
SoK: Attacks on Industrial Control Logic and Formal Verification-Based
Defenses

Ruimin Sun
Northeastern University
r.sun@northeastern.edu

Alejandro Mera
Northeastern University
mera.a@northeastern.edu

Long Lu
Northeastern University

l.lu@northeastern.edu

David Choffnes
Northeastern University

choffnes@ccs.neu.edu

Abstract—Programmable Logic Controllers (PLCs) play a
critical role in the industrial control systems. Vulnerabilities
in PLC programs might lead to attacks causing devastating
consequences to the critical infrastructure, as shown in
Stuxnet and similar attacks. In recent years, we have seen
an exponential increase in vulnerabilities reported for PLC
control logic. Looking back on past research, we found
extensive studies explored control logic modification attacks,
as well as formal verification-based security solutions.

We performed systematization on these studies, and
found attacks that can compromise a full chain of control
and evade detection. However, the majority of the formal
verification research investigated ad-hoc techniques targeting
PLC programs. We discovered challenges in every aspect
of formal verification, rising from (1) the ever-expanding
attack surface from evolved system design, (2) the real-time
constraint during the program execution, and (3) the barrier
in security evaluation given proprietary and vendor-specific
dependencies on different techniques. Based on the knowl-
edge systematization, we provide a set of recommendations
for future research directions, and we highlight the need of
defending security issues besides safety issues.

Index Terms—PLC, attack, formal verification

1. Introduction

Industrial control systems (ICS) are subject to attacks
sabotaging the physical processes, as shown in Stuxnet
[33], Havex [46], TRITON [31], Black Energy [8], and
the German Steel Mill [63]. PLCs are the last line in
controlling and defending for these critical ICS systems.

However, in our analysis of Common Vulnerabilities
and Exposures (CVE)s related to control logic, we have
seen a fast growth of vulnerabilities in recent years [86].
These vulnerabilities are distributed across vendors and
domains, and their severeness remains high. A closer look
at these vulnerabilities reveals that the weaknesses behind
them are not novel. As Figure 1 shows, multiple weak-
nesses are repeating across different industrial domains,
such as stack-based buffer overflow and improper input
validation. We want to understand how these weaknesses
have been used in different attacks, and how existing
solutions defend against the attacks.

Among various attacks, control logic modification at-
tacks cause the most critical damages. Such attacks lever-
age the flaws in the PLC program to produce undesired
states. As a principled approach detecting flaws in pro-
grams, formal verification has long been used to defend

Criti
ca

l M
an

ufa
ctu

rin
g

Ene
rgy

W
as

tew
ate

r S
ys

tem
s

Foo
d a

nd
 A

gri
cu

ltu
re

Com
merc

ial
 Fac

ilit
ies

Che
mica

l

Tran
sp

ort
ati

on

Hea
lth

ca
re

Gov
ern

men
t F

ac
ilit

ies

Inf
orm

ati
on

 Tec
hn

olo
gy

Unrestricted Upload Dangerous Type File CWE-434
Uncontrolled Resource Consumption CWE-400

Improper Authentication CWE-287
Hard-coded Credentials CWE-798

Cross-site Scripting CWE-79
Out-of-bounds Write CWE-787

Improper Access Control CWE-284
Out-of-bounds Read CWE-125

Stack-based Buffer Overflow CWE-121
Improper Input Validation CWE-20

3 3 1 1 4 1 4 2 2 2
8 3 4 1 1 2 1 1
4 5 3 2 2 2 2 1 1 2
6 4 3 3 3 3 5 1 1 1
8 5 4 3 3 3 3 1 1 1
6 7 6 3 4 3 3
5 7 7 6 1 5 3 2
6 8 7 5 5 4 4

17 15 15 4 3 4 3
12 19 11 13 2 13 5 3

0

5

10

15

Figure 1: The reported common weaknesses and the af-
fected industrial sectors. The notation denotes the number
of CVEs.

control logic modification attacks [24], [26]. It benefits
from several advantages that other security solutions fail
to provide. First, PLCs have to strictly meet the real-
time constraints in controlling the physical processes. This
makes it impractical for heavyweight solutions to perform
a large amount of dynamic analysis. Second, the physical
processes are often safety-critical, meaning false posi-
tives are intolerable. Formal verification is lightweight,
accurate, and suitable for graphical languages, which are
commonly used to develop PLC programs.

Over the years, there have been extensive studies
investigating control logic modification attacks, and for-
mal verification-based defenses. To understand the current
research progress in these areas, and to identify open
problems for future research directions, we performed a
systematization of current studies.

Scope of the paper. We considered studies presenting
control logic modification attacks through modifying pro-
gram payload (i.e. program code), or feeding special input
data to trigger program design flaws. We also considered
studies presenting formal verification techniques to protect
the affected programs, including behavior modeling, state
reduction, specification generation, and verification. For-
mal verification of network protocols is out of the scope
of the paper. We selected the literature based on three cri-
teria: (1) the study investigates control logic modification
attacks or formal verification-based defenses, (2) the study
is impactful considering its number of citations, or (3) the
study discovers a new direction for future research.

Systematization methodology. Our systematization
was based on the following aspects. We use “attack” to
denote control logic modification, and “defense” to denote
formal verification-based defense.

• Threat model: this refers to the requirements and

ar
X

iv
:2

00
6.

04
80

6v
3

 [c
s.C

R
]

23
 M

ar
 2

02
1

assumptions to perform the attacks/defenses.
• Security goal: this refers to the security properties

affected by attacks/defenses.
• Weakness: this refers to the flaw triggered to perform

the attacks.
• Detection to evade: this refers to the detection that

fails to capture the attacks.
• Challenge: this refers to the challenges in defending

the attacks—the advance of attacks, and the insuffi-
ciency of defenses.

• Defense focus: this refers to the specific research
topic in formal verification, e.g. behavior modeling,
state reduction, specification generation, and formal
verification.

We found that control logic modification attacks could
happen under every threat model and considered various
evasive techniques. The attacks have been fast evolving
with the system design, through input channels from the
sensors, the engineering stations, and other connected
PLCs. The attacks could also evade dynamic state es-
timations and verification techniques through leveraging
implicitly specified properties. Multiple attacks [54], [64],
[83] even deceived engineering stations with fake behav-
iors.

We also found that applying formal verification has
made great progress in improving code quality [97].
However, the majority of the studies investigated ad-
hoc formal verification research targeting PLC programs.
These studies face challenges in many aspects of formal
verification, during program modeling, state reduction,
specification generation, and verification. We found many
studies manually define domain-specific safety properties,
and verify them based on a few simple test cases. Despite
the limitation of test cases, the implicitness of properties
was not well explored, even though such properties have
been used to conduct input manipulation attacks [68]–
[70]. Besides implicit properties, specification generation
has seen challenges in catching up with program model-
ing, to support semantics and rules from new attack sur-
faces. In addition, the real-time constraint limited runtime
verification in supporting temporal features, event-driven
features, and multitasks. The dependency on proprietary
and vendor-specific techniques resulted in ad-hoc studies.
The lack of open source tools impeded thorough evalu-
ation across models, frameworks, and real programs in
industry complexity.

As a call for solutions to address these challenges, we
highlight the need of defending security issues besides
safety issues, and we provide a set of recommendations for
future research directions. We recommend future research
to pay attention to plant modeling and to defend against
input manipulation attacks. We recommend the collabora-
tion between state reduction and stealthy attack detection.
We highlight the need for automatic generation of domain-
specific and incremental specifications. We also encourage
more exploration in real-time verification, together with
more support in open-source tools, and thorough perfor-
mance and security evaluation.

Our study makes the following contributions:

• Systematization of control logic modification attacks
and formal verification-based defenses in the last
thirty years.

Figure 2: The architecture of a PLC.

• Identifying the challenges in defending control logic
modification attacks, and barriers existed in current
formal verification research.

• Pointing out future research directions.
The rest of the paper is organized as follows. Section

2 briefly describes the background knowledge of PLCs
and formal verification. Section 3 describes the motivation
of this work and the methodology of the systematization.
Section 4 and Section 5 systematize existing studies on
control logic modification attacks, and formal verification-
based defenses—categorized on threat models and the ap-
proaches to perform the attack/defense. Section 6 provides
recommendations for future research directions to counter
existing challenges. Section 7 concludes the paper.

2. Background

2.1. PLC Program

2.1.1. Programming languages. IEC-61131 [87] defined
five types of languages for PLC source code:

• Ladder diagram (LD),
• Structured text (ST),
• Function block diagram (FBD),
• Sequential function chart (SFC),
• Instruction list (IL).
Among them, LD, FBD, and SFC are graph-based

languages. IL was deprecated in 2013. PLC programs
are developed in engineering stations, which provide
standard-compliant or vendor-specific Integrated Devel-
opment Environments (IDEs) and compilers. Some high-
end PLCs also support computer-compatible languages
(e.g., C, BASIC, and assembly), special high-level lan-
guages (e.g., Siemens GRAPH5 [2]), and boolean logic
languages [67].

2.1.2. Program bytecode/binary. An engineering sta-
tion may compile source code to bytecode or binary
depending on the type of a PLC. For example, Siemens
S7 compiles source code to proprietary MC7 bytecode
and uses PLC runtime to interpret the bytecode, while
CODESYS compiles source code to binaries (i.e. native
machine code) [55]. Unlike conventional software that
follows well-documented formats, such as Executable and
Linkable Format (ELF) for Linux and Portable Executable
(PE) for Windows, the format of PLC binaries is often
proprietary and unknown. Therefore, further exploration
requires reverse engineering.

2.1.3. Scan cycle. Unlike conventional software, a PLC
program executes by infinitely repeating a scan cycle that

consists of three steps (as Figure 2 shows). First, the
input scan reads the inputs from the connected sensors
and saves them to a data table. Then, the logic execution
feeds the input data to the program and executes the logic.
Finally, the output scan produces the output to the physical
processes based on the execution result.

The scan cycle must comply with strict predefined
timing constraints to enforce the real-time execution. The
I/O operations are the critical part in meeting the cycle
time.

2.1.4. Hardware support. PLCs adopt a hierarchical
memory, with predefined addressing scheme associated
with physical hardware locations. PLC vendors may
choose different schemes for I/O addressing, memory
organization, and instruction sets, making it hard for the
same code to be compatible across vendors, or even
models within the same vendor.

2.2. PLC program security

PLCs interact with a broad set of components, as
Figure 3 shows. They are connected to sensors and ac-
tuators to interact with and control the physical world.
They are connected to supervisory human interfaces (e.g.
the engineering station) to update the program and receive
operator commands. They may also be interconnected in a
subnet. These interactions expose PLCs to various attacks.
For example, communication between the engineering
station and the PLC may be insecure, the sensors might be
compromised, and the PLC firmware can be vulnerable.

2.2.1. Control logic modification. Our study considers
control logic modification attacks, which we define as
attacks that can change the behavior of PLC control logic.
Control logic modification attacks can be achieved through
program payload/code modification and/or program input
manipulation. The payload modification can be applied to
program source code, bytecode or binary (Section 2.1).
The input manipulation can craft input data to exploit
existed design flaws in the program to produce undesired
states. The input may come from any interacting compo-
nents showed in Figure 3.

Defending against these attacks is challenging. As we
mentioned earlier, PLCs have to strictly maintain the scan
cycle time to control the physical world in real-time.
This requirement overweights security solutions requir-
ing a large amount of dynamic analysis. Moreover, the
security solution has to be accurate, since the controlled
physical processes are critical in the industry, making false
positives less tolerable.

2.2.2. Formal verification. Formal verification is a
lightweight and accurate defense solution, which is often
tailored for graphical languages. This makes it suitable to
defend against control logic modification attacks.

Formal verification is a method that proves or dis-
proves if a program/algorithm meets its specifications or
desired properties based on a certain form of logic [32].
The specification may contain security requirements and
safety requirements. Commonly used mathematical mod-
els to do formal verification include finite state machines,
labeled transition systems, vector addition systems, Petri

nets, timed automata, hybrid automata, process algebra,
and formal semantics of programming languages, e.g.
operational semantics, denotational semantics, axiomatic
semantics, and Hoare logic. In general, there are two
types of formal analysis: model checking and theorem
proving [45]. Model checking uses temporal logic to
describe specifications, and efficient search methods to
check whether the specifications hold for a given system.
Theorem proving describes the system with a series of
logical formulae. It proves the formulae implying the
property via deduction with inference rules provided by
the logical system. It usually requires more background
knowledge and nontrivial manual efforts. We will describe
the commonly used frameworks and tools for formal
verification in later sections.

An extended background in Appendix A provides an
example of an ST program controlling the traffic lights in
a road intersection, an example of an input manipulation
attack, and the process of using formal verification to
detect and prevent it.

3. Motivation and Methodology

In this section, we first explain our focus on control
logic modification attacks and formal verification-based
protection. Then, we use an example to introduce our
systematization methodology.

3.1. Motivation

We focus on control logic modification due to its criti-
cal impact on the PLC industry. Control logic modification
covers attacks from program payload (i.e. program code)
modification to data input manipulation. These attacks
result from frequently reported vulnerabilities, and also
cause unsafe behaviors to the critical industrial infrastruc-
ture, as Figure 1 shows.

To mitigate control logic modification attacks, exten-
sive studies have been performed using formal methods
on PLC programs. Formal methods have demonstrated
uniqueness and practicality to the PLC industry. For ex-
ample, Beckhoff TwinCat 3 and Nuclear Development
Environment 2.0 have integrated safety verification dur-
ing PLC program implementation [56]. Formal methods
have also been used in the PLC programs controlling
Ontario Power Generation, and Darlington Nuclear Power
Generating Station [76]. Nevertheless, we found existing
research to be ad-hoc, and the area is still new to the
security community. We believe our systematization can
benefit the community with recommendations for future
research directions.

Besides formal methods, there are additional defense
techniques. At the design level, one can use encrypted
network communication, private sensor inputs, and isolate
different functionalities of the engineering station. These
protections are orthogonal to formal methods and common
for any type of software/architecture. In addition, one
can leverage intrusion detection techniques with dynamic
analysis. Such analysis often involves complex algorithms,
such as machine learning or neural networks, which re-
quire extensive runtime memory, and may introduce false
positives. However, PLCs have limited memory and are

bytecode/
binary

Engineering Station sensor input

output to
physical processes

1
2

3

Figure 3: A PLC controlling traffic light signals.

less tolerant to false positives, given the controlled physi-
cal processes can be safety-critical. Thus, intrusion detec-
tion for PLC programs are less practical than for regular
software. To improve PLC security, formal methods can
cooperate with these techniques.

3.2. Methodology

3.2.1. Motivating Example. Figure 3 shows a motivating
example with a PLC controlling traffic light signals at an
intersection. In step 1©, a PLC program developer pro-
grams the control logic code in one of the five languages
described in Section 2.1.1, in an engineering station (e.g.
located in the transportation department). The engineering
station compiles the code into bytecode or binary based
on the type of the PLC. Then in step 2©, the compiled
bytecode/binary will be transmitted to the PLC located at a
road intersection through network communication. In step
3©, the bytecode/binary will run in the PLC, by using the

input from sensors (e.g. whether a pedestrian presses the
button to cross the intersection), and producing output to
control the physical processes (i.e. turning on/off a green
light). The duration of lights will depend on whether a
pedestrian presses the button to cross.

Within each step, vulnerabilities can exist which al-
low attackers to affect the behavior of the control logic.
The following describes the threat model assumptions for
attackers to perform control logic modification attacks.

3.2.2. Threat Model Assumptions. T1: In this threat
model, attackers assume accesses to the program source
code, developed in one of the languages described in
Section 2.1.1. Attackers generate attacks by directly mod-
ifying the source code. Such attacks happen in the en-
gineering station as step 1© in Figure 3. Attackers can
be internal staffs who have accesses to the engineering
station, or can leverage vulnerabilities of the engineering
station [1], [50], [51] to access it.
T2: In this threat model, attackers have no access to
program source code but can access program bytecode
or binary. Attackers generate attacks by first reverse en-
gineering the program bytecode/binary, then modifying
the decompiled code, and finally recompiling it. Such
attacks happen during the bytecode/binary transmission
from the engineering station to the PLC (2© in Figure
3). Attackers can intercept and modify the transmission
leveraging vulnerabilities in the network communication
[48], [49], [52] .
T3: In this threat model, attackers have no access to
program source code nor bytecode/binary. Instead, attack-
ers can guess/speculate the logic of the control program
by accessing the program runtime environment, including
the PLC firmware, hardware, or/and Input and Output

traces. Attackers can modify the real-time sensor input to
the program (3© in Figure 3). Such attacks are practical
since within the same domain, the general settings of the
infrastructure layout are similar, and infrastructures (e.g.
traffic lights) can be publicly accessible [3], [43], [69].

3.2.3. Weaknesses. Attackers usually leverage existing
program weaknesses for control logic modification. The
following enumerates the weaknesses.
W1: Multiple assignments for output variables. Race con-
dition can happen when an output variable depends on
multiple timers or counters. Since one timer may run
faster or slower than the other, at a certain moment, the
output variable will produce a non-deterministic value. In
the traffic light example, this may cause the green light
to be on and off in a short time, or two lights to be on
simultaneously.
W2: Uninitialized or unused variables. An uninitialized
variable will be given the default value in a PLC program.
If an input variable is uninitialized, attackers can provide
illegal values for it during runtime. Similarly, attackers
can leverage unused output variables to send private in-
formation.
W3: Hidden jumpers. Such jumpers will usually bypass a
portion of the program, and are only triggered on a certain
(attacker-controlled) condition. The attackers can embed
malware in the bypassed portion of the program.
W4: Improper runtime input. Attackers can craft illegal
input values based on the types of the input variables to
cause unsafe behavior. For example, attackers can provide
an input index that is out-of-the-bound of an array.
W5: Predefined memory layout of the PLC hardware. PLC
addressing usually follows the format [6] of a storage
class (e.g. I for input, Q for output), a data size (e.g.
X for BOOL, W for WORD), and a hierarchical address
indicating the location of the physical port. Attackers
can leverage the format to speculate the variables during
runtime.
W6: Real-time constraints. The scan cycle has to strictly
follow a maximum cycle time to enforce the real-time
execution. In non-preemptive multitask programs, one task
has to wait for the completion of another task before
starting the next scan cycle. To generate synchronization
attacks, attackers can create loops or introduce a large
number of I/O operations to extend the execution time.

Among the weaknesses, attackers need accurate pro-
gram information to exploit W1, W2, and W3. Therefore,
these attacks usually happen in T1. To disguise the mod-
ification to the source code, attackers in T1 can include
these weaknesses as bad coding practice, without affecting
the major control logic. The other weaknesses are usually
exploited in T2 and T3.

3.2.4. Security Goals. The security goals of existing
studies are related to the security properties of CIA:
confidentiality, integrity, and availability.
GC: Confidentiality. The attacks violate confidentiality
by stealthily monitoring the execution of PLC programs
leveraging existing weaknesses (e.g. W2, W3). Formal
verification approaches defend accordingly.
GI: Integrity. The attacks violate integrity by causing
PLC programs to produce states that are unsafe for the
physical process (e.g. plant), for example, overflowing a

water tank, or fluctuating power generation [11], [58],
[85]. Formal verification approaches defend by verify-
ing (i) generic properties that are process-independent,
and (ii) domain-specific properties that consider the plant
model. Due to the amount of studies targeting GI, we
further split GI into generic payload modification (GI1)
without program I/O nor plant settings, generic input ma-
nipulation (GI2) with program I/O, domain-specific pay-
load modification (GI3) with plant settings, and domain-
specific input manipulation (GI4) with program I/O and
plant settings.
GA: Availability.: The attacks violate availability by ex-
hausting PLC resources (memory or processing power)
and causing a denial-of-service. Formal verification ap-
proaches defend accordingly.

4. Systematization of Attacks

This section systematizes PLC attack methodologies
under the categorization of threat models. Within each
category, we discuss the goals of the attacks and the
underlying weaknesses. We also summarize the challenges
of attack mitigation.

4.1. Attack Methodologies

Given the exposed threat models, the following section
describes the attack methodologies of existing studies
according to the security goals. Table 1 summarizes these
studies.

4.1.1. T1: program source code. At the source code
level, the code injection or modification has to be stealthy,
in a way that no observable changes would be introduced
to the major functionality of the program, or masked as
novice programmer mistakes. In other words, the attacks
could be disguised as unintentional bad coding practices.

Existing studies [84], [88] mainly discussed attacks on
graphical languages, e.g. LD, because small changes on
such programs could not be easily noticed.

Serhane et.al [84] focused on the weak points on LD
programs that could be exploited by malicious attacks.
Targeting G1 to cause unsafe behaviors, attackers could
generate uncertainly fluctuating output variables, for ex-
ample, intentionally introducing two timers to control the
same output variable, could lead to a race condition. This
could damage devices, similar to Stuxnet [33], but unpre-
dictably. Attackers could also bypass certain functions,
manually force the values of certain operands, or apply
empty branches or jumps.

Targeting G2 to stay stealthy while spying the pro-
gram, attackers could use array instructions or user-
defined instructions, to log critical parameters and values.
Targeting G3 to generate DoS attacks, attackers could
apply an infinite loop via jumps, and use nest timers and
jumps to only trigger the attack at a certain time. This
attack could slow down or crash the PLC in a severe
matter.

Because PLC programmers often leave unused vari-
ables and operands, both the spying program and the DoS
program could leverage unused programming resources.

These attacks leveraged weaknesses W1-W4, and fo-
cused on single ladder program. To extend the attacks to

multi-ladder programs, Valentine et.al [88] further pre-
sented attacks that could install a jump to a subroutine
command, and modify the interaction between two or
more ladders in a program. This could be disguised as
an erroneous use of scope and linkage by a novice pro-
grammer.

In addition to code injection and modification,
McLaughlin et.al [69] presented input manipulation at-
tacks to cause unsafe behaviors. This study analyzed the
code to obtain the relationship between the input and
output variables and deducted the desired range for output
variables. Attackers can craft inputs that could lead to
undesired outputs for the program. The crafted inputs have
to evade the state estimation detection of the PLC. Since
the input manipulation happens in T3, and more studies
discussed input manipulation attacks without using source
code, we will elaborate on these attacks in T3.

4.1.2. T2: program bytecode/binary. Studies at this
threat model mainly investigated program reverse engi-
neering, and program modification attacks. Instead of
disguising as bad coding practices, like those in T1, the
injection at the program binary aimed at evading behavior
detectors.

To design an attack prototype, McLaughlin et.al [70]
tested on a train interlocking program. The program was
reverse engineered using a format library. With the decom-
piled program, they extracted the fieldbus ID that indicated
the PLC vendor and model, and then obtained clues
about the process structure and operations. To generate
unsafe behaviors, such as causing conflict states for the
train signals, they targeted timing-sensitive signals and
switches. To evade safety property detection, they adopted
an existed solution [34] to find the implicit properties of
the behavior detectors. For example, variable r depends on
p and q, so a property may define the relationship between
p and q, as a method to protect r. However, attackers can
directly change the value of r without affecting p and q,
and the change will not alarm the detector. In this way,
they automatically searched for all the Boolean equations,
and could generate malicious payloads based on that.

Based on this prototype, SABOT [68] was imple-
mented. SABOT required a high-level description of the
physical process, for example, “the plant contains two
ingredient valves and one drain valve”. Such information
could be acquired from public channels, and are similar
for processes in the same industrial sector. With this
information, SABOT generated a behavioral specification
for the physical processes and used incremental model
checking to search for a mapping between a variable
within the program, and a specified physical process.
Using this map, SABOT compiled a dynamic payload
customized for the physical process.

Both studies were limited to Siemens devices, with-
out revealing many details on reverse engineering. To
provide more information, and support CodeSys-based
programs, Keliris et.al [55] implemented an open-source
decompiler, ICSREF, which could automatically reverse
engineer CodeSys-based programs, and generate mali-
cious payloads. ICSREF targeted PID controller functions
and manipulated the parameters such as the setpoints,
proportional/integral/derivative gains, initial values, etc.
ICSREF inferred the physical characteristics of the con-

TABLE 1: The studies investigating control logic modification attacks.
Threat
Model Paper Weakness Security

Goal
Attack
Type

Detection
to Evade

Network
Access

PLC
Language/Type Tools

Serhane’18 [84] W1,2,3 GI1,GC,GA both Programmer ES LD, RSLogix N/A
Valentine’13 [88] W1,2,3,6 GI1,GC passive Programmer N/A LD PLC-SF, vul. assessment

T1
source
code McLaughlin’11 [70] W4 GI3 both State verif. ES generic N/A

ICSREF [55] W4 GI3 passive NA ES, PLC Codesys-based angr, ICSREF
SABOT [68] W4 GI3 passive N/A ES, PLC IL NuSMV

T2
bytecode
/binary McLaughlin’11 [70] W4 GI3 both State verif. ES, PLC generic N/A

PLCInject [58] W5 GC both N/A ES, PLC IL, Siemens PLCInject malware
PLC-Blaster [85] W5 GC,GA active N/A ES, Sensor, PLC Siemens PLC-Blaster worm
Senthivel’18 [83] W4 GI1 active ES ES, PLC LD, AB/RsLogix PyShark, decompiler Laddis
CLIK [54] W4 GI1 both ES PLC IL, Schneider Eupheus decompilation
Beresford’11 [11] W4,5 GI2 both N/A ES, PLC Siemens S7 Wireshark, Metasploit
Lim’17 [64] W4,5 GI4,GA active ES ES, PLC Tricon PLC LabView, PXI Chassis, Scapy
Xiao’16 [92] W4 GI4 both State verif. Sensor, PLC generic N/A
Abbasi’16 [3] W4 GI2 both Others N/A Codesys-based Codesys platform
Yoo’19 [94] W5 GI1 both Others ES, PLC Schneider/AB DPI and detection tools
LLB [43] W4,6 GI1,GI2 both Programmer ES, PLC LD, AB Studio 5000, RSLinx, LLB
CaFDI [69] W4 GI4 both State verif. N/A generic CaFDI

T3
runtime

HARVEY [37] W4,5 GI4,GC both ES ES, PLC AB Hex, dis-assembler, EMS
Engineering Station (ES), Allen-Bradley (AB). Tools: vulnerability (vul.). Detection to evade: verification (verif.).

trolled process, so that modified binaries could deploy
meaningful and impactful attacks.

4.1.3. T3: program runtime. At this level, existing
studies investigated two types of attacks: the program
modification attack, and the program input manipulation
attack. The input of the program could either come from
the communication between the PLC and the engineering
station, or the sensor readings.

• Program modification attack. this requires reverse
engineering and payload injection, similar to studies in
T2. The difference is that, given the PLC memory lay-
out available, and the features supported by the PLC,
the design of payload becomes more targeted. Through
injecting malicious payload to the code, PLCInject [58]
and PLC-Blaster [85] presented the widespread impact
of the malicious payload. PLCInject crafted a payload
with a scanner and proxy. Due to the predefined memory
layout of Siemens Simatic PLCs, PLCInject injected this
payload at the first organization block (OB) to change the
initialization of the system. This attack turned the PLC
into a gateway of the network of PLCs. Using PLCIn-
ject, Spenneberg [85] implemented a worm, PLC-Blaster,
that can spread among the PLCs. PLC-Blaster spread by
replicating itself and modifying the target PLCs to execute
it along with the already installed programs. PLC-Blaster
adopted several anti-detection mechanisms, such as avoid-
ing the anti-replay byte, storing at a less used block, and
meeting the scan cycle limit. PLCInject and PLC-Blaster
achieved G3 and demonstrated the widespread impact of
program injection attacks.

In addition to that, Senthivel et.al [83] introduced
several malicious payloads that could deceive the engi-
neering station. Since the engineering station periodically
checks the running program from the PLC, the attackers
could deceive it by providing an uninfected program while
keep executing the infected program in the PLC. Sen-
thivel achieved this through a self-developed decompiler
(laddis) for LD programs. Senthivel also introduced three
strategies to achieve this denial of engineering operation
attacks.

In a similar setting, Kalle et.al [54] presented CLIK.
After payload injection, CLIK implemented a virtual PLC,
which simulated the network traffic of the uninfected PLC,

and fed this traffic to the engineering station to deceive
the operators. These two works employed a full chain of
vulnerabilities at the network level, without accessing the
engineering station nor the PLCs.

• Input manipulation through the network. several
studies [11], [64] hijacked certain network packets be-
tween the engineering station and a PLC. Beresford et.al
[11] exploited a packet (e.g. ISO-TSAP) between the
PLC and the engineering station. These packets provided
program information, such as variable names, data block
names, and also the PLC vendor and model. Attackers
could modify these variables to cause undesired behavior.
With memory probing techniques, attackers could get a
mapping between these names to the variables in the PLC.
This would allow them to modify the program based on
needs. This attack could cause damages to the physical
processes. However, the chance for successful mapping
of the variables through memory probing is small. In a
nuclear power plant setting, Lim et.al [64] intercepted
and modified the command-37 packets sent between the
engineering station and the PLC. This packet provided
input to an industrial-grade PLC consisted of redundant
modules for recovery. The attack caused common-mode
failures for all the modules.

These attacks made the entry point through the net-
work traffic. However, they ignored the fact that security
solutions could have enabled deep packet inspection (DPI)
between the PLC and the engineering station. Modified
packets with malicious code or input data could have been
detected before reaching the PLC. To evade DPI, Yoo
et.al [94], [95] presented stealthy malware transmission,
by splitting the malware into small fragments and trans-
mitting one byte per packet with a large size of noises.
This is because DPI merges packets for detection and thus
was not able to detect small size payload. On the PLC
side, Yoo leveraged a vulnerability to control the received
malicious payload, discard the padded noises, and config-
ure the start address for execution. Although dependent
on multiple vulnerabilities, this study provided insight for
stealthy program modification and input manipulation at
the network level.

• Input manipulation through sensor. existing studies
[3], [43], [69], [92] explored different approaches to evade
various behavior detection, and to achieve G1.

Govil et.al [43] presented Ladder logic bombs (LLB),
which was a combination of program injection and input
manipulation attacks. The malicious payload was injected
into the existing LD program, as a subroutine, and could
be triggered by a certain condition. Once triggered, this
malware could replace legitimate sensor readings with
manipulated values. LLB was designed to evade manual
inspection, by giving instructions names similar to com-
monly used ones.

LLB did not consider behavior detection, such as
state verification, or state estimation. To counter Büchi
automaton based state estimation, CaFDI [69] introduced
controller-aware false data injection attacks. CaFDI re-
quired high-level information of the physical processes,
and monitored I/O traces of the program. It first con-
structed a Büchi automaton model of the program based
on its I/O traces, and then searched for a set of inputs
that may cause the model to produce the desired mali-
cious behavior. CaFDI calculated the Cartesian product
of the safe model and the unsafe model, and recursively
searched for a path that could satisfy the unsafe model
in the formalization. The resulting path of input would
be used as the sensor readings for the program. To stay
stealthy, CaFDI avoided noticeable inputs, such as an LED
indicator. Xiao [92] fine tuned the undesired model to
evade existing sequence-based fault detection [57]. An
attacker could first construct a discrete event model from
the collected fault-free I/O traces using non-deterministic
autonomous automation with output (NDAAO), and then
build a word set of NDAAO sequences, and finally, search
for the undetectable false sequences from the word set to
inject into the compromised sensors. Similarly, by com-
bining the control flow of the program, Abbasi et.al [3]
presented configuration manipulation attacks by exploiting
certain pin control operations, leveraging the absence of
hardware interrupts associated to the pins.

To evade the general engineering operations, Garcia
[37] developed HARVEY, a PLC rootkit at the firmware
level that can evade operators viewing the HMI. HAR-
VEY faked sensor input to the control logic to generate
adversarial commands, while simulated the legitimate con-
trol commands that an operator would expect to see. In
this way, HARVEY could maximize the damage to the
physical power equipment and cause large-scale failures,
without operators noticing the attack. HARVEY assumed
access to the PLC firmware, which was less monitored
than the control logic program.

These studies make it practical to inject malicious
payloads either through a compromised network or in-
secure sensor configurations. Because of the stealthiness,
it remains challenging to design security solutions to
counter. The following details the challenges.

4.2. Challenges

• Expanded attack input surfaces. The attack input
surfaces for PLC programs are expanding. The aforemen-
tioned studies have shown input sources including (1) the
communication from the engineering station, with certain
packets intercepted and hijacked, (2) internet faced PLCs
in the same subnet, and (3) compromised sensors and
firmware. It becomes challenging for defense solutions to

scope an appropriate threat model, since any component
along the chain of control could be compromised.

• Predefined hierarchical memory layout. Multiple
studies leveraged this weakness to perform the attacks.
However, traditional defense solutions [22] have seen
many challenges: (1) the address space layout randomiza-
tion (ASLR) would be too heavy to meet the scan cycle re-
quirements for the PLCs, and would still suffer from code-
reuse attacks, (2) control flow integrity based solutions
require a substantial amount of memory, and would be
hard to detect in real-time, or to mitigate the attacks, and
(3) the hierarchical memory layout is vendor-specific, and
the attacks targeting them are product-driven, for example,
Siemens Simatic S7 [11], [85]. It is challenging to design
a lightweight and generalized defense solution.

• Confidentiality and integrity of the program I/O.
The majority of the studies depended on the program I/O
to perform attacks, either to extract information of the
physical processes, and possible detection methods, or to
manipulate input to produce unsafe behaviors. Protecting
I/O is challenging in that (1) the input surfaces of the pro-
grams are expanding, (2) sensors and physical processes
could be public infrastructure, and (3) the I/O has to be
updated frequently to meet the scan cycle requirement.

• Stealthy attack detection. We have mentioned many
stealthiness strategies based on different threat models, in-
cluding (1) disguising malicious code as human errors, (2)
code obfuscation with fragmentation and noise padding to
evade DPI, (3) crafting input to evade state estimation
and verification algorithms, (4) using specific memory
block or configuration of the PLC, and (5) deceiving
the engineering station with faked legit behaviors. It is
challenging for a defense solution to capture these stealthy
attacks.

• Implicit or incomplete specifications. Multiple stud-
ies have shown crafted attacks using the implicit properties
[68]–[70]. The difficulties of defining precise and com-
plete specifications lie in that (1) product requirements
may change over time thus requiring update of semantics
on inputs and outputs, (2) limited expressiveness can lead
to incompleteness, while over expressiveness may lead to
implicitness, and (3) domain-specific knowledge is usually
needed. It is challenging to design specifications that
overcome these difficulties.

5. Formal Verification based Defenses

A large body of research uses formal verification for
PLC safety and security, as Table 3 shows. This study
mainly focused on the following aspects:

• Behavior Modeling: Modeling the behavior of the
program as a state-based, flow-oriented, or time-
dependent representation.

• State Reduction: Reducing the state space to im-
prove search efficiency.

• Specification Generation: Generating the specifi-
cation with desired properties as a temporal logic
formula.

• Verification: Applying model checking or theorem
proving algorithms to verify the security or safety of
the PLC program.

Based on these aspects, the following discusses de-
fense methodologies. We use the same threat models,
security goals, and weaknesses as mentioned in Section
3.2.

5.1. Behavior Modeling

The goal of behavior modeling is to obtain a formal
representation of the PLC program behavior, so that given
a specification, a formal verification framework can un-
derstand and verify it. The following discusses behavior
modeling, based on different threat models.

5.1.1. T1: program source code. At the source code
level, a line of studies [4], [30], [41], [76] have investi-
gated the formal modeling of generic program behaviors.
The majority of them translated programs to automata and
Petri nets, since they were well supported by most formal
verification frameworks [4]. These translations usually
consider each program unit as an automaton, including
the main program, functions, and function block instances.
Each variable defined in the program unit was translated as
a corresponding variable in the automaton. Input variables
are assigned non-deterministically at the beginning of each
PLC cycle. The whole program was modeled as a network
of automata, where a transition represents the changes
of variable values in different execution cycles, and a
synchronization pair represents synchronized transitions
of function calls. In a similar modeling method, Newell
et.al [76] translated FBD programs to Prototype Verifica-
tion System (PVS) models, since certain nuclear power
generating station can only support such representation.

These studies could formally model most PLC behav-
iors, especially the internal logic within the PLC code.
However, with only source code available, behavior mod-
eling lacks the interaction with the PLC hardware, and the
physical processes, which might cause unsafe or malicious
behaviors to bypass later formal verification. The follow-
ing discusses behavior modeling with more information
available.

5.1.2. T2: program bytecode/binary. Fewer studies have
investigated behavior modeling at the program binary
level. The challenges lie in reverse engineering. As men-
tioned in existing works [71], [100], several PLC features
are not supported in the normal instruction sets. PLCs are
designed with hierarchical addressing using a dedicated
memory area for the input and output buffers. The function
blocks use a parameter list with fixed entry and exit points.
PLCs also support timers that act differently between bit-
logic instructions and arithmetic instructions.

Thanks to an open-source library [60], which can
disassemble Siemens PLC binary programs into STL (IL
equivalent for Siemense) programs, several works [21],
[71], [93], [100] studied modeling Siemens binary pro-
grams. Based on the STL program, TSV [71] leveraged
an intermediate language, ILIL, to allow more complete
instruction modeling. With concolic execution, TSV ob-
tained the information flow from the system registers
and the memory. After executing multiple scan cycles,
a temporal execution graph was constructed to represent
the states of the controller code. After TSV, Zonouz et.al
[100] adopted the same modeling. Chang et.al [21] and

Xie et.al [93] constructed control flow graphs with similar
executable paths. Chang deduced the output states of
the timer based on the existing output state transition
relationships, while Xie used constraints to model the
program.

Combined with studies at T1, these studies could
handle more temporal features, such as varied scan cycle
lengths, and enabled input dependent behavior model-
ing. With control flow based representation, nested logic
and pointers could also be supported. However, without
concrete execution of the programs, the drawbacks are
obvious: (1) the input vectors were either random or have
to be manually chosen, (2) the number of symbolic states
limited the program sizes, (3) the temporal information
further increased resource consumption. Next, we discuss
behavior modeling with runtime information.

5.1.3. T3: program runtime. With runtime information,
existing research [19], [53], [65], [98], [99] modeled pro-
grams considering its interactions with the physical pro-
cesses, the supervisor, and the operator tasks. This allowed
more realistic modeling for timing sensitive instructions,
and domain-specific behavior modeling.

Automated frameworks [91], [99] were presented to
model PLC behaviors with interrupt scheduling, function
calls, and IO traces. Zhou et.al [99] adopted an environ-
ment module for the inputs and outputs, an interruption
module for time-based instructions, and a coordinator
module to schedule these two modules with the main
program. Wang et.al [91] automated a BIP (Behavior,
Interaction, Priority) framework to formalize the scanning
mode, the interrupt scheduler, and the function calls. Mesli
et.al [72] presented a component-based modeling for the
whole control-command chain, with each component de-
scribed as timed automata.

To automate modeling of domain-specific event behav-
ior, VetPLC [98] generated timed event causality graphs
(TECG) from the program, and the runtime data traces.
The TECG maintained temporal dependencies constrained
by machine operations.

These studies removed the barrier from modeling
event-driven and domain-specific behaviors. They could
mitigate attacks violating security and safety requirements
via special sequences of valid logic.

5.1.4. Challenges.

• Lack of plant modeling. Galvao et.al [36] have
pointed out the importance of plant models in formal
verification. However, existing studies focused on the
formalization of PLC programs, rather than the I/O of the
programs that directly reflect the behavior of the physical
processes (e.g. plant). Under T3, a few studies considered
program I/O during behavior modeling. However, they
either consider I/O as a generic module working together
with the other modules [91], [99], or informally use data
mining on program I/O to extract program event sequences
[98]. It remains challenging to formalize plant models in
improving PLC program security.

• Lack of modeling evaluation. The majority of the
studies only adopted one modeling method to obtain a
program representation. We understood the representation
is compatible with the formal verification framework.

However, there were no scientific comparisons between
models from different studies, except some high-level
descriptions. Within one model, only a few studies [20],
[69], [98] evaluated the number of states in their rep-
resentations. It is even more difficult to understand the
performance of the model from the security perspective.

• State explosion. The aforementioned studies have
already adopted an efficient representation that transforms
a program unit as a state automaton, and formalizes the
state transition between the current cycle and the next cy-
cle. A less efficient model representation transforms each
variable of a program as a state, and formalize the transi-
tion between the states. Even though such representation
can benefit PLC programs in any language, it produces
large size models containing too many states to be verified,
even for small and medium-sized programs. Therefore, in
practice, most of the programs are modeled in the former
efficient representation. For large size programs, however,
both representations will produce large amounts of state
combinations, causing the state explosion problem. The
following describes research works in state reduction.

5.2. State Reduction

The goal of state reduction is to improve the scalability
and complexity of PLC program formalization. There are
two common steps involved. First, we have to determine
the meaningful states related to safety and security prop-
erties. Then, we trim the less meaningful states.

5.2.1. T1: program source code. At the source code
level, a line of studies [25], [29], [42], [79] performed state
reduction. Gourcuff et.al [42] considered the meaningful
states as those related to the input and output variables,
since they directly control the behavior of the physical
processes. To obtain the dependency relations of the in-
put and output variables, Gourcuff conducted static code
analysis to get variable dependencies in a ST program,
and found a large portion of the unrelated states. Even
though this method significantly reduced the state search
space, it also skipped much of the original code for the
following verification.

To improve the code coverage of the formalization,
Pavlovic et.al [79] presented a general solution for FBD
programs. They first transformed the graphical program
to textual statements in textFBD, and further substituted
the circuit variables to tFBD. This approach removed
the unnecessary assignments connecting continuous state-
ments and merged them into one. On top of this ap-
proach, Darvas et.al fine tuned the reduction heuristics
with a more complete representation [25], [29]. Besides
unnecessary variable or logic elimination, these heuristics
adopted the Cone of influence (COI)-based reduction, and
the rule-based reduction. The COI-based reduction first
removed unconditional states that all possible executions
go through. It then removed variables that do not influence
the evaluation of the specification. The rule-based reduc-
tion could be specified based on the safety requirements of
the application domain. Additionally, math models were
also used to abstract different components. Newell et.al
[76] defined additional structure, attribute maps, graphs,
and block groups to reduce the state space of their PVS
code.

These studies successfully reduced the size of program
states. They were limited, however, to basic Boolean rep-
resentation reduction. For programs with complex time-
related variables, function blocks, or multitasks, these
studies were insufficient. It was also unclear whether the
reduction could undermine program security. The fol-
lowing discusses other reduction techniques when such
information is present.

5.2.2. T2: program bytecode/binary. Studies at the bi-
nary level mostly adopted symbolic execution combined
with flow-based representation. This demonstrated that
meaningful states lead to different symbolic output vec-
tors. TSV [71] merged the input states that could all lead
to the same output values. It also abstracted the temporal
execution graphs, by removing the symbolic variables
based on their product with the valuations of the LTL
properties.

To further reduce the unrelated states, Chang et.al
[21] reduced the overlapping output states of the same
scan cycle, and removed the output states that had been
analyzed in previous cycles. To reduce the overhead of
timer modeling, they employed a deduction method for the
output states of timers, through the analysis of the existing
output state transition relationships These reductions did
not undermine the goal of detecting malicious behaviors
spanning multiple cycles.

Compared with T1, these studies were more interested
in preserving temporal features, and targeted the reduc-
tion from random inputs in symbolic execution. However,
without undermining the temporal feature modeling, the
reduction of input states was inefficient given the lack of
real inputs. The following discusses the reduction tech-
niques when runtime inputs are available.

5.2.3. T3: program runtime. With runtime information,
we could gain a better understanding of the real mean-
ingful states. These include the knowledge from event
scheduling for subroutine and interrupts, and the real
inputs and outputs from the domain-specific processes.

Existing studies [53], [65], [98], [99] presented state
reduction in different approaches. To reduce the scale of
the model, Zhou et.al [99] modeled timers inline with the
main program instead of a separate automata, since their
model had considered the real environment traces, the
interruptions, and the scheduling between them. Similarly,
Wang et.al [91] compressed segments without jump and
call instructions into one transition.

Besides merging unnecessary states, the real inputs
and domain-specific knowledge could narrow down the
range for modeling numerical and float variables. In
Zhang’s study [98], continuous timing behavior was dis-
cretized to multiple time slices with a constant interval.
Since the application-specific IO traces are available, the
time interval was narrowed to a range balancing between
efficiency and precision.

Compared with studies at T1 and T2, state reduction
at T3 was more powerful, not only with more realistic
temporal and event-driven features supported, but also
helped to extract more meaningful states with domain-
specific runtime information.

5.2.4. Challenges.

• Lack of “ground truth” for continuous behavior.
We discussed that runtime traces helped to determine a
“realistic” granularity for continuous behaviors. However,
choosing the granularity was still experience-based and
ad-hoc. In fact, a too coarse granularity would fail to
detect actual attacks, while a too fine granularity expected
infeasible attack scenarios [36]. Abstracting a “ground
truth” model for continuous behavior remains challenging.

• Implicitness and stealthy attacks from reduction.
Although existing studies have considered property preser-
vation, the reduced “unrelated” states may undermine
PLC security. We mentioned in Section 4 that implicit
specification had led to attacks. The reduced states may
cause the implicit mapping between the variables in the
program and its specification, or they may contain stealthy
behaviors that were simply omitted by the specification.
The following discusses research on specification genera-
tion.

5.3. Specification Generation

The goal of these studies is to generate safety and
security specifications with formal semantics. Specify-
ing precise and complete desired properties is difficult.
Existing studies focused on two aspects: (1) process-
independent properties that describe the overall require-
ments for a control system, and (2) domain-specific prop-
erties that require domain expertise.

5.3.1. T1: program source code. At the source code
level, a line of studies [13], [27], [28], [41], [47] inves-
tigated specification generation with process-independent
properties. These properties include avoiding variable
locks, avoiding unreachable operating modes, operating
modes that are mutually exclusive, and avoiding irrelevant
logic [81].

Existing studies [4], [10], [16], [74], [81] usually
adopted CTL or LTL-based formulas to express these
properties. LTL describes the future of paths, e.g., a con-
dition will eventually be true, a condition will be true until
another fact becomes true, etc. CTL describes invariance
and reachability, e.g., the system never leaves the set of
states, the system can reach the set of states, respectively.
Other variants included ACTL, adopted by Rawlings [81],
and ptLTL, adopted by Biallas [12].

Besides CTL and LTL-based formulas, a proof assis-
tant was also investigated to assist the development of for-
mal proofs. To formally define the syntax and semantics,
Biha et.al [13] used a type theory based proof assistant,
Coq, to define the safety properties for IL programs. The
semantics concentrated on the formalization of on-delay
timers, using discrete time with a fixed interval. Besides
Coq, K framework [47] was also adopted to provide a
formal operational semantics for ST programs. K is a
rewriting-based semantic framework that has been applied
in defining the semantics for C and Java. Compared with
Coq, K is less formal but lighter and easier to read and
understand. The trade-off is that manual effort is required
to ensure the formality of the definition.

These studies limited specification generation to cer-
tain program models. To enable formal semantics for state-
based, data-flow-oriented, and time-dependent program

models, Darvas et.al [27] presented PLCspecif to support
various models.

These studies provided opportunities for engineers
lacking formalism expertise to generate formal and precise
requirements. The proof assistant frameworks even al-
lowed generating directly executable programs, e.g. C pro-
gram. Nevertheless, only process-independent properties
could be automated, the following discusses specification
generation with more information available.

5.3.2. T2: program bytecode/binary. As mentioned ear-
lier, symbolic execution allowed these studies to support
program modeling with numeric and float variables. These
variables provided more room for property definitions in
the specification. TSV [71] defined properties bounding
the numerical device parameters, such as the maximum
drive velocity and acceleration. Others et.al [21], [93],
[100] defined properties to detect malicious code injection,
parameter tampering attacks. Xie et.al [93] expanded the
properties to detect stealthy attacks, and denial of service
attacks.

Similar to studies at T1, these studies all adopted LTL-
based formalism, and could automate process-independent
property generation. To accommodate certain attack strate-
gies, the specification generation was manually defined.

5.3.3. T3: program runtime. With runtime information
available, specification generation concentrated more on
domain-specific properties. In a waste water treatment
plant setting, Luccarini et.al [65] applied artificial neural
networks to extract qualitative patterns from the continu-
ous signals of the water, such as the pH and the dissolved
oxygen. These qualitative patterns were then mapped to
the control events in the physical processes. The mapping
was logged using XML and translated into formal rules
for the specification. This approach considered the col-
lected input and output traces as ground truth for security
and safety properties, and removed the dependencies on
domain expertise.

In reality, the runtime traces might be polluted, or
contain incomplete properties for verification. To ensure
the correctness and completeness of domain-specific rules,
existing studies [36], [98] also considered semi-automated
approaches, which combined automated data mining and
manual domain expertise. VetPLC [98] formally defined
the safety properties, through automatic data mining and
event extraction, aided with domain expertise in crafting
safety specifications. VetPLC adopted timed propositional
temporal logic (TPTL), which was more suitable to quan-
titatively express safety specifications.

Besides (semi)-automated specification generation,
Mesli et.al [72] manually defined a set of rules for the
interaction between each component along the chain of
control. The requirements are also written in CTL tempo-
ral logic. To assist domain experts in developing formal
rules, Wang et.al [91] formalized the semantics for a
BIP model for all types of PLC programs. It automated
process-independent rules for interrupts, such as, follow-
ing the first come first serve principle.

These studies enabled specification generation with
domain-specific knowledge. They thus expanded security
research with more concentration on safety requirements.

5.3.4. Challenges.

• Lack of specification-refined programming. Since
these studies already assumed the existence of the PLC
programs (source code or binary), the generated specifi-
cation could help refine the programming and program
modeling. We have mentioned earlier that state reduction
considered property preserving, and removed “irrelevant
logic” from program modeling. However, generated prop-
erties did not provide direct feedback to the program
source code. In fact, program refinement in a similar
approach of state reduction is promising in eliminating
irrelevant stealthy code from the source.

• Ad-hoc and unverified specification translations.
Despite the availability of formal semantics and proof
assistants, such as Coq, PVS, HOL, existing require-
ments are informally defined in high-level languages, and
vary across industrial domains. Existing studies translat-
ing these requirements encountered many challenges: (1)
tradeoff between an automated but unverified approach,
or a formal but manual rewriting, (2) the dependencies on
program language (many studies were based on IL [47],
deprecated in IEC 61131-3 since 2013), (3) the rules were
based on sample programs without the complexity of the
real industry.

• Barrier for automated domain-specific property
generation. Although Luccarini [65] presented a promis-
ing approach, it was based on two unrealistic assump-
tions: (1) the trace collected from the physical processes
was complete and could be trusted, and (2) the learning
algorithm extracted the rules completely and accurately.
Without further proofs (manual domain expertise) to lift
these two assumptions, the extracted properties would
be an incomplete “white list” which may also contain
implicitness, leading to false positives or true negatives
in the verification or detection.

• Specification generation with evolved system de-
sign. Increasing requirements were laid on PLC programs,
considering the interactions from new components. In the
behavior modeling, we have observed studies formalizing
the behaviors of new interactions, on top of existed mod-
els, for example, adding a scheduler module combing an
existed program with a new component. Compared with
that, we saw fewer studies investigating incremental spec-
ification generation, based on existing properties. It was
still challenging to define the properties to synchronize
PLC programs with various components, especially in a
timing-sensitive fashion.

5.4. Verification

We already discussed the modeling of program be-
havior, and specification generation. With these, a line of
studies [9], [10], [16], [17], [20], [74], [75], [77], [80],
[81], [96] applied model checking and theorem proving
to verify the safety and security of the programs.

These studies applied several formal verification
frameworks, summarized in Table 2. The majority of
them used Uppaal and Cadence SMV. Uppaal was used
for real-time verification representing a network of timed
automata extended with integer variables, structured data

types, and channel synchronization. Cadence SMV was
used for untimed verification.

5.4.1. T1: program source code. At the source code
level, formal verification studies aimed at verifying weak-
nesses W1-W4, to defend against general safety problems.
They had been applied by programs from different indus-
tries.

To defend G1, Bender et.al [10] adopted model check-
ing for LD programs modeled as timed Petri nets. They
applied model checkers in the Tina toolkit to verify LTL
properties. Bauer et.al [9] adopted Cadence SMV and
Uppaal, to verify untimed modeling and timed modeling
of the SFC programs, respectively. They identified errors
from three reactors. Similarly, Niang et.al [77] verified a
circuit breaker program in SFC using Uppaal, based on a
recipe book specification. To defend G2, Hailesellasie et.al
[44] applied Uppaal and compared two formally generated
attributed graphs, the Golden Model with the properties,
and a random model formalized from a PLC program. The
verification is based on the comparison of nodes and edges
of the graphs. They detected stealthy code injections.

Instead of adopting existing tools, several studies
developed their own frameworks for verification. Ar-
cade.PLC [12] supported model checking with CTL and
LTL-based properties for all types of PLC programs.
PLCverif [28] supported programs from all five Siemens
PLC languages. NuDE 2.0 [56] provided formal-method-
based software development, verification and safety anal-
ysis for nuclear industries. Rawlings et.al [81] applied
symbolic model checking tools st2smv and SynthSMV to
verify and falsify a ST program controlling batch reactor
systems. They automatically verified process-independent
properties, rooted in W1-W4.

Besides model checking, existing studies [76] also
adopted PVS theorem proving to verify the safety prop-
erties described in tabular expressions in a railway inter-
locking system.

These studies are limited to general safety require-
ments verification. To defend G2 and G3, more informa-
tion will be needed, as discussed in the following.

5.4.2. T2: program bytecode/binary. This line of studies
[21], [71], [91], [93], [100] allowed us to detect binary
tampering attacks.

TSV [71] combined symbolic execution and model
checking. It fed the model checker with an abstracted
temporal execution graph, with its manually crafted LTL-
based safety property. Due to its support for random timer
values within one cycle, TSV was limited by checking
the code with timer operations, and still suffered from
state explosion problems. Xie et.al [93] mitigated this
problem with the use of constraints in verifying random
input signals. Xie used nuXmv model checker. Chang et.al
[21] applied a less formal verification based on the number
of states.

These studies successfully detected malicious parame-
ter tempering attacks, based on sample programs control-
ling traffic lights, elevator, water tank, stirrer, and sewage
injector.

5.4.3. T3: program runtime. With runtime information,
existing studies could verify domain-specific safety and

security issues, namely all the weaknesses and security
goals discussed in Section 4.

To defend G1 by considering the interactions to the
program, Carlsson et.al [18] applied NuSMV to verify
the interaction between the Open Platform Communica-
tions (OPC) interface and the program, using properties
defined as server/client states. They detected synchroniza-
tion problems, such as jitter, delay, race condition, and
slow sampling caused by the OPC interface. Mesli [72]
applied Uppaal to multi-layer timed automata, based on
a set of safety and usability properties written in CTL.
They detected synchronization errors between the control
programs and the supervision interfaces.

To fully leverage the knowledge from the physical
processes, VetPLC [98] combined runtime traces, and
applied BUILDTSEQS to verify security properties de-
fined in timed propositional temporal logic. HyPLC [38]
applied theorem prover KeYmaera X to verify the proper-
ties defined in differential dynamic logic. Different from
VetPLC, HyPLC aimed at a bi-directional verification
between the physical processes, and the PLC program,
to detect safety violations.

These studies either assumed an offline verification,
or vaguely mentioned using a supervisory component
for online verification. To provide an online verification
framework, Garcia et.al [40] presented an on-device run-
time solution to detect control logic corruption. They
leveraged an embedded hypervisor within the PLC, with
more computational power and integration of direct library
function calls. The hypervisor overcame the difficulties
of strict timing requirements and limited resources, and
allowed verification to be enforced within each scan cycle.

5.4.4. Challenges.
• Lack of benchmarks for formal verification. Similar

to the challenges in behavior modeling, an ideal evaluation
should be multi-dimensional: across modeling methods,
across verification methods, and based on a set of bench-
mark programs. Existing evaluations, if performed, were
limited to one dimension and based on at most a few sam-
ple programs. These programs were often vendor-specific,
test-case driven, and failed to reflect the real industry com-
plexity. Without a representative benchmark and concrete
evaluation, the security solution design would still be ad-
hoc.

• Open-source automated verification frameworks.
Existing studies have presented several open-source
frameworks taking a PLC program as input, and automati-
cally generating the formal verification result over generic
properties. These frameworks (e.g. Arcade.PLC, st2smv
and the SynSMV) lowered the bar for security analy-
sis using formal verification. However, over the years,
such frameworks were no longer supported. No compara-
ble replacement emerged, except PLCverif [26] targeting
Siemens programs.

• High demand for runtime verification. The chal-
lenges include (1) expanded attack landscapes due to
increasingly complex networking, (2) tradeoff between
limited available resources on the PLC and real-time
constraints, (3) runtime injected stealthy attacks due to
insecure communication, and (4) runtime denial of service
attacks omitted by existing studies.

6. Recommendations

We have described and discussed the security chal-
lenges in defending against PLC program attacks using
formal verification and analysis. Next, we offer recom-
mendations to overcome these challenges. Our recom-
mendations highlight promising research paths based on
a thorough analysis of the state-of-the-art and the current
challenges. We consider these recommendations equally
relevant regardless of any particular factor—neither men-
tioned nor considered in this section—that may change
this perception.

6.1. Program Modeling

6.1.1. Plant Modeling. We discussed the lack of formal-
ized plant modeling in Section 5.1.4. We recommend more
research in plant modeling to formalize more accurate
and complete program behaviors. Future research should
consider refinement techniques to define the granularity
and level of abstraction for the plant models and the
properties to verify. The refinement techniques should
consider the avoidance of state explosion, by extracting
feasible conditions of the plant that can trigger property
violations in the program.

6.1.2. Input manipulation verification. Plant modeling
is also promising in mitigating program input manipula-
tion attacks. As mentioned in Section 4, input manipula-
tion is widely adopted by the attackers. Future research
should consider the Orpheus [23] prototype in a PLC
setting. Orpheus performs event consistency checking be-
tween the program model and the plant model to detect
input manipulation attacks. To perform event consistency
checking in a PLC, future research may consider in-
strumentation on the input and output variables of the
programs, and compare the values with these from the
plant models.

6.2. State Reduction

In Section 4.1.1, we discussed code level attacks that
could disguise themselves as bad coding practice, and are
hard to be noticed. During the state reduction, based on
an existed specification, “unrelated” states are trimmed to
avoid state explosion problems. However, as mentioned
in Section 4.2, existing studies failed to investigate the
relationship between the “unrelated” states and the orig-
inal program. It could be hidden jumps with a stealthy
logger to leak program critical information. The specifica-
tion might only consider the noticeable unsafe behaviors,
which can disturb the physical processes, while let the
states from the stealthy code be recognized as “unrelated”.
We, therefore, recommend future research to investigate
the security validation of unrelated code, and consider
automatic program cleaning for the stealthy code.

6.3. Specification Generation

6.3.1. Domain-specific property definition. As men-
tioned in Section 5.3.4, there are barriers in automatic
generation of domain-specific properties, and manually

TABLE 2: Common frameworks for formal verification

Frameworks Modeling Languages Property
Languages/Prover Supported Verification Techniques

NuSMV/nuXMV SMV input language (BDD) CTL, LTL SMT, Model checking, fairness requirements
Uppaal Timed automata with clock and data variables TCTL subset Time-related, and probability related properties

Cadence SMV SMV input language (BDD) CTL, LTL Temporal logic properties of finite state systems
SPIN Promela LTL Model checking
UMC UML UCTL Functional properties of service-oriented systems
Coq Gallina (Calculus of Inductive Constructions) Vernacular Theorem proof assistant
PVS PVS language (typed higher-order logic) Primitive inference Formal specification, verification and theorem prover
Z3 SMT-LIB2 SMT-LIB2 Theories Theorem prover

TABLE 3: Existing studies using formal verification to detect control logic attacks

Threat
Model Paper Security

Goal
Defense
Focus

Verification
Techniques Property PLC

Language Tools

Adiego’15 [4] GI1 BM, SG MC CTL, LTL ST,SFC nuXmv, PLCVerif, Xtext, UNICOS
Bauer’04 [9] GI1,GI3 FV MC CTL SFC Cadence SMV, Uppaal
Bender’08 [10] GI3 SG, FV MC seLTL LD Tina Toolkit
Biallas’12 [12] GI1,GI3 SG, FV MC ∀CTL, ptLTL generic PLCopen, Arcade.PLC*, CEGAR
Biha’11 [13] GI1 SG TP N/A IL SSReflect in Coq, CompCert
Brinksma’00 [16] GI3 SG MC N/A SFC SPIN/Promela, Uppaal
Darvas’14 [25] GI1 SR MC CTL, LTL ST COI reduction, NuSMV
Darvas’15 [27] GI1,GI3 SG EC N/A ST PLCspecif
Darvas’16-1 [28] GI1 SG, FV N/A temporal logic ST PLCverif , nuXmv, Uppaal
Darvas’16-2 [29] GI1 SR MC, EC temporal logic LD,FBD PLCverif , NuSMV, nuXmv, etc.
Darvas’17 [30] GI1 BM N/A temporal logic IL PLCverif , Xtext parser
Giese’06 [41] GI1 BM, SG EC N/A ST GROOVE, ISABELLE, FUJABA
Gourcuff’06 [42] GI1,GI3 SR MC N/A ST,LD,IL NuSMV
Hailesellasie’18 [44] GI1,GC FV MC N/A SFC,ST,IL BIP, nuXmv, Uppaal,UBIS model
Huang’19 [47] GI1 SG N/A N/A ST K framework, KST model
Kim’17 [56] GI1,GI3 FV MC, EC CTL FBD,LD CASE tools (Nude 2.0), NuSCR
Moon’94 [74] GI1 SG MC CTL LD N/A
Newell’18 [76] GI1,GI3 BM, SR TP N/A FBD PVS Theorem prover
Niang’17 [77] GI3 FV MC N/A generic Uppaal, program translators
Pavlovic’10 [79] GI1,GI3 SR MC CTL FBD NuSMV
Rawlings’18 [81] GI1 SG, FV MC CTL, ACTL ST st2smv, SynthSMV*
Mader’00 [66] GI1 BM N/A N/A generic N/A
Ovatman’16 [78] GI1,GI3 BM, FV MC N/A generic N/A
Moon’92 [75] GI1,GI3 ALL MC CTL LD a CTL model checker
Bohlender’18 [14] GI1,GI3 SR MC N/A ST Z3, PLCOpen, Arcade.PLC
Kuzmin’13 [61] GI1 BM N/A LTL ST Cadence SMV
Bonfe’03 [15] GI3 BM N/A CTL generic SMV, CASE tools
Chadwick’18 [20] GI3 BM, SG TP FOL LD Swansea
Frey’00 [35] GI1,GI3 BM N/A N/A N/A N/A
Yoo’09 [96] GI3 ALL MC, EC CTL FBD NuSCR, Cadence SMV, VIS, CASE
Lamperiere’99 [62] GI1 BM N/A N/A generic N/A
Kottler’17 [59] GI3 ALL N/A CTL LD NuSMV
Younis’03 [97] GI1,GI3 BM N/A N/A generic N/A
Rossi’00 [82] GI1 BM MC CTL, LTL LD Cadence SMV
Vyatkin’99 [89] GI1 BM MC CTL FBD SESA model-analyser

T1
source
code

Canet’00 [17] GI1,GI3 ALL MC LTL IL Cadence SMV
Chang’18 [21] GI1 ALL MC LTL, CTL IL DotNetSiemensPLCToolBoxLibrary
McLaughlin’14 [71] GI1,GI3 ALL MC LTL IL TSV, Z3, NuSMV
Xie’20 [93] GI1,GC,GA BM, SG, FV MC LTL IL SMT, NuXMV

T2
bytecode
/binary Zonouz’14 [100] GI1,GI3 BM, SG, FV MC LTL IL Z3, NuSMV

Carlsson’12 [18] GI FV MC CTL, LTL N/A NuSMV
Cengic’06 [19] GI2 BM MC CTL FBD Supremica
Galvao’18 [36] GI3,GI4 SG MC CTL FBD ViVe/SESA
Garcia’16 [40] GI3 FV MC DFA LD,ST N/A
Janicke’15 [53] GI1,GI2 BM, SR MC ITL LD Tempura
Luccarini’10 [65] GI3,GI4 BM, SR, SG TP CLIMB N/A SCIFF checker
Mesli’16 [72] GI BM, SG, FV MC TCTL LD,FBD Uppaal
Wang’13 [91] GI1,GI2 BM, SR, SG MC LTL, MTL IL BIP
Zhang’19 [98] GI,GC ALL MC TPTL ST BUILDTSEQS algorithm
Zhou’09 [99] GI BM, SR MC TCTL IL Uppaal
Wan’09 [90] GI1,GI2 BM, FV TP Gallina LD Coq, Vernacular
Garcia’19 [38] GI BM TP differential dL ST KeYmaera X
Mokadem’10 [73] GI3 BM MC TCTL LD Uppaal
Cheng’17 [23] GI2,GC BM N/A eFSA N/A LLVM DG

T3
runtime

Ait’98 [5] GI2 SG TP FOL N/A Atelier B
Defense Focus: Behavior modeling (BM), State Reduction (SR), Specification Generation (SG), and Formal Verification (FV). Verification
tehcniques: model checking (MC), equivalence checking (EC), and theorem proving (TP). In tools: items in bold are self-developed, bold italics are
open-source and * represent tools no longer mantained.

defined properties can cause implicitness. We recommend
future research to consider domain-specific properties as
a hybrid program consisted of continuous plant models as

well as discrete control algorithms. These properties can
be formalized using differential dynamic logic and verified
with a sound proof calculus. Existing research [38] has

formalized the dynamic logic model of a water treatment
testbed controlled by a ST program. The formalization
aims to understand safety implications, and can only
support one task with boolean operations. Future research
should explore the formalization of dynamic logic with
the goal of security verification, and support arithmetic
operations, multitask programs, and applications in other
domains.

6.3.2. Incremental specification generation. We dis-
cussed attacks using expanded input surfaces or a full
chain of vulnerabilities in Section 4.2. We also discussed
the challenges given the fast-evolving system design in
Section 5.3.4. This leads us to think about incremental
specification generation, with a full chain of behaviors,
and update in a dynamic spectrum. Incremental specifi-
cation generation [5] has been designed for interactive
systems. In the PLC chain of control, interactions should
consider both the physical process changes, and the in-
clusion of the engineering station. Modeled behaviors
from these new interactions should be compatible with
existing properties. To update in a dynamic spectrum, the
behavior changes from each interactive component should
support automatic generation and comparison. This re-
quires automatic translations between the behavior models
of each component. The closest study is HyPLC [38],
which supported automatic translation between the PLC
program, and the physical plant model. However, incre-
mental specification generation was not considered. We
encourage future research to investigate this direction, and
seek interactive mutual refinement.

6.4. Verification

6.4.1. Real-time attack detection. As shown in Sections
5.4.3 and 5.4.4, there is a high demand for runtime verifi-
cation beyond a high-level prototype. To perform runtime
verification, existing studies depend on engineering sta-
tions. However, Section 4.1.3 has demonstrated runtime
attacks aiming at evading or deceiving the engineering sta-
tion from runtime detection. The engineering stations have
been exposed to various vulnerabilities [1], [50], [51], due
to the rich features supported outside the scope of security.
Therefore, we recommend future research to consider a
dedicated security component, such as the bump-in-the-
wire solution provided by TSV [71]. This component is
promising in eliminating the resource constraints within
a PLC, and allows the program to meet the strict cycle
time. In addition to the real-time requirement, future re-
search should also learn from existing attack studies [37],
[54], and consider exploring the verification between the
PLC and the other interacting components, including the
engineering station.

6.4.2. Open-source tools and benchmarks. We dis-
cussed in Section 5.4.4 that the lack of open-source
tools and benchmarks have led to adhoc studies without
evaluations on models and verification techniques. It is
promising to see PLCverif [26] become open-source and
support integration of various model checking tools. We
recommend future studies to continue the development
of open-source tools, to cover program modeling, state

reduction, specification generation, and formal verifica-
tion. To adapt to broad use cases, we suggest the tools to
be IEC-61131 compliant, compatible with existing open-
source PLC tools [7], and consider long time maintenance.
We also recommend future studies to develop PLC se-
curity benchmarks, including a collection of open-source
programs that are vendor-independent and can represent
industrial complexities, and a set of security metrics that
can support concrete evaluations.

6.4.3. Multitasks Verification. In Section 4.1.3, we have
discussed attacks that can use PLC multitasks to perform
a denial-of-service attacks, and spread stealthy worms. To
defend against multitask attacks, existing studies [39], [73]
only considered checking the reaction time between tasks
to detect failures of meeting the cycle time requirement.
We recommend future research to consider more attack
scenarios involved in multitask programs, for example,
using one task to spy or spread malicious code to the other
co-located tasks, as did in PLCInject [58] and PLC-Blaster
[85], or manipulating shared resources (e.g. global vari-
ables) between tasks to produce non-deterministic output
to disturb the physical processes. Future research should
explore the verification of these attack scenarios, with the
consideration of task intervals and priorities at various
granularities.

7. Conclusion

This paper provided a systematization of knowl-
edge based on control logic modification and formal
verification-based defense. We categorized existing studies
based on threat models, security goals, and underlying
weaknesses. We discussed the techniques and approaches
applied by these studies. Our systematization showed that
control logic modification attacks have been evolved with
the system design. Advanced attacks could compromise
the whole chain of control, and in the meantime evade
various security detection methods. We found that formal
verification based defense studies focus more on integrity
than confidentiality and availability. We also found that
the majority of the research investigate ad-hoc formal
verification techniques, and the barriers exist in every
aspect of formal verification.

To overcome these barriers, we suggest a full chain of
protection and we encourage future research to investigate
the following: (1) formalize plant behaviors to defend
input manipulation attacks, (2) explore stealthy attack
detection with state reduction techniques, (3) automate
domain-specific specification generation and incremental
specification generation, and (4) explore real-time verifica-
tion with more support in open-source tools and thorough
evaluation.

Acknowledgment

The authors would like to thank the anonymous re-
viewers for their insightful comments. This project was
supported by the National Science Foundation (Grant#:
CNS-1748334) and the Army Research Office (Grant#:
W911NF-18-1-0093). Any opinions, findings, and con-
clusions or recommendations expressed in this paper are

those of the authors and do not necessarily reflect the
views of the funding agencies or sponsors.

References

[1] Siemens SIMATIC PCS7, WinCC, TIA Portal (Update D). https:
//www.us-cert.gov/ics/advisories/ICSA-19-134-08.

[2] Simatic S5 PLC. https://en.wikipedia.org/wiki/Simatic S5 PLC.

[3] Ali Abbasi and Majid Hashemi. Ghost in the PLC designing an
undetectable programmable logic controller rootkit via pin control
attack. Black Hat Europe, 2016:1–35, 2016.

[4] Borja Fernandez Adiego, Dániel Darvas, Enrique Blanco Viñuela,
Jean-Charles Tournier, Simon Bliudze, Jan Olaf Blech, and Vı́ctor
Manuel González Suárez. Applying model checking to industrial-
sized PLC programs. 11(6):1400–1410, 2015.

[5] Yamine Aı̈t-Ameur, Patrick Girard, and Francis Jambon. Using
the b formal approach for incremental specification design of in-
teractive systems. In IFIP International Conference on Engineer-
ing for Human-Computer Interaction, pages 91–109. Springer,
1998.

[6] Thiago Alves. PLC addressing. https://www.openplcproject.com/
reference/plc-addressing/.

[7] Thiago Alves and Thomas Morris. Openplc: An iec 61,131–
3 compliant open source industrial controller for cyber security
research. Computers & Security, 78:364–379, 2018.

[8] Michael J Assante. Confirmation of a coordinated attack on the
ukrainian power grid. SANS Industrial Control Systems Security
Blog, 207, 2016.

[9] Nanette Bauer, Sebastian Engell, Ralf Huuck, Sven Lohmann,
Ben Lukoschus, Manuel Remelhe, and Olaf Stursberg. Verifi-
cation of PLC programs given as sequential function charts. In
Integration of software specification techniques for applications
in Engineering, pages 517–540. Springer, 2004.

[10] Darlam Fabio Bender, Benoı̂t Combemale, Xavier Crégut,
Jean Marie Farines, Bernard Berthomieu, and François Vernadat.
Ladder metamodeling and PLC program validation through time
Petri nets. In European Conference on Model Driven Architecture-
Foundations and Applications, pages 121–136. Springer, 2008.

[11] Dillon Beresford. Exploiting siemens simatic s7 plcs. Black Hat
USA, 16(2):723–733, 2011.

[12] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. Arcade.
PLC: A verification platform for programmable logic controllers.
In 2012 Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 338–341. IEEE,
2012.

[13] Sidi Ould Biha. A formal semantics of PLC programs in Coq.
In 2011 IEEE 35th Annual Computer Software and Applications
Conference, pages 118–127. IEEE, 2011.

[14] Dimitri Bohlender and Stefan Kowalewski. Compositional verifi-
cation of PLC software using horn clauses and mode abstraction.
IFAC-PapersOnLine, 51(7):428–433, 2018.

[15] Marcello Bonfe and Cesare Fantuzzi. Design and verification of
mechatronic object-oriented models for industrial control systems.
In EFTA 2003. 2003 IEEE Conference on Emerging Technologies
and Factory Automation. Proceedings (Cat. No. 03TH8696), vol-
ume 2, pages 253–260. IEEE, 2003.

[16] Ed Brinksma and Angelika Mader. Verification and optimization
of a PLC control schedule. In International SPIN Workshop on
Model Checking of Software, pages 73–92. Springer, 2000.

[17] Géraud Canet, Sandrine Couffin, J-J Lesage, Antoine Petit, and
Philippe Schnoebelen. Towards the automatic verification of PLC
programs written in Instruction List. volume 4, pages 2449–2454.
IEEE, 2000.

[18] Henrik Carlsson, Bo Svensson, Fredrik Danielsson, and Bengt
Lennartson. Methods for reliable simulation-based PLC code ver-
ification. IEEE Transactions on Industrial Informatics, 8(2):267–
278, 2012.

[19] Goran Cengic, Oscar Ljungkrantz, and Knut Akesson. Formal
modeling of function block applications running in IEC 61499
execution runtime. In 2006 IEEE Conference on Emerging
Technologies and Factory Automation, pages 1269–1276. IEEE,
2006.

[20] Simon Chadwick, Phillip James, Markus Roggenbach, and Tom
Wetner. Formal Methods for Industrial Interlocking Verification.
In 2018 International Conference on Intelligent Rail Transporta-
tion (ICIRT), pages 1–5. IEEE, 2018.

[21] Tianyou Chang, Qiang Wei, Wenwen Liu, and Yangyang Geng.
Detecting plc program malicious behaviors based on state veri-
fication. volume 11067 of Lecture Notes in Computer Science,
pages 241–255, Cham, 2018. Springer International Publishing.

[22] Eyasu Getahun Chekole, Sudipta Chattopadhyay, Martı́n Ochoa,
Huaqun Guo, and Unnikrishnan Cheramangalath. Cima:
Compiler-enforced resilience against memory safety attacks in
cyber-physical systems. Computers & Security, page 101832,
2020.

[23] Long Cheng, Ke Tian, and Danfeng Yao. Orpheus: Enforc-
ing cyber-physical execution semantics to defend against data-
oriented attacks. In Proceedings of the 33rd Annual Computer
Security Applications Conference, pages 315–326, 2017.

[24] Stephen Chong, Joshua Guttman, Anupam Datta, Andrew Myers,
Benjamin Pierce, Patrick Schaumont, Tim Sherwood, and Nick-
olai Zeldovich. Report on the NSF workshop on formal methods
for security. arXiv preprint arXiv:1608.00678, 2016.

[25] Dániel Darvas, Borja Fernández Adiego, András Vörös, Tamás
Bartha, Enrique Blanco Vinuela, and Vı́ctor M González Suárez.
Formal verification of complex properties on PLC programs. In
International Conference on Formal Techniques for Distributed
Objects, Components, and Systems, pages 284–299. Springer,
2014.

[26] Dániel Darvas, Enrique Blanco, and Switzerland V Molnár.
PLCverif Re-engineered: An Open Platform for the Formal Anal-
ysis of PLC Programs. ICALEPCS.

[27] Dániel Darvas, Enrique Blanco Vinuela, and István Majzik. A
formal specification method for PLC-based applications. 2015.

[28] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela.
Generic representation of PLC programming languages for formal
verification. In Proc. of the 23rd PhD Mini-Symposium, pages 6–
9.

[29] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. For-
mal verification of safety PLC based control software. In Interna-
tional Conference on Integrated Formal Methods, pages 508–522.
Springer, 2016.

[30] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. PLC
program translation for verification purposes. Periodica Polytech-
nica Electrical Engineering and Computer Science, 61(2):151–
165, 2017.

[31] Alessandro Di Pinto, Younes Dragoni, and Andrea Carcano. Tri-
ton: The first ics cyber attack on safety instrument systems. In
Proc. Black Hat USA, pages 1–26, 2018.

[32] Rolf Drechsler et al. Advanced formal verification, volume 122.
Springer, 2004.

[33] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet
dossier. White paper, Symantec Corp., Security Response, 5(6):29,
2011.

[34] Alessio Ferrari, Gianluca Magnani, Daniele Grasso, and Alessan-
dro Fantechi. Model checking interlocking control tables. In
FORMS/FORMAT 2010, pages 107–115. Springer, 2011.

[35] Georg Frey and Lothar Litz. Formal methods in PLC program-
ming. In Smc 2000 conference proceedings. 2000 ieee interna-
tional conference on systems, man and cybernetics.’cybernetics
evolving to systems, humans, organizations, and their complex
interactions’(cat. no. 0, volume 4, pages 2431–2436. IEEE, 2000.

[36] Joel Galvão, Cedrico Oliveira, Helena Lopes, and Laura Tiainen.
Formal verification: Focused on the verification using a plant
model. In International Conference on Innovation, Engineering
and Entrepreneurship, pages 124–131. Springer, 2018.

https://www.us-cert.gov/ics/advisories/ICSA-19-134-08
https://www.us-cert.gov/ics/advisories/ICSA-19-134-08
https://en.wikipedia.org/wiki/Simatic_S5_PLC
https://www.openplcproject.com/reference/plc-addressing/
https://www.openplcproject.com/reference/plc-addressing/

[37] Luis Garcia, Ferdinand Brasser, Mehmet Hazar Cintuglu, Ahmad-
Reza Sadeghi, Osama A Mohammed, and Saman A Zonouz.
Hey, My Malware Knows Physics! Attacking PLCs with Physical
Model Aware Rootkit. In NDSS, 2017.

[38] Luis Garcia, Stefan Mitsch, and André Platzer. HyPLC: Hybrid
programmable logic controller program translation for verifica-
tion. In Proceedings of the 10th ACM/IEEE International Con-
ference on Cyber-Physical Systems, pages 47–56, 2019.

[39] Luis Garcia, Stefan Mitsch, and André Platzer. Toward multi-
task support and security analyses in plc program translation for
verification. In Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems, pages 348–349, 2019.

[40] Luis Garcia, Saman Zonouz, Dong Wei, and Leandro Pfleger
De Aguiar. Detecting PLC control corruption via on-device
runtime verification. In 2016 Resilience Week (RWS), pages 67–
72. IEEE, 2016.

[41] Holger Giese, Sabine Glesner, Johannes Leitner, Wilhelm Schäfer,
and Robert Wagner. Towards verified model transformations. In
Proc. of the 3rd International Workshop on Model Development,
Validation and Verification (MoDeV 2a), Genova, Italy, pages 78–
93. Citeseer, 2006.

[42] Vincent Gourcuff, Olivier De Smet, and J-M Faure. Efficient
representation for formal verification of PLC programs. In 2006
8th International Workshop on Discrete Event Systems, pages
182–187. IEEE, 2006.

[43] Naman Govil, Anand Agrawal, and Nils Ole Tippenhauer. On
ladder logic bombs in industrial control systems. In Computer
Security, pages 110–126. Springer, 2017.

[44] Muluken Hailesellasie and Syed Rafay Hasan. Intrusion Detection
in PLC-Based Industrial Control Systems Using Formal Verifica-
tion Approach in Conjunction with Graphs. Journal of Hardware
and Systems Security, 2(1):1–14, 2018.

[45] Joseph Y Halpern and Moshe Y Vardi. Model checking vs. theo-
rem proving: a manifesto. Artificial intelligence and mathematical
theory of computation, 212:151–176, 1991.

[46] Daavid Hentunen and Antti Tikkanen. Havex hunts for ics/scada
systems. In F-Secure. 2014.

[47] Yanhong Huang, Xiangxing Bu, Gang Zhu, Xin Ye, Xiaoran Zhu,
and Jianqi Shi. KST: Executable Formal Semantics of IEC 61131-
3 Structured Text for Verification. IEEE Access, 7:14593–14602,
2019.

[48] ICS-CERT. CVE-2017-12088. https://nvd.nist.gov/vuln/detail/
CVE-2017-12088.

[49] ICS-CERT. CVE-2017-12739. https://nvd.nist.gov/vuln/detail/
CVE-2017-12739.

[50] ICS-CERT. CVE-2017-13997. https://nvd.nist.gov/vuln/detail/
CVE-2017-13997.

[51] ICS-CERT. CVE-2018-10619. https://nvd.nist.gov/vuln/detail/
CVE-2018-10619.

[52] ICS-CERT. CVE-2019-10922. https://nvd.nist.gov/vuln/detail/
CVE-2019-10922.

[53] Helge Janicke, Andrew Nicholson, Stuart Webber, and Antonio
Cau. Runtime-monitoring for industrial control systems. Elec-
tronics, 4(4):995–1017, 2015.

[54] Sushma Kalle, Nehal Ameen, Hyunguk Yoo, and Irfan Ahmed.
CLIK on PLCs! Attacking control logic with decompilation and
virtual PLC. In Binary Analysis Research (BAR) Workshop,
Network and Distributed System Security Symposium (NDSS),
2019.

[55] Anastasis Keliris and Michail Maniatakos. ICSREF: A framework
for automated reverse engineering of industrial control systems
binaries. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019. The Internet Society, 2019.

[56] Eui-Sub Kim, Dong-Ah Lee, Sejin Jung, Junbeom Yoo, Jong-
Gyun Choi, and Jang-Soo Lee. NuDE 2.0: A Formal Method-
based Software Development, Verification and Safety Analysis
Environment for Digital I&Cs in NPPs. Journal of Computing
Science and Engineering, 11(1):9–23, 2017.

[57] Stéphane Klein, Lothar Litz, and Jean-Jacques Lesage. Fault de-
tection of discrete event systems using an identification approach.
IFAC Proceedings Volumes, 38(1):92–97, 2005.

[58] Johannes Klick, Stephan Lau, Daniel Marzin, Jan-Ole Malchow,
and Volker Roth. Internet-facing PLCs-a new back orifice. Black-
hat USA, pages 22–26, 2015.

[59] Sam Kottler, Mehdy Khayamy, Syed Rafay Hasan, and Omar
Elkeelany. Formal verification of ladder logic programs using
NuSMV. In SoutheastCon 2017, pages 1–5. IEEE, 2017.

[60] Jochen Kühner. Dotnetsiemensplctoolboxlibrary.
https://github.com/jogibear9988/DotNetSiemensPLCToolBoxLibrary.

[61] Egor Vladimirovich Kuzmin, AA Shipov, and Dmitrii Aleksan-
drovich Ryabukhin. Construction and verification of PLC pro-
grams by LTL specification. In 2013 Tools & Methods of Program
Analysis, pages 15–22. IEEE, 2013.

[62] Sandrine Lampérière-Couffin, Olivier Rossi, J-M Roussel, and J-J
Lesage. Formal validation of PLC programs: a survey. In 1999
European Control Conference (ECC), pages 2170–2175. IEEE,
1999.

[63] Robert M Lee, Michael J Assante, and Tim Conway. German
steel mill cyber attack. Industrial Control Systems, 30:62, 2014.

[64] Bernard Lim, Daniel Chen, Yongkyu An, Zbigniew Kalbarczyk,
and Ravishankar Iyer. Attack induced common-mode failures
on plc-based safety system in a nuclear power plant: Practical
experience report. In 2017 IEEE 22nd Pacific Rim International
Symposium on Dependable Computing (PRDC), pages 205–210.
IEEE, 2017.

[65] Luca Luccarini, Gianni Luigi Bragadin, Gabriele Colombini,
Maurizio Mancini, Paola Mello, Marco Montali, and Davide
Sottara. Formal verification of wastewater treatment processes
using events detected from continuous signals by means of ar-
tificial neural networks. Case study: SBR plant. Environmental
Modelling & Software, 25(5):648–660, 2010.

[66] Angelika Mader. A classification of PLC models and applications.
In Discrete Event Systems, pages 239–246. Springer, 2000.

[67] PLC Manual. Basic Guide to PLCs: PLC Programming. https:
//www.plcmanual.com/plc-programming.

[68] Stephen McLaughlin and Patrick McDaniel. SABOT:
specification-based payload generation for programmable logic
controllers. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 439–449, 2012.

[69] Stephen McLaughlin and Saman Zonouz. Controller-aware false
data injection against programmable logic controllers. In 2014
IEEE International Conference on Smart Grid Communications
(SmartGridComm), pages 848–853. IEEE, 2014.

[70] Stephen E McLaughlin. On Dynamic Malware Payloads Aimed
at Programmable Logic Controllers. In HotSec, 2011.

[71] Stephen E McLaughlin, Saman A Zonouz, Devin J Pohly, and
Patrick D McDaniel. A Trusted Safety Verifier for Process
Controller Code. In NDSS, volume 14, 2014.

[72] S Mesli-Kesraoui, A Toguyeni, A Bignon, F Oquendo,
D Kesraoui, and P Berruet. Formal and joint verification of control
programs and supervision interfaces for socio-technical systems
components. IFAC-PapersOnLine, 49(19):426–431, 2016.

[73] Houda Bel Mokadem, Béatrice Berard, Vincent Gourcuff, Olivier
De Smet, and Jean-Marc Roussel. Verification of a timed mul-
titask system with UPPAAL. IEEE Transactions on Automation
Science and Engineering, 7(4):921–932, 2010.

[74] Il Moon. Modeling programmable logic controllers for logic
verification. IEEE Control Systems Magazine, 14(2):53–59, 1994.

[75] Il Moon, Gary J Powers, Jerry R Burch, and Edmund M Clarke.
Automatic verification of sequential control systems using tem-
poral logic. AIChE Journal, 38(1):67–75, 1992.

[76] Josh Newell, Linna Pang, David Tremaine, Alan Wassyng, and
Mark Lawford. Translation of IEC 61131-3 function block
diagrams to PVS for formal verification with real-time nuclear
application. Journal of Automated Reasoning, 60(1):63–84, 2018.

https://nvd.nist.gov/vuln/detail/CVE-2017-12088
https://nvd.nist.gov/vuln/detail/CVE-2017-12088
https://nvd.nist.gov/vuln/detail/CVE-2017-12739
https://nvd.nist.gov/vuln/detail/CVE-2017-12739
https://nvd.nist.gov/vuln/detail/CVE-2017-13997
https://nvd.nist.gov/vuln/detail/CVE-2017-13997
https://nvd.nist.gov/vuln/detail/CVE-2018-10619
https://nvd.nist.gov/vuln/detail/CVE-2018-10619
https://nvd.nist.gov/vuln/detail/CVE-2019-10922
https://nvd.nist.gov/vuln/detail/CVE-2019-10922
https://www.plcmanual.com/plc-programming
https://www.plcmanual.com/plc-programming

[77] Mohamed Niang, Alexandre Philippot, François Gellot, Raphaël
Coupat, Bernard Riera, and Sébastien Lefebvre. Formal Verifi-
cation for Validation of PSEEL’s PLC Program. In ICINCO (1),
pages 567–574, 2017.

[78] Tolga Ovatman, Atakan Aral, Davut Polat, and Ali Osman Ünver.
An overview of model checking practices on verification of PLC
software. Software & Systems Modeling, 15(4):937–960, 2016.

[79] Olivera Pavlovic and Hans-Dieter Ehrich. Model checking PLC
software written in function block diagram. In 2010 Third
International Conference on Software Testing, Verification and
Validation, pages 439–448. IEEE, 2010.

[80] Mathias Rausch and Bruce H Krogh. Formal verification of
PLC programs. In Proceedings of the 1998 American Control
Conference. ACC (IEEE Cat. No. 98CH36207), volume 1, pages
234–238. IEEE, 1998.

[81] Blake C Rawlings, John M Wassick, and B Erik Ydstie. Applica-
tion of formal verification and falsification to large-scale chemical
plant automation systems. Computers & Chemical Engineering,
114:211–220, 2018.

[82] Olivier Rossi and Philippe Schnoebelen. Formal modeling of
timed function blocks for the automatic verification of Ladder
Diagram programs. In Proceedings of the 4th International
Conference on Automation of Mixed Processes: Hybrid Dynamic
Systems (ADPM 2000), pages 177–182. Citeseer, 2000.

[83] Saranyan Senthivel, Shrey Dhungana, Hyunguk Yoo, Irfan
Ahmed, and Vassil Roussev. Denial of engineering operations
attacks in industrial control systems. In Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy,
pages 319–329, 2018.

[84] Abraham Serhane, Mohamad Raad, Raad Raad, and Willy Susilo.
PLC code-level vulnerabilities. In 2018 International Conference
on Computer and Applications (ICCA), pages 348–352. IEEE,
2018.

[85] Ralf Spenneberg, Maik Brüggemann, and Hendrik Schwartke.
Plc-Blaster: A worm living solely in the plc. Black Hat Asia,
Marina Bay Sands, Singapore, 2016.

[86] Ruimin Sun. PLC-control-logic-CVE. https://github.com/
gracesrm/PLC-control-logic-CVE/blob/master/README.md.

[87] Michael Tiegelkamp and Karl-Heinz John. IEC 61131-3: Pro-
gramming industrial automation systems. Springer, 1995.

[88] Sidney E Valentine Jr. Plc code vulnerabilities through scada
systems. 2013.

[89] Valeriy Vyatkin and H-M Hanisch. A modeling approach for
verification of IEC1499 function blocks using net condition/event
systems. In 1999 7th IEEE International Conference on Emerg-
ing Technologies and Factory Automation. Proceedings ETFA’99
(Cat. No. 99TH8467), volume 1, pages 261–270. IEEE, 1999.

[90] Hai Wan, Gang Chen, Xiaoyu Song, and Ming Gu. Formalization
and verification of PLC timers in Coq. In 2009 33rd Annual IEEE
International Computer Software and Applications Conference,
volume 1, pages 315–323. IEEE, 2009.

[91] Rui Wang, Yong Guan, Liming Luo, Xiaoyu Song, and Jie Zhang.
Formal modelling of PLC systems by BIP components. In
2013 IEEE 37th Annual Computer Software and Applications
Conference, pages 512–518. IEEE, 2013.

[92] Min Xiao, Jing Wu, Chengnian Long, and Shaoyuan Li. Construc-
tion of false sequence attack against PLC based power control
system. In 2016 35th Chinese Control Conference (CCC), pages
10090–10095. IEEE, 2016.

[93] Yaobin Xie, Rui Chang, and Liehui Jiang. A malware detection
method using satisfiability modulo theory model checking for
the programmable logic controller system. Concurrency and
Computation: Practice and Experience, n/a(n/a):e5724.

[94] Hyunguk Yoo and Irfan Ahmed. Control logic injection attacks
on industrial control systems. In IFIP International Conference
on ICT Systems Security and Privacy Protection, pages 33–48.
Springer, 2019.

[95] Hyunguk Yoo, Sushma Kalle, Jared Smith, and Irfan Ahmed.
Overshadow plc to detect remote control-logic injection attacks.
In International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 109–132. Springer,
2019.

[96] Junbeom Yoo, Eunkyoung Jee, and Sungdeok Cha. Formal mod-
eling and verification of safety-critical software. IEEE software,
26(3):42–49, 2009.

[97] M Bani Younis, Georg Frey, et al. Formalization of existing PLC
programs: A survey. In Proceedings of CESA, pages 0234–0239,
2003.

[98] Mu Zhang, Chien-Ying Chen, Bin-Chou Kao, Yassine Qamsane,
Yuru Shao, Yikai Lin, Elaine Shi, Sibin Mohan, Kira Barton,
James Moyne, et al. Towards Automated Safety Vetting of PLC
Code in Real-World Plants. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 522–538. IEEE, 2019.

[99] Min Zhou, Fei He, Ming Gu, and Xiaoyu Song. Translation-based
model checking for PLC programs. In 2009 33rd Annual IEEE
International Computer Software and Applications Conference,
volume 1, pages 553–562. IEEE, 2009.

[100] Saman Zonouz, Julian Rrushi, and Stephen McLaughlin. De-
tecting industrial control malware using automated PLC code
analytics. IEEE Security & Privacy, 12(6):40–47, 2014.

Appendix

1. Extended Background

This section offers an example of an ST program
controlling the traffic lights in a road intersection. We
demonstrate an input manipulation attack and the process
of using formal verification to detect and prevent it.

1.1. An ST code Example. Code 1 shows a simplified
traffic light program written in ST. The program controls
the light status (e.g. green, yellow, red) at an intersection
between two roads in the north-south (NS) direction and
the east-west (EW) direction. The program takes input
from sensors telling if emergency vehicles are approaching
(line 4), and whether pedestrians press the button to re-
quest crossing the intersection (line 5). In Figure A.1, lines
8 to 11 define the output variables representing the status
of lights at the NS and the EW directions. By default, the
light status in the NS direction is green, and the light status
in the EW direction is red. Then, lines 13 to 23 define the
logic of changing light status based on the values of the
input variables.

1 TYPE Light : (Green, Yellow, Red); END_TYPE;
2 PROGRAM TrafficLight
3 VAR_INPUT
4 SensorNS : BOOL; SensorEW : BOOL;
5 ButtonNS : BOOL; ButtonEW : BOOL;
6 END_VAR
7
8 VAR_OUTPUT
9 LightNS : Light := Green;

10 LightEW : Light := Red;
11 END_VAR
12
13 IF LightNS = RED AND LightEW = RED AND NOT(ButtonNS)

AND NOT(SensorEW) THEN
14 (* turn green when light is red, button is reset,

and no emergency detected *)
15 LightNS := Green;
16 ELSIF LightNS = GREEN AND LightEW = RED AND SensorEW

THEN
17 (* light must change when emergency approaches in

EW direction *)
18 LightNS := Yellow;
19 ELSIF LightNS = GREEN THEN
20 LightNS := Green;

https://github.com/gracesrm/PLC-control-logic-CVE/blob/master/README.md
https://github.com/gracesrm/PLC-control-logic-CVE/blob/master/README.md

21 ELSE THEN
22 LightNS := Red;
23 END_IF;
24
25 (* The EW light status changes in a similar way *)
26 (* Omitted *)
27 END_PROGRAM

Code 1: A traffic light program in ST.

1.2. An attack Example. Normally, when the NS light is
red, and an emergency vehicle is sensed in the NS direc-
tion, the sensor will be on until the NS light is switched to
green. However, an attacker can manipulate the emergency
sensor by switching it to on (e.g. SensorNS := TRUE)
when the NS light is red and the EW light is green, and
switching it to off (e.g. SensorNS := FALSE) when the NS
light is red and the EW light is yellow. This can cause the
green lights of both the NS direction and the EW direction
to be on simultaneously.

1.3. Formal Verification. Next, we show how formal
verification can catch the above-mentioned input manipu-
lation attack.

We first model the ST program using the SMV lan-
guage. This can be manually written or automatically
generated through open-source tools, such as st2smv. As
Code 2 shows, input variables are defined as IV AR in lines
2 to 6. Other variables are defined as V AR in lines 7 to 9,
and initialized in ASSIGN using the init function in lines
10 to 12. Lines 14 to 25 define the transition of light
status, representing the program logic in Figure A.1 from
lines 13 to 26.

We then specify the property that the green lights of
the NS direction and the EW direction will never be on
simultaneously. This is achieved in line 28 in which A
denotes “always” and G denotes “global”.

1 MODULE main
2 IVAR
3 button_NS: boolean;
4 button_EW: boolean;
5 sensor_NS: boolean;
6 sensor_EW: boolean;
7 VAR
8 light_NS: {RED, YELLOW, GREEN};
9 light_EW: {RED, YELLOW, GREEN};

10 ASSIGN
11 init(light_NS) := GREEN;
12 init(light_EW) := RED;
13
14 next(light_NS) := case
15 light_NS = RED & light_EW = RED & button_NS =

FALSE & sensor_EW = FALSE: GREEN;
16 light_NS = GREEN & light_EW = RED & sensor_EW

= TRUE: YELLOW;
17 light_NS = GREEN: GREEN;
18 TRUE: {RED};
19 esac;
20
21 next(light_EW) := case
22 light_EW = RED & light_NS = RED & button_EW =

FALSE & sensor_NS= FALSE: GREEN;
23 light_EW = GREEN & light_NS = RED & sensor_NS

= TRUE: YELLOW;
24 light_EW = GREEN: GREEN;
25 TRUE: {RED};
26 esac;
27
28 SPEC AG ! (light_NS = GREEN & light_EW = GREEN)

Code 2: SMV for the traffic light program.

Last, we use NuSMV to verify the property and obtain
the following counterexample.

-> State: 1.1 <-
light_NS = GREEN
light_EW = RED

-> Input: 1.2 <-
button_NS = FALSE
button_EW = FALSE
sensor_NS = FALSE
sensor_EW = TRUE

-> State: 1.2 <-
light_NS = YELLOW

-> Input: 1.3 <-
sensor_EW = FALSE

-> State: 1.3 <-
light_NS = RED

-> Input: 1.4 <-
-> State: 1.4 <-
light_NS = GREEN
light_EW = GREEN

Listing 1: A counterexample from the formal verification.

Listing 1 shows that the initial state (State 1.1) has
NS light of green and EW light of red. Then, in State 1.2,
the program receives an input of True SensorEW , so the
NS light switches to yellow. Next, in State 1.3, the input
of SensorEW changes to False, but the NS light still has
to change from yellow to red. Finally, in State 1.4, the
EW light switches to green due to an earlier emergency
request (True SensorEW) in State 1.2, while the NS light
also switches to green since the emergency request has
been cleared (False SensorEW) in State 1.3.

From the above counterexample, the input manipu-
lation attack in Section A.2 is revealed. To prevent this
attack, one can either forbid the input pattern of the coun-
terexample, or redevelop the ST program accordingly.

	1 Introduction
	2 Background
	2.1 PLC Program
	2.1.1 Programming languages
	2.1.2 Program bytecode/binary
	2.1.3 Scan cycle
	2.1.4 Hardware support

	2.2 PLC program security
	2.2.1 Control logic modification
	2.2.2 Formal verification

	3 Motivation and Methodology
	3.1 Motivation
	3.2 Methodology
	3.2.1 Motivating Example
	3.2.2 Threat Model Assumptions
	3.2.3 Weaknesses
	3.2.4 Security Goals

	4 Systematization of Attacks
	4.1 Attack Methodologies
	4.1.1 T1: program source code
	4.1.2 T2: program bytecode/binary
	4.1.3 T3: program runtime

	4.2 Challenges

	5 Formal Verification based Defenses
	5.1 Behavior Modeling
	5.1.1 T1: program source code
	5.1.2 T2: program bytecode/binary
	5.1.3 T3: program runtime
	5.1.4 Challenges

	5.2 State Reduction
	5.2.1 T1: program source code
	5.2.2 T2: program bytecode/binary
	5.2.3 T3: program runtime
	5.2.4 Challenges

	5.3 Specification Generation
	5.3.1 T1: program source code
	5.3.2 T2: program bytecode/binary
	5.3.3 T3: program runtime
	5.3.4 Challenges

	5.4 Verification
	5.4.1 T1: program source code
	5.4.2 T2: program bytecode/binary
	5.4.3 T3: program runtime
	5.4.4 Challenges

	6 Recommendations
	6.1 Program Modeling
	6.1.1 Plant Modeling
	6.1.2 Input manipulation verification

	6.2 State Reduction
	6.3 Specification Generation
	6.3.1 Domain-specific property definition
	6.3.2 Incremental specification generation

	6.4 Verification
	6.4.1 Real-time attack detection
	6.4.2 Open-source tools and benchmarks
	6.4.3 Multitasks Verification

	7 Conclusion
	References
	Appendix
	A Extended Background
	A.1 An ST code Example
	A.2 An attack Example
	A.3 Formal Verification

