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Abstract—We consider a single-hop wireless network with
sources transmitting time-sensitive information to the destination
over multiple unreliable channels. Packets from each source are
generated according to a stochastic process with known statistics
and the state of each wireless channel (ON/OFF) varies according
to a stochastic process with unknown statistics. The reliability
of the wireless channels is to be learned through observation.
At every time-slot, the learning algorithm selects a single pair
(source, channel) and the selected source attempts to transmit its
packet via the selected channel. The probability of a successful
transmission to the destination depends on the reliability of
the selected channel. The goal of the learning algorithm is to
minimize the Age-of-Information (AoI) in the network over T
time-slots. To analyze its performance, we introduce the notion
of AoI-regret, which is the difference between the expected
cumulative AoI of the learning algorithm under consideration
and the expected cumulative AoI of a genie algorithm that knows
the reliability of the channels a priori. The AoI-regret captures
the penalty incurred by having to learn the statistics of the
channels over the T time-slots. The results are two-fold: first, we
consider learning algorithms that employ well-known solutions
to the stochastic multi-armed bandit problem (such as ε-Greedy,
Upper Confidence Bound, and Thompson Sampling) and show
that their AoI-regret scales as Θ(log T ); second, we develop a
novel learning algorithm and show that it has O(1) regret. To
the best of our knowledge, this is the first learning algorithm
with bounded AoI-regret.

Index Terms—Age of Information, Wireless Networks, Regret,
Multi-Armed Bandits, Learning

I. INTRODUCTION

Age-of-Information (AoI) is a performance metric that
captures the freshness of the information from the perspective
of the destination. AoI measures the time that elapsed since
the generation of the packet that was most recently delivered
to the destination. This performance metric has been receiv-
ing attention in the literature [1], [2] for its application in
communication systems that carry time-sensitive data. In this
paper, we consider a network with M sources transmitting
time-sensitive information to the destination over N unreliable
wireless channels, as illustrated in Fig. 1. Packets from each
source are generated according to an i.i.d. stochastic process
with known statistics and the state of each wireless channel
(ON/OFF) varies according to an i.i.d. stochastic process with
unknown statistics. At every time-slot, the learning algorithm
schedules a single pair (source, channel) and the selected
source attempts to transmit its packet via the selected wireless
channel. When a packet with fresh information is successfully

transmitted to the destination, the AoI associated with the
selected source is reduced. The goal of the learning algorithm
is to keep the information associated with every source in the
network as fresh as possible, i.e. to minimize the AoI in the
network. To decide which pair (source, channel) to select in
a time-slot, the learning algorithm takes into account: i) the
packet generation processes at the M sources; ii) the current
value of AoI associated with each of the M sources; and iii)
the estimated reliability of the N wireless channels.

In this sequential decision problem, the outcomes of previ-
ous transmission attempts are used to estimate the reliability
of the wireless channels. This statistical learning problem is
closely related to the stochastic multi-armed bandit (MAB)
problem in which the wireless channels are the bandits that
give i.i.d. rewards and the learning algorithm is the player
that attempts to learn the statistics of the bandits in order
to maximize the reward accumulated over time. The main
challenge in the stochastic MAB problem is to strike a balance
between exploiting the bandit that gave the highest rewards
in the past and exploring other bandits that may give high
rewards in the future. To evaluate the performance of different
learning algorithms, we define regret. Regret is the difference
between the expected cumulative reward of a genie algorithm
(that knows the statistics of the bandits a priori) and the
expected cumulative reward of the learning algorithm under
consideration. The regret captures the penalty incurred by
having to learn the statistics of the bandits over time. Some
well-known order-optimal learning algorithms in terms of
regret are: ε-Greedy, Upper Confidence Bound (UCB), and
Thompson Sampling (TS). The regret of these policies was
shown to increase no more than logarithmically in time [3]–
[5], O(log T ), and this bound was shown to be tight [6].

We refer to our problem as the Aging Bandit problem. An
important distinction between the stochastic MAB problem
and the Aging Bandit problem is the reward structure. In the
stochastic MAB problem, the player selects a bandit in each
time-slot and receives a reward that is i.i.d. over time and
depends only on the probability distribution associated with
the selected bandit. In the Aging Bandit problem, the learning
algorithm selects a pair (source, channel) and the reward is
the AoI reduction that results from a packet transmission
to the destination. This reward depends on the state of the
selected channel (which is i.i.d. over time), since a failed
transmission gives zero reward, and it also depends on the



history of previous packet deliveries and packet generations.
In particular, if the selected source has recently delivered a
fresh information update to the destination, then the reduction
in AoI may be small. In contrast, if the selected source has
not updated the destination for a long period, then the AoI
reduction may be large. The reward structure of Aging Bandits
is closely related to the AoI evolution (formally defined in
Sec. II) which is history-dependent. This intricate reward
structure has significant impact on the analysis of regret and
on the development of learning algorithms when compared to
the analysis of the traditional stochastic MAB.

The literature on MAB problems is vast, dating more than
eight decades [7]. For surveys on different types of MAB
problems, we refer the readers to [8], [9]. Most relevant to
this work are [10]–[20]. The authors in [10]–[12] considered
the problem of minimizing the expected queue-length in a
system with a single queue and multiple servers with unknown
service rates. In [10], the authors introduced the concept of
queue-length regret, developed a learning algorithm inspired
by Thompson Sampling, and analyzed its regret. In [11], [12],
the authors used information particular to the queue evolution
to develop a learning algorithm with O(1) queue-length regret.

The authors in [13]–[20] considered the problem of min-
imizing the average AoI in a single-hop wireless network
with unreliable channels. In [13]–[17], the authors posed the
AoI minimization problem in a network with multiple sources
and known channel statistics as a restless MAB problem,
developed the associated Whittle’s Index scheduling policy,
and evaluated its performance in terms of the average AoI. In
[18], the authors considered the AoI minimization problem in
a network with a single source-destination pair and unknown
channel statistics, introduced the concept of AoI-regret, and
showed that the regret of UCB and TS scale as O(log T ).
In [19], the authors obtained similar results as in [18] for
the more challenging case of correlated wireless channels. In
[20], the authors considered the AoI minimization problem in a
network with multiple sources that generate and transmit fresh
packets at every time-slot through (possibly) different channels
with unknown statistics. The authors in [20] show that the
regret of a UCB-based distributed learning algorithm scales
as O(log2 T ). An important modelling assumption common to
[18]–[20] is that sources generate and transmit fresh packets
in every time-slot. The more realistic assumptions of stochastic
packet generation and scheduled transmissions have significant
impact on the AoI evolution, on the analysis of AoI-regret, and
on the development of learning algorithms. For example, in
Sec. IV, we leverage the random packet generation to develop
(for the first time) a learning algorithm with O(1) AoI-regret.

In this paper, we study learning algorithms that attempt to
minimize AoI in a network with multiple sources generating
packets according to stochastic processes and transmitting
these packets to the destination over wireless channels with
initially unknown statistics. At every time-slot, the learning
algorithm schedules a single pair (source, channel) and the
selected source attempts to transmit a packet in the selected
channel. Note that the source policy, which selects the source

Fig. 1. Wireless network with M sources, N channels, and destination.

at each time-slot, and the channel policy, which selects the
channel to be used in each time-slot, can be naturally sepa-
rated. In this paper, we focus on the exploration-exploitation
dilemma faced by the channel policy. In particular, we consider
learning algorithms employing the optimal source policy and
different channel policies. Our main contributions include:
• we analyze the performance of channel policies based

on traditional MAB algorithms including ε-Greedy, UCB,
and TS, and show that their AoI-regret scales as
Θ(log T ). These results generalize the analysis in [18]
to networks with multiple sources generating packets
randomly. The analysis of the AoI-regret is more chal-
lenging in this network setting since the AoI evolution
depends on both the source policy and the stochastic
packet generation process. These challenges are discussed
in Sec. III;

• we develop a novel learning algorithm and establish that
it has O(1) AoI-regret. The key insight is that when
packets are generated randomly, the learning algorithm
can utilize times when all M transmission queues are
empty to transmit dummy packets and learn the statistics
of the channels without incurring a cost in terms of AoI-
regret. To the best of our knowledge, this is the first
learning algorithm with bounded AoI-regret.

The remainder of this paper is outlined as follows. In Sec. II,
the network model and performance metrics are formally
presented. In Sec. III, we analyze the AoI-regret of traditional
learning algorithms. In Sec. IV, we develop an order-optimal
learning algorithm and analyze its AoI-regret. In Sec. V, we
compare the AoI-regret of different learning algorithms using
simulations. The paper is concluded in Sec. VI. The technical
proofs have been omitted due to the space constraint, and will
be made available in a technical report.

II. SYSTEM MODEL

Consider a single-hop wireless network with M sources, N
channels and a single destination, as illustrated in Fig. 1. Each
source m ∈ {1, · · · ,M} generates packets containing time-
sensitive information and these packets are to be transmitted
to the destination through one of the wireless channels. Let
the time be slotted, with slot index t ∈ {1, 2, · · · , T}, where
T is the time horizon of this discrete-time system. The slot
duration allows for a single packet transmission. We normalize
the slot duration to unity.

At the beginning of every slot t, each source m generates a
packet with probability λ ∈ (0, 1). Let am(t) ∈ {0, 1} be the
indicator function that is equal to 1 when source m generates



a packet in slot t, and am(t) = 0 otherwise. This Bernoulli
process with parameter λ is i.i.d. over time and independent
across different sources, with P (am(t) = 1) = λ, ∀m, t. A
packet that is generated in slot t can be transmitted during
the same slot t. We denote the vector of packet generations in
slot t by ~a(t) = [a1(t) · · · aM (t)]

T.

Each source has a transmission queue to store its packets.
Sources keep only the most recently generated packet, i.e. the
freshest packet, in their queue. When source m generates a
new packet at the beginning of slot t, older packets (if any)
are discarded from its queue. Notice that delivering the most
recently generated packet provides the freshest information to
the destination. This queueing discipline is known to optimize
the AoI in a variety of contexts [21]–[23]. After a packet
delivery from source m, the queue remains empty until the
next packet generation from the same source. However, while
the queue is empty, a dummy packet can be transmitted for
the purpose of probing the channels.

The networked system is empty during slot t if there are no
data packets available for transmission, i.e. if the M queues
are empty. Let E(t) ∈ {0, 1} be the indicator function that is
equal to 1 if the system is empty during slot t, and E(t) = 0
otherwise. Notice that if there is a packet generation at the
beginning of slot t, then the system is nonempty during slot t
and E(t) = 0. Recall that when the system is empty, sources
can still transmit dummy packets.

In a slot, the learning algorithm selects a single pair (m,n),
where m ∈ {1, 2, · · · ,M} is the index of the source and
n ∈ {1, 2, · · · , N} is the index of the wireless channel. Then,
during this slot, source m transmits a packet to the destination
through channel n. If channel n is ON, then the packet is
successfully transmitted to the destination, and if channel n is
OFF, then the transmission fails. The learning algorithm does
not know the channel state while making scheduling decisions,
and the outcome of a transmission attempt during slot t is
known at the beginning of slot t + 1. Let bn(t) ∈ {0, 1} be
the indicator function that represents the state of channel n
during slot t. The channel is ON, bn(t) = 1, with probability
µn ∈ (0, 1], and the channel is OFF, bn(t) = 0, with
probability 1 − µn. The channel state process is i.i.d. over
time and independent across different channels.

The reliability of channel n is represented by the probability
of this channel being ON, µn. Let ~µ = [µ1 · · · µN ]

T be
the vector of channel reliabilities. Let µ∗ be the maximum
channel reliability and let n∗ be the index of the corresponding
channel, i.e. µ∗ = maxn µn = µn∗ . For simplicity, we assume
that the optimal channel n∗ is unique. Naturally, if the channel
reliabilities were known by the learning algorithm in advance,
then it would select channel n∗ in every slot t. However, since
the channel reliabilities ~µ are initially unknown, the learning
algorithm has to estimate µn using observations from previous
transmission attempts, while at the same time attempting to
minimize the AoI in the network. Next, we formulate the AoI
minimization problem.

Fig. 2. The blue and orange rectangles at the bottom represent packets
generated at source m and successful packet transmissions from source m,
respectively. The orange curve shows the AoI evolution hm(t) associated
with source m. Recall that each of the M sources has its own AoI evolution.

A. Age of Information

The AoI captures how old the information is from the
perspective of the destination. Let hm(t) be a positive
integer that represents the AoI associated with source
m at the beginning of slot t. By definition, we have
hm(t) := t − τm(t), where τm(t) is the generation time of
the latest packet successfully transmitted from source m to
the destination1. If the destination does not receive a fresh
packet from source m during slot t, then in the next slot we
have hm(t + 1) = hm(t) + 1, since the information at the
destination is one slot older. In contrast, if the destination
receives a fresh packet from source m during slot t, then
in the next slot the value of τm(t + 1) is updated to the
generation time of the received packet and the AoI is reduced
by τm(t+ 1)− τm(t). This difference is the “freshness gain”
associated with the received packet. The evolution of hm(t)
over time is illustrated in Fig. 2. We define the vector of AoI
in slot t as ~h(t) = [h1(t) · · · hM (t)]

T.

For capturing the information freshness of the entire net-
work, we consider the expected total age h̄(T ), which is
defined as the expected sum of the AoI over all sources and
over time, namely

h̄(T ) = E
[∑M

m=1

∑T
t=1 hm(t)

]
, (1)

where the expectation is with respect to the randomness in
the channel states bn(t), packet generation process ~a(t), and
scheduling decisions (m,n). The learning algorithm schedules
pairs (m,n) over time so as to minimize the expected total
AoI h̄(T ). Recall that in this sequential decision problem, the
channel reliabilities µn are initially unknown by the learning
algorithm and should be estimated over time. Next, we discuss
the class of learning algorithms considered in this paper.

B. Learning Algorithm

In this section, we present three important concepts asso-
ciated with the learning algorithm: the channel policy, the

1We define τm(t) = 0 prior to the first packet delivery from source m.



source policy, and the AoI-regret. Prior to discussing these
concepts, we introduce some notation. In each slot t, the
learning algorithm selects a single source and a single channel.
Let m(t) be the index of the source selected during slot t and
let n(t) be the index of the channel selected during slot t.
Then, the pair selected in slot t can be denoted as (m(t), n(t)).
Notice that the learning algorithm consists of a source policy,
which selects m(t), and a channel policy, which selects n(t).
Let b(t) = bn(t)(t) be the state of the channel selected during
slot t, and recall that ~a(t) is the vector of packet generations
and ~h(t) is the vector of AoI in slot t. Next, we use this
notation to define the channel policy and the source policy.

The channel policy may (or may not) take into account the
status of the transmission queues at the sources (in particular
E(t)) in making scheduling decisions n(t). Hence, we define
two types of channel policies: queue-independent channel
policies and queue-dependent channel policies. Let ΠB be the
class of admissible queue-independent channel policies πb. In
slot t, an arbitrary policy πb ∈ ΠB selects n(t) using infor-
mation about the outcome of previous transmission attempts.
In particular, the queue-independent channel history in slot t
is given by HB(t) = {n(1), b(1), . . . , n(t− 1), b(t− 1)}.
Let Π̄B be the class of admissible queue-dependent channel
policies π̄b. In slot t, an arbitrary policy π̄b ∈ Π̄B selects n(t)
using information about the outcome of previous transmission
attempts and about the current status of the transmission
queues. In particular, the queue-dependent channel history in
slot t is given by H̄B(t) = HB(t) ∪ {E(t)}. In Sec. IV,
we show that this small amount of information, namely
E(t), can have a significant impact on the performance of
the channel policy. It is easy to see that both the optimal
queue-independent channel policy π∗b and the optimal queue-
dependent channel policy π̄∗b select, in every slot t, the channel
n∗ with highest reliability µ∗. However, since the reliabilities ~µ
are not known a priori, the channel policies have to estimate ~µ
over time. In Sec. III, we consider queue-independent channel
policies and in Sec. IV, we consider queue-dependent channel
policies.

The source policies considered in this paper are work-
conserving, i.e. policies that never transmit dummy packets
when there are undelivered data packets in the system. Let
ΠA be the class of admissible work-conserving source policies
πa. In slot t, an arbitrary source policy πa ∈ ΠA selects m(t)
using information about the current AoI and the generation
times of the packets waiting to be transmitted at the sources’
queues. In particular, the source history in slot t is given
by HA(t) = {~a(1),~h(1), . . . ,~a(t),~h(t)}. The optimal source
policy π∗a ∈ ΠA is the transmission scheduling policy that
minimizes the expected total AoI in (1). A few works in
the literature [14], [15], [24] have addressed the problem
of finding the transmission scheduling policy that minimizes
AoI in wireless networks with stochastic packet generation
and unreliable channels with known statistics. Despite those
efforts, a full characterization of the optimal source policy is
still an open problem.

In this paper, we consider learning algorithms π = (πa, πb)

that are composed of a source policy and a channel policy. Our
goal is to study the exploration-exploitation dilemma faced by
the channel policy. To that end, we analyze the AoI-regret
of learning algorithms employing the optimal source policy
and different channel policies. To analyze the AoI-regret of
learning algorithms without the full characterization of the
optimal source policy π∗a, we derive lower and upper bounds
on the regret. These bounds are discussed in Proposition 2,
Proposition 3, and Theorem 7, where we assumed that the
optimal source policy π∗a is the same irrespective of the queue-
independent channel policy πb under consideration, namely

π∗a = arg min
πa∈ΠA

E

[
M∑
m=1

T∑
t=1

h(πa,πb)
m (t)

]
, ∀πb ∈ ΠB , (2)

where h(πa,πb)
m (t) denotes the AoI associated with source m in

slot t when the learning algorithm π = (πa, πb) is employed.
An analogous assumption is utilized for the case of queue-
dependent channel policies π̄b ∈ Π̄B .

Clearly, the assumption in (2) does not hold in general. For
example, if we consider a channel policy that purposefully
selects poor wireless channels when a particular source m′ is
selected, then this channel policy would create an incentive
for the optimal source policy to avoid selecting m′, thus
contradicting the assumption in (2). However, for the channel
policies considered in this paper, which employ information
about the outcomes of previous transmissions in order to
attempt to select the most reliable channel, irrespective of the
selected source, there seems to be no incentive for the optimal
source policy to change its strategy based on the channel
policy, which is in line with the assumption in (2).

The AoI-regret of a learning algorithm π with queue-
independent channel policy πb is defined as the difference
between the expected total AoI h̄π(T ) when π = (π∗a, πb) is
employed and the expected total AoI h̄∗(T ) when the optimal
algorithm π∗ = (π∗a, π

∗
b ) is employed, namely

Rπ(T ) = E

[
M∑
m=1

T∑
t=1

hπm(t)−
M∑
m=1

T∑
t=1

h∗m(t)

]
. (3)

The definition of AoI-regret for a learning algorithm π̄ with
queue-dependent channel policy π̄b is analogous to (3). Next,
we analyze the AoI-regret of learning algorithms with queue-
independent channel policies.

III. REGRET ANALYSIS

The problem of learning channel reliabilities over time is
closely related to the stochastic MAB problem. A natural class
of channel policies to consider are traditional MAB algorithms
such as ε-Greedy, UCB, and TS. In this section, we derive
bounds on the AoI-regret of learning algorithms that employ
queue-independent channel policies. Notice that the class of
queue-independent channel policies ΠB includes traditional
MAB algorithms. We describe a learning algorithm employing
TS as its channel policy in Algorithm 1.

Scheduling decisions of a learning algorithm π might differ
from those of π∗ both in the source and in the channel, which



Algorithm 1: Learning Algorithm employing TS
Time t = 1, estimates µ̂n = 0, counters Tn = 0, and

parameters αn = βn = 1, ∀n ∈ {1, . . . , N};
while 1 ≤ t ≤ T do

Optimal source policy selects m ∈ {1, 2, · · · ,M};
θn ∼ Beta(αn, βn);
n = arg maxn′∈{1,...,N} θn′ ;
Source m transmits packet through channel n and

observes channel state b;
if b = 1 then

αn = αn + 1;
else

βn = βn + 1;
Compute new estimate µ̂n = (µ̂nTn + b)/(Tn + 1);
Tn = Tn + 1 and t = t+ 1;

makes the analysis of the AoI-regret
∑T
t=1

∑M
m=1 E[hπm(t)−

h∗m(t)] challenging. To alleviate this challenge, we use
stochastic coupling to create equivalent coupled channel state
processes that are simpler to analyze. Similar coupling argu-
ments were employed in [10], [18].

Remark 1 (Coupled Channel States). Let {U(t)}Tt=1 be a
sequence of i.i.d. random variables uniformly distributed in
the interval [0, 1]. In each slot t, the channel states bn(t) are
determined as follows: bn(t) = 1 ⇐⇒ 0 ≤ U(t) ≤ µn, ∀n.

By construction, the coupled channel states are no longer
independent. In particular, if a channel is ON during slot t,
then all channels with higher reliability µn are also ON during
that slot. Notice that, in each slot t, each coupled channel n
has the same probability distribution as the associated original
channel n, namely P (bn(t) = 1) = µn, ∀n, t. Hence, given the
scheduling decision (m(t), n(t)) of π during any slot t, the
probability of a successful transmission attempt from source
m(t) through channel n(t) is the same for both the coupled
and original channel states. It follows that the probability
distribution of hπm(t) also remains the same for all slots t and
for all sources m and, thus, the AoI-regret Rπ(T ) in (3) also
remains the same for both the coupled and original channel
state processes. For simplicity of analysis, henceforth in this
paper, we assume that the channel state processes are coupled
as described in Remark 1.

In Propositions 2 and 3 and Corollary 4, we derive bounds
on the AoI-regret of a learning algorithm π with respect to its
expected number of suboptimal channel choices, namely

E[Kπ(T )] = E
[∑T

t=1 1{nπ(t)6=n∗}

]
, (4)

where 1{nπ(t) 6=n∗} = 1 if nπ(t) 6= n∗, and 1{nπ(t)6=n∗} =
0 otherwise. We consider two classes of admissible learning
algorithms

Π = {π = (πa, πb) : πa ∈ ΠA, πb ∈ ΠB} ; (5)
Π∗ = {π = (πa, πb) : πa = π∗a, πb ∈ ΠB} . (6)

Both classes employ queue-independent channel policies. The
difference is that learning algorithms in Π employ any admis-
sible source policy πa ∈ ΠA, while learning algorithms in Π∗

employ the optimal source policy π∗a. Naturally, we have that
Π∗ ⊂ Π.

Proposition 2 (Lower Bound). For any given network config-
uration (λ, ~µ), the AoI-regret of any learning algorithm π ∈ Π
scales at least on the order of its expected number of subop-
timal channel choices, namely2 Rπ(T ) = Ω (E [Kπ(T )]).

Proof outline. In addition to the suboptimal channel choices,
source choices mπ(t) of algorithm π ∈ Π can also differ from
the source choices m∗(t) of π∗. To overcome this challenge,
we construct an auxiliary algorithm π̂∗ with optimal channel
policy and a source policy that selects the same source3 mπ(t)
as π in every slot t. Then, we focus on the auxiliary AoI-regret∑T
t=1

∑M
m=1 E[hπm(t)− hπ̂∗m (t)] associated with the auxiliary

algorithm π̂∗, which we show to be not greater than the
original AoI-regret

∑T
t=1

∑M
m=1 E[hπm(t) − h∗m(t)]. We then

observe that each suboptimal channel choice of π results in
a penalty to the auxiliary AoI-regret, and we show that this
penalty is lower bounded by a constant. Using this constant,
we obtain the desired lower bound on the original AoI-regret.
The details are omitted due to the space constraint.

Proposition 3 (Upper Bound). For any given network configu-
ration (λ, ~µ), the AoI-regret of any learning algorithm π ∈ Π∗

scales at most on the order of its expected number of subop-
timal channel choices, namely4 Rπ(T ) = O (E [Kπ(T )]).

Proof outline. Despite the fact that both learning algorithms
π ∈ Π∗ and π∗ employ the same optimal source policy
π∗a, they might select different sources mπ(t) 6= m∗(t)
over time, due to their different channel policies. To address
this challenge, we use an approach similar to the proof of
Proposition 2. We construct an auxiliary algorithm π̂ ∈ Π∗

with a source policy that selects the same source m∗(t) as π∗

in every slot t, and with a channel policy that selects the same
channel nπ(t) as π in every slot t. Then, we show that the
auxiliary AoI-regret

∑T
t=1

∑M
m=1 E[hπ̂m(t)−h∗m(t)] associated

with the auxiliary algorithm π̂ is not lower than the original
AoI-regret

∑T
t=1

∑M
m=1 E[hπm(t)−h∗m(t)]. To derive an upper

bound on the auxiliary AoI-regret, we analyze the penalty that
results from each suboptimal channel choice of π̂. During a
slot t where π̂ makes a suboptimal channel choice, if channel
nπ̂(t) is OFF and channel n∗ is ON, then a discrepancy is
added to the difference between the AoI of π̂ and the AoI
of π∗, i.e. hπ̂m(t + 1) − h∗m(t + 1) > hπ̂m(t) − h∗m(t). This
discrepancy lasts until the next successful transmission of a
packet from source m by the auxiliary algorithm π̂, after which
the values of hπ̂m(·) and h∗m(·) become equal5. We refer to
the duration of the discrepancy as its length. The penalty that
results from a suboptimal channel choice is the product of the
discrepancy and its length. We characterize the auxiliary AoI-

2f(t) = Ω(g(t)) ⇐⇒ ∃C > 0 ∃t0 ∀t > t0 : f(t) ≥ C · g(n)
3Notice that if the selected source mπ(t) has no packet in its transmission

queue, then the auxiliary algorithm attempts to transmit a dummy packet.
4f(t) = O(g(t)) ⇐⇒ ∃C > 0 ∃t0 ∀t > t0 : f(t) ≤ C · g(n)
5Recall from Remark 1 that channel states are coupled. Hence, if channel

nπ̂(t) is ON, then channel n∗ is also ON.



regret by expressing it as the sum of the penalties arising from
suboptimal channel choices. Then, using discrete phase-type
distributions, we upper bound the discrepancies and the lengths
by constants (in the expected sense) to obtain the desired upper
bound on the original AoI-regret. The details are omitted due
to the space constraint.

Corollary 4. For any given network configuration (λ, ~µ), the
AoI-regret of any learning algorithm π ∈ Π∗ scales with
its expected number of suboptimal channel choices, namely6

Rπ(T ) = Θ (E [Kπ(T )]).

Corollary 4 follows directly from Proposition 2 and Proposi-
tion 3. Notice that the bounds in Proposition 3 and Corollary 4
are not valid for the broader class of learning algorithms Π
which includes suboptimal source policies. This is because
suboptimal source choices may add to the AoI-regret, possibly
making it grow faster than E [Kπ(T )].

Prior to analyzing the AoI-regret of learning algorithms that
employ ε-Greedy, UCB, and TS as their channel policy, we
define α-consistent learning algorithms [9], [10] and discuss a
few of their properties. Let E[Tπn (T )] be the expected number
of times that channel n is selected by π ∈ Π in the first T
slots, namely

E[Tπn (T )] = E
[∑T

t=1 1{nπ(t)=n}

]
. (7)

Definition 5 (α-consistency). For a given α ∈ (0, 1), a learn-
ing algorithm π ∈ Π is classified as α-consistent if, for any
network configuration (λ, ~µ), we have E [Tπn (T )] = O(Tα)
for all suboptimal channels n 6= n∗.

Intuitively, a learning algorithm π ∈ Π is α-consistent if
its channel policy has good performance in every network
configuration. Consider a learning algorithm with a trivial
channel policy that selects n(t) = 1 in every slot t. In network
configurations with n∗ = 1, this channel policy never selects
suboptimal channels, i.e. E [Tπn (T )] = O(Tα), ∀n 6= n∗.
However, in network settings with n∗ 6= 1, this channel policy
always selects suboptimal channels, i.e. E [Tπ1 (T )] = T , which
violates the definition of α-consistency. In the remainder of
this section, we focus on channel policies that have good
performance in every network configuration. In particular, we
analyze the AoI-regret of α-consistent learning algorithms
with queue-independent channel policies.

Remark 6 (AoI-regret of α-consistent algorithms). In [10,
Corollary 20], the authors show that any learning algorithm
π ∈ Π that is α-consistent has an expected number of subopti-
mal channel choices that scales as E [Kπ(T )] = Ω(log T ), for
any network configuration (λ, ~µ). Hence, it follows from the
lower bound in Proposition 2 that the associated AoI-regret
scales as Rπ(T ) = Ω(log T ), for any network configuration
(λ, ~µ).

Notice that the lower bound in Remark 6 applies to α-
consistent learning algorithms with queue-independent chan-

6f(t) = Θ(g(t)) ⇐⇒ f(t) = O(g(t)) ∧ f(t) = Ω(g(t)) ⇐⇒
∃C1, C2 > 0 ∃t0 ∀t > t0 : C1 · g(n) ≤ f(t) ≤ C2 · g(n)

nel policies that do not know the statistics of the channels in
advance.

Learning algorithms that employ ε-Greedy, UCB, and TS
as their channel policy are known to have suboptimal channel
choices scaling as E[Kπ(T )] = O(log T ) for any network
configuration (λ, ~µ) [3], [25], which implies that they are
α-consistent. Hence, it follows from the lower bound in
Remark 6 and from the upper bound in Proposition 3 that
the AoI-regret of these traditional MAB algorithms scale as
Rπ(T ) = Θ(log T ).

In [18], the authors derived lower and upper bounds
on the AoI-regret of learning algorithms employing queue-
independent channel policies, including UCB and TS, in
networks with a single source generating and transmitting
fresh packets in every slot t. Propositions 2 and 3 generalize
the results in [18] to networks with multiple sources generating
packets according to stochastic processes. The analysis of the
AoI-regret is more challenging in this network setting for the
following reasons: i) the optimal source policy π∗a is unknown
and there is no closed-form expression for the expected total
AoI (1) of the optimal algorithm π∗ = (π∗a, π

∗
b ); and ii)

the learning algorithm under consideration π = (πa, πb) can
make suboptimal choices both in terms of sources m(t) and
channels n(t), and these two types of suboptimal choices
affect the AoI-regret Rπ(T ) differently. Next, we develop a
learning algorithm that leverages information about the status
of the transmission queues at the sources in making scheduling
decisions n(t), and show that this new learning algorithm has
O(1) AoI-regret.

IV. ORDER-OPTIMAL LEARNING ALGORITHM

In this section, we develop a learning algorithm η̄ ∈ Π̄ with
a queue-dependent channel policy that selects n(t) using infor-
mation about the outcome of previous transmission attempts,
namely HB(t) = {n(1), b(1), · · · , n(t − 1), b(t − 1)}, and
about the current status of the transmission queues, namely
E(t). Then, we derive an upper bound on its AoI-regret.
In particular, we show that the AoI-regret of η̄ is such that
Rη̄(T ) = O(1). Notice that the only difference between the
learning algorithms π ∈ Π considered in Sec. III and the order-
optimal learning algorithm η̄ is the knowledge of E(t). This
seemingly modest addition led to the reduction of the AoI-
regret from Rπ(T ) = Ω(log T ) to Rη̄(T ) = O(1). To the
best of our knowledge, this is the first learning algorithm with
bounded AoI-regret.

The key insight is that when packets are generated ran-
domly, the learning algorithm η̄ can utilize times when the
network has no data packets to transmit, i.e. when E(t) = 1,
to transmit dummy packets and learn the statistics of the
channels without incurring an opportunity cost The order-
optimal learning algorithm η̄ = (ηa, η̄b) has optimal source
policy ηa = π∗a and a channel policy η̄b ∈ Π̄B that oper-
ates as follows: when the system is empty, E(t) = 1, the
policy chooses a channel uniformly at random and uses the
outcome of the transmission attempt to update its estimates
of the channel reliabilities and, when the system is nonempty,



Algorithm 2: Order-Optimal Learning Algorithm
Time t = 1, estimates µ̂n = 0, and counters Tn = 0,
∀n ∈ {1, . . . , N};

while 1 ≤ t ≤ T do
Optimal source policy selects m ∈ {1, 2, · · · ,M};
if system is empty then

n = Unif{1, . . . , N};
Source m transmits dummy packet through channel
n and observes channel state b;
µ̂n = (µ̂nTn + b)/(Tn + 1) and Tn = Tn + 1;

else
n = arg maxn′∈{1,...,N} µ̂n′ ;
Source m transmits data packet through channel n

and observes channel state b;
t = t+ 1;

E(t) = 0, the policy chooses the channel with the current
highest estimated reliability. Notice that the channel policy
only updates its estimates of the channel reliabilities when
the system is empty. A similar channel policy was used
in [11], [12] to develop a learning algorithm with bounded
queue-length regret. The order-optimal learning algorithm η̄ is
described in Algorithm 2. The upper bound on the AoI-regret
is established in the theorem that follows.

Theorem 7. For any given network configuration (λ, ~µ),
the AoI-regret of the order-optimal learning algorithm η̄ is
bounded, namely Rη̄(T ) = O(1).

Proof outline. Recall from Algorithm 2 that estimates of the
channel reliabilities µ̂n are only updated when the system is
empty E(t) = 1. Hence, during nonempty periods, the channel
reliabilities do not change and, thus, the selected channel also
does not change. First, we show that η̄ only contributes to
the AoI-regret when it selects a suboptimal channel during
a nonempty period. Then, we derive an upper bound on the
AoI-regret by analyzing: i) the evolution of the probability of η̄
selecting a suboptimal channel during a nonempty period; and
ii) the corresponding contribution to the AoI-regret. To bound
the probability, we employ Hoeffding’s inequality. To bound
the contribution to the AoI-regret, we use discrete phase-
type distributions. From these two upper bounds, we obtain
Rη̄(T ) = O(1). The details are omitted due to the space
constraint.

In the particular case of a network with sources generating
fresh packets at every slot t, i.e. λ = 1, the algorithm η̄ cannot
utilize slots in which the system is empty to learn the channel
reliabilities without incurring a cost in terms of AoI-regret,
which results in a Rη̄(T ) that grows over time. The upper
bound in Theorem 7 is only valid for the network models
described in Sec. II, in which λ ∈ (0, 1). Next, we evaluate
the AoI-regret of the different learning algorithms discussed
in this paper using MATLAB simulations and we propose a
heuristic algorithm that leverages both the fast learning rates
of TS and the bounded regret of the order-optimal algorithm.

V. SIMULATIONS

In this section, we evaluate the performance of learning
algorithms in terms of the AoI-regret in (3). We compare

learning algorithms employing the Age-Based Max-Weight
source policy [24, Sec. 5] and different channel policies,
namely: i) ε-Greedy; ii) UCB; iii) TS; iv) Optimal; and v)
Hybrid. The Age-Based Max-Weight source policy selects,
in each slot t, the source m associated with the packet that
gives the largest AoI reduction, τm(t + 1) − τm(t), if the
transmission in slot t is successful. Intuitively, this policy is
selecting the source with highest potential reward in terms
of AoI. In [24], we evaluated the performance of the Age-
Based Max-Weight source policy both analytically and using
simulations, and showed that it achieves near optimal AoI.
The first three channel policies, namely ε-Greedy, UCB, and
TS, were discussed in Sec. III. The Optimal policy is the
order-optimal channel policy η̄b developed in Sec. IV. The
Hybrid policy employs TS for a fixed period in the beginning
of the simulation and then employs the Optimal policy in the
remaining slots.

We simulate a network with a time horizon of T = 5× 105

slots, M = 3 sources, each generating packets according to
a Bernoulli process with rate λ, and N = 5 channels with
reliabilities ~µ = [0.4 0.45 0.5 0.55 0.6]T. Figures 3(a) and
3(b) show simulation results of the evolution of the AoI-regret
over time for λ = 0.1 and λ = 0.7, respectively. Figure 3(c)
shows the evolution of the reliability estimates associated with
the channels with µ4 = 0.55 and µ5 = 0.6 over time for
λ = 0.7. Figure 3(d) shows the AoI-regret at the last slot of
the simulation, i.e., Rπ(T = 5 × 105), for increasing values
of λ ∈ {0.01, 0.1, 0.2, · · · , 0.9}. Each data point in Figs. 3(a)-
3(d) is an average over the results of 200 simulations.

The results in Figs. 3(a) and 3(b) suggest that, as ex-
pected, the AoI-regrets associated with Optimal and Hybrid
are bounded, while the AoI-regrets associated with ε-Greedy,
UCB and TS grow over time. By comparing the AoI-regrets
of the different channel policies in Fig. 3(d), it becomes clear
that the AoI-regret of Optimal varies significantly with λ. In
particular, for T = 5 × 105, when λ increases from 0.1 to
0.7, the AoI-regret of TS increases by a factor of 1.6 (from
1, 583 to 2, 505), while the AoI-regret of Optimal increases by
a factor of 1, 123.8 (from 1, 176 to 1, 321, 580). A main reason
for this performance degradation is that when λ increases,
empty systems with E(t) = 1 occur less often and, as a result,
the Optimal channel policy takes longer to learn the reliability
of the channels. However, it is important to emphasize that,
for any λ ∈ (0, 1) and for a long enough time-horizon T :
(i) the Optimal channel policy will eventually converge to the
true reliabilities, as can be seen in Fig. 3(c), at which point
its AoI-regret will stop increasing; and (ii) the AoI-regret of
ε-Greedy, UCB and TS will never stop increasing and, thus,
at some moment, their performance will become worse than
the Optimal policy.

To improve the performance of the Optimal policy for
networks with large λ, we propose a heuristic policy called
Hybrid channel policy, which employs TS in the first 5× 104

slots to quickly learn the reliability of the channels, and then
shifts to the Optimal policy which has bounded AoI-regret
in the long term. Figure 3(c) illustrates the difference in the



(a) AoI-regret for λ = 0.1 (b) AoI-regret for λ = 0.7 (c) Reliability for λ = 0.7 (d) AoI-regret at the last slot

Fig. 3. Simulation of networks with different λ. In (a) and (b), we show the evolution of the AoI-regret over time. In (c), we show the evolution of the
reliability estimates over time. In (d), we show the AoI-regret at the end of the simulation for increasing values of λ.

learning rates between Optimal and Hybrid. Notice in Fig. 3(c)
that there are extended periods of time in which Optimal
assigns a larger estimated reliability to a suboptimal channel,
which leads to the larger AoI-regret shown in Figs. 3(b) and
3(d). This learning period is significantly shorter with Hybrid.

VI. CONCLUSION

This paper considers a single-hop wireless network with M
sources transmitting time-sensitive information to the destina-
tion over N unreliable channels. Packets from each source are
generated according to a Bernoulli process with known rate
λ and the state of channel n (ON/OFF) varies according to a
Bernoulli process with unknown rate µn. The reliabilities ~µ
of the wireless channels is to be learned through observation.
At every slot t, the learning algorithm selects a single pair
(m(t), n(t)) and the selected source m(t) attempts to transmit
its packet via the selected channel n(t). The goal of the
learning algorithm is to minimize the expected total AoI h̄(T ).
To analyze the performance of the learning algorithm, we
derive bounds on the AoI-regret Rπ(T ) associated with dif-
ferent learning algorithms. Our main contributions include: i)
analyzing the performance of learning algorithms that employ
channel policies based on traditional MAB algorithms (ε-
Greedy, UCB, and TS) and showing that their AoI-regret scales
as Θ(log T ); and ii) developing a novel learning algorithm and
establishing that it has O(1) AoI-regret. To the best of our
knowledge, this is the first learning algorithm with bounded
AoI-regret. Interesting extensions of this work include consid-
eration of sources with unknown packet generation rates and
channels with time-varying statistics.
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