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ABSTRACT

We develop a simple model for the timely monitoring of correlated
sources over a wireless network. Using this model, we study how
to optimize weighted-sum average Age of Information (Aol) in the
presence of correlation. First, we discuss how to find optimal sta-
tionary randomized policies and show that they are at-most a factor
of two away from optimal policies in general. Then, we develop a
Lyapunov drift-based max-weight policy that performs better than
randomized policies in practice and show that it is also at-most a
factor of two away from optimal. Next, we derive scaling results
that show how Aol improves in large networks in the presence of
correlation. We also show that for stationary randomized policies,
the expression for average Aol is robust to the way in which the
correlation structure is modeled. Finally, for the setting where cor-
relation parameters are unknown and time-varying, we develop
a heuristic policy that adapts its scheduling decisions by learning
the correlation parameters in an online manner. We also provide
numerical simulations to support our theoretical results.
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1 INTRODUCTION

Monitoring, estimation, and control of systems are fundamental
and well studied problems. Many emerging applications involve
performing these tasks over communication networks. Examples
include: sensing for IoT applications, control of robot swarms, real-
time surveillance, search-and-rescue, and vehicle-to-vehicle (V2V)
communication. In these settings, achieving good performance
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requires timely delivery of status updates from sources to destina-
tions.

Age of Information (Aol) is a metric that captures timeliness of
received information at a destination [14, 15, 26]. Unlike packet
delay, Aol measures the lag in obtaining information at a destina-
tion node, and is therefore suited for applications involving time
sensitive updates. Age of information, at a destination, is defined
as the time that has elapsed since the last received information
update was generated at the source. Aol, upon reception of a new
update, drops to the time elapsed since generation of the update,
and grows linearly otherwise. Over the past decade, there has been
a rapidly growing body of work on analyzing Aol for queuing sys-
tems [1, 7, 8, 14, 15, 26], using Aol as a metric for scheduling policies
in networks [3, 11, 12, 27, 29, 31] and for monitoring or controlling
systems over networks [2, 16, 20, 23, 25]. For detailed surveys of
Aol literature see [17] and [24].

Typically, Aol is used as a metric for measuring freshness of
information being delivered about a source to a monitoring station.
It represents a measure of distortion between the state of the system
that is expected at the monitor based on past updates and the actual
current state of the system. Thus, a larger age corresponds to the
monitor having a higher uncertainty about the current state of
the system being observed. This, in turn, means that ensuring a
low average Aol can lead to higher monitoring accuracy or better
control performance. While Aol is a proxy for measuring the cost
of having out-of-date information, it may not properly reflect the
impact of stale information on system performance. For example, a
source might have a high Aol but the monitor might have a good
estimate of its state because another source monitoring phenomena
nearby sent updates very recently.

A typical problem formulation used to model networked monitor-
ing and control settings is one involving multiple sources sending
status updates to a central monitoring station. Many prior works
have looked at optimizing information freshness metrics for such
models under different assumptions on the interference constraints
[12, 27], arrival processes [10, 19], costs of Aol [11, 29], and update
sizes [19, 28]. However, all of these works assume that the informa-
tion across different sources is decoupled or uncorrelated, i.e. update
deliveries from one source only influence the Aol evolution for that
source.

This is not strictly true in practice. Many monitoring and con-
trol applications involve observing information from correlated or
coupled sources. Examples include: vehicular networks where vehi-
cles communicate with their neighbors, multi-agent robotics tasks
such as mapping where robots sense overlapping information, and
wireless sensor networks where sensors collect spatially correlated
updates or exchange information locally.

In such applications, updates from one source often contain
information about the current state of other sources. The focus
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Figure 1: Sources share information locally and send updates
to a base station.

of this work is to understand to role of correlation in designing
scheduling policies for information freshness in wireless networks.
In Sec. 2, we formulate a simple model to analyze weighted-sum
average Aol in the presence of correlated sources under wireless
interference constraints. In Sec. 3, we use this model to design
scheduling policies that can utilize the correlation structure be-
tween sources. We formulate a convex problem that solves for the
optimal stationary randomized policy and show that it is factor-2
optimal in general. We then develop a Lyapunov drift-based max-
weight policy that works well in practice and show that it is also
constant factor optimal. In Sec. 4, we provide scaling results that
allow us to understand how the degree of correlation affects in-
formation freshness. In Sec. 5, we discuss some alternate ways to
model correlation and show that the average Aol for these models
remains the same as our proposed model under randomized policies.
This highlights the robustness of our results to the way in which
correlation is modeled. In Sec. 6, we consider the setting where
correlation parameters are unknown and possibly time-varying.
Here, we propose a heuristic algorithm called EMA-max-weight
based on exponential moving averages. This algorithm attempts
to both keep track of the correlation parameters and adjust the
scheduling decisions in an online manner so as to keep information
fresh at the base station. Finally, in Sec. 7, we show numerically that
our proposed policies outperform scheduling schemes that ignore
the correlation structure inherent in the problem and verify our
theoretical results.

There has been some prior work in trying to understand how
correlation influences information freshness. In [22], the authors
consider updates from a single source that are temporally correlated.
In [5, 6], the authors consider a network of cameras with overlap-
ping fields of view and formulate a joint optimization problem that
looks at processing and scheduling. In [32], the authors consider a
setting with multiple sensors partially monitoring a single source,
where updates from at least M sensors are required to reconstruct
the state of the source. In [9], the authors consider spatially corre-
lated updates from a random field and study the optimal density
at which to place sensors. In [13], the authors consider a two hop
setting where sources can send updates to multiple sensors.

To the best of our knowledge, our work is the first one to consider
coupled Aol evolution. In our model, the Aol of other sources can
drop whenever a source that is correlated with them transmits,
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since a correlated update can reduce uncertainty about the state of
other sources. This couples the Aol evolution of sources and leads
to fundamentally new scheduling design and scaling results.

2 SYSTEM MODEL

Consider N sources monitoring phenomena of interest and send-
ing updates to a base station. We assume discrete slotted time and
assume that only one source can transmit to the base station suc-
cessfully in any given time-slot.

We consider a simple model for the correlation structure between
sources. At the beginning of every time-slot, each source i collects
information about its own state. In addition, with probability p;;,
the update collected by source i also contains information about the
current state of source j, for example due to overlapping fields of
view between source i and j or due to spatial correlation between
the processes being monitored. We assume that this information
sharing or overlap happens independently across each ordered pair
of sources and over time. Clearly, a value of p;; = 0 suggests that
there is never any information at i about j, while a value of p;; = 1
suggests that i has complete information about j at all times. The
overall correlation structure between the sources is described by
a matrix P which contains the pairwise correlation probabilities.
Figure 1 depicts an example of such a system, where sources have
access to some local information about their neighbors and send
updates to a base station. Note that p;; = 1 for all sources, since
each source is assumed to have information about itself. However,
our model can also capture situations where a source fails to obtain
information about itself occasionally, by setting p;; < 1.

When a particular source transmits to the base station, it sends
information about its own state to the base station. However, this
update will also contain shared information about some of its neigh-
boring sources. Thus, updates sent to the base station are correlated:
they can contain information about multiple sources at a time. For
example, when source 4 transmits to the base station in the setup
depicted in Figure 1, its transmission will contain information not
just about itself but also about source 1 with probability p4;, source
5 with probability p4s and source 8 with probability p4s.

While we focus on the broadcast interference setting with reli-
able channels to develop our results and insights, our work can be
easily extended to general interference constraints and unreliable
channels.

2.1 Age of Information

Let u;(t) be an indicator variable that denotes whether source i
transmits to the base station in time-slot ¢. Further let X;;(t) be
an indicator variable that denotes whether the current update at
source i contains common information about source j in time-slot
t. From our discussion above, we know that X;;(t) ~ Bern(p;;)
independent across pairs (i, j) and also over time.

Given this correlation structure, the Age of Information for
source i at the base station evolves as follows:

if 3w (0Xi(1) =1
otherwise.

Ai(t+1) = {1’ (1)

A;(t) +1,

The equation (1) implies that the Aol of source i at the base
station drops to 1 whenever i itself transmits a new update or j
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Figure 2: Correlated Aol evolution.

transmits a new update containing information about i. Figure 2
depicts this Aol evolution. Note that (1) also assumes that sources
only transmit their freshest update, i.e. an older update containing
more information about neighbors might not be sent since it was
replaced by a newer update with lesser information about neighbors
in the next time-slot.

The metric of interest in this work will be average Aol, which is
simply the long-term time-average of the Aol process. Specifically,

A; = limsup — ZA (1). (2)

T—oo
2.2 Goal

Given the probabilistic correlation structure and the Aol evolution
described above, we want to design a wireless scheduling policy
that minimizes the weighted sum of average Aol across all sources:

1315w

=1i

®)

argmm( lim sup
T—co

Here, the weights {w1, wa, ..., wn} are positive real numbers
that denote the relative importance of each source to the overall
monitoring or control application.

3 SCHEDULING POLICIES

To solve the optimization problem (3), we first study stationary
randomized policies in Sec. 3.1. These policies are amenable to
analysis and provide key structural insights. Then, in Sec. 3.2, we
develop a Lyapunov drift-based max-weight policy and prove per-
formance bounds for it using the structure of the optimal stationary
randomized policy.

3.1 Stationary Randomized Policies

A stationary randomized policy is described by a probability distri-
bution 7 over the set of sources, where 7; denotes the probability
of choosing source i. In every time-slot, the policy chooses which
source gets to transmit by sampling from the distribution 7 and
scheduling decisions are sampled independently across time-slots.

The following theorem relates the average Aol to the scheduling
distribution s.

Theorem 1. Consider any stationary randomized policy with
scheduling probabilities 7. IfZﬁ.V:l mipji > 0 for a source i, then the
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average Aol for this source is given by:

A; 2 lim —ZA (t) = 4)

—)OOT

J 1 ”JPJt

Ifzyzl mipji = 0 for some source i, then the base station never

receives any information regarding this source and its average Aol A;
is unbounded.

ProOF. See Appendix A in the technical report [30]. O

Using the above theorem, we can formulate an optimization
problem to find optimal stationary randomized policies.

Lemma 1. Consider the space of stationary randomized policies
1. Finding a policy w* € II°" that minimizes the weighted sum
of average Aol is equivalent to solving the following optimization
problem:

N
Wi

argmin ) —————
N
=1 Tjpji

=1

N
st Z”" <1,
i=1
m; > 0,Yi € [N].

Proor. Using the definition of average Aol (2) and the expres-
sion derived in Theorem 1, we can simplify (3) to obtain (5). The
constraints simply represent a valid stationary randomized policy
given the assumption that only one source can transmit in any
given time-slot. O

Next, we discuss how to solve the optimization problem (5).

Theorem 2. The optimization problem (5) is convex in the proba-
bility distribution st. Further, if the optimal solution it* to (5) is such
that w7 > 0,Vi € S where S C [N] is a subset of sources, then &t* can
be found by solving the following system of nonlinear equations:

ZPUWJ
Zn’f =1

ieS

- =AVies, and (6)

(7)

Here, A > 0 is a constant and A; denotes the average Aol for source i
under the policy m* computed using (4).

PRrOOF. See Appendix B in the technical report [30]. O

Theorem 2 establishes two key results. First, since the optimiza-
tion problem (5) is convex, it can be solved efficiently by using a
standard solver such as cvx [4]. Second, if the optimal policy in-
volves scheduling some subset of sources a positive fraction of the
time, then the quantity Zjil pijw jA? is constant across all sources
in this subset. This can be contrasted with the equivalent result in
the uncorrelated case, where the quantity w fA? is constant across
all sources [12]. We also recover the well known result from the
uncorrelated case, i.e. n;‘ oc \/wj if wesetP =1

Until now, we have only discussed optimization within the space
of stationary randomized policies. The following theorem shows
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that this class is not too restrictive, i.e. the best stationary random-
ized policies are at-most a factor of two away from the best possible
scheduling policy in general.

Theorem 3. Consider an optimal stationary randomized policy
7t* that is a solution to (5) and an optimal policy °P? that solves the
general problem (3). Let A* denote the average Aols under =* and
A°Pt denote the average Aols under m°P*. Then,

N _
2isg WiA] @)
N . jopt —
ity Wid;
Proor. See Appendix C in the technical report [30]. O

3.2 Max-Weight Policy

Motivated by the Lyapunov drift-based policies proposed in [12,
24, 27], we next look at an alternative way to design scheduling
policies that take correlation into account. Consider the quadratic
Lyapunov function given by:

N
L(t) £ ) widk (). ©
i=1

Then, the quadratic max-weight policy chooses a scheduling deci-
sion that minimizes the one-slot Lyapuonv drift in every time-slot.

aT"W(t) = argmin E|L(t + 1) — L(t) A(t)]. (10)
i€[N]
This simplifies to:
N
79V (1) = argmin ijpijAj(t)(Aj(t)"'z)- (11)
i€[N]

Jj=1
The following theorem provides an upper-bound on the perfor-
mance of the quadratic max-weight policy.

Theorem 4. Consider the quadratic max-weight policy m9™"
and an optimal policy n°P! that solves the general problem (3). Let
AI™ denote the average Aols under w9™" and A°P! denote the
average Aols under 7Pt Then,

N ) gmw
2=y Wil

(12)
N ropt
iy Wid

ProoF. See Appendix D in the technical report [30]. O

Observe that computing the decisions in the equation above
does not require us to explicitly solve for the optimal stationary
randomized policy 7*. Next, we will develop a max-weight policy
that utilizes the optimal stationary randomized policy 7* to get
even better performance guarantees.

Consider an optimal stationary randomized policy 7* that solves
the optimization problem (5). Using 7", we define the quantities:

(13)

— Vi€ [N].
L j=1 7P

A

a; =

We use the quantities ¢; to construct the following linear Lyapunov
function:

N
L(t) = Z aiAi(t). (14)
i=1
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Then, our new max-weight policy chooses a scheduling decision

that minimizes the one-slot Lyapuonv drift in every time-slot.
™Y (t) = argmin E|L(t + 1) — L(¢)

i€e[N]

(15)

A(t)].

The structure of the max-weight policy can be obtained by sim-
plifying the expression in (15) above:

N
7™Y(t) = argmin( ZpijajAj(t))
i€[N] \j=
(16)

= argmin(aiAi(t) + ZpijajAj(t)).
i€[N] JEi

Note that the max-weight policy proposed in [24, Sec. 3.2.4] for the
uncorrelated setting schedules the source i with the highest value
of 4/w;A;(t). On the other hand, our correlated max-weight policy
(16) adds up the “value” of each possible Aol reduction including
correlated updates, weighted by the of probability of correlation.

The following theorem shows that the new max-weight policy
defined in (16) enjoys a similar factor-2 optimality guarantee as
the optimal stationary randomized policy which is better than the
factor-4 guarantee for the quadratic max-weight policy described
in (11).

Theorem 5. Consider the max-weight policy & and an optimal
policy mw°P? that solves the general problem (3). Let A™" denote the
average Aols under 1™ and A°P! denote the average Aols under
%Pt Then,

Sy wiA
N  opr S 17)
Zz{\il WiA?pt

PRroOF. See Appendix E in the technical report [30]. O

While we show a factor of two optimality result above, we will
show via simulations in Sec. 7 that the max-weight policy performs
almost as well as the theoretical lower bound derived in Appendix
C in the technical report [30], and also outperforms the optimal
stationary randomized policy in practice.

4 SCALING

In this section, we consider how correlation improves information
freshness as network sizes scale. For deriving our scaling results,
we will focus on the equal weights setting, i.e. w; = ﬁ,Vi € [N].
However, similar scaling results will hold qualitatively for general
weight configurations.

The lemma below characterizes the minimum average Aol of
a network with N uncorrelated sources with equal weights. We
will use this as a comparison baseline to see how the degree of
correlation improves Aol.

Lemma 2. Consider N uncorrelated sources sending updates to
a base station. Let the scheduling weights for all sources be equal,
ie w; = ﬁ,\ﬁ. Then, the optimal weighted sum Aol satisfies the
following:

N
_ N+1
> widl! = T+ ~ O(N). (18)

i=1
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ProOF. In the setting with symmetric weights, the greedy or the
round-robin policy is known to be optimal [12]. It is easy to see
that the average Aol under the round-robin policy is simply the

average of the sequence 1,2, ..., N which is % O

4.1 An Upper Bound

We derive a general upper bound for the weighted-sum average
Aol by representing information about the correlation matrix P for
N sources with a directed graph.

Consider a correlation threshold p € (0,1). We are interested
in the entries of the correlation matrix above this threshold, i.e
the pairs of sources that are significantly correlated. To do so, we
construct a directed graph G(V, E) on the set of sources. For every
ordered pair of sources (i, j) such that p;; > p, we add the edge
(i, j) to the graph G. Trivially, every node in G must have a self-
loop, since p;; = 1,Vi. We will show that the average Aol of the
network can be upper-bounded by analyzing the properties of these
constructed graphs. To derive this upper bound, we first need to
define the notion of a vertex cover for a directed graph.

Vertex Cover: Given a directed graph G(V, E), a vertex cover is
defined to be a set of vertices S C V' if for every vertex i € V, there
exists a vertex j € S such that the edge (j, i) is in the set E.

The following theorem relates the average Aol to the size of
the minimum vertex cover of the graph G constructed using the
correlation threshold p.

Theorem 6. Consider N sources with the correlation matrix P.
Given a correlation threshold p > 0, construct a directed graph G
that represents pairs of source with correlation higher than the thresh-
old. Assuming equal weights w; = %, Vi, the optimal weighted sum
average Aol satisfies:

N

- N,
ZwiA;’P' < = (19)
i=1 p
where N¢oy is the size of a minimum vertex cover for the graph G
and p is the correlation threshold.

PRrROOF. See Appendix A. O

This upper-bound allows us to relate the degree of correlation
or information sharing between the sources to the average Aol.
If a small subset of sources, of say size O(log N), are highly cor-
related with all other sources in the network, then average Aol
with correlation is only O(log N) as well. In this case, correlation
leads to a significant reduction in the average Aol compared to the
uncorrelated case, which is O(N) as shown in Lemma 2. If no such
small vertex coverings exist or if correlation probabilities are very
small, then a scheduler likely needs to communicate with a large
fraction of all the sources and the average Aol would grow as O(N),
similar to the uncorrelated case.

Further, we show that it is possible to construct a correlation
matrix such that the average Aol of the correlated max-weight
given by (16) is O(1) while the average Aol of the uncorrelated max-
weight policy from [12] is ®(N). This means that the performance
gap between policies that consider and ignore correlation can grow
linearly with the size of the network.
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Theorem 7. Given any number of sources N with equal weights
ﬁ, we consider two policies - the correlated max-weight policy 7™
proposed in Sec. 3.2 and the max-weight policy that does not take cor-
relation into account % which was proposed in [12]. Let the average
Aol of a source i under 7™ be A;"W and under % be A;‘. Then, there
exists a correlation matrix P € [0, 11NN such that the following
holds:

Zz{il wiAf

ZELTEL L Q(N).
Z{\il wid["

(20)

Proor. Consider N sources with the following correlation ma-
trix:

1 p p p

p 1 0 0
p=|P 0 1 01, (21)

S 1

0 0 e 1

The stationary randomized policy 7 that puts all scheduling
weight on source 1 achieves a weighted-sum Aol of:

N1 Yoo
ZW;’A,'=N+ N—S—.
i=1 i=2 p p

Thus, the optimal stationary randomized policy z* also achieves
weighted-sum average Aol that is at-least as good as that of x.

This implies:
g1
Z WlA;k = 1—),
i=1

where A:.‘ is the average Aol of source i under the optimal stationary
randomized policy n*. In Appendix E in the technical report [30],
we show that the performance of the max-weight policy is upper-
bounded by the policy of the optimal stationary randomized policy.

Thus, we get:
N N 1
DIwAY <Y widf < -,
i=1 i p

(22)

(23)

(24)

I
-

where A" is the average Aol of source i under the max-weight
policy #™" described by (16).

Now consider the performance of the uncorrelated max-weight
policy z*. Since all the weights are symmetric, the optimal policy
is greedy or max-Aol-first. In Appendix G in the technical report
[30], we show that the max-Aol-first policy behaves similar to a
round-robin policy on sources 2, ..., N while occasionally scheduling
source 1. Specifically, we derive a lower bound on the weighted-sum
Aol under policy m*:

N 2
_ N-1
Z wiAY > o~ ; ) — (25)
" -(N+1)(1-p)
This bound holds under the assumtion that p > ﬁ Combining
(24) and (25), we get:
N AU
Y w; Al N-1 2
Zl—l Ll P( ) (26)

IN wiAmY T 2N~ (N+1)(1-p)N-1

Assuming p to be a fixed constant that does not depend on N
completes the proof. Note that a similar result also holds for p
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scaling with N, for example if p ~ ﬁ, B < 1 the performance gap
is Q(N1-5). o

The intuition behind this result is straightforward: if there is
one source that is correlated even by a small amount with all other
sources then scheduling just that source all the time should be
sufficient. The gap in performance is achieved by assuming that
other sources are not correlated with each other.

Theorem 7 provides a key insight: the gain in performance cannot
be obtained by using policies that ignore correlation. It is necessary
to design scheduling policies that take the correlation structure
into account, especially for correlation graphs where the degree
distribution is highly skewed. Next, we consider scaling in the
special case where the correlation matrix can be represented by
random geometric graphs. These graphs are commonly used to
model wireless sensors networks monitoring spatial phenomenon.

4.2 Random Geometric Graphs

Consider N sources distributed uniformly at random on the unit
square [0, 1]2. Each source has information about itself, by defi-
nition. Thus p;; = 1, Vi. Further, if the distance between sources i
and j is less than a threshold r, then we set p;; = p and pj; = p,
otherwise we set p;; = 0 and pj; = 0. This leads to a symmetric
correlation matrix P. Constructing a graph that connects sources
with correlation leads to the random geometric graph G(N, r).

The following theorem looks at the scaling of Aol under this
geometric correlation structure.

Theorem 8. Consider a symmetric correlation matrix generated
by creating a random geometric graph G (N, r) on the two dimensional
unit square and setting correlation probabilities for neighbors to be p.
Assuming equal weights w; = ﬁ Vi, the weighted sum average Aol

satisfies:
J 2
Z wiAP < = 27)
i=1 pr
Proor. See Appendix H in the technical report [30]. O

Note that the connectivity threshold of a random geometric

graphs occurs at r ~ @(\/ lmgTN) For this choice of r, we can see

that the overall Aol of the network is O . This leads to a

_N
plogN
factor of log N reduction over the uncorrelated case analyzed in
Lemma 2, assuming p is a constant. Further, if r ~ ©(1), then the
Aol is also ©(1) and there is factor of N reduction in Aol compared
to the uncorrelated case.

5 ROBUSTNESS

In this section, we consider a different way to model correlation
between a set of sources. We will show that for stationary random-
ized policies, this model is equivalent to our proposed model. Later,
in Sec. 7, we will show via numerical results that the scheduling
policies designed in Sec. 3 also perform well for this new correlation
structure. This suggests that if the “amount of correlation” is the
same on average, then the Aol performance tends to be similar,
regardless of how correlation is modeled.
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As before, consider a set of N sources and a correlation matrix P
with entries p;; € [0, 1] that represent the amount of information
shared at source i about source j. However, instead of a Bernoulli
random variable indicating whether i either does or does not cur-
rently have information about j, we now assume that i always
has a constant p;; fraction of information regarding the state of
Jj- In other words, an update from i can reduce the current uncer-
tainty regarding j by a fraction of p;;. This correlation structure is
convenient for modeling settings where different sources are sens-
ing information and have partially overlapping ranges of sensing,
for example cameras with overlapping fields of view as studied in
[5, 6]. Thus, p;j can be viewed as the fraction of source j’s range
that source i also covers.

Consequently, the evolution of Aol for this model differs from
the one studied in earlier sections. Let u;(t) be indicator variables
that denote whether source i transmits in time-slot ¢ or not. Then,
Aol for source i evolves as follows:

Ai(t+1) = (1-pj)Ai(t) +1, ifuj(t) = 1. (28)

The equation above formalizes the notion that uncertainty regard-
ing source i drops by a fraction pj;, when j sends an update.

The following theorem establishes the equivalence between this
new model and the one proposed in Sec. 2, under stationary ran-
domized policies. In fact, we prove the equivalence result for a
much more general class of correlation structures, where correla-
tion is defined by i.i.d. random variables X;;(t) € [0, 1] such that
E[X;;(t)] = pij. Our original model assumes X;;(t) ~ Bern(p;;),
while the model proposed in this section assumes X;;(t) = p;; and
both of them belong to this class of correlation structures.

Theorem 9. Consider N sources and a correlation matrix P with
the Aols for each source evolving according to:

N

Ai(t+1) = A;(t)+1 - (Z uj([)in(t))Ai(t),Vi, t. (29)

Jj=1

Here Xj;(t) are i.i.d random variables such that Xj;(t) € [0,1] and
E[Xji(t)] = pji. Given any stationary randomized policy with sched-
uling probabilities 7, lfz.jl\lzl mwipji > 0 for asourcei, then the average
Aol for this source is given by:

At

: (30)
L i

T
1
li = > A =
Jim 2[7 3 00)

Ifzyzl mjpji = 0 for some source i, then the base station never

receives any information regarding this source and its average Aol A;
is unbounded.

Proor. See Appendix I in the technical report [30]. O

Observe that the expression for the average Aol is the same as the
one derived in Theorem 1. Thus the procedure to find the optimal
stationary randomized policy and the policy itself also remain the
same. We will show later via simulations that the performance of
the max-weight policy is also similar for different distributions of
Xji(t), which suggests that our analysis is fairly robust to the way
in which correlation is modeled.



Optimizing Age of Information with Correlated Sources

6 LEARNING THE CORRELATION MATRIX

Until now, we have focused on cases where the correlation structure
is known in advance and fixed over time, and we use this infor-
mation to analyze and optimize Aol. In this section, we consider
the setting when the correlation matrix is unknown and possibly
varying with time.

6.1 Online Setting

Learning the correlation matrix in an online setting where the P
changes over time, even slowly, is a challenging problem. This
setting is of interest because correlation between source tends to be
time-varying in practice, especially in settings involving mobility.

We want to implement a max-weight style policy that gradually
updates its policy parameters to be able to track changes in the
environment. However, note that the max-weight policy proposed
in Sec. 3.2 in (16) requires us to solve for the optimal stationary
randomized policy. Thus, whenever the correlation matrix changes,
we would have to recalculate 7* and the Lyapunov function weights
;. To avoid this added computation, we will use the quadratic max-
weight policy, given by (11). Recall that this policy is based on a
quadratic Lyapunov function and does not require us to calculate
the the optimal stationary randomized policy n* repeatedly as P
varies.

Algorithm 1 uses an exponential moving average to keep track
of the correlation probabilities and then runs the quadratic max-
weight scheduler from (11) using the estimated correlation matrix.
We call this the EMA-max-weight policy.

Intuitively, if the probabilities change slowly over time, the expo-
nential moving average estimate should be able to closely track the
actual correlation matrix and the EMA-max-weight policy would
perform similar to a max-weight policy that knows the entire se-
quence of correlation matrices in advance. We confirm that this is
indeed the case via simulations in Sec. 7.

7 NUMERICAL RESULTS

First, we consider random geometric graphs and see how different
scheduling policies perform as the number of sources N increases.
In particular, we simulate graphs G(N, r) on the unit square [0, 1]?

where r = 1.14/ I%TN is slightly above the connection threshold.
For each pair of nodes (i, j) in this graph, we set P;; = Pj; = 0.7
if the nodes are closer than the distance r and set P;; = Pj; = 0
otherwise. We fix all weights to be equal, i.e. w; = ﬁ

For each value of N, we compare the performance of four differ-
ent policies - 1) the uniform stationary randomized policy which
would have been the optimal stationary randomized policy if we ig-
nore correlation, 2) our optimal stationary randomized policy which
solves (5), 3) the max-Age-first or greedy policy which would have
been the optimal max-weight policy if we ignore correlation and 4)
our proposed max-weight policy from Sec. 3.2.

Figure 3 plots the performance of these four policies as N in-
creases. Each data point is computed by averaging over 10 random
graph instances and running the policy for 10000 time-slots for
each such instance. We also plot a lower bound for average Aol
computed using analysis from Appendix C in the technical report
[30]. We observe that our proposed methods clearly outperform
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Algorithm 1: Exponential Moving Average Max-Weight

Input :parameter a > 0
1 Start by assuming no correlation, i.e. set
P(1) =1
2 while t€1,...,T do
3 Run quadratic max-weight using P(t):
N
s = argmin Z wj-ﬁij(t)Aj(t)(Aj(t) + 2).
i€[N] j=1
4 Schedule source s and receive correlated updates
5 Update Aols for every source j:
Aj(t+1) = 1, if s sent' an update about j,
Aj(t)+1, otherwise.
6 Update the correlation matrix, for source s
. (1-a)psi(t) +a, ifs sentan update about j,
psjt+1) = {)S] . P
(1-a)psj(2), otherwise.
For sources other than s:
ﬁij(l’ +1) Zﬁij(t),Vi # S.

7 end
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Figure 3: Average Aol vs network size N for random geomet-
ric graphs.

policies that ignore the correlation between sources for schedul-
ing. In particular, our proposed max-weight policy outperforms
max-Aol-first by almost 33%.

Next, we perform the same exercise for hyperbolic geometric
graphs. Hyperbolic geometric graphs are generated by choosing
points on a two-dimensional hyperbolic space and connecting ver-
tices that are closer than the distance R where distance is measured
along hyperbolic geodesics. The most important feature of hyper-
bolic random graphs is that when their parameters are chosen
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Figure 4: Average Aol vs network size N for hyperbolic geo-
metric graphs.

appropriately, the degree distribution of nodes becomes scale-free
[18, 21]. Importantly, for our simulation setup, we expect that scale-
free degree distributions lead to correlation matrices with lower
vertex covering numbers. According to Theorem 6, this should lead
to larger performance gaps between policies that consider correla-
tion and policies that ignore it. Figure 4 confirms this: as the number
of sources increase, the gap in performance between our proposed
policies and policies that ignore correlation also increases.

Next, we compare the performance of the optimal stationary
randomized policy and our proposed max-weight policy for differ-
ent correlation models. Specifically, we consider three correlation
models: 1) Bernoulli correlation: X;;(t) ~ Bern(p;j), which is the
main focus of this work, 2) Constant correlation: X;j;(t) = p;; as
introduced in Sec. 5, and 3) Uniform correlation: X;;(t) = p;; +
Unif([-0.1,0.1]), i.e. correlation is chosen uniformly at random
from the interval [p;; — 0.1, p;j +0.1].

Figure 5 compares the performance of the two policies (opti-
mal stationary randomized and max-weight) on random geometric
graphs G(N = 90, r = 0.25) while varying the correlation param-
eter p from 0.1 to 0.9 for the three different correlation models
discussed above.

We observe that for the stationary randomized policy, the aver-
age Aol values are the same across correlation models for each value
of p. This is consistent with the result we derived in Theorem 9.
For the max-weight policy, the average Aol values are close to one
another for each value of p. Further, as the correlation increases,
the gap between the average Aol for different correlation models
decreases. Combined with our observation from Sec. 5, where we
showed that average Aol under stationary randomized policies is
the same for a large class of correlation models, this supports the
claim that our results are fairly robust to the way in which correla-
tion is modeled. Another important observation from Figure 5 is
the inverse dependence of the average Aol on the correlation prob-
ability p, consistent with our upper-bound for random-geometric
graphs from Theorem 8.
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Figure 6: Moving window average Aol vs time.

Finally, we consider a setting with time-varying correlation prob-
abilities. Specifically, we consider a random geometric graph with
N =90 sources and a connectivity radius of 0.25 on the unit square
[0, 1]2. However, unlike the previous simulations, we assume that
these sources are mobile and move according to Brownian motion
on [0, 1] with a maximum velocity of 0.01. As the sources move
around randomly, the distances between them change and so does
the corresponding correlation matrix P. Figure 6 plots the perfor-
mance of three different scheduling policies in this time-varying
setting. To measure the performance, we consider a windowed
time-average of the network Aol with a window size of 100. As the
sources connectivity changes, we see the windowed time-average
Aol change in response for each scheduling policy.

The three policies we consider are as follows. First, we consider
the max-Aol-first policy which is completely oblivious of the corre-
lation while making scheduling decisions. Second, we consider the
EMA-max-weight policy from Sec. 6.1 which has no information
about correlation in the beginning but gradually learns the matrix
P and adapts to changes in it using an exponential moving average.
Specifically, we set the learning rate @ = 0.4. Third, we consider
the hypothetical oracle-max-weight policy. This is an omniscient
policy that knows the current correlation matrix exactly in each
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time-slot and uses this information to run the quadratic max-weight
scheduler (11).

We observe that EMA-max-weight is able to track the perfor-
mance of the oracle-max-weight policy with only a small gap, indi-
cating that it is able to learn the correlation structure and adapt in
response to it. Further, max-Aol-first is not able to do so and has
a larger gap in performance compared to the oracle-max-weight

policy.

8 CONCLUSION

In this work, we formulated a simple model to study the timely
monitoring of correlated sources over a wireless network. Using
this model, we proposed new scheduling policies that optimize
weighted-sum average Age of Information (Aol) in the presence of
correlation. These policies have constant-factor optimality guaran-
tees. We derived scaling results that illustrate how Aol improves in
large networks in the presence of correlation and discussed how
our model is relatively robust to correlation modeling assumptions.
Lastly, We also developed a novel approach based on exponen-
tial moving averages that schedules correlated sources in a time-
varying setting.

Important directions of future work involve proving performance
bounds on EMA-max-weight under assumptions on how quickly
the correlation matrices change, and incorporating more general
Aol cost functions. A drawback that is worth mentioning is that we
consider correlation to be a pairwise notion - information sharing
happens only between pairs of sources. However, modeling more
general notions of correlation and coupling between sources while
still keeping analysis tractable is a challenging open problem.
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A PROOF OF THEOREM 6

Consider N sources with the correlation matrix P. Given a correla-
tion threshold p > 0, construct a directed graph G that represents
pairs of source with correlation higher than the threshold.

Further, assume that the set S C [N] is a minimum size vertex
covering of the graph G. Recall that we defined the notion of vertex
covering for directed graphs in Sec. 4. Let the size of this minimum
vertex covering be denoted by N¢op.
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We will show that under a specific scheduling policy r, the aver-
NCOZJ

age Aol of every source is upper-bounded by . Consequently,

the weighted sum of average Aols under an optimal policy will also
NL‘OU

be upper-bounded by . The scheduling policy 7 we analyze
is round-robin scheduling of sources in the covering set S. This
is a cyclic policy of length N¢o, time-slots where each source in
the covering set S gets scheduled once, after which the scheduling
pattern repeats every N oy time-slots.

Before we analyze the performance of this policy, we present a

lemma that discusses the monotonicity of Aol with correlation.

Lemma 3. Consider N sources with two different correlation ma-
tricesP and P’ If p;; > plfj,V(i, J) € [N] X [N] then under a fixed
sequence of scheduling decisions , the following holds:

A; < A} Vi€ [N]. (31)
Here, A; is the average Aol of source i under policy  with the corre-
lation matrix P, while Al’. is the average Aol of source i under policy
7 with the correlation matrix P’.

Proor. The proof is easy to see via a stochastic dominance ar-
gument. Let Xj;(t) be an indicator variable denoting whether j
had information about i at time-slot ¢ given the correlation matrix
P, and likewise X ]’.i(t) for the matrix P’. Then, for all pairs (i, j)
and for all time-slots t, X;;(t) ~ Bern(p;;) and Xl.’j(t) ~ Bern(p;j),
where p;; > plfj. Thus, X;;(t) 2. Xl.’j(t).

Now, the Aol evolution (1) can be rewritten as:

N
Ai(t+1) =A;i(t) +1-A; (1) Zuj(t)in(t), and
=t (32)

N
Al(t+1) = Al(t) +1 - Al(1) Z W (H)X;(1), Vil t.
j=1

Since we have fixed the sequence of scheduling decisions s before-
hand irrespective of how Aol evolves, so the scheduling decisions
remain the same for both correlation matrices, i.e. u;(t) = uj’.(t), Vt.
Setting A;(1) = A{(1), (32) implies that:

Ai(t) <se. A[(). (33)
This, in turn, further implies that:
1+ 1<
. —_— / 7
T ;Al(t) <ot 7 ;Ai(t),\%z, t. (34)

Using the equation above and the definition of average Aol (2), we
can conclude that:

A; <g. A[,Vi € [N]. (35)

If the average Aol limits exist, then A; and Al{ are just constants
and the stochastic dominance becomes a simple inequality. This
completes the proof. O

The lemma above shows a rather simple result: Aol improves
with correlation. To upper-bound the average Aol of sources under
the round-robin policy 7, it is sufficient to analyze Aol for a new
correlation matrix P’, which is defined as:

, _Jp ifpij 2 p.
Pijz{o N

. (36)
otherwise.
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Clearly, P’ is element-wise smaller than P and 7 is a fixed sequence
of scheduling decisions, so we can apply Lemma 3. Now, to analyze
Aol of a source i under the policy 7 with the correlation matrix P’,
we consider two cases.

Case 1: Source i is in the vertex covering set S. In this case, note
that this source is guaranteed to be scheduled at least once in every
Neoo time-slots due to the way round-robin scheduling works.

> Yo k < Neoo+1
NCOZ) 2
< Neoo
p
The last inequality follows since p < 1 and Ngpp > 1.
Case 2: Source i is not in the vertex covering set S. By the defi-
nition of a vertex covering, there must be at least one source j € S
such that the edge (j,i) is in the graph G or alternatively, that
p}’.i = p. This means that whenever the scheduling policy schedules

(37

source j, the base station also receives an update regarding source
i with probability p. Note that the scheduling policy 7 schedules
source j once every N¢op time-slots. Then, the time intervals be-
tween two successful correlated update deliveries regarding source
i by source j are Neooli, Neools, ... Neoolx Where I1, Iy, ..., Ig are
ii.d. geometrically distributed random variables with parameter
p. It is possible that there are other sources also correlated with
source i that deliver correlated updates to the base-station between
two consecutive correlated updates from source j. For the sake of
upper-bounding the Aol we can safely ignore any such updates.
Then, the average Aol of source i can be upper-bounded by:

TR (1+2+ .+ Neooly)

A; < lim T
K—oo Zk:l Neoolj
K 2 72
) Zk:l Ncoka + Neoolk
< lim i (38)
K—oo 2 Zk:l Ncoka
K 72
1 2ol
< =+ Nego lim 2L
2 K- 2 Zk:I Ik

Applying the law of large numbers and using the moments of a
geometric random variable, we get:
2
A<l N @oD)P  New
2 2/p p
The last inequality follows since a vertex covering must have at
least one vertex, i.e. Neoy > 1.
Together, (37) and (39) imply that the average Aol A; for every
source i under the vertex cover round-robin policy 7 is upper-

(39)

bounded by % Clearly, the performance of the policy that achieves
minimum weighted-sum average Aol must be better than that of s.
This implies:
N N N
Z WiA?pt < ZWiAi < <2 (40)
i=1 i=1 p

This completes the proof.
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