-
Jensen and Gutin, 2009), and showed that one can
directly perform continuous optimization in the space
of all possible DAGs without relying on a hard DAG
constraint. Similar to GOLEM-EV, the constrained
optimization problem (5) can be reformulated in the
linear case as an unconstrained one

(U∗, p∗) = arg min
U∈S,p∈Rd

f(U � ReLU(grad(p))), (7)

where S refers to the space of all d× d skew-symmetric
matrices, (grad(p))ji = pi − pj denotes the gradient
flow defined on the nodes of a graph (Lim, 2015),
and (ReLU(M))ji = max(0,Mji) denotes the recti-
fied linear unit function (Nair and Hinton, 2010) of
a square matrix M . The final solution is given by
W ∗ = U∗ � ReLU(grad(p∗)), whose nonzero entries
are guaranteed to represent a DAG (Yu et al., 2021,
Theorem 3.5). Since the objective function is highly
nonconvex, randomly initializing U and p may lead to
a stationary point far from the global optimum. The
authors thus proposed a two-step procedure, denoted
as NoCurl, that first obtains a rough estimate of the so-
lution by solving the subproblem of NOTEARS either
once or twice with a slightly large penalty coefficient
(e.g., ρ = 103), and uses that estimate to compute the
initialization of U and p for problem (7). Similar to
second-order method, this method was originally moti-
vated by efficiency consideration. Since it avoids the
hard DAG constraint and accordingly does not require
a large penalty coefficient, we note that this method
can also help avoid the ill-conditioning issue.

6 Experiments

We conduct experiments on the structure learning tasks
and take a closer look at the optimization processes
to verify our study. In Section 6.1, we demonstrate
that ALM behaves similarly to QPM, both of which
converge to an approximately DAG solution when the
penalty coefficients are very large. We compare the
ability of different optimization algorithms to handle
ill-conditioning in Section 6.2, and the other approaches
to help resolve the convergence issue in Section 6.3.

Methods. We experiment with both NOTEARS and
NOTEARS-MLP. We also consider their variants with
the `1 regularization term, denoted as NOTEARS-L1
and NOTEARS-MLP-L1, respectively.

Implementations. Our implementations are based
on the code2 released by Zheng et al. (2018, 2020) with
the DAG constraint term hexp(B). We also use the
least squares objective and default hyperparameters in
our experiments. Unless otherwise stated, we employ
the L-BFGS algorithm (Byrd et al., 2003) to solve each
subproblem and a threshold of 0.3 for post-processing.
In the linear case, we use a pre-processing step to center
the data by subtracting the mean of each variable
from the samples X. The code is available at https:
//github.com/ignavierng/notears-convergence.

Simulations. We simulate the ground truth DAGs
using the Erdös–Rényi (Erdös and Rényi, 1959) or
scale-free (Barabási and Albert, 1999) model with kd
edges on average, denoted as ERk or SFk, respec-
tively. Unless otherwise stated, based on the graph
sizes d ∈ {10, 20, 50, 100} and different data generating
procedures, we generate 1000 samples with standard
Gaussian noises. For NOTEARS and NOTEARS-L1,
we simulate the linear DAG model with edge weights
sampled uniformly from [−2,−0.5] ∪ [0.5, 2], similar
to (Zheng et al., 2018). For the nonlinear variants
NOTEARS-MLP and NOTEARS-MLP-L1, we con-
sider the data generating procedure used by Zheng
et al. (2020), where each function is sampled from a
Gaussian process with RBF kernel of bandwidth one.
Both data models are known to be fully identifiable
(Peters and Bühlmann, 2013a; Peters et al., 2014).

Metrics. We report the structural Hamming dis-
tance (SHD), structural intervention distance (SID)
(Peters and Bühlmann, 2013b) and true positive rate
(TPR), averaged over 30 random trials.

6.1 ALM Behaves Similarly to QPM

We conduct experiments to show that ALM behaves
similarly to QPM in the context of structure learning,

2https://github.com/xunzheng/notears

https://github.com/ignavierng/notears-convergence
https://github.com/ignavierng/notears-convergence
https://github.com/xunzheng/notears

On the Convergence of Continuous Constrained Optimization for Structure Learning

0 10 20

k (Iteration)

102

105

108

1011

1014

ρ
k

0 10 20

k (Iteration)

100

101

102

103

104

α
k

0 10 20

k (Iteration)

10−8

10−6

10−4

10−2

100

h
ex

p
(B

(θ
k
))

0 10 20

k (Iteration)

100

102

104

N
u
m
b
er

of
C
yc
le
s

NOTEARS (ALM) NOTEARS (QPM)

Figure 1: Optimization processes of NOTEARS using ALM and QPM on synthetic data. The ground truths are
10-node ER1 graphs and the sample size is n = 1000. Each data point corresponds to the k-th iteration.

and that both of them converge to a DAG solution. Our
goal here is not to show that QPM performs better than
ALM, but rather to study their empirical behavior.

We first take a closer look at the optimization processes
of ALM and QPM on the 10-node ER1 graphs. Fig-
ure 1 depicts the penalty coefficient ρk, estimate of
Lagrange multiplier αk (only for ALM), value of DAG
constraint term hexp(B(θk)), and number of cycles in
the k-th iteration of the optimization for NOTEARS,
while those for NOTEARS-L1, NOTEARS-MLP, and
NOTEARS-MLP-L1 are visualized in Figure 5 in Ap-
pendix E. Note that we use a small threshold 0.05 when
computing the number of cycles. Complementing our
study in Section 3.1, ALM requires a very large coeffi-
cient ρk to converge, similar to QPM, which suggests
that they both behave similarly and that the standard
convergence result of ALM appears to not hold here.
On the other hand, when the penalty coefficient ρk
is very large, one observes that both ALM and QPM
converge to a solution whose value of hexp(B(θk)) is
very close to zero, i.e., smaller than 10−8, which yields
a DAG solution after thresholding at 0.05. Since one
is not able to increase the penalty coefficient ρk to in-
finity in practice, this serves as an empirical validation
of Theorem 3. Interestingly, Figures 1 and 5 suggest
that one may consider using QPM instead of ALM in
practice as it converges in fewer number of iterations.

We further investigate whether ALM and QPM yield
similar structure learning performance. The results
with ER1 graphs are reported in Figure 6 in Appendix
E, showing that ALM performs similarly to QPM across
all metrics. All these observations appear to generalize
to the case with `1 regularization term that is not
covered by our analysis in Section 3.

Real data. We conduct empirical studies to verify
whether our observations hold on the protein signaling
dataset by Sachs et al. (2005). Due to the limited space,
the optimization processes of ALM and QPM on this
dataset are shown in Figure 7, which yield consistent
observations with those on synthetic data, i.e., ALM

behaves similarly to QPM that requires the penalty
coefficient to be very large (e.g., 1012), both of which
converge to a solution whose value of hexp(B(θk)) is
very close to zero, yielding a DAG after thresholding.

6.2 Different Optimization Algorithms for
Handling Ill-Conditioning

The previous experiments demonstrate that ALM be-
haves similarly to QPM that requires bringing the
penalty coefficient to infinity in order to converge to
a DAG solution, which is known to cause numerical
difficulties and ill-conditioning issues on the objective
landscape (Bertsekas, 1999; Nocedal and Wright, 2006).
Here we experiment with different optimization algo-
rithms for solving the QPM subproblems of NOTEARS
and NOTEARS-MLP-L1, to investigate which of them
handle ill-conditioning better and produce a better
solution in practice. The optimization algorithms in-
clude gradient descent with momentum (Qian, 1999),
Nesterov accelerated gradient (NAG) (Nesterov, 1983),
Adam (Kingma and Ba, 2014) and L-BFGS (Byrd et al.,
2003); see Appendix D for the implementation details.
Note that gradient descent with momentum and NAG
often terminate earlier because of numerical difficulties,
so we report its results right before termination.

Due to the space limit, the optimization processes of
NOTEARS and NOTEARS-MLP-L1 on the 100-node
ER1 graphs are visualized in Figure 8 in Appendix E.
One first observes that momentum and NAG terminate
when the coefficient ρk reaches 107 and 106, respectively,
in the linear case, and reaches 109 and 108, respectively,
in the nonlinear case, indicating that they fail to handle
ill-conditioning in these settings. In the linear case,
L-BFGS is more stable than Adam for large ρk, thus
returning a solution with a lower objective value f(θk)
and SHD. The opposite is observed in the nonlinear
case where Adam has consistently lower f(θk) and SHD
than L-BFGS. Similar observations are also made for
the overall structure learning performance on ER1 and
SF4 graphs, as depicted in Figures 2 and 9 in Appendix

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

20 40 60 80 100

d (Number of nodes)

0

5

10

15
S

H
D

NOTEARS (L-BFGS)

NOTEARS (Adam)

NOTEARS (NAG)

NOTEARS (Momentum)

Figure 2: Empirical results of different optimiza-
tion algorithms for solving the QPM subproblems of
NOTEARS on synthetic data. The ground truths are
ER1 graphs and the sample size is n = 1000.

E, with graph sizes d ∈ {10, 20, 50, 100}. In the linear
case, L-BFGS performs the best across most settings,
while the performance of Adam is slightly better than
L-BFGS in the nonlinear case. Gradient descent with
momentum and NAG give rise to much higher SHD
and SID, especially on large graphs.

As compared to first-order method, the observations
above suggest that second-order method such as L-
BFGS handles ill-conditioning better by incorporating
curvature information through approximations of the
Hessian matrix, which verifies our findings in Section
5. This is also consistent with the optimization liter-
ature (Bertsekas, 1999) and the bivariate example in
Appendix C. The Adam algorithm, on the other hand,
lies in the middle as it employs diagonal rescaling on
the parameter space by maintaining running averages
of past gradients (Bottou et al., 2018). In the nonlinear
case, it may be surprising that Adam performs slightly
better than L-BFGS, as its estimate of the Hessian
matrix is not as accurate as that of L-BFGS. Never-
theless, this demonstrates its effectiveness for training
MLPs, and may be understandable given its popularity
in various deep learning tasks (Schmidt et al., 2021).

6.3 Further Resolving the Convergence Issue

In this section, we provide empirical comparisons of
different methods for resolving the convergence issue
of the NOTEARS formulation, as described in Section
5. In particular, we compare NOTEARS-L1 (with L-
BFGS) to Abs-KKTS3, NoCurl, and GOLEM-EV. The
implementation details of these methods are described
in Appendix D. Here we consider ER1 and SF4 graphs
with 1000 and 3d samples.

3We consider only Abs-KKTS instead of NOTEARS-
KKTS because otherwise we also have to apply the KKT-
informed local search for NoCurl and GOLEM-EV to ensure
a fair comparison, which is not the focus of our work.

20 40 60 80 100

d (Number of nodes)

0

2

4

6

8

S
H

D

NOTEARS-L1

Abs-KKTS

NoCurl

GOLEM-EV

Figure 3: Empirical results of different methods on
synthetic data with ER1 graphs and n = 1000 samples.

Figure 3 shows the SHD on ER1 graphs with 1000
samples, while the complete results on ER1 and SF4
graphs with 1000 and 3d samples can be found in
Figures 10 and 11 in Appendix E. Overall, GOLEM-
EV has the best performance across nearly all settings,
especially in terms of SID. NOTEARS-L1 and Abs-
KKTS perform similarly on SF4 graphs, while the
former has lower SHD and SID on ER1 graphs. NoCurl
has a high SHD especially for the case with 3d samples,
which indicates that it requires a larger sample size to
perform well. This experiment suggests that despite
being susceptible to ill-conditioning, NOTEARS-L1
with L-BFGS is still very competitive in practice and
performs even better than Abs-KKTS and NoCurl that
are less susceptible to the convergence issue, possibly
because L-BFGS can help remedy the ill-conditioning
issue, as demonstrated in Section 6.2.

7 Conclusion

We examined the convergence of ALM and QPM for
structure learning in the linear, nonlinear, and con-
founded cases. In particular, we dug into the stan-
dard convergence result of ALM and showed that
the required regularity conditions are not satisfied in
this setting. Further experiments demonstrate that
ALM behaves similarly to QPM that requires bring-
ing the penalty coefficient to infinity and is prone to
ill-conditioning. We then showed theoretically and em-
pirically that QPM guarantees convergence to a DAG
solution, under mild conditions. The empirical studies
also suggest that our analysis generalizes to the cases
with `1 regularization. Lastly, we connected our theo-
retical results with different approaches to help resolve
the convergence issue, and provided an empirical com-
parison of them to further illustrate our findings. In
particular, it is worth noting that second-order method
can help remedy the ill-conditioning issue of the con-
tinuous constrained formulation and therefore leads to
competitive structure learning results in practice.

On the Convergence of Continuous Constrained Optimization for Structure Learning

Acknowledgments

The authors would like to thank the anonymous review-
ers for their useful comments. This work was supported
in part by the National Institutes of Health (NIH) un-
der Contract R01HL159805, by the NSF-Convergence
Accelerator Track-D award #2134901, by the United
States Air Force under Contract No. FA8650-17-C7715,
by a grant from Apple, by the Canada CIFAR AI Chair
Program, by an IVADO excellence PhD scholarship,
and by a Google Focused Research award. The NIH or
NSF is not responsible for the views reported in this
article. Simon Lacoste-Julien is a CIFAR Associate
Fellow in the Learning in Machines & Brains program.

References

A. Al-Mohy and N. Higham. A new scaling and squar-
ing algorithm for the matrix exponential. SIAM
Journal on Matrix Analysis and Applications, 31,
2009.

A. Antoniou and W.-S. Lu. Practical Optimization:
Algorithms and Engineering Applications. 01 2007.

J. Bang-Jensen and G. Gutin. Digraphs. Theory, Al-
gorithms and Applications. Springer Monographs in
Mathematics, 2009.

A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

A. Bellot and M. van der Schaar. Deconfounded score
method: Scoring DAGs with dense unobserved con-
founding. arXiv preprint arXiv:2103.15106, 2021.

D. P. Bertsekas. Constrained Optimization and La-
grange Multiplier Methods. Academic Press, 1982.

D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, 2nd edition, 1999.

R. Bhattacharya, T. Nagarajan, D. Malinsky, and I. Sh-
pitser. Differentiable causal discovery under unmea-
sured confounding. In International Conference on
Artificial Intelligence and Statistics, 2021.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization
methods for large-scale machine learning. SIAM
Rev., 60:223–311, 2018.

P. Brouillard, S. Lachapelle, A. Lacoste, S. Lacoste-
Julien, and A. Drouin. Differentiable causal discovery
from interventional data, 2020.

R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited
memory algorithm for bound constrained optimiza-
tion. SIAM Journal on Scientific Computing, 16,
2003.

H. Cai, R. Song, and W. Lu. ANOCE: Analysis of
causal effects with multiple mediators via constrained
structural learning. In International Conference on
Learning Representations, 2021.

X. Chen, H. Sun, C. Ellington, E. Xing, and L. Song.
Multi-task learning of order-consistent causal graphs.
In Advances in Neural Information Processing Sys-
tems, 2021.

D. M. Chickering. Learning Bayesian networks is NP-
complete. In Learning from Data: Artificial Intelli-
gence and Statistics V. Springer, 1996.

D. M. Chickering. Optimal structure identification
with greedy search. Journal of Machine Learning
Research, 3(Nov):507–554, 2002.

Z. Cui, T. Song, Y. Wang, and Q. Ji. Knowledge
augmented deep neural networks for joint facial ex-
pression and action unit recognition. In Advances in
Neural Information Processing Systems, 2020.

J. Cussens. Bayesian network learning with cutting
planes. In Conference on Uncertainty in Artificial
Intelligence, 2011.

E. Dai and J. Chen. Graph-augmented normalizing
flows for anomaly detection of multiple time series.
In International Conference on Learning Represen-
tations, 2022.

P. Erdös and A. Rényi. On random graphs I. Publica-
tiones Mathematicae, 6:290–297, 1959.

Z. Fang, S. Zhu, J. Zhang, Y. Liu, Z. Chen, and Y. He.
Low rank directed acyclic graphs and causal structure
learning. arXiv preprint arXiv:2006.05691, 2020.

G. R. A. Faria, A. Martins, and M. A. T. Figueiredo.
Differentiable causal discovery under latent inter-
ventions. In Conference on Causal Learning and
Reasoning, 2022.

R. Fletcher. Practical Methods of Optimization. Wiley-
Interscience, 1987.

E. Gao, J. Chen, L. Shen, T. Liu, M. Gong, and H. Bon-
dell. Federated causal discovery. arXiv preprint
arXiv:2112.03555, 2021a.

Y. Gao, L. Shen, and S.-T. Xia. DAG-GAN: Causal
structure learning with generative adversarial nets.
In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021b.

T. Geffner, E. Kiciman, A. Lamb, M. Kukla, M. Alla-
manis, and C. Zhang. FCause: Flow-based causal
discovery, 2022. URL https://openreview.net/
forum?id=HO_LL-oqBzW.

P. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and
B. Schölkopf. Nonlinear causal discovery with addi-
tive noise models. In Advances in Neural Information
Processing Systems, 2009.

T.-Y. Hsieh, Y. Sun, X. Tang, S. Wang, and V. G.
Honavar. SrVARM: State regularized vector autore-
gressive model for joint learning of hidden state tran-
sitions and state-dependent inter-variable dependen-

https://openreview.net/forum?id=HO_LL-oqBzW
https://openreview.net/forum?id=HO_LL-oqBzW

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

cies from multi-variate time series. In Proceedings of
the Web Conference, 2021.

T. Jaakkola, D. Sontag, A. Globerson, and M. Meila.
Learning Bayesian network structure using LP re-
laxations. In International Conference on Artificial
Intelligence and Statistics, 2010.

X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye. Statistical
ranking and combinatorial Hodge theory. Mathemat-
ical Programming, 127, 11 2011.

D. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. In International Conference on
Learning Representations, 2014.

M. Koivisto and K. Sood. Exact Bayesian structure
discovery in Bayesian networks. Journal of Machine
Learning Research, 5(Dec):549–573, 2004.

D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, Cam-
bridge, MA, 2009.

S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-
Julien. Gradient-based neural DAG learning. In
International Conference on Learning Representa-
tions, 2020.

L.-H. Lim. Hodge laplacians on graphs. SIAM Review,
62, 07 2015.

V. Nair and G. Hinton. Rectified linear units improve
restricted Boltzmann machines. In International
Conference on Machine Learning, 2010.

Y. E. Nesterov. A method for solving the convex pro-
gramming problem with convergence rate O(1/k2).
Doklady ANSSSR, 269:543–547, 1983.

I. Ng, S. Zhu, Z. Chen, and Z. Fang. A graph autoen-
coder approach to causal structure learning. arXiv
preprint arXiv:1911.07420, 2019.

I. Ng, A. Ghassami, and K. Zhang. On the role of
sparsity and DAG constraints for learning linear
DAGs. In Advances in Neural Information Processing
Systems, 2020.

I. Ng, , and K. Zhang. Towards federated Bayesian net-
work structure learning with continuous optimization.
In International Conference on Artificial Intelligence
and Statistics, 2022a.

I. Ng, S. Zhu, Z. Fang, H. Li, Z. Chen, and J. Wang.
Masked gradient-based causal structure learning. In
SIAM International Conference on Data Mining,
2022b.

J. Nocedal and S. J. Wright. Numerical optimization.
Springer series in operations research and financial
engineering. Springer, 2nd edition, 2006.

S. Ott, S. Imoto, and S. Miyano. Finding optimal mod-
els for small gene networks. Pacific Symposium on

Biocomputing. Pacific Symposium on Biocomputing,
9:557–67, 2004.

R. Pamfil, N. Sriwattanaworachai, S. Desai, P. Pilger-
storfer, P. Beaumont, K. Georgatzis, and B. Aragam.
DYNOTEARS: Structure learning from time-series
data. In International Conference on Artificial In-
telligence and Statistics, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems, 2019.

J. Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2009.

J. Peters and P. Bühlmann. Identifiability of Gaussian
structural equation models with equal error variances.
Biometrika, 101(1):219–228, 2013a.

J. Peters and P. Bühlmann. Structural intervention
distance (SID) for evaluating causal graphs. Neural
Computation, 27, 2013b.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf.
Causal discovery with continuous additive noise mod-
els. Journal of Machine Learning Research, 15(1):
2009–2053, 2014.

M. J. D. Powell. Nonlinear programming—sequential
unconstrained minimization techniques. The Com-
puter Journal, 12(3), 1969.

P. Pruthi, J. González, X. Lu, and M. Fiterau. Struc-
ture mapping for transferability of causal models.
arXiv preprint arXiv:2007.09445, 2020.

N. Qian. On the momentum term in gradient descent
learning algorithms. Neural Networks, 12(1):145–151,
1999.

G. Raskutti and C. Uhler. Learning directed acyclic
graph models based on sparsest permutations. Stat,
7(1):e183, 2018.

J. Ruan, Y. Du, X. Xiong, D. Xing, X. Li, L. Meng,
H. Zhang, J. Wang, and B. Xu. GCS: Graph-
based coordination strategy for multi-agent reinforce-
ment learning. In International Conference on Au-
tonomous Agents and MultiAgent Systems, 2022.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger,
and G. P. Nolan. Causal protein-signaling networks
derived from multiparameter single-cell data. Science,
308(5721):523–529, 2005.

R. M. Schmidt, F. Schneider, and P. Hennig. Descend-
ing through a crowded valley - benchmarking deep
learning optimizers. In International Conference on
Machine Learning, 2021.

On the Convergence of Continuous Constrained Optimization for Structure Learning

S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kermi-
nen. A linear non-Gaussian acyclic model for causal
discovery. Journal of Machine Learning Research, 7
(Oct):2003–2030, 2006.

A. P. Singh and A. W. Moore. Finding optimal
Bayesian networks by dynamic programming. Tech-
nical report, Carnegie Mellon University, 2005.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction, and Search. MIT press, 2nd edition, 2000.

X. Su, C. S. Wijayasinghe, J. Fan, and Y. Zhang. Sparse
estimation of Cox proportional hazards models via
approximated information criteria. Biometrics, 72
(3):751–759, 09 2016.

X. Sun, G. Liu, P. Poupart, and O. Schulte. NTS-
NOTEARS: Learning nonparametric temporal DAGs
with time-series data and prior knowledge. arXiv
preprint arXiv:2109.04286, 2021.

S. Van de Geer and P. Bühlmann. `0-penalized max-
imum likelihood for sparse directed acyclic graphs.
The Annals of Statistics, 41(2):536–567, 2013.

Y. Wang, V. Menkovski, H. Wang, X. Du, and
M. Pechenizkiy. Causal discovery from incomplete
data: A deep learning approach. arXiv preprint
arXiv:2001.05343, 2020.

Z. Wang, X. Chen, Z. Dong, Q. Dai, and J.-R. Wen.
Sequential recommendation with causal behavior dis-
covery. arXiv preprint arXiv:2204.00216, 2022.

A. Wehenkel and G. Louppe. Graphical normalizing
flows. arXiv preprint arXiv:2006.02548, 2020.

D. Wei, T. Gao, and Y. Yu. DAGs with no fears: A
closer look at continuous optimization for learning
Bayesian networks. In Advances in Neural Informa-
tion Processing Systems, 2020.

M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang.
CausalVAE: Disentangled representation learning via
neural structural causal models. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 2021a.

S. Yang, K. Yu, F. Cao, L. Liu, H. Wang, and J. Li.
Learning causal representations for robust domain
adaptation. IEEE Transactions on Knowledge and
Data Engineering, 2021b.

Y. Yu, J. Chen, T. Gao, and M. Yu. DAG-GNN:
DAG structure learning with graph neural networks.
In International Conference on Machine Learning,
2019.

Y. Yu, T. Gao, N. Yin, and Q. Ji. DAGs with no
curl: An efficient DAG structure learning approach.
In International Conference on Machine Learning,
2021.

C. Yuan and B. Malone. Learning optimal Bayesian
networks: A shortest path perspective. Journal of
Artificial Intelligence Research, 48(1):23–65, 2013.

Y. Zeng, S. Shimizu, R. Cai, F. Xie, M. Yamamoto,
and Z. Hao. Causal discovery with multi-domain
LiNGAM for latent factors. In International Joint
Conference on Artificial Intelligence, 2021.

Y. Zeng, S. Shimizu, H. Matsui, and F. Sun. Causal
discovery for linear mixed data. In Conference on
Causal Learning and Reasoning, 2022.

C. Zhang, B. Jia, M. Edmonds, S.-C. Zhu, and Y. Zhu.
ACRE: Abstract causal reasoning beyond covariation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2021.

K. Zhang and A. Hyvärinen. On the identifiability of
the post-nonlinear causal model. In Conference on
Uncertainty in Artificial Intelligence, 2009.

W. Zhang, J. Liao, Y. Zhang, and L. Liu. CMGAN: A
generative adversarial network embedded with causal
matrix. Applied Intelligence, 2022.

X. Zheng. Learning DAGs with Continuous Optimiza-
tion. PhD thesis, Carnegie Mellon University, 2020.

X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing.
DAGs with NO TEARS: Continuous optimization
for structure learning. In Advances in Neural Infor-
mation Processing Systems, 2018.

X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and
E. P. Xing. Learning sparse nonparametric DAGs.
In International Conference on Artificial Intelligence
and Statistics, 2020.

Supplementary Material:
On the Convergence of Continuous Constrained Optimization for

Structure Learning

A Optimality Conditions for Equality Constrained Problems

We review the optimality conditions for equality constrained optimization problems, which are required for the
study in Sections 2.3 and 3.1. Note that the following conditions are adopted from Theorems 12.1 and 12.6 in
Nocedal and Wright (2006), respectively.

Definition 2 (First-order necessary conditions). Suppose that θ∗ is a local solution of (2), that the functions
f and h in (2) are continuously differentiable, and that the LICQ holds at θ∗. Define the Lagrangian function of
(2) as

L(θ, α) = f(θ) + αTh(θ),

where α ∈ Rp. Then there is a Lagrange multiplier vector α∗ such that the following conditions are satisfied at
(θ∗, α∗):

∇θL(θ∗, α∗) = 0, (8a)
h(θ∗) = 0. (8b)

Definition 3 (Second-order sufficient conditions). Let L(θ, α) be the Lagrangian function of (2) as in
Definition 2. Suppose that for some feasible point θ∗ there is a Lagrange multiplier vector α∗ such that the
conditions (8) are satisfied. Suppose also that

yT∇2
θθL(θ∗, α∗)y > 0, for all y 6= 0 with ∇θh(θ∗)y = 0.

Then θ∗ is a strict local solution for (2).

B Proofs

B.1 Proof of Theorem 2

Proof for function hexp(W).

We first provide the proof for function hexp(W). Its gradient is given by

∇Whexp(W) = (eW�W)T � 2W.

If part:
We first consider the diagonal entries Wii for i ∈ [d]4. Since

(
(eW�W)T

)
ii
≥ 1, (∇Whexp(W))ii = 0 implies that

Wii = 0, or equivalently, the structure defined by W does not have any self-loop. Now we consider the (j, i)-th
entry ofW with j 6= i. (∇Whexp(W))ji = 0 indicates that at least one of Wji and

(
(eW�W)T

)
ji

is zero. Therefore,
the edge from node j to node i, if exists, must not belong to any cycle. Combining the above cases, we conclude
that all edges must not be part of any self-loop or cycle, and that W represents a DAG, i.e., hexp(W) = 0.

Only if part:
Notice that hexp(W) = 0 implies that W represents a DAG. Since there is not any self-loop, the diagonal entries
of W are zero, and so are the diagonal entries of ∇Whexp(W). It remains to consider the (j, i)-th entry of
∇Whexp(W) with j 6= i:

4We denote by [d] the set {1, 2, . . . , d}, likewise for the others.

On the Convergence of Continuous Constrained Optimization for Structure Learning

• If Wji = 0, then it is clear that (∇Whexp(W))ji = 0.

• If Wji 6= 0, then there is an edge from node j to node i with weight Wji. The other term
(
(eW�W)T

)
ji

indicates the total number of weighted walks from node i to node j. If both Wji and
(
(eW�W)T

)
ji

are
nonzero, then there is at least a weighted closed walk passing through nodes i and j, contradicting the
statement that W represents a DAG.

Therefore, at least one of Wji and
(
(eW�W)T

)
ji

must be zero, and we have (∇Whexp(W))ji = 0.

Proof for function hexp(B(A)).

We now provide the proof for function hexp(B(A)), which is an extension to the proof for function hexp(W).
Let A(t) = (A

(t)
1 , . . . , A

(t)
d) ∈ Rd×st−1×st denote the weights in the t-th layer of the MLPs corresponding to all

variables. Since B(A) depends only on A(1) by definition, we have

∇A(t)hexp(B(A)) = 0, t = 2, . . . , `.

Therefore, it suffices to consider the case of t = 1, i.e., the weights in the first layer of the MLPs , and show that
h(B(A)) = 0 if and only if ∇A(1)hexp(B(A)) = 0. Note that we have A(1) ∈ Rd×d×s1 , and the (j, i, s)-entry of the
gradient is given by

(∇A(1)hexp(B(A)))jis = ((eB(A)�B(A))T)ji � 2(A(1))jis, j, i ∈ [d], s ∈ [s1].

For clarity, we restate the definition of B(A) in terms of A(1):

(B(A))ji = ‖jth-row(A
(1)
i)‖2

=

(
s1∑
s=1

((A(1))jis)
2

) 1
2

, j, i ∈ [d]. (9)

If part:
We first consider the diagonal entries (B(A))ii for i ∈ [d]. Since

(
(eB(A)�B(A))T

)
ii
≥ 1, (∇A(1)hexp(B(A)))iis = 0

implies that (A(1))iis = 0 for s ∈ [s1] and therefore (B(A))ii = 0, indicating that the structure defined by B(A)
does not have any self-loop. Now we consider the (j, i)-th entry of B(A) with j 6= i. Suppose (B(A))ji 6= 0, i.e.,
there is an edge from node j to node i in the structure defined by B(A). By Eq. (9), there exists s ∈ [s1] such
that (A(1))jis > 0, which, with the assumption of (∇A(1)hexp(B(A)))jis = 0, implies that

(
(eB(A)�B(A))T

)
ji

= 0.
This indicates that there is not any weighted walk from node i to node j. Therefore, the edge from node j to
node i, if exists, must not belong to any cycle. Combining the above cases, we conclude that all edges must not
be part of any self-loop or cycle, and that B(A) represents a DAG, i.e., hexp(B(A)) = 0.

Only if part:
Notice that hexp(B(A)) = 0 implies that B(A) represents a DAG. Since there is not any self-loop, (B(A))ii = 0
indicates that (A(1))iis = 0 for s ∈ [s1], and therefore (∇A(1)hexp(B(A)))iis = 0. It remains to consider the
(j, i, s)-th entry of ∇A(1)hexp(B(A)) with j 6= i and s ∈ [s1]:

• If (A(1))jis = 0, then it is clear that (∇A(1)hexp(B(A)))jis = 0.

• If (A(1))jis 6= 0, then we must have (B(A))ji 6= 0 by Eq. (9) and there is an edge from node j to node i in
the structure defined by B(A). The other term

(
(eB(A)�B(A))T

)
ji

indicates the total number of weighted
walks from node i to node j. If both (A(1))jis and

(
(eB(A)�B(A))T

)
ji

are nonzero, there is at least a weighted
closed walk passing through nodes i and j, contradicting the statement that B(A) represents a DAG.

Therefore, at least one of (A(1))jis and
(
(eB(A)�B(A))T

)
ji

must be zero, and we have (∇A(1)hexp(B(A)))jis = 0.

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

B.2 Proof of Theorem 3

By differentiating Q(θ; ρk) in Eq. (6), we obtain

∇θQ(θk; ρk) = ∇θf(θk) + ρkh(B(θk))∇θh(B(θk)).

From the termination criterion of the subproblems in Algorithm 2, we have

‖∇θf(θk) + ρkh(B(θk))∇θh(B(θk))‖2 ≤ τk ≤ τ,

where τ is an upper bound on {τk}. By rearranging this expression (and in particular using the inequality
‖a‖2 − ‖b‖2 ≤ ‖a+ b‖2), we obtain

‖h(B(θk))∇θh(B(θk))‖2 ≤
1

ρk
(τ + ‖∇θf(θk)‖2) .

Let θ∗ be a limit point of the sequence of iterates. Then there is a subsequence K such that limk∈K θk = θ∗.
By the continuity of ∇θf , when we take limits as k →∞ for k ∈ K, the bracketed term on the right-hand-
side approaches τ + ‖∇θf(θ∗)‖2, so because ρk → ∞, the right-hand-side approaches zero. This implies that
limk∈K ‖h(B(θk))∇θh(B(θk))‖2 = 0. By the continuity of h, ∇θh, and B, we conclude that

h(B(θ∗))∇θh(B(θ∗)) = 0,

which, by Assumption 1, yields
h(B(θ∗)) = 0.

B.3 Proof of Theorem 4

The gradient of hbf(W,Ω) is given by

∇Whbf(W,Ω) = (eW�W)T � 2W + 2W � Ω� Ω,

∇Ωhbf(W,Ω) = 2W �W � Ω.

If part:
The gradient term ∇Ωhbf(W,Ω) = 2W �W � Ω = 0 indicates that WjiΩji = 0 for j, i ∈ [d], and thus there
is not any bow in the structure defined by W and Ω. Therefore, we also have 2W � Ω � Ω = 0, which, with
∇Whbf(W,Ω) = 0, implies that (eW�W)T � 2W = 0. By Theorem 2, this indicates that there is not any directed
cycle. Therefore, the structure defined by W and Ω is a bow-free ADMG and we have hbf(W,Ω) = 0.

Only if part:
Notice that hbf(W,Ω) = 0 implies that the structure defined by W and Ω is a bow-free ADMG. Since there is not
any directed cycle in an ADMG, we have (eW�W)T � 2W = 0 by Theorem 2. Furthermore, since there is not any
bow in the structure, we must have WjiΩji = 0 for j, i ∈ [d], which implies 2W �Ω�Ω = 0 and 2W �W �Ω = 0.
Therefore, we have ∇Whbf(W,Ω) = 0 and ∇Ωhbf(W,Ω) = 0.

C Bivariate Example: Ill-Conditioning and Optimization Algorithms

We provide a bivariate example to illustrate the ill-conditioning issue and the effectiveness of different optimization
algorithms. Here we focus on the asymptotic case in which the true covariance matrix is known.

Setup. Consider the bivariate linear Gaussian model defined by the weighted adjacency matrix

W0 =

[
0 2
0 0

]
and noise covariance matrix

Ω0 =

[
1 0
0 1

]
.

On the Convergence of Continuous Constrained Optimization for Structure Learning

0 5 10
b

−6

−4

−2

0

2

4

6

c

0

40

80

120

160

Stationary point

Newton

L-BFGS

Adam

Gradient descent

(a) ρ = 0.

0 5 10
b

−5.0

−2.5

0.0

2.5

5.0

c

0

800

1600

2400

3200

4000

Stationary point

Newton

L-BFGS

Adam

Gradient descent

(b) ρ = 1.

0 5 10
b

−5.0

−2.5

0.0

2.5

5.0

c

0.0

0.8

1.6

2.4

3.2

×109

Stationary point

Newton

L-BFGS

Adam

Gradient descent

(c) ρ = 106.

Figure 4: Contour plots of the quadratic penalty function Q(W ; ρ) with different penalty coefficients. The
optimization trajectories of different algorithms for minimizing Q(W ; ρ) are visualized.

In other words, the additive noises are assumed to be standard Gaussians. The true covariance matrix of X is
then given by

Σ0 = (I −W0)−TΩ0(I −W0)−1

=

[
1 2
2 5

]
.

We define the matrix W with variables b and c as

W =

[
0 b
c 0

]
,

which yields the corresponding least squares objective

f(W) =
1

2
tr
(
(I −W)TΣ0(I −W)

)
=

1

2

(
(b− 2)2 + (2c− 1)2 + c2 + 1

)
.

We consider a simplified DAG constraint bc = 0, which leads to the quadratic penalty function

Q(W ; ρ) = f(W) +
ρ

2
b2c2.

Clearly, W represents a DAG if and only if bc = 0.

Contour. The contour plots of Q(W ; ρ) w.r.t. variables b and c with different penalty coefficients, i.e.,
ρ = 0, 1, 106, are visualized in Figure 4. When ρ = 0, the contour is elliptical as the least squares objective
corresponds to a quadratic function. With a small penalty coefficient ρ = 1, the contour is slightly stretched
out and deviates from being elliptical. When a large coefficient ρ = 106 is used, the function contour is highly
stretched out along both x and y axes. In this case, when the values of b and c are moderately large, a small
change in either of them can lead to a large change in the penalty function Q(W ; ρ).

Optimization algorithms. We further study the behavior of different optimization algorithms for solving
the minimization problem of Q(W ; ρ). In particular, we visualize the trajectories of Newton’s method, L-BFGS
(Byrd et al., 2003), Adam (Kingma and Ba, 2014), and gradient descent starting from the point (b, c) = (13,−2).
We pick an initial point that is relatively far from the origin for better illustration of the ill-conditioning issue.

The optimization trajectories and the stationary points for different penalty coefficients are visualized in Figure
4. When ρ = 0, 1, all four algorithms converge to the unique stationary point. With a small penalty coefficient
ρ = 1, one observes that gradient descent moves along a zigzag path during the first few iterations. A possible
reason is that the gradients may not be the best direction to descend to the stationary point. This phenomenon
becomes more severe when ρ = 106 is used; specifically, gradient descent follows a zigzag path and eventually

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

reaches a point where it no longer makes progress, owing to the ill-posed optimization landscape. In this case,
Newton’s method and Adam converge to the same stationary point, while L-BFGS converges to the other one. It
is also observed that Newton’s method converges in the fewest number of iterations in all cases, and L-BFGS is
on par with it as compared to Adam and gradient descent.

The observations above demonstrate that ill-conditioning is a huge concern especially for first-order method like
gradient descent, which may produce a bad solution or not converge well. They also corroborate our findings in
Section 6.2, i.e, second-order method like Newton’s method and L-BFGS helps resolve the ill-conditioning issue by
incorporating the curvature information. In particular, Newton’s method computes the direction of descent using
both first-order (Jacobian) and second-order (Hessian) information, while, instead of explicitly evaluating the
Hessian matrix, L-BFGS relies on the approximations of Hessian. Therefore, Newton’s method is computationally
less efficient in practice, which thus is not included in the experiments in Section 6.2. On the other hand, the
Adam algorithm, loosely speaking, lies in the middle between first-order and second-order methods as it employs
diagonal rescaling on the parameter space that can be interpreted as second-order-type information (Bottou et al.,
2018). Therefore, it can be less susceptible to ill-conditioning as compared to gradient descent, but may require
more iterations to converge than Newton’s method and L-BFGS.

In the empirical study above, we find that gradient descent is sensitive to the choice of learning rate (or referred
to as the step size). Therefore, we manually pick it such that the algorithm does not diverge or converge too
slowly. For the other algorithms, they are relatively robust to the choice of learning rate.

D Supplementary Experiment Details

This section provides further experiment details of different optimization algorithms and structure learning
methods for Section 6.

Optimization algorithms. We implement the optimization algorithms including gradient descent with
momentum, NAG, and Adam with PyTorch (Paszke et al., 2019). For Adam, we use a learning rate of 10−3. For
gradient descent with momentum and NAG, we set the learning rate to 10−4 and the momentum factor to 0.9.
We set the number of optimization iterations to 104 for all these algorithms. We use the implementation and
default hyperparameters of L-BFGS released by Zheng et al. (2018, 2020).

Structure learning methods. The implementations of Abs-KKTS5, NoCurl6, and GOLEM-EV7 are
available on the authors’ GitHub repositories. For all these methods, we use the default hyperparameters and
the DAG constraint term proposed by Zheng et al. (2018), i.e., hexp(W), although some of the authors’ original
implementations adopt the polynomial alternative proposed by Yu et al. (2019), i.e., hpoly(W). Similar to
NOTEARS, we use a pre-processing step to center the data by subtracting the mean of each variable from the
samples X.

E Supplementary Experiment Results

This section provides further experiment results for Section 6; see Figures 5, 6, 7, 8, 9, 10, and 11.

5https://github.com/skypea/DAG_No_Fear
6https://github.com/fishmoon1234/DAG-NoCurl
7https://github.com/ignavierng/golem

https://github.com/skypea/DAG_No_Fear
https://github.com/fishmoon1234/DAG-NoCurl
https://github.com/ignavierng/golem

On the Convergence of Continuous Constrained Optimization for Structure Learning

0 10 20

k (Iteration)

102

105

108

1011

1014

ρ
k

0 10 20

k (Iteration)

100

101

102

103

104
α
k

0 10 20

k (Iteration)

10−8

10−6

10−4

10−2

100

h
ex

p
(B

(θ
k
))

0 10 20

k (Iteration)

10−1

100

101

102

N
u

m
b

er
of

C
yc

le
s

NOTEARS-L1 (ALM) NOTEARS-L1 (QPM)

(a) NOTEARS-L1.

0 10 20

k (Iteration)

102

105

108

1011

1014

ρ
k

0 10 20

k (Iteration)

100

101

102

103

104

α
k

0 10 20

k (Iteration)

10−8

10−6

10−4

10−2

h
ex

p
(B

(θ
k
))

0 10 20

k (Iteration)

100

102

104

N
u

m
b

er
of

C
yc

le
s

NOTEARS-MLP (ALM) NOTEARS-MLP (QPM)

(b) NOTEARS-MLP.

0 10 20

k (Iteration)

102

105

108

1011

ρ
k

0 10 20

k (Iteration)

100

101

102

103

α
k

0 10 20

k (Iteration)

10−8

10−6

10−4

10−2

h
ex

p
(B

(θ
k
))

0 10 20

k (Iteration)

10−1

100

101

N
u

m
b

er
of

C
yc

le
s

NOTEARS-MLP-L1 (ALM) NOTEARS-MLP-L1 (QPM)

(c) NOTEARS-MLP-L1.

Figure 5: Optimization processes of the continuous constrained formulation using ALM and QPM on synthetic
data. The ground truths are 10-node ER1 graphs and the sample size is n = 1000. Each data point corresponds
to the k-th iteration. Shaded area denotes standard errors over 30 trials.

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

20 40 60 80 100

d (Number of nodes)

0

1

2

3

4

5

S
H

D

20 40 60 80 100

d (Number of nodes)

0

5

10

15

20

25

S
ID

20 40 60 80 100

d (Number of nodes)

0.975

0.980

0.985

0.990

T
P

R

NOTEARS (ALM) NOTEARS (QPM)

(a) NOTEARS.

20 40 60 80 100

d (Number of nodes)

0

1

2

3

4

S
H

D

20 40 60 80 100

d (Number of nodes)

0

5

10

15

20

25

30

S
ID

20 40 60 80 100

d (Number of nodes)

0.970

0.975

0.980

0.985

0.990

T
P

R

NOTEARS-L1 (ALM) NOTEARS-L1 (QPM)

(b) NOTEARS-L1.

20 40 60 80 100

d (Number of nodes)

0

1000

2000

3000

S
H

D

20 40 60 80 100

d (Number of nodes)

0

20

40

60

80

S
ID

20 40 60 80 100

d (Number of nodes)

0.87

0.88

0.89

0.90

0.91

T
P

R

NOTEARS-MLP (ALM) NOTEARS-MLP (QPM)

(c) NOTEARS-MLP.

20 40 60 80 100

d (Number of nodes)

10

20

30

40

50

S
H

D

20 40 60 80 100

d (Number of nodes)

0

100

200

300

S
ID

20 40 60 80 100

d (Number of nodes)

0.55

0.60

0.65

0.70

0.75

T
P

R

NOTEARS-MLP-L1 (ALM) NOTEARS-MLP-L1 (QPM)

(d) NOTEARS-MLP-L1.

Figure 6: Empirical results of the continuous constrained formulation using ALM and QPM on synthetic data.
The ground truths are ER1 graphs and the sample size is n = 1000. Lower is better, except for TPR. Error bars
denote standard errors over 30 trials.

On the Convergence of Continuous Constrained Optimization for Structure Learning

0 10 20

k (Iteration)

102

105

108

1011

1014

ρ
k

0 10 20

k (Iteration)

101

103

105

107

α
k

0 10 20

k (Iteration)

10−6

10−4

10−2

100

h
ex

p
(B

(θ
k
))

0 10 20

k (Iteration)

100

101

102

N
u

m
b

er
of

C
yc

le
s

NOTEARS (ALM) NOTEARS (QPM)

(a) NOTEARS.

0 10 20

k (Iteration)

102

105

108

1011

1014

ρ
k

0 10 20

k (Iteration)

101

103

105

107

α
k

0 10 20

k (Iteration)

10−7

10−5

10−3

10−1

h
ex

p
(B

(θ
k
))

0 10 20

k (Iteration)

100

101

102

N
u

m
b

er
of

C
yc

le
s

NOTEARS-L1 (ALM) NOTEARS-L1 (QPM)

(b) NOTEARS-L1.

0 10 20

k (Iteration)

102

105

108

1011

1014

ρ
k

0 10 20

k (Iteration)

102

104

106

108

α
k

0 10 20

k (Iteration)

10−5

10−3

10−1

101

h
ex

p
(B

(θ
k
))

0 10 20

k (Iteration)

100

102

104

106

N
u

m
b

er
of

C
yc

le
s

NOTEARS-MLP (ALM) NOTEARS-MLP (QPM)

(c) NOTEARS-MLP.

0 10 20

k (Iteration)

102

105

108

1011

1014

ρ
k

0 10 20

k (Iteration)

102

104

106

108

α
k

0 10 20

k (Iteration)

10−5

10−3

10−1

101

h
ex

p
(B

(θ
k
))

0 10 20

k (Iteration)

100

102

104

106

N
u

m
b

er
of

C
yc

le
s

NOTEARS-MLP-L1 (ALM) NOTEARS-MLP-L1 (QPM)

(d) NOTEARS-MLP-L1.

Figure 7: Optimization processes of the continuous constrained formulation using ALM and QPM on a real
dataset by Sachs et al. (2005). Each data point corresponds to the k-th iteration. Shaded area denotes standard
errors over 30 trials.

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

5 10 15

k (Iteration)

102

105

108

1011

1014

Ω
k

5 10 15

k (Iteration)

35

40

45

50

f
(µ

k
)

5 10 15

k (Iteration)

10°7

10°5

10°3

10°1

h
ex
p
(B

(µ
k
))

5 10 15

k (Iteration)

10

20

30

40

S
H
D

NOTEARS (L-BFGS) NOTEARS (Adam) NOTEARS (NAG) NOTEARS (Momentum)

10 12 14 16
2

4

6

8

10

10 12 14 16

10°8

10°7

10°6

10°5

(a) NOTEARS.

5 10 15

k (Iteration)

102

105

108

1011

1014

Ω
k

5 10 15

k (Iteration)

54

56

58

60

62

f
(µ

k
)

5 10 15

k (Iteration)

10°8

10°6

10°4

10°2

100

h
ex
p
(B

(µ
k
))

5 10 15

k (Iteration)

50

60

70

80

S
H
D

NOTEARS-MLP-L1 (L-BFGS) NOTEARS-MLP-L1 (Adam) NOTEARS-MLP-L1 (NAG) NOTEARS-MLP-L1 (Momentum)

10 12 14 16
56.6

56.8

57.0

57.2

57.4

10 12 14 16
10°9

10°8

10°7

10°6

10°5

10 12 14 16
43

45

47

49

(b) NOTEARS-MLP-L1.

Figure 8: Optimization processes of different optimization algorithms for solving the QPM subproblems of
NOTEARS and NOTEARS-MLP-L1 on synthetic data. The ground truths are 100-node ER1 graphs and the
sample size is n = 1000. Each data point corresponds to the k-th iteration. Shaded area denotes standard errors
over 30 trials. The blue line overlaps with the orange line in the first panel.

On the Convergence of Continuous Constrained Optimization for Structure Learning

20 40 60 80 100

d (Number of nodes)

0

5

10

15

S
H

D

20 40 60 80 100

d (Number of nodes)

0

20

40

60

80

S
ID

20 40 60 80 100

d (Number of nodes)

0.94

0.96

0.98

T
P

R

NOTEARS (L-BFGS) NOTEARS (Adam) NOTEARS (NAG) NOTEARS (Momentum)

(a) NOTEARS with ER1 graphs.

20 40 60 80 100

d (Number of nodes)

0

100

200

300

400

S
H

D

20 40 60 80 100

d (Number of nodes)

0

500

1000

1500

S
ID

20 40 60 80 100

d (Number of nodes)

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

NOTEARS (L-BFGS) NOTEARS (Adam) NOTEARS (NAG) NOTEARS (Momentum)

(b) NOTEARS with SF4 graphs.

20 40 60 80 100

d (Number of nodes)

0

10

20

30

40

50

60

S
H

D

20 40 60 80 100

d (Number of nodes)

0

100

200

300

400

500

S
ID

20 40 60 80 100

d (Number of nodes)

0.4

0.5

0.6

0.7

T
P

R

NOTEARS-MLP-L1 (L-BFGS) NOTEARS-MLP-L1 (Adam) NOTEARS-MLP-L1 (NAG) NOTEARS-MLP-L1 (Momentum)

(c) NOTEARS-MLP-L1 with ER1 graphs.

20 40 60 80 100

d (Number of nodes)

100

200

300

S
H

D

20 40 60 80 100

d (Number of nodes)

0

250

500

750

1000

1250

1500

S
ID

20 40 60 80 100

d (Number of nodes)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

T
P

R

NOTEARS-MLP-L1 (L-BFGS) NOTEARS-MLP-L1 (Adam) NOTEARS-MLP-L1 (NAG) NOTEARS-MLP-L1 (Momentum)

(d) NOTEARS-MLP-L1 with SF4 graphs.

Figure 9: Empirical results of different optimization algorithms for solving the QPM subproblems of NOTEARS
and NOTEARS-MLP-L1 on synthetic data. The sample size is n = 1000. Lower is better, except for TPR. Error
bars denote standard errors over 30 trials.

Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien, Kun Zhang

20 40 60 80 100

d (Number of nodes)

0

2

4

6

8

S
H

D

20 40 60 80 100

d (Number of nodes)

0

10

20

30

40

50

S
ID

20 40 60 80 100

d (Number of nodes)

0.96

0.97

0.98

0.99

1.00

T
P

R

NOTEARS-L1 Abs-KKTS NoCurl GOLEM-EV

(a) ER1 graphs.

20 40 60 80 100

d (Number of nodes)

0

50

100

150

S
H

D

20 40 60 80 100

d (Number of nodes)

0

100

200

300

S
ID

20 40 60 80 100

d (Number of nodes)

0.75

0.80

0.85

0.90

0.95

T
P

R

NOTEARS-L1 Abs-KKTS NoCurl GOLEM-EV

(b) SF4 graphs.

Figure 10: Empirical results of different structure learning methods on synthetic data with sample size n = 1000.
Lower is better, except for TPR. Error bars denote standard errors over 30 trials.

20 40 60 80 100

d (Number of nodes)

0

10

20

30

40

50

60

S
H

D

20 40 60 80 100

d (Number of nodes)

0

10

20

30

40

50

60

S
ID

20 40 60 80 100

d (Number of nodes)

0.88

0.90

0.92

0.94

0.96

0.98

T
P

R

NOTEARS-L1 Abs-KKTS NoCurl GOLEM-EV

(a) ER1 graphs.

20 40 60 80 100

d (Number of nodes)

0

50

100

150

200

250

S
H

D

20 40 60 80 100

d (Number of nodes)

0

100

200

300

400

S
ID

20 40 60 80 100

d (Number of nodes)

0.70

0.75

0.80

0.85

0.90

0.95

T
P

R

NOTEARS-L1 Abs-KKTS NoCurl GOLEM-EV

(b) SF4 graphs.

Figure 11: Empirical results of different structure learning methods on synthetic data with sample size n = 3d.
Lower is better, except for TPR. Error bars denote standard errors over 30 trials.

	Introduction
	Background
	Score-Based Structure Learning
	Continuous Constrained Optimization for Structure Learning
	Augmented Lagrangian Method

	Convergence of the Continuous Constrained Optimization Methods
	Regularity of DAG Constraint Term
	Quadratic Penalty Method
	Other DAG Constraint Term

	With Unobserved Confounding
	Resolving the Convergence Issue
	Experiments
	ALM Behaves Similarly to QPM
	Different Optimization Algorithms for Handling Ill-Conditioning
	Further Resolving the Convergence Issue

	Conclusion
	Optimality Conditions for Equality Constrained Problems
	Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Bivariate Example: Ill-Conditioning and Optimization Algorithms
	Supplementary Experiment Details
	Supplementary Experiment Results

