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Abstract—We consider a Random Access network with a
number of nodes transmitting time-sensitive information to a
wireless base station. Packets are generated according to a
stochastic process and nodes employ either Slotted-ALOHA or
Carrier-Sense Multiple Access (CSMA) to transmit these packets.
A packet collision occurs when two or more nodes transmit
simultaneously and a successful packet transmission occurs when
a node transmits without interference. The goal is to optimize
the Random Access mechanism in terms of information freshness,
which is captured by the Age of Information (AoI) metric.

In this paper, we propose a framework to analyze and optimize
the average AoI in Random Access networks with stochastic
packet generation. In particular, we develop a discrete-time
model, derive an approximate expression for the average AoI
in the network, and then use this expression to optimize the
Random Access mechanism. Furthermore, we implement the
optimized Random Access mechanism in a Software Defined
Radio testbed and compare the AoI measurements with analytical
and numerical results in order to validate our framework. Our
approach allows us to evaluate the combined impact of the packet
generation rate, transmission probability, and size of the network
on the AoI performance.

Index Terms—Age of Information, Random Access, Optimiza-
tion, Wireless Networks, Software Defined Radio testbed

I. INTRODUCTION

R andom Access is a multiple access technique that under-
pins protocols such as Slotted-ALOHA and Carrier-Sense

Multiple Access (CSMA). A main difference between the two
protocols is that CSMA utilizes carrier sensing capabilities to
avoid packet collisions, while Slotted-ALOHA is a simpler
protocol that does not assume that nodes have carrier sensing
capabilities.

Random Access networks are widely adopted. Examples
of emerging time-sensitive applications that are implemented
using Random Access networks are abundant: monitoring
mobile ground-robots in automated fulfillment warehouses at
Amazon [1], [2] and Alibaba [3]; collision prevention applica-
tions [4] for vehicles on the road [5]–[8]; and path planning,
localization and motion control for multi-robot formations
using drones [9], [10] and using ground-robots [11]. Random
Access networks and, in particular, WiFi networks are an
attractive choice for they are low-cost, well-established, and
immediately available in drones, computing platforms, and

This work was supported by NSF Grants AST-1547331, CNS-1713725,
and CNS-1701964, and by Army Research Office (ARO) grant number
W911NF-17-1-0508.

sensors. Moreover, as showcased by these various implemen-
tations, small-scale underloaded Random Access networks are
capable of supporting time-sensitive applications.

Two main shortcomings of Random Access networks are
scalability and congestion. In particular, as the size of the net-
work or the congestion level increases, the network becomes
overloaded and the information freshness degrades sharply,
resulting in outdated information at the destination, which can
lead to system failures and safety risks. In this paper, we an-
alyze and optimize information freshness in Slotted-ALOHA
and CSMA networks with stochastic packet generation from
a finite number of sources.

The literature on the analysis and optimization of Slotted-
ALOHA and CSMA networks is vast, dating almost five
decades [12]–[14]. For a survey on throughput and delay
optimization of CSMA networks, we refer the readers to [15].
The Age of Information (AoI) is a recently proposed [16], [17]
performance metric that captures how fresh the information
is from the perspective of the destination. The optimization
of centralized multiple access mechanisms in terms of AoI
has been considered in numerous works including [18]–[28].
The optimization of distributed mechanisms, such as Slotted-
ALOHA and CSMA, in terms of AoI has been recently
considered in [17], [29]–[36].

The authors of [29]–[31] studied Slotted-ALOHA net-
works with sources that generate packets on demand. Slotted-
ALOHA networks with stochastic packet generation were
considered in [32], [33]. In particular, the authors of [32]
analyzed Slotted-ALOHA networks in the limit as the number
of sources goes to infinity, and proposed a mechanism to
dynamically drop packets in order to minimize the average
AoI in the network. The authors of [33] used Queueing Theory
to analyze AoI in a wireless network with Bernoulli packet
arrivals and geometric interdelivery times, and used simulation
results to optimize the AoI performance under three classes of
multiple access mechanisms, including Slotted-ALOHA.

CSMA networks were considered in [17], [34]–[36]. In
particular, the authors of [17] used simulations and exper-
imental results to evaluate the average AoI in a CSMA
network. The authors of [34] proposed modifications to the
CSMA mechanism inspired by a centralized Whittle’s Index
scheduling policy, and evaluated the CSMA network using
numerical results. The authors of [35] developed a discrete-
time model for a CSMA network with sources that generate
packets on demand, derived an expression for the average AoI,



and then used Game Theory to analyze the coexistence of
WiFi and Dedicated Short-Range Communications (DSRC) in
terms of throughput and AoI. The authors of [36] developed
a continuous-time model for a collision-free CSMA network
with stochastic packet generation, derived an expression for
the average AoI, and then used this expression to find the
optimal back-off rate. Notice that [36] does not consider the
effects of packet collisions which, as we see in this paper, play
an important role in the AoI optimization of Random Access
networks.

Our contributions. In this paper, we propose a framework
to analyze and optimize the average AoI in Random Access
networks with stochastic packet generation. In particular, we
develop a discrete-time network model that accounts for the
effects of packet collisions and derive an accurate approxi-
mation for the average AoI in the network. We then use the
analytical model to optimize the Random Access mechanism
in terms of AoI. Our approach allows us to evaluate the
combined impact of the packet generation rate, transmission
probability, and size of the network on the AoI performance.
Finally, we implement the optimized CSMA network in the
Software Defined Radio testbed in Fig. 8 and compare the
AoI measurements with analytical results and simulations. To
the best of our knowledge, this is the first work to provide
theoretical results on the optimization of a CSMA network
with stochastic packet generation and packet collisions, and
the first work to implement a CSMA mechanism optimized
for AoI.

The remainder of this paper is organized as follows. In
Sec. II, we present the network model. In Sec. III, we derive
expressions for the interdelivery interval, packet delay and
AoI. In Sec. IV, we optimize the Random Access network
in terms of AoI. In Sec. V, we implement the optimized
CSMA network and discuss experimental results. This paper
is concluded in Sec. VI.

II. SYSTEM MODEL

Consider a broadcast single-hop wireless network with N
sources transmitting time-sensitive information to the Base
Station (BS) using Random Access. Let the time be slotted,
with mini-slot duration δ seconds and mini-slot index k ∈
{1,2, · · · ,K}, where Kδ is the time-horizon of this discrete-
time system. At the beginning of every mini-slot k, each source
i ∈ {1,2, · · · ,N} generates a new packet with probability
λi ∈ (0,1]. Let ai(k) be the indicator function that is equal
to 1 when source i generates a fresh packet in mini-slot k, and
equal to 0, otherwise. The packet generation process is i.i.d.
over mini-slots and independent across different sources, with
P(ai(k) = 1) = λi.

Queueing discipline. Sources keep only the most recently
generated packet, i.e. the freshest packet, in their transmis-
sion queue. When source i generates a new packet at the
beginning of mini-slot k, older packets are discarded from
its transmission queue. This queueing discipline is known to
optimize the AoI in a variety of contexts [37]–[39]. Notice
that delivering the most recently generated packet provides the

Fig. 1. Illustration of the Random Access network and associated timeline
with packet generation, transmission and collision events.

freshest information to the BS. Moreover, notice that when
a packet with older information is delivered after a packet
with fresher information, the information freshness at the BS
is not affected. Hence, discarding older packets from the
transmission queue when a fresher packet is generated has
no effect on the information freshness.

Random Access mechanism. When there is a transmission
opportunity in mini-slot k and source i has an undelivered
packet, then source i starts transmitting with probability
µi ∈ (0,1], and idles with probability 1− µi. The mini-slot
duration δ is set to the time needed for any source to detect a
transmission from other sources. Hence, if source i is the only
source to start transmitting in mini-slot k, then all other sources
detect the transmission by the beginning of mini-slot k+1 and
defer new transmissions until source i stops transmitting. As
a result, if source i is the only source to start transmitting in
mini-slot k, then this transmission is successful. Otherwise, if
two or more sources start transmitting in the same mini-slot k,
then there is a packet collision and the BS is unable to receive
these packets. After the collision, sources continue to employ
Random Access to retransmit their undelivered packets. The
duration of a collision or a successful packet transmission is
L mini-slots, as illustrated in Fig. 1. We assume that there are
no hidden/exposed sources and that the feedback from the BS
is instantaneous and without error.

Definition of epoch. Sources continually sense the wireless
channel and defer transmissions until the channel is idle.
Transmission opportunities occur when the channel is idle
at the beginning of a mini-slot. Denote by epoch the time
interval between two consecutive transmission opportunities,
let t ∈ {1,2, · · · ,T} be the epoch index, where T is the total
number of epochs, and let X(t) be the number of mini-slots
contained in epoch t. It follows that X(t) = L mini-slots when
epoch t is busy, i.e. contains a transmission attempt, and
X(t) = 1 mini-slot when epoch t is idle. By dividing the time-
horizon into epochs, we obtain K = ∑

T
t=1 X(t). In Fig. 1, we

have K = 20 mini-slots and T = 12 epochs. Notice that each
epoch is associated with a single transmission opportunity.

A. Transmission probability

Source i can transmit at the beginning of every epoch
in which its transmission queue has a packet. Let qi(t) be
the probability of source i transmitting a packet in epoch t.
Naturally, if the transmission queue is empty, then qi(t) = 0,



and if the transmission queue has a packet, then qi(t) = µi. It
follows that the probability of epoch t being idle, containing a
successful packet transmission from source i, and containing
a packet collision are given by

P I(t) =
N

∏
i=1

(1−qi(t)) ; (1a)

P S
i (t) = qi(t)

N

∏
j=1, j 6=i

(1−q j(t)) ; (1b)

PC(t) = 1−P I(t)−
N

∑
i=1

P S
i (t) , (1c)

respectively. Notice that P I(t), P S
i (t), and PC(t) depend on

the state of the transmission queues of every source in the
network. For simplicity, and since we do not assume global
knowledge of the state of the queues, we approximate the
transmission probability in epoch t, qi(t), by its expected time-
average qi = limT→∞ ∑

T
t=1E[qi(t)]/T . Equivalent approxima-

tions are employed in various works that analyze Random
Access networks, such as [29], [35], [40], [41]. In Secs. III
and V, we compare the analytical model with simulation and
experimental results, and validate this approximation.

To obtain a closed-form expression for the transmission
probability qi, we consider the time interval between two
consecutive packet deliveries from source i, and divide this
interval into two parts: before and after a new packet genera-
tion. Let NB

i be the number of consecutive epochs following
the start of the interdelivery interval (i.e., after the successful
packet transmission) and preceding the packet generation, and
let NA

i be the number of consecutive epochs following the
packet generation and preceding the actual packet delivery, as
illustrated in Fig. 1. Let XB

i (t) be the number of mini-slots
contained in epoch t ∈ {1, · · · ,NB

i } within the interval NB
i ,

and let XA
i (t) be the number of mini-slots contained in epoch

t ∈ {1, · · · ,NA
i } within the interval NA

i . The sequence of packet
deliveries from source i is a renewal process and, thus, we can
employ the elementary renewal theorem [42, Sec. 5.6] to ob-
tain the following expression for the transmission probability

qi =
(E[NA

i ]+1)µi

E[NB
i ]+ (E[NA

i ]+1)
,∀i . (2)

Notice that the denominator in (2) represents the expected
number of transmission opportunities in the interdelivery
interval and the numerator in (2) represents the expected
number of transmission opportunities in which source i has
a packet to transmit. The expected number of mini-slots in the
interdelivery interval is discussed in Sec. III-A.

We define the probability that all nodes other than i are idle
during an arbitrary epoch t as

Q−i =
N

∏
j=1, j 6=i

(1−q j) . (3)

Proposition 1. The expected time-average transmission prob-
ability of source i is given by

qi =

(
(1−λi)

LQ−i

1− (1−λi)Q−i− (1−λi)L(1−Q−i)
+

1
µi

)−1

. (4)

Proof. To obtain the transmission probability in (4), we start
by deriving expressions for E[XB

i ] and E[XA
i ]. Then, we use

these expected values, the law of iterated expectations, and
the fact that XB

i (t) are i.i.d. over time to derive expressions
for E[NB

i ] and E[NA
i ]. Finally, we substitute E[NB

i ] and E[NA
i ]

into (2) to obtain (4). The details are omitted due to the space
constraint.

Notice from (4) that, as expected, qi ∈ (0,µi]. Moreover,
notice that changing the packet generation probability λi or the
conditional transmission probability µi of a particular source i,
changes the transmission probability q j of all sources in the
network. In particular, changing λi or µi, changes qi according
to (4). In turn, qi affects Q− j,∀ j 6= i, which affects the
transmission probabilities q j of all sources in the network. The
set of functions {qi}N

i=1 captures the influence that one source
has on other sources in the network. This set of functions
is further discussed in Secs. III and IV. Next, we develop a
framework for analyzing information freshness.

III. ANALYSIS OF AGE OF INFORMATION

In this section, we derive analytical expressions for the
interdelivery interval, packet delay and AoI, and then, compare
the analysis with simulation results. In Sec. IV, we use this
framework to optimize Slotted-ALOHA and CSMA networks
in terms of AoI.

A. Interdelivery interval

The sequence of packet deliveries from source i is a renewal
process. For this reason, henceforth in this section, we focus
on a single interdelivery interval. Consider the interdelivery
interval in Fig. 1. Let Ii be the number of mini-slots between
two consecutive packet deliveries from source i. It follows that

E[Ii] = E

NB
i

∑
t=1

XB
i (t)+

NA
i

∑
t=1

XA
i (t)+L

 , (5)

where the first and second sums on the RHS of (5) represent
the total number of mini-slots in the time intervals NB

i and
NA

i , respectively.

Proposition 2. A (tight) lower bound on the expected inter-
delivery interval is given by

E[Ii]≥
(1−λi)

L

λi
+

(
L

1−Q−i

Q−i +1
)

1
µi

+L−1 . (6)

Proof. To obtain the lower bound in (6), we derive expressions
for the first and second sums on the RHS of (5). The expected
value of the second sum ∑

NA
i

t=1 XA
i (t) can be obtained by



employing Wald’s equality [42, Sec. 5.5] and then using
E
[
NA

i
]

and E
[
XA

i (t)
]
, as follows

E

NA
i

∑
t=1

XA
i (t)

= E
[
NA

i
]
E
[
XA

i (t)
]

=
1−µiQ−i

µiQ−i

[
(1−µi)Q−i

1−µiQ−i +L
1−Q−i

1−µiQ−i

]
. (7)

Notice that we cannot employ Wald’s equality to find an
expression for the first sum ∑

NB
i

t=1 XB
i (t). This is because the

random variables XB
i (t) and NB

i are dependent. Recall that
packet generation events occur at the beginning of mini-
slots, as opposed to epochs. Hence, if the epoch duration
XB

i (t) increases, the number of epochs until the first packet
generation NB

i decreases. To obtain an approximate expression

for the first sum, we use the lower bound Y B
i ≤ ∑

NB
i

t=1 XB
i (t),

where Y B
i is the number of mini-slots that precede the first

packet generation. The probability distribution of Y B
i is given

by

P(Y B
i = 0) = 1− (1−λi)

L ; (8a)

P(Y B
i = k) = (1−λi)

L+k−1
λi,∀k ∈ {1,2, · · ·} , (8b)

where (8a) represents the probability of source i generating a
new packet while delivering the previous packet or in the first
mini-slot after the delivery, and (8b) represent the probability
of source i generating a new packet k + 1 mini-slots after
delivering the previous packet. From (8a) and (8b) we obtain
the lower bound

E[Y B
i ] =

(1−λi)
L

λi
≤ E

NB
i

∑
t=1

XB
i (t)

 . (9)

Substituting (7) and (9) into the interdelivery interval in (5)
gives (6).

Notice that if the packet generation occurs during a busy
epoch, as illustrated in Fig. 1, then Y B

i ≤ ∑
NB

i
t=1 XB

i (t) ≤ Y B
i +

L− 1. Otherwise, if the packet generation occurs during an
idle epoch, then Y B

i = ∑
NB

i
t=1 XB

i (t). The approximation E[Y B
i ]≈

E[∑NB
i

t=1 XB
i (t)] simplifies the analysis and is particularly accu-

rate in networks with small value of L and/or low transmission
probabilities qi. In Slotted-ALOHA networks, in which L = 1,
we have E[Y B

i ] = E[∑NB
i

t=1 XB
i (t)] and the lower bound on the

interdelivery interval in (6) holds with equality. Numerical
results in Sec. III-C show that the lower bound in (6) is tight
in a wide range of network configurations, including CSMA
networks with large L, and is particularly accurate near the
point of optimal AoI. Next, we derive an analytical expression
for the Age of Information.

B. Age of Information

Consider the interdelivery interval in Fig. 2, and assume that
packets are time-stamped upon arrival. Naturally, the higher
the time-stamp of a packet, the fresher the information con-
tained in this packet. Let τi(k) be the time-stamp of the freshest

Fig. 2. Timeline with packet generation, transmission and collision events,
and associated packet delay zi and AoI evolution ∆i(k).

packet received by the BS from source i at the beginning of
mini-slot k. Then, the AoI is defined as ∆i(k) := k−τi(k). The
AoI captures how fresh the information is from the perspective
of the BS. The value of ∆i(k) increases linearly over time while
no packet is received, representing the information at the BS
getting older. At the beginning of the mini-slot that follows
a packet delivery from source i, the value of τi(k) is updated
to the time-stamp of the new packet, and the AoI is reduced
to the packet delay, namely ∆i(k) = zi = k−τi(k), where zi is
the delay associated with the freshest packet delivered from
source i. The evolution of AoI and its relationship with the
packet delay are illustrated in Fig. 2.

To capture the Age of Information in the entire network, we
define the infinite-horizon expected network AoI (NAoI) as

NAoI := lim
K→∞

1
KN

K

∑
k=1

N

∑
i=1

E [∆i(k)] . (10)

Theorem 3. The expected NAoI is (accurately) approximated
by

NAoI ≈ 1
N

N

∑
i=1

(
1−λi

λi
+

(
L

1−Q−i

Q−i +1
)

1
µi

)
+

+
1

2N

N

∑
i=1

(1−λi)
L

λi

[
2
λi

+L−1
]
− (L−1)

[
1
µi
−1
]

(
(1−λi)

L

λi
+

(
L

1−Q−i

Q−i +1
)

1
µi

+L−1
)+

+
3(L−1)

2
. (11)

Proof. To obtain an expression for the infinite-horizon ex-
pected network AoI in (10), we first analyze the evolution
of ∆i(k) over time, and then we employ tools from Renewal
Theory. From Fig. 2, it can be observed that in an interdelivery
interval with duration Ii mini-slots and packet delay zi mini-
slots, the value of ∆i(k) evolves according to the sequence
zi,zi + 1, · · · ,zi + Ii− 1. The sum of AoI in this interdelivery
interval is ziIi + Ii(Ii−1)/2.

The sequence of packet deliveries over time is a renewal
process. This fact allowed us to use Renewal Theory to
obtain the expression for the transmission probability qi in
(2). However, since the packet delay is not independent across
consecutive interdelivery intervals - notice from Fig. 2 that the



value of the packet delay is upper bounded by the previous
interdelivery interval - we cannot use Renewal Theory to
obtain an expression for NAoI.

To overcome this challenge, we define the augmented packet
delay z̃i ∈ {L,L+1, · · ·}, which is unbounded and independent
across interdelivery intervals. The augmented packet delay is
an upper bound on the packet delay, namely zi ≤ z̃i, with prob-
ability distribution P(z̃i = L+ k) = (1−λi)

kλi,k ∈ {0,1, · · ·}.
This upper bound is particularly tight when the interdelivery
intervals Ii are large and/or the packet generation probability
λi is high. Using the elementary renewal theorem for renewal-
reward processes [42, Sec. 5.4] and the augmented packet
delay z̃i into (10), we get

lim
K→∞

1
KN

K

∑
k=1

N

∑
i=1

E [∆i(k)]≤
1
N

N

∑
i=1

E[z̃iIi + Ii(Ii−1)/2]
E[Ii]

= E[z̃i]+
E[I2

i ]

2E[Ii]
− 1

2
. (12)

Substituting the first and second1 moments of the interdelivery
interval, and the first moment of the augmented packet delay
into (12), we obtain the approximated expression for NAoI in
(11).

C. Numerical Results

In this section, we consider symmetric Random Access
networks with N = 10 sources, packet generation probabilities
λi = λ ,∀i, and conditional transmission probabilities µi =
µ,∀i, in four different settings: Slotted-ALOHA networks with
L = 1 and two values of λ ∈ {0.05,0.5}; and CSMA networks
with L= 50 and two values of λ ∈{0.05,0.5}. We simulate the
Random Access networks described in Sec. II, and compare
the simulation results with the analytical expressions of the
transmission probability q in (4) and NAoI in (11).

In Figs. 3, 4, 5, and 6, we simulate networks with increasing
conditional transmission probability µ ∈ (0,1]. In Figs. 3
and 4, we simulate Slotted-ALOHA networks with packet
transmission duration of L = 1 mini-slot, and in Figs. 5 and
6, we simulate CSMA networks with L = 50. In Figs. 3 and
5, we plot the network AoI, and in Figs. 4 and 6, we plot the
transmission probability q. Simulations have a time-horizon
of K = 20× 106 mini-slots, each mini-slot with normalized
duration δ = 1.

From Figs. 3, 4, 5, and 6, it is evident that the analytical
expressions for q and NAoI developed in Secs. II and III,
respectively, closely follow the simulation results in a wide
range of network configurations, including low and high values
of packet transmission duration L ∈ {1,50}, low and high
packet generation probabilities λ ∈ {0.05,0.5} and conditional
transmission probabilities µ in the interval (0,1].

By comparing Figs. 3 and 5, we can observe that networks
with larger packet duration L are less sensitive to changes
in the packet generation probability λ . Recall that λ directly
affects the number of epochs in which the transmission queue

1A lower bound on the second moment of the interdelivery interval can
be obtained using a similar approach as in Proposition 2.

Fig. 3. Simulation of symmetric Slotted-ALOHA networks with L = 1,
increasing conditional transmission probability µ and two different packet
generation probabilities λ .

Fig. 4. Simulation of symmetric Slotted-ALOHA networks with L = 1,
increasing conditional transmission probability µ and two different packet
generation probabilities λ .

is empty NB
i and the packet delay zi. A larger L significantly

reduces NB
i and increases the interdelivery interval Ii, which

reduces the impact of NB
i and zi on the NAoI performance, thus

making the network with larger L less sensitive to variations
in λ .

Figures 3 and 5 also show that: 1) a sub-optimal operating
point µ can severely degrade the NAoI performance of the net-
work; and 2) the point of minimum NAoI changes significantly
in different network settings. Both observations highlight the
importance of optimizing NAoI in Random Access networks,
which is addressed in the next section.

Figures 4 and 6 show that for high L and/or high λ , the
transmission probability q is comparable to the conditional
transmission probability µ , i.e. q≈ µ . In contrast, when λ is
low, the relationship between q and µ , which is governed by
the iterated function q = g(q,µ,λ ) in (4), is more involved.
Notice that the plot in Fig. 4 for networks with L = 1 shows
a discontinuity around µ = 0.4 when λ = 0.05. In turn, for
networks with L= 50, this discontinuity appears for λ < 0.002.
Figure 7 shows the discontinuity for λ ∈ {0.0013,0.0019}.
This discontinuity plays an important role in the optimization
of NAoI, as we will discuss in Propositions 4 and 6.



Fig. 5. Simulation of symmetric CSMA networks with L = 50, increasing
conditional transmission probability µ and two different packet generation
probabilities λ .

Fig. 6. Simulation of symmetric CSMA networks with L = 50, increasing
conditional transmission probability µ and two different packet generation
probabilities λ .

IV. NETWORK OPTIMIZATION

In this section, we optimize NAoI in symmetric Ran-
dom Access networks with packet generation probabilities
λi = λ ∈ (0,1],∀i, and conditional transmission probabilities
µi = µ ∈ (0,1],∀i. In particular, we find the optimal value of µ

in terms of the parameters (N,L,λ ) for three important cases:
1) Slotted-ALOHA networks, in which L = 1; 2) saturated
CSMA networks, in which L > 1 and packets are generated
on demand, i.e. λ = 1; and 3) general CSMA networks with
low packet generation probability λ � 1. Then, we show that
the three cases are strongly interconnected. In particular, we
show that the results of the third case subsume the results
of the first two cases. In Sec. V, we compare the analytical
optimization of NAoI with experimental and numerical results.

A. Slotted-ALOHA networks

Consider a symmetric Slotted-ALOHA network. Substitut-
ing L = 1 into the expression of NAoI in (11), we obtain

NAoI ≈ 1−λ

λ
+

1
µQ

+

1−λ

λ 2

1−λ

λ
+

1
µQ

, (13)

Fig. 7. Simulation of symmetric CSMA networks with L = 50, increasing
conditional transmission probability µ and two different packet generation
probabilities λ .

where Q = (1− q)N−1 is the probability that all but one of
the nodes are idle during an arbitrary epoch t and q is the
transmission probability given by

q =
1

1−λ

λ
Q+

1
µ

. (14)

Proposition 4. In a symmetric Slotted-ALOHA network, the
solution candidates µ ∈ (0,1) for the NAoI minimization are
given by

µ
(1) =

1

N− 1−λ

λ

(
1− 1

N

)N−1 ; (15a)

µ
(2) =

q(2)

1−
√

1−λ
; (15b)

µ
(3) =

(
q(3)
)2

(N−1)

q(3)N−1
, (15c)

where q(2) ∈ (0,1) and q(3) ∈ [1/N,1) are the solutions to the
equations below

q(2)
(

1−q(2)
)N−1

=
λ√

1−λ
; (16a)(

q(3)
)2(

1−q(3)
)N−2

=
λ

(1−λ )(N−1)
. (16b)

Proof. To find the value of µ ∈ (0,1) that minimizes NAoI,
we analyze (13). The challenge is that the expression of NAoI
in (13) is a function of µ , λ , and q, where q is not directly
controllable. The transmission probability q is determined by
the iterated function q = g(q,µ,λ ) in (14). To simplify the
expression of NAoI, we substitute (14) into (13), which gives

NAoI ≈ 1
q(1−q)N−1 +

1−λ

λ 2 q(1−q)N−1 , (17)

where q(1−q)N−1 is the probability of a successful transmis-
sion from any given source i.

By analyzing the expression of NAoI in (17) and its partial
derivative with respect to q, and then analyzing the iterated
function in (14) together with its first and second partial



derivatives, we obtain the solution candidates in (15a)-(15c).
Notice that the analysis of the iterated function is non-trivial,
since the associated fixed points q are not guaranteed to span
the entire interval (0,1) due to the discontinuities displayed in
Figs. 4 and 7. The complete proof is omitted due to the space
constraint.

Global minimum NAoI. For a given packet generation
probability λ ∈ (0,1], we calculate the solution candidates
µ( j), for j ∈ {1,2,3}, using (15a)-(16b). Then, we substitute
λ and µ( j) into (14) to find the associated transmission
probability q. Finally, by substituting λ , µ( j) and q into the
NAoI expression in (13), we can find and compare the values
of NAoI from the different solution candidates. The solution
candidate that yields the lowest NAoI is the global minimizer.
Notice that this is a low-complexity procedure. Equations
(16a) and (16b) have up to four solutions, meaning that the
total number of solution candidates from (15a)-(15c) is at most
five, for any values of N and λ .

B. Saturated CSMA networks

In this section, we optimize NAoI in symmetric CSMA
networks with sources that generate packets on demand, i.e.
λ = 1.

Proposition 5. In a symmetric CSMA network with λ = 1,
and large values of N and L. The value of µ that minimizes
NAoI is given by

µ
∗ ≈ 1

N

√
2
L
. (18)

Proof. Substituting λ = 1 into the expression of the trans-
mission probability q in (4), yields q = µ . Taking the partial
derivative of NAoI in (11) with respect to µ gives

2(L−1)
µ2 − 2L(1−Nµ)

µ2(1−µ)N +
L(L−1)N(1−µ)N−1

(L− (L−1)(1−µ)N)2 . (19)

Since the first and second terms of the partial derivative in
(19) are dominant, especially for CSMA networks with large
L, we neglect the third term, equate the partial derivative to
zero, and obtain

(L−1)(1−µ)N = L(1−Nµ) , (20)

which has a unique solution µ∗ ∈ (0,1/N]. Then, we approxi-
mate (1−µ)N in (20) by its second degree Taylor Polynomial
to obtain the closed-form solution

µ
∗ ≈ −N +

√
N2 +2(L−1)N(N−1)
(L−1)N(N−1)

. (21)

Notice that when N and L are large, equation (21) is equivalent
to (18).

C. General CSMA networks

In this section, we optimize NAoI in symmetric CSMA
networks with low packet generation probability, λ � 1, and
then discuss the relationship between the NAoI optimization
for general CSMA networks, saturated CSMA networks, and
Slotted-ALOHA networks.

Proposition 6. In a symmetric CSMA network with λ � 1.
The solution candidates µ ∈ (0,1) for the NAoI minimization
are given by

µ
( j) =

(
1

q( j)
− (1−λ )LQ( j)

1− (1−λ )Q( j)− (1−λ )L(1−Q( j))

)−1

,

(22)
for j ∈ {1,2,3}, where Q( j) = (1− q( j))N−1 and q( j) ∈ (0,1)
are the solutions to the equations below

(L−1)
(

1−q(1)
)N

= L
(

1−Nq(1)
)
, (23a)

(
q(2)
)2 [

1−q(2)
]N−2

=

λ

[
L− (L−1)

(
1−q(2)

)N−1
]2

(1−λL)L(N−1)
,

(23b)
and

2λ
2L2
(

1−q(3)
)2
−4λ

2(L−1)L
(

1−q(3)
)N+2

+

+
(

1−q(3)
)2N

λ
2L(L−1)

(
3
(

q(3)
)2
−4q(3)+2

)
+

−
(

1−q(3)
)2N

λ
22(L−1)

(
1−q(3)

)2
+

+
(

1−q(3)
)2N (

q(3)
)2

(λ (L+1)−2) = 0 . (23c)

Proof. The proof follows similar steps as Proposition 4. The
main difference is that the expressions for NAoI in (11) and
the iterated function in (4) are more challenging to analyze
for CSMA networks than for Slotted-ALOHA networks. To
simplify the analysis of (4) and (11) for networks with λ � 1,
we use the binomial approximation (1− λ )L ≈ 1− λL. The
complete proof is omitted due to the space constraint.

Global minimum NAoI. To find the solution candidate µ( j)

that yields the lowest NAoI, we follow the low-complexity
procedure described at the end of Sec. IV-A using the results in
Proposition 6, the expression for the transmission probability
q in (4), and the expression for NAoI in (11). After running
this procedure for various network configurations, we observe
that in practice the candidate µ(2) associated with (23b) is the
minimizer when λ is low, the candidate µ(1) associated with
(23a) is the minimizer when λ is (relatively) high, and the
candidate µ(3) associated with (23c) is never the minimizer.
This observation is illustrated in Sec. V-B.

Propositions 4, 5 and 6 determine the optimal value of
µ for Slotted-ALOHA networks, saturated CSMA networks
with λ = 1 and general CSMA networks with λ � 1, re-
spectively. Despite these differences, we show that the three
propositions are strongly interconnected. In particular, we
show that the results in Propositions 4 and 5 are special cases
of Proposition 6. Consider (23a)-(23c) from Proposition 6.
Notice that when λ = 1, the equation in (23a) is equivalent
to (20) from Proposition 5, and when L = 1, the equation in
(23a) yields (15a) from Proposition 4. Similarly, it is easy
to see that when L = 1, the equations in (23b) and (23c) are
equivalent to (16b) and (16a) from Proposition 4, respectively.



Hence, the results in Proposition 6 apply not only to CSMA
networks with λ � 1, but also to Slotted-ALOHA networks
with λ ∈ (0,1], and to CSMA networks with λ = 1. Thus,
we conjecture that the solution candidates µ for the NAoI
minimization given in Proposition 6 are a good approximation
to the optimal solution for general Random Access networks
with arbitrary parameters (N,L,λ ). Next, we validate this
conjecture by comparing the analytical optimization of NAoI
in Proposition 6 with experimental and numerical results.

V. EXPERIMENTAL AND NUMERICAL RESULTS

In this section, we describe the experimental setup and then
compare the analytical expressions for the NAoI performance
(Theorem 3) and NAoI optimization (Proposition 6) with
numerical and experimental results. Prior to delving into the
details of the experimental setup, we describe the key charac-
teristics of the optimized CSMA network that we implemented:
• sources use queues that keep only the freshest packet, as

described in Sec. II;
• sources have a conditional transmission probability µ

that can be tuned to the optimal value. To adjust the
conditional transmission probability to a given µ ′ ∈ (0,1],
we set2 the contention window of the Distributed Coor-
dination Function (DCF) to W = 2/µ ′− 1, as proposed
in [40, Eq.(8)]; and

• the BS has a time-stamp manager that logs the evolution
of ∆i(k) over time for every source in the network. Notice
that keeping track of ∆i(k) = k− τi(k) requires that all
nodes in the network are synchronized.

A. Experimental Setup

We implement the optimized CSMA network in the FPGA-
based Software Defined Radio (SDR) testbed in Fig. 8 com-
posed of one NI USRP 2974 operating as the Base Station, and
ten sources: seven NI USRP 2974 and three NI USRP 2953R.
The code is developed using a modifiable WiFi reference
design [47] with Transport layer based on UDP, MAC layer
based on DCF, PHY layer based on the IEEE 802.11n standard
with center frequency 2.437 GHz, bandwidth of 20 MHz,
mini-slot duration of δ = 9µsecs, and a fixed MCS index
of 5. We use this WiFi reference design as a starting point,
and implement the queueing discipline, the mechanism for
adjusting µ , and the time-stamp manager at the FPGA of the
SDRs using hardware-level programming.

B. Results and Discussion

In this section, we evaluate the NAoI performance and
optimization using experimental, numerical, and analytical
results. We consider a network with N = 10 sources, L = 50
mini-slots, mini-slot duration of δ = 9µsecs, and different
values of λ and µ , and we compare:

2In this paper, we manually set W = 2/µ ′−1. Distributed algorithms that
can dynamically tune µ aiming to maximize throughput in CSMA networks
were developed in various works including [43]–[46]. Similar algorithms
can be used to tune µ for minimizing NAoI. The implementation of such
algorithms is out of the scope of this paper.

Fig. 8. Software Defined Radio testbed.

TABLE I
NAOI PERFORMANCE (IN MILLISECONDS) FROM THE EXPERIMENTS WITH

THE SDR TESTBED, FROM THE SIMULATION RESULTS, AND FROM THE
ANALYTICAL EXPRESSION IN THEOREM 3.

Experimental results

W 8 16 32 64 128 256

λ = 2.25×10−3 12.82 6.79 6.77 7.11 8.39 9.10
λ = 4.5×10−3 25.24 6.89 6.50 7.09 7.82 8.56
λ = 9×10−3 24.21 8.46 6.89 6.41 7.50 8.79

λ = 45×10−3 20.87 9.13 6.38 5.98 6.43 7.56

Simulation results

W 8 16 32 64 128 256

λ = 2.25×10−3 10.97 6.40 6.18 6.43 6.95 8.73
λ = 4.5×10−3 20.02 8.45 6.40 5.78 5.93 7.19
λ = 9×10−3 21.58 8.91 6.62 5.80 5.85 6.96

λ = 45×10−3 22.93 9.56 6.84 5.81 5.74 6.72

Analytical Model

W 8 16 32 64 128 256

λ = 2.25×10−3 11.17 9.54 9.59 9.74 10.03 11.18
λ = 4.5×10−3 18.35 8.37 6.99 6.70 6.93 8.22
λ = 9×10−3 21.29 8.99 6.75 5.99 6.04 7.17

λ = 45×10−3 22.91 9.50 6.84 5.83 5.77 6.72

• Experimental results, in which we run the SDR testbed
for ten minutes and measure the time-average NAoI as
in (10). Each SDR generates packets of 280 bytes with a
period of δ/λ seconds and transmits these packets at a
rate of approximately 5Mbps, which gives a packet trans-
mission duration of approximately L = 50 mini-slots. For
each fixed value of λ ∈ {2.25,4.5,9,45}×10−3, we find
the optimal µ∗ by comparing the values of NAoI for dif-
ferent contention windows W ∈ {8,16,32,64,128,256}.
Recall that µ = 2/(W +1);

• Simulation results, in which we obtain NAoI by simu-
lating the Random Access network described in Sec. II
for a time-horizon of K = 20× 106 mini-slots. For each
fixed λ ∈ (0,1), we find the optimal µ∗ by comparing the
values of NAoI for different values of µ ∈ (0,1); and

• Analytical Model, in which we compute NAoI using
Theorem 3 and compute the optimal µ∗ associated with
a given λ ∈ (0,1) using Proposition 6.

In Table I, we display the NAoI performance from
experimental, simulation, and analytical results, for W ∈
{8,16,32,64,128,256} and λ ∈ {2.25,4.5,9,45}×10−3. The



results in Table I show that the analytical model closely
follows both the simulation and experimental results, and is
particularly accurate when λ is large. The lower accuracy
of the analytical model for small λ is a result of two ap-
proximations: 1) q(t) ≈ q, introduced in Sec. II-A; and 2)
z≈ z̃, introduced in the proof of Theorem 3. Notice that when
packet generation is infrequent, i.e. λ is small, the transmission
probability in epoch t is often q(t) = 0 and the time-averaged
transmission probability q can be larger than 0, depending
on µ , as illustrated in Figs. 4, 6, and 7, meaning that the
approximation q(t)≈ q may be inaccurate. In addition, when
λ is small, the packet delay z becomes an important factor
in the NAoI analysis, and the upper bound z ≤ z̃ becomes
less tight. In contrast, when λ is large, which is the region
of interest for the NAoI optimization, both approximations are
accurate.

The transmission probability q of the sources is directly
affected by W and λ . In particular, a larger W results in
lower µ and q, and a lower λ results in lower q. The results
in Table I reflect this relationship and its impact on the
NAoI performance. Notice that when the contention window is
large, e.g. W = 256, the transmission probability is (relatively)
low, and NAoI improves for larger λ . In contrast, when the
contention window is small, e.g. W = 8, the transmission
probability is (relatively) large, and NAoI improves for smaller
λ . As expected, this behavior is observed in the experimental,
simulation, and analytical results.

In Figs. 9 and 10, we display the optimal µ∗ and the
corresponding minimum NAoI∗, respectively, for different
values of λ ∈ (0,0.05]. For λ ≥ 0.05, we note that the
optimal conditional transmission probability remains constant
at µ∗ = 0.02 and the value of NAoI∗ decreases with λ ,
achieving NAoI∗= 5.58 milliseconds when λ = 1. The optimal
conditional transmission probability µ∗ from experimental
results is obtained using the measurements in Table I. Figures 9
and 10 show that the analytical results in Secs. III and IV
closely follow simulation and experimental results.

In Sec. IV-C, we noted that in practice the global minimizer
µ∗ obtained using Proposition 6 displays a threshold structure.
In particular, for each network configuration with parameters
(N,L), there exists a threshold λ ′ ∈ (0,1) such that, when
λ < λ ′, the minimizer is the candidate µ(2) associated with
(23b) and, when λ ≥ λ ′, the minimizer is the candidate µ(1)

associated with (23a). By matching the optimal values of
µ∗ from the analytical results in Fig. 9 with the solution
candidates µ( j) in Proposition 6, we find that the threshold
for N = 10 and L = 50 is λ ′ = 0.00187. This threshold
structure was found for various network configurations, and
it can be used to reduce the complexity of finding the global
minimizer µ∗ using Proposition 6. In addition, to further
reduce the complexity, we provide an approximate solution
for µ(1). Notice from (22) and (23a) that when λ is high, an
approximate solution for µ(1) and q(1) is given by

µ
(1) ≈ q(1) ≈ 1

N

√
2
L
= 0.02 , (24)

Fig. 9. Optimal conditional transmission probability µ∗ obtained from the
experiments with the SDR testbed, from the simulation results, and from the
analysis in Proposition 6.

Fig. 10. Optimal NAoI performance associated with the optimal µ∗.

which coincides with µ∗ in Fig. 9 for λ > 0.01.

VI. SUMMARY

In this paper, we studied AoI in networks employing Ran-
dom Access mechanisms. We considered a wireless network
with a number of nodes generating packets according to a
Bernoulli process and employing Slotted-ALOHA or CSMA
to transmit these packets to the BS. We proposed a framework
to analyze and optimize the average AoI in the wireless
network. In particular, we developed a discrete-time model
and derived expressions for: the time-average transmission
probability, a lower bound on the interdelivery interval, an
upper bound on the packet delay, and an (accurate) approx-
imation for the average AoI in the network. We then used
the analytical expressions to optimize the Random Access
mechanism in terms of AoI. Furthermore, we implemented
the optimized CSMA network in a Software Defined Radio
testbed and compared the AoI measurements with analytical
and numerical results in order to validate our framework. We
showed that the analytical results accurately track both the
simulation and experimental results. Our approach allowed us
to evaluate the combined impact of the packet generation rate,
transmission probability, and size of the network on the AoI
performance.
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