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Abstract: To investigate learning system elements and progressions that affect computational 

thinking (CT) learning in block-based environments, we developed a Parsons Programming 

Puzzle (PPP) module within Scratch with scaffolding customized via a novel Blockly grammar. 

By varying the presentation and types of feedback encountered between- and within-subjects in 

a study of 579 adults, we identified features and scaffolding strategies that yield manageable 

cognitive load (CL), improved CT learning efficiency, and increased motivation, for a general 

populace. Findings indicate: 1) PPPs with feedback induce lowest CL; 2) an isolated palette, 

correctness feedback, and fading correctness feedback increase learning efficiency; 3) fading 

scaffolding can increase CT motivation. We analyze 12 conditions to provide insight to those 

developing block-based PPP systems with the aim to advance equitable CT education for all. 
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1. Introduction 

 
Increasingly, government and education leaders position computer science (CS) as a foundation useful 

for learning other disciplines, for empowering active citizenship, and for addressing inequalities 

(Blickstein, 2018). Computational thinking (CT) (Wing, 2006), whether characterized broadly as 

inclusive of the material and social elements of participatory computational literacy, or narrowly as the 

cognitive skills and knowledge necessary to reason effectively with a machine, has mobilized expanded 

access to CS (Proctor et al., 2018). Internationally, many schools have introduced compulsory coding 

(e.g. Whitehouse.gov, 2016; Hamilton-smith, 2016), and the CS exposure movement, inclusive of 

Code.org's Hour of Code (Code.org, n.d.) and many more (e.g.  Girls Who Code, n.d., Black Girls Code, 

n.d.), reach students from schools that have not. This traction, while important, can limit focus on the 

sustained activity necessary to learn CT effectively (Blickstein et al., 2019). 

 The emerging discipline of learning engineering, which combines theory with data-driven 

analysis to develop educational methodologies that produce high-quality learning, offers the CS 

community an architecture to investigate efficient CT learning (Baker et al., 2022). This field 

encourages the instrumentation of learning environments, development of student learning models, and 

rich personalization supportive of equity. It guides us to design human-computer systems that harness 

and leverage the codependences between learning system, student, and teacher, to operationalize CT 

learning for all. This harmony among roles is important during an era of generational interdependency 

in which K-12 students and teachers alike are learning CT. In the U.S., 20% of CS teachers describe 

themselves as overwhelmed and 30% as under-qualified (Schaffhauser, 2018). The limited CT 

understanding can produce gaps in teacher pedagogical content knowledge, and testing-tuned curricula 

constrain time afforded to CT study (Celepkolu et al., 2020). While opportunities exist to infuse CT 

across curricula (c.f.  Campos et al., 2017; Pollock et al., 2019), especially in STEM subjects (Cao et al., 

2020), efficient CT learning remains crucial for universal access initiatives to succeed. 

 Though learning CT and coding can be difficult for novices (Anderson, 1982;  Pea, 1986;  

Winslow, 1996), an approach offering efficiencies involves Parsons Programming Puzzles (PPPs), 

which are program completion exercises that facilitate learners practicing CT by assembling into 

correct order programming constructs that comprise examples of well-written code, typically focused 

on a single concept (Parsons et al., 2006). While PPPs originated in text-based formats (Half-Baked 



Software, n.d.;  Ihantola et al., 2010), researchers have introduced them to block-based environments, 

like Looking Glass and Scratch (Harms et al., 2016;  Bender et al., 2021). Scratch, independently, has 

had success in attracting a community of over one million active users (MIT Media Lab, n.d.), but it is 

often used as a minimally guided entry to CT, leaving learners with misconceptions regarding 

sequences, Booleans, loops, and events (Franklin et al., 2020;  Grover et al, 2015, 2017), and with 

inconsistent capability to demonstrate increased skill over time (Scaffidi et al., 2012). By balancing the 

agency Scratch offers learners, the integration of PPPs provides structure that can focus learning more 

narrowly, but efficiently, on the cognitive skill and knowledge elements of CT (Bender et al., 2022).  

 This approach does not offer the learner experience in the broader aspects of participatory 

computational literacy, however. Like the strategy in (Brusilovsky et al., 2018), in which learners 

extend their skills from code comprehension to construction by reading examples, viewing animations, 

and addressing misconceptions before trying PPPs, we propose learners might benefit from PPP 

practice in which scaffolding fades as CT concept familiarity develops. By decrementing supports 

provided by puzzle presentation and feedback, we can offer learners direct instruction to start  (Kim et. 

al, 2005), then provide pathways toward open-ended CT via creation of personally meaningful artifacts, 

in alignment with Scratch's roots in constructionism (Brennan, 2013;  Garner et. al, 2019).  

 To investigate this approach, we ran an online study targeting adults who were randomly 

selected into 1 of 12 conditions to learn the CT concept looping via 7 PPPs. Between conditions, we 

varied the presentation of programming constructs, the feedback types, and for control conditions, 

feedback activation or the CT concept. In 3 conditions, we faded scaffolding as learners progressed by 

suppressing correctness feedback and/or by presenting additional palette and block options. We 

investigate 3 research questions: after at most 56 minutes of puzzle solving, what are the effects of PPP 

variation on adult learner: R1) cognitive load (CL)?; R2); learning efficiency?; R3) CT motivation? 

Findings from 579 participants indicate F1) PPPs with feedback induce lowest CL; F2) an isolated 

palette, correctness feedback, and fading correctness feedback increases learning efficiency; F3) fading 

scaffolding can increase CT motivation. We first review related work and the software developed, then 

the study purpose, summative evaluation, and results, before previewing future work.  

 

 

2. Related Work 

 
Since PPP emerged as a new form of program completion problem in 2006, (Ericson et al., 2018) has 

assembled research results, (Du et al., 2020) has presented the variants in the literature, and (Bender et 

al., 2021) has documented strengths and weaknesses. Generally, PPPs offer learning efficiency gains 

because scaffolded support enables students to train in shorter time than via code writing exercises, 

while performing similarly on transfer tasks using either approach. PPPs also have led to more learning 

gain than alternative formats such as animations and annotated examples (Brusilovsky et al., 2018). 

 Our PPP integration with Scratch differs from previous PPP implementations by its embrace of 

economical game-based learning (GBL) instructional design, the variability of the scaffolding 

presented to the learner, and its embedding in a popular block-based environment. By leveraging game 

thinking (Kim, 2018), a blend of game design (Salen et al, 2003) with design thinking (Plattner, 2013), 

we facilitate the construction of engaging learning experiences with limited content development 

investment compared to serious games, as recommended in (Dickey, 2006). Educators can design 

motivating learning progressions that increase in difficulty while fading scaffolding and assessing 

implicitly, as in stealth assessment (Shute et al., 2021), as the learner masters individual CT concepts. 

 Like most PPPs, our implementation provides feedback as the learner positions programming 

constructs. We extend this with the configurability of per-construct points, a gameful scoring algorithm 

inspired by the longest common subsequence strategy in (Karavirta et al., 2012), target minimal moves 

needed to solve each puzzle alongside a move counter, and the inclusion of multiple feedback types. In 

addition to correctness feedback, we enable the customization of messages and actions triggered when 

certain puzzle solution conditions are (or are not) satisfied. This facilitates the design of intermediary 

objectives within puzzles, similar to subgoal labeling shown to help students solve PPPs (Morrison et 

al., 2016). The objectives constructed operate as test cases, like the execution-based approach described 

in (Helminen et al., 2013) and the auto-grader methodology in (Haldeman et al., 2018), though we 

perform static rather than dynamic analysis as the learner positions each construct, and provide dynamic 



execution feedback concurrently via auto-execution of gameful animations in the Scratch stage. Using 

the feedback classification documented in (Raubenheimer et al., 2021), we view this feedback as 

constructivist because it is problem- and instance-oriented, which is a category of assistance associated 

with significantly lower student failure rates than alternatives, like solution- and theory-oriented. 

 We fortify the GBL features with those enabling the instructor to vary scaffolding, similar to 

the text/example/bug modulation in the BOTS study in (Zhi et al., 2018). Like text-based PPPs, the 

instructor can assemble constructs in an isolated palette for use during puzzle play. Alternatively, s/he 

can design a PPP requiring navigation through existing Scratch palettes (e.g. Control, Operators). Since 

the optionality might overwhelm, in a manner historically similar to sp/k (Holt et al., 1977) and more 

recently like (Cazzola et al., 2015;  Rose et al., 2018), the instructor can select which blocks to enable in 

each palette, and further, which palettes to enable. This configurability facilitates the design of 

progressions in which learners encounter an isolated palette before transitioning to increasing numbers 

of palettes with increasing numbers of blocks enabled. This scaffolding fading can occur in the 

feedback dimension separately or simultaneously, as the instructor can also vary the correctness and 

objective feedback activation. As in (Dicheva et al., 2018), in which PPPs are used in exercises 1-2 and 

code writing is used in 3-4, the scaffolding variability allows for the introduction of CT concepts with 

constraints before relaxing those as learning proceeds to afford learners increasing agency. 

 Since the PPPs are in Scratch, learners who develop cognitive CT mastery as scaffolding fades 

become familiarized with the UI, enabling them to advance to epistemologically pluralistic elements of 

the curriculum in which they can use CT for open-ended creation (Turkle et al., 1990). Results from a 

related previous study indicated that the constraint of an isolated palette can increase learning efficiency 

and motivation, and the inclusion of correctness feedback can increase motivation (Bender et al., 2022). 

In the current study, we introduce new instructional design and feedback capabilities, and explore how 

CL, performance, learning efficiency, and motivation are affected by scaffolding variation. 

 

 

3. Software Development 

 
To investigate R1-R3, we developed an instructional design module using Blockly (Google for 

Education, 2018), and integrated the functionality with earlier modifications to Scratch that enable the 

design, play, and assessment of PPPs. While previous work introduced block points, scoring, progress 

bars, configurable blocks and palettes, and correctness feedback, the learning system could not fade 

feedback. Though feedback increased motivation in earlier studies, some participants noted anxiety, 

stress, worry, and anger when informed of mistakes move-by-move (Bender et al., 2022). To bridge the 

gap between correctness feedback and none except the animation, we defined a novel grammar and an 

objective editor for instructors to devise objectives with associated feedback messages and actions for 

each puzzle. Grammar details are available in this article’s supplement site: https://bit.ly/3wdCowW. 

 Since teachers learn CT as they infuse it across subjects (Committee for the Workshops on CT, 

2010), we designed the objective editor to be simple to use and include it in the concrete architecture in 

(Sulaiman et al., 2019) as a module exposed only to instructors. We frame it as a tool situated within 

teachers' practice intended to promote teacher learning, in the spirit of educative curriculum materials 

(Ball et al., 1996). The teacher should use pedagogical content knowledge to design useful objectives, 

such as the timely identification of repeating sequences and loop sentinels. 

 For example, consider a case in which a teacher introduces the CT concept looping to her 

students, after they have mastered sequences. If the puzzle designed requires a sprite to move in a path 

of a square, a student might begin by selecting a move-steps block, with the intention to later include 

three additional move-steps blocks, and four turn-left blocks, as shown in Figure 1a. However, the 

teacher can configure the puzzle to exclude the move-steps block initially, and use the objective editor 

to author guidance for the student to identify a repeating pattern s/he could embed in a control construct. 

Figure 1b presents an objective that might instead lead to the solution depicted in Figure 1c. First, the 

objective in 1b specifies that until the student uses the repeat block, she will receive feedback guiding 

her toward pattern identification; second, it records the feedback she will receive once she uses the 

repeat block; third, it designates three actions that will occur once the repeat is used: the move-steps and 

turn-left blocks will become enabled, and five points will be added to the student's objective score.  An 

example of objective feedback during puzzle play in this study is show in the top-right of Figure 1d. 



  
Figure 1. Examples of objective configuration and puzzle play experience. 

 

 

4. Study Purpose 

 
The software developed prepared us to investigate scaffolding variation. One study purpose was to 

identify which scaffolding approaches produce the lowest CL and most efficient CT learning. Given the 

limited skill increases over time and misconceptions developed by Scratchers discussed in section 1, the 

argument regarding the difficulties with minimally guided instruction in (Kirschner et al., 2006) 

appears applicable to CT learning in Scratch. By augmenting that learning experience with presentation 

and feedback modifications and comparing the outcomes, we aimed to contribute insight into the types 

of guidance that might help accelerate the proliferation of CT learning for the general populace. 

 A second study purpose was to explore the motivational impact of CT learning. In an era in 

which negative perceptions of CS persist (Schulte et al., 2005), self-directed learning in older adults is 

rising (Morrison et al., 2019), and deficits in adult CS knowledge limit parental involvement in 

children's CT learning (Bresnihan et al., 2019), insight into the attitudinal change provoked by a short 

CT learning intervention could inform future outreach. (Wang et al., 2015) emphasizes the crucial role 

family plays in encouraging women to participate in computing, (Ohland et al., 2019) offers arguments 

for educating parents on how to support CT learning, and (Sepúlveda-Díaz et al., 2020) offers guidance 

for supporting parents homeschooling their children in CT. We extend this work by examining whether 

the strategy of fading scaffolding leads to higher CT motivation. While a common approach, 

high-to-low scaffolding has not always yielded optimal outcomes, particularly in research on 

preparation for future learning (Chin et al., 2010). For example, (Blickstein et. al., 2018) found that 

open-ended instruction followed by detailed guidance led to higher learner activation in subsequent 

activities than the converse, indicating a carryover effect referred to as epistemological persistence. 

 We include 11 conditions on the CT concept looping, plus one concept control on sequences, 

and analyze the variation of presentation and feedback in 7 puzzles, each time-boxed for 8 minutes, that 

connect via a narrative with explicit goals related to playful animations. Based on the results in section 

2, our hypotheses associated with R1-R3 were: H1) PPPs with feedback yield lowest CL; H2) an 

isolated palette yields highest learning efficiency; H3) fading scaffolding yields highest CT motivation. 

 

 

5. Summative Evaluation 

 
5.1 Study Design 

 
To test these hypotheses, we developed a quantitative experiment between-subjects, with some within- 

subject measurements. A study of perceived preferences for game elements in learning environments 

(Denden et al., 2018), as well as the review in (Santos et al., 2018) of the use of game elements for 

learning programming, inspired us to conduct a similar review of PPP elements in the PPP literature. 

However, we found limited research distinguishing which PPP elements prove most useful for learning 

(c.f.  Ericson et.al, 2018,  Bender et al., 2022). Consequently, we devised 12 study conditions detailed in 

Table 1 to ensure we could granularly analyze the effect of various PPP elements on learning outcomes 



and help fill this gap in the literature. As documented in Table 2, participants followed a 10-step 

protocol which in part required them to respond to a validated: 1) CS CL component survey (CS CLCS) 

(Morrison et al., 2014); 2) intrinsic motivation Task Evaluation Questionnaire (TEQ) (SDT, 2022); 3) 

Computing Attitudes Survey (CAS) (Bockmon et al., 2020) (details at https://bit.ly/3wdCowW). 

 

Table 1. PPP scaffolding variation across 12 study conditions 

Cond. CT Concept Presentation Feedback Fading Scaffolding 
C1 Looping 1-palette Correctness No 

C2 Looping Multi-palette Correctness No 

C3 Looping 1-palette Correctness + Objectives No 
C4 Looping Multi-palette Correctness + Objectives No 
C5 Looping 1-palette Objectives No 
C6 Looping Multi-palette Objectives No 
C7 Looping 1-palette 3 Correctness, 2 Correctness 

+ Objectives, 2 Objectives 

Correctness feedback faded 

C8 Looping Multi-palette 3 Correctness, 2 Correctness 

+ Objectives, 2 Objectives 

Correctness feedback faded 

C9 Looping 4: 1-palette, 3: multi-palette 3 Correctness, 2 Correctness 

+ Objectives, 2 Objectives 

Correctness feedback &  

1-palette faded 

C10 Looping Multi-palette None No 

C11 Looping Multi-palette + distractors None No 

C12 Sequences 1-palette Correctness No 

 

 

Table 2. Study protocol and data collected 

Step Activity Content Data Collected 

1 Registration Credentials creation & condition assignment Username & password 

2 Background info Demographic Demographic, programming attitude, 

CAS, CT perceptions 

3 Tutorial 8-minute video on the learning system & looping N/A 
4 Pretest (isomorphic) 7 multiple-choice (4-choice) looping questions Pretest responses & score 
5 CS CLCS 10 CL questions with 0-10 scaled responses Pretest CL & IL/EL/GL components 
6 Puzzles 7 puzzles on looping in 11 of 12 conditions; 

learning system behavior varies by condition; 7 

puzzles on sequences in the 12th condition (control) 

Per-puzzle time spent, time-stamped 

block moves & score, correctness, 

feedback log, self-explanations 
7 CS CLCS 10 CL questions with 0-10 scaled responses Puzzle CL & IL/EL/GL components 
8 Posttest (isomorphic) 7 multiple-choice (4-choice) looping questions Posttest responses & score 
9 CS CLCS 10 CL questions with 0-10 scaled responses Posttest CL & IL/EL/GL components 

10 Concluding 

measurements 

Motivation, programming attitude, learning system 

feedback, CT perceptions 

TEQ, CAS, & programming attitude, 

CT perceptions 

 
5.2 Participants 

 

 Using Prolific (Prolific, n.d.) we recruited 579 participants with varying degrees (57% high 

school, 27% undergraduate, 16% graduate), and a variety of self-reported programming experience 

(low: 50%; medium: 36%; high: 14%). 405 men, 167 women, and 2 non-binaries comprise the 

population sourced from 28 countries led by Poland (21%), Portugal (14%), and the U.K. (14%). Since 

the software development involved Scratch 2.0, which depends on Flash, a technology sunset at the start 

of 2021, learners needed to download a virtual machine we equipped to bypass Flash disablement. 

While necessary, this requirement introduced a risk to the external validity of the sample general 

population, as participants included only those sufficiently capable of installing virtualization software. 

 
5.3 Data Collection & Processing 

 
We created 7 surveys and instrumented the learning system to: 1) record puzzle play duration; 2) trace 

each block moved; 3) calculate score using an algorithm detailed in (Bender et al., 2021) that results in 

higher scores as construction nears the solution. To quantify the effect on CT learning, we also recorded 

self-reported CL. For learning to occur effectively, the CL of complex tasks should be reduced, though 



the reduction need not occur in all three dimensions of CL (Sweller, 2010). The total number of 

interacting elements perceived by the learner determines intrinsic load (IL); the sometimes-impeding 

presentation of the content determines extraneous load (EL); and the instructional features necessary for 

schema construction determine germane load (GL). For example, conditions with an isolated palette 

and with blocks that become enabled incrementally as puzzle play unfolds aim to reduce EL otherwise 

required for interface navigation and block search to free learners' capacity to contend with GL.   

 To account for learners who compensate for an increase in CL by committing more mental 

effort, resulting in constant performance while load varies, we calculate instructional and performance 

efficiency (IE: learning process, PE: learning outcome) (van Gog et al., 2008). Previous studies have 

found lower PE for PPPs with randomly distributed distractor blocks compared to PPPs (Harms et al., 

2016); higher IE for PPPs than for writing code (Bender et al., 2021); and higher IE for PPPs with 1 

palette compared with multiple with distractors (Bender et al., 2022). We calculated IE and PE using 

both time and CL during training and transfer tasks. Since the data did not exhibit Shapiro-Wilk 

normality (p<.05), we used non-parametric statistics, like Kruskal-Wallis H and Mann-Whitney U 

between-subjects, and Wilcoxon within-subjects. For effect sizes, we used values in (Fritz et al., 2012). 

 

 

6. Analysis & Results 

 
6.1 Cognitive Load 

 
 We did not find significant differences between conditions in self-reported CL during the 

pre-test. Likewise, the posttest yielded no significant CL differences, suggestive of the acquisition of 

cognitive structures of equivalent expertise (van Gog et al., 2008). However, we did find significant 

differences between training conditions with moderate effect for GL (H(11)=26.08, p=.006, ϵ2=.05). 

Using a Bonferroni-adjusted alpha of .004 (.05/12), significant difference remained (p=.019) between 

conditions C4 (M=4.90) vs. C11 (M=5.27). This indicates participants training with multiple palettes 

and both correctness and objective feedback required less mental effort to contend with instructional 

features necessary for schema construction than those who received no feedback while navigating 

multiple palettes that included distractor blocks not part of the puzzle solution. To isolate the mediating 

variables, we analyzed treatment condition sets grouped by scaffolding variation and found a significant 

difference in GL with small effect between sets of conditions that did or did not receive objective 

feedback (U(Nobjectives=359, Nno-objectives=200)=29,306.5, z=-3.60, p<.001, r=.15, Mobjectives=4.78, 

Mno-objectives=5.66). We also found with small effect significant (GL) and moderate (overall CL) 

differences between those who received any feedback and those who did not (U(Nfeedback=461, 

Nno-feedback=98)=18,537.5, z=-2.79, p=.005, r=.12, Mfeedback=4.95, Mno-feedback=5.78; U(Nfeedback=461, 

Nno-feedback=98)=19,860.0, z=-1.88, p=.060, r=.08, Mfeedback=4.65, Mno-feedback=4.97). These results offer 

evidence that training with feedback limits the GL and CL experienced by the learner, supportive of H1. 

 
6.2 Performance 

 
 During the transfer phase, the treatment population solved significantly more posttest than 

pretest questions correctly with small effect (z=3.4, p<.001, r=.14, Mpretest=6.0, Mposttest=6.25). Like in 

(Harms et al., 2016; Ericson et al., 2018; Bender et al. 2021, 2022), we did not find transfer performance 

disparity between PPP conditions. During training, however, we found significant differences between 

conditions in the time spent solving with relatively strong effect (H(11)=39.29, p<.001, ϵ2=.20), and 

with moderate effect, block moves made (H(11)=113.8, p<.001, ϵ2=.07) and puzzles solved (H(11) 

=74.46, p<.001, ϵ2=.13). Notable time-saving conditions, both with an isolated palette and feedback, are 

C1 (M=21.6) and C7 (M=20.8), which required significantly less time than C10 (M=26.7, C7 vs C10: 

p=.033) and C11 (M=29.0, C1 vs C11: p<.001) with multiple palettes and no feedback. Examining 

conditions sets led to significant differences with small effect between sets with an isolated palette and 

multiple palettes (U(N1-palette=211, Nmulti-palette=348)=28,926, z=-4.21, p<.001, r=.18, M1-palette=23.0, 

Mmulti-palette=2.2), with and without correctness feedback (U(Ncorrectness=359, Nno-correctness=200)=29,188, 

z=-3.67, p<.001, r=.16, Mcorrectness=24.0, Mno-correctness=26.7), and with and without fading scaffolding 

(U(Nfading=155, Nno-fading=404)=27,032, z=-2.50, p=.012, r=.11, Mfading=23.5, Mno-fading=25.5). This 



indicates an isolated palette, correctness feedback, and fading scaffolding lead to less training time. 

 Condition sets with the lowest number of block moves were those with an isolated palette and 

with objective feedback (U(N1-palette=211, Nmulti-palette=348)=31,653, z=-2.73, p=.006, r=.12, M1-palette=78, 

Mmulti-palette=84; U(Nobjectives=359, Nno-obectives=200)=20,825, z=-8.24, p<.001, r=.35, Mobjectives=74, 

Mno-objectives=95). Those without objectives solved significantly more puzzles correctly with small effect, 

as did those with correctness feedback and fading scaffolding (U(Nobjectives=359, Nno-obectives=200) 

=28,819, z=-3.91, p<.001, r=.17, Mobjectives=2.6, Mno-objectives=3.3; U(Ncorrectness=359, Nno-correctness=200) 

=42,220, z=3.49, p<.001, r=.15, Mcorrectness=3.1, Mno-correctness=2.5; U(Nfading=155, Nno-fading=404)=37,576, 

z=3.70, p<.001, r=.16, Mfading=3.4, Mno-fading=2.7). These results indicate that objective feedback leads to 

the fewest puzzles solved and correctness feedback and fading scaffolding lead to the most. 

 
6.3 Efficiency 

 

 While we did not find significant PE differences between treatment conditions, when using 

time spent as an estimate of mental effort, we found significant IE differences with moderate effect 

(H(10)=27.73, p=.002, ϵ2=.05), with condition pairs C1 vs. C11 (p=.034) and C7 vs. C11 (p=.002) 

remaining significant after Bonferroni adjustment. This indicates that training with an isolated palette 

with correctness feedback (MC1=.29) and more so with an isolated palette with correctness feedback 

fading (MC7=.46) leads to more efficient CT learning than with multiple palettes without feedback and 

with distractors (MC11=-.34). When grouping condition sets by number of palettes, inclusion of 

correctness feedback, and fading scaffolding, we identified with a small effect significant differences 

for the first two and a moderate difference for the third (U(N1-palette=211, Nmulti-palette=348)=41,474.0, 

z=2.57, p=.010, r=.11, M1-palette=.15, Mmulti-palette=.09; U(Ncorrectness=359, Nno-correctness=200)=40,025.0, 

z=2.25, p=.024, r=.10, Mcorrectness=.06, Mno-correctness=.11; U(Nfading=155, Nno-fading=404)=34,279.0, z=1.74, 

p=.082, r=06, Mfading=.11, Mno-fading=.04). These results support H2 and reveal additional learning 

efficiency opportunities via the use and fading of correctness feedback in addition to an isolated palette. 

 
6.4 Motivation 

6.4.1 Quantitative Results 

 
 To analyze motivation quantitatively, we scored the TEQ, and calculated the within-subject 

change in CAS scores, programming attitude, and CT perception, from study start to end. Condition sets 

with significant findings with small effect included those that varied by objective feedback for the 

interest/enjoyment subscale (U(Nobjectives=359, Nno-objectives=200)=94,948.0, z=-3.13, p=.002, r=.13, 

Mobjectives=3.73, Mno-objectives=4.2) and by objective and correctness feedback for the perceived 

competence subscale (U(Nobjectives=359, Nno-objectives=200)=32,801.5, z=-1.79, p=.074, r=.08, 

Mobjectives=2.80, Mno-objectives=3.15; U(Ncorrectness=359, Ncorrectness=200)=40,229.0, z=2.30, p=0.21, 

r=.10, Mcorrectness=3.06, Mno-correctness=2.70). Though narrowly missing significance, the objective 

feedback condition sets also showed noteworthy differences in the pressure/tension subscale 

(U(Nobjectives=359, Nno-objectives=200)=39,638.5, z=1.94, p=.052, r=.08, Mobjectives=3.74, Mno-objectives=3.46). 

These results indicate correctness feedback increases perceived competence, while objective feedback 

reduces interest/enjoyment, lowers perceived competence, and increases pressure/tension. 

 From the CAS scoring, we found significant within-subject change for the factors of: 3) 

importance, 4) problem solving – strategies, and 6) personal interest for the treatment population (3: 

z=-5.3, p<.001, r=.22, Mstart=3.94, Mend=3.76; 4: z=5.62, p<.001, r=.24, Mstart=3.44, Mend=3.56; 6: 

z=4.28, p<.001, r=.18, Mstart=3.42, Mend=3.61). This decrease in importance and increase in problem 

solving strategies and personal interest largely held across conditions. For the gender equity (2) and 

gender bias factors (5), however, only the conditions with fading scaffolding yielded significant 

differences (2: z=2.35, p=.019, r=.10, Mstart=4.47, Mend=4.53; 5: z=-1.97, p=.049, r=.08., Mstart=2.01, 

Mend= 1.93), indicating an attitudinal improvement in gender equity and reduction in gender bias. 

 Additionally, we found many significant programming attitude and CT perception 

improvements from study start to end per condition set; selected results are presented in Table 3. 

Overall, the quantitative motivation results provide partial support for H3, as fading scaffolding led to 

improved programming attitude and CT perception scores, but the lack of longitudinal data represents a 

threat to internal validity, since we cannot confirm the change measured at study conclusion persists. 

 



Table 3. Within-subject attitude and CT perception changes. *p<0.05, **p<0.01 

-- Progrmaming is… -- 1-palette Correctness Feedback Fading Scaffolding 
fun M=.71** M=.65** M=.64** 

enjoyable  M=.82** M=.69** M=.53* 

easy to start  M=.94** M=.67** M=.73** 

-- CT Perception -- -- -- -- 
I would recommend children in my family 

attend a CT camp or after-school program 

no significant 

change 

M=.35** M=.42* 

I would ask an employer for CT training M=.31* M=.39** M=.71** 

 
6.4.2 Qualitative Results 

 
 We studied motivation qualitatively by requiring that participants describe their attitude toward 

programming at study-end, as well as their perspectives on presentation and feedback scaffolding. 

Those with low self-reported prior programming experience often reflected surprise: 1) "It is perhaps 

easier than I thought once you get to grips with how it works and the different ideas and ways of doing 

it, and it is more accessible to the average person than I thought."; 2) "Starting it is much easier than I 

thought… it can be more fun after this practice I feel more motivated to find some time and finally give 

it a proper try." Those with higher prior experience advised on use cases: "this format is good for 

younger people to learn and get introduced to it. I think is needed to be a class in school about it." 

 Those who received correctness feedback reported the utility: "It helped me know when I was 

straying from course and re-evaluate my decisions. Very important and useful." Those receiving only 

objective feedback also perceived value: "The feedback was very motivating for me and each "correct 

answer" was giving me a lot of joy. I found this very helpful to know if I was heading in the right 

direction or missing out anything important, and the dynamically enabled blocks helped me make sure I 

was doing things in the right order." A C1 participant, with an isolated palette and correctness feedback, 

perceived challenge decreasing as s/he solved puzzles: "At the beginning of the task, I was preoccupied 

with how to navigate the system, but when I was familiar… I could easily solve the looping puzzles." 

 Many responses support H3, as they indicate fading scaffolding provides motivating challenge 

across puzzles, while increasing agency. Several participants in C9, in which both presentation and 

feedback scaffolding faded, reflected inspiration: 1) "When you start by having a lot of support and then 

it gets reduced, you need to rely on your skills and understanding to keep learning, and when you see 

that the program is working fine, it is more rewarding."; 2) "the ones with the same palette help at a very 

early stage to familiarize with the concepts, the ones with a different palette broke this familiarity and 

helps further by making you think more; 3) "The single palette made it easier to focus on how to 

organize the blocks, instead of wasting time looking for them. Having them easily accessible at first 

made it easier to find them and use them in the later tasks when the blocks were spread across multiple 

palettes." Some with fading feedback, however, noted difficulties: "I found the lack of feedback later on 

really hard to overcome. It helped me immensely at the beginning. Even though I was more familiar 

with the concepts and blocks etc, the complexity of puzzles was also increasing so I really struggled." 

One participant in C8, with multiple palettes and feedback fading, recommended offering learner- 

configurability: "Create a settings where you can turn on or turn off the feedback for the puzzle. This 

way, if the student wants to try solve the puzzle without help, they can turn off the feedback. However, 

if they find it too difficult and needs help, then they can turn on the feedback for guidance." 

 

 

7. Conclusion & Future Work 
 

To illuminate how learning system elements and progressions affect CT learning in block-based 

environments, we developed Blockly-scaffolded, configurable PPP functionality within Scratch that 

enables variation of presentation and feedback types. In a between- and within-subjects study of 579 

adults, we enumerated several features and scaffolding strategies suitable for a general populace. PPPs 

with feedback yield lowest CL; an isolated palette, correctness feedback, and fading correctness 

feedback results in the highest learning efficiency; and fading scaffolding can increase CT motivation. 

The analysis offers PPP developers and instructors insight to advance efficient CT education for all. 



 While these results expose opportunities to advance CT learning via augmentations to popular 

block-based environments, we caution that developing effective technical interfaces between these 

systems is non-trivial given current implementation stratification. To echo and apply the call for 

standardization to advance progress in learning engineering in (Baker et al., 2022), we advocate for CT 

education data standards supportive of scaling consistent, quality data capture using extendable data 

models facilitating customization but rooted in commonality. Such anchoring could accelerate efforts to 

extend functionality in future work, for example by simplifying the way the Blockly objective editor 

could be integrated with the Scratch PPP evaluation engine to drive execution-based feedback like the 

js-parsons method described in (Helminen et al., 2013). It could also lead to data-driven generation of 

concept inventories and misconception maps, an approach proposed by EvoParsons developers in (Bari 

et al., 2019), that could better equip educators with the operational learning definitions necessary to 

infuse CT across curricula. With continued study, we aim to identify paths toward reliably efficient, 

effective, and equitable CT learning that builds bridges between cognitive, situated, and critical CT. 
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