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Abstract

We study adversarial attacks on linear stochastic
bandits: by manipulating the rewards, an adver-
sary aims to control the behaviour of the bandit al-
gorithm. Perhaps surprisingly, we first show that
some attack goals can never be achieved. This
is in a sharp contrast to context-free stochastic
bandits, and is intrinsically due to the correlation
among arms in linear stochastic bandits. Moti-
vated by this finding, this paper studies the attack-
ability of a k-armed linear bandit environment.
We first provide a complete necessity and suffi-
ciency characterization of attackability based on
the geometry of the arms’ context vectors. We
then propose a two-stage attack method against
LinUCB and Robust Phase Elimination. The
method first asserts whether the given environ-
ment is attackable; and if yes, it poisons the re-
wards to force the algorithm to pull a target arm
linear times using only a sublinear cost. Numeri-
cal experiments further validate the effectiveness
and cost-efficiency of the proposed attack method.

1. Introduction

In a contextual bandit problem, a learner takes sequential
actions to interact with an environment to maximize its
received cumulative reward. As a natural and important
variant, linear stochastic bandits (Auer, 2002; Li et al., 2010;
Abbasi-yadkori et al., 2011) assume the expected reward of
an arm a is a linear function of its feature vector z, and an
unknown bandit parameter 8. A linear bandit algorithm
thus adaptively improves its estimation of 8* based on the
reward feedback on its pulled arms. Thanks to their sound
theoretical guarantees and promising empirical performance,
linear stochastic bandits have become a reference solution to
many real-world problems, such as content recommendation
and online advertisement (Li et al., 2010; Chapelle & Li,
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2011; Durand et al., 2018).

Since bandit algorithms adapt their behavior according to its
received feedback, such algorithms are susceptible to adver-
sarial attacks, especially poisoning attacks. Under such an
attack, a malicious adversary observes the pulled arm and its
reward feedback, and then modifies the reward to misguide
the bandit algorithm to pull a target arm, which is of the
adversary’s interest. Due to the wide applicability of bandit
algorithms in practice as mentioned before, understanding
the robustness of such algorithms under poisoning attacks
becomes increasingly important (Jun et al., 2018; Liu &
Shroff, 2019; Garcelon et al., 2020).

Most existing studies on adversarial attacks in bandits fo-
cused on the context-free stochastic multi-armed bandit
(MAB) settings. Jun et al. (2018) and Liu & Shroff (2019)
showed that an adversary can force any MAB algorithm to
pull a target arm linear times only using a logarithmic cost.
Garcelon et al. (2020) showed the vulnerability of k-armed
linear contextual bandits under poisoning attacks. Linear
stochastic bandits are related to context-free stochastic ban-
dits and linear contextual bandits. Interestingly, however,
there is no known result about attacks on linear stochastic
bandit until now. This paper shall provide a formal ex-
planation for this gap — the analysis of attacks to linear
stochastic bandits turns out to be significantly more chal-
lenging due to the correlation among arms; in fact, some
learning environment is provably unattackable.

Specifically, we fill the aforementioned gap by studying poi-
soning attacks on k-armed linear stochastic bandits, where
an adversary modifies the reward using a sublinear attack
cost to misguide the bandit algorithm to pull a target arm
Z linear times. We first show that a linear stochastic ban-
dit environment is not always efficiently attackable', and
its attackability is governed by the feasibility of finding a
parameter vector 8, under which the rewards of all non-
target arms are smaller than the reward of target arm Z and
the reward of x remains the same as that in the original
environment specified by 8*. Intuitively, to promote the
target arm Z, an adversary needs to lower the rewards of

"Throughout this paper, “efficient attack” means fooling the
bandit algorithm to pull the target arm for linear times with a
sublinear attack cost. We will use attackable and efficiently attack-
able interchangeably, as the adversary normally only has a limited
budget and needs to design a cost-efficient strategy.
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non-target arms in the null space of & by 6, which might not
be always feasible. We prove the feasibility of the resulting
convex quadratic program is both sufficient and necessary
for attacking a linear stochastic bandit environment.

Inspired by our attackability analysis, we propose a two-
stage attack framework against linear stochastic bandit algo-
rithms and demonstrate its application against LinUCB (Li
et al., 2010) and Robust Phase Elimination (Bogunovic
et al., 2021): the former is one of the most widely used
linear contextual bandit algorithms, and the latter is a robust
version designed for settings with adversarial corruptions.
In the first stage, our method collects a carefully calibrated
amount of rewards on the target arm to assess whether the
given environment is attackable. The decision is based on
an “empirical” version of our feasibility characterization.
If attackable, i.e., there exists a feasible solution é, in the
second stage the method depresses the rewards the bandit
algorithm receives on non-target arms based on 6, to fool
the bandit algorithm to recognize the target arm as optimal.
We prove that in an attackable environment, both algorithms
can be successfully manipulated with only a sublinear cost.

Our main contributions can be summarized as follows:

e We characterize the sufficient and necessary conditions
about when a stochastic linear bandit environment is
attackable as the feasibility of a convex quadratic pro-
gram. En route to proving the sufficiency, we also
provide an oracle attack method that can attack any
no-regret learning algorithm given the knowledge of
ground-truth bandit parameter 6*. If the environment is
unattackable, i.e., the program is infeasible, our neces-
sity proof implies that even the vanilla LinUCB algo-
rithm cannot be efficiently attacked. A direct corollary
of our characterization is that context-free stochastic
MAB is always attackable, resonating the findings in
(Jun et al., 2018; Liu & Shroff, 2019).

e We propose a two-stage attack method that works with-
out the knowledge of ground-truth bandit parameter. In
the first stage, the algorithm detects the attackability of
the environment and estimates the model parameter. In
the second stage, it solves for a working solution 6 and
attacks accordingly. Our theoretical analysis shows this
attack method is effective against LinUCB (Li et al.,
2010) and Robust Phase Elimination (Bogunovic et al.,
2021), i.e., pulling the target arm T'— o(T") times using
o(T) cost when the environment is attackable.

2. Preliminaries

Linear stochastic bandit. We study poisoning attacks to
the fundamental k-armed linear stochastic bandit problem
(Auer, 2002), where a bandit algorithm sequentially inter-
acts with an environment for 7" rounds. In each round ¢,

the algorithm pulls an arm a; € [k] = {1,--- ,k} from
aset A = {;}F_, with k arms, and receives reward 7,
from the environment. Each arm a is associated with a
d-dimensional context vector z, € R?; and the observed
reward follows a linear mapping ro, =z 6" + 1, where
0* € R? is a common unknown bandit parameter vec-
tor and 7, is an R-sub-Gaussian noise term. We assume
context vectors and parameters are all bounded; and for
convenience and without loss of generality, we assume
||[zi]l2 < 1 and ||@*||2 < 1. The performance of a bandit
algorithm is evaluated by its pseudo-regret, which is defined
as Rr(0™) = Zthl(xI* 0" —x! 0"), where a” is the best
arm according to 0%, i.e., a* = arg max,c [z, 0"].

LinUCB. LinUCB (Li et al., 2010; Abbasi-yadkori et al.,
2011) is a classical algorithm for linear stochastic ban-
dit. It estimates a bandit model parameter 6 using ridge
regression, i.e., 9,5 = A{l 22:1 Zq,7i, Where Ay =
Zle Tq, xl -+ AI and A is the L2-regularization coeffi-
cient. We use ||z]|a = V2T Az to denote the matrix norm
of vector z. The confidence bound about reward estimation
on arm z is defined as CB(z) = ozt||ac||A;1, where «; is

a high probability bound of |@* — 6| a,. In each round
t, LinUCB pulls an arm with the highest upper confidence
bound, i.e., a; = arg max, ¢ [x] 0y + CBy(z,)] to balance
the exploration-exploitation trade-off. LinUCB algorithm
achieves a sublinear upper regret bound, i.e., Ry = O(\/T )
ignoring the logarithmic term.

Threat model. The goal of an adversary is to fool a linear
stochastic bandit algorithm to pull the target arm & € A for
T — o(T) times. Like most recent works in this space (Jun
et al., 2018; Liu & Shroff, 2019; Garcelon et al., 2020;
Zhang et al., 2020), we also consider the widely studied
poisoning attack on the rewards: after arm a, is pulled by the
bandit algorithm, the adversary modifies the realized reward
T4, from the environment by Ar, into 7, , i.e., 7o, = 7, +
Ary, and feeds the manipulated reward 7, to the algorithm.
Naturally, the adversary aims to achieve its attack goal with
minimum attack cost, defined as C(T") = 23:1 |Ars|. By
convention, an attack strategy is said to be efficient if it uses
only a sublinear total cost, i.e., C(T") = o(T).

We conclude the preliminaries with an important remark
about a key difference between attacking linear stochas-
tic bandit studied in this paper and attacking k-armed lin-
ear contextual bandit setting recently studied in (Garcelon
et al., 2020). In linear contextual bandits, all arms share
a context vector at each round but each arm has its own
(to-be-estimated) bandit parameter. Therefore, the reward
manipulation at a round ¢ will only affect the parameter
estimation of the pulled arm a,, but not any other arms’.
This “isolates” the attack’s impact in different arms. In con-
trast, in linear stochastic bandit, all arms share the same
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bandit parameter but have different context vectors. And
thus manipulating the reward of any arm will alter the shared
bandit parameter estimation, which will then affect the re-
ward estimation of all arms due to the correlation among
their context vectors. Such coupled effect of adversarial
manipulation from the pulled arm a, to all other arms is
unique in linear stochastic bandits, and makes its analysis of
attack much more challenging. This is also the fundamental
reason that some linear stochastic bandit environment may
not be attackable (see our illustration in Example 1).

3. The Attackability of A Linear Stochastic
Bandit Environment

We study the attackability of a linear stochastic bandit en-
vironment. At the first glance, one might wonder whether
attackability is the property of a bandit algorithm rather
than a property of the environment, since if an algorithm
can be attacked, we should have “blamed” the algorithm for
not being robust. A key finding of this work is attackability
is also a property of the learning environment; and in other
words, not all environments are attackable.

Definition 1 (Attackability of a k-Armed Linear Stochastic
Bandit Environment). A k-armed linear stochastic bandit
environment (A = {x;}¥_,,0") is attackable with respect
to the target arm & € A if for any no-regret learning algo-
rithm, there exists an attack method that uses o(T') attack
cost and fools the algorithm to pull arm T at least T — o(T)
times with high probability* for any T large enough, i.e., T
larger than a constant Tj.

We make a few remarks about the above definition of at-
tackability. First, this definition is all about the bandit envi-
ronment (A, 8*) and the target arm Z, but independent of
any specific bandit algorithm. Second, if an attack method
can only fool a bandit algorithm to pull the target arm z
under a few different time horizons 7, it does not count as a
successful attack — it has to succeed for infinitely many time
horizons. Third, by reversing the order of quantifiers, we ob-
tain the assertion that a bandit environment is not attackable
w.r.t. the target arm  if there exists some no-regret learning
algorithm such that no attack method can use o(T") attack
cost to fool the algorithm to pull arm Z at least T — o(T")
times with high probability for any 7" large enough.

The following simple yet insightful example illustrates that
there are indeed linear stochastic bandit environment setups
where some no-regret learning algorithm cannot be attacked.

Example 1 (An unattackable environment). Figure I shows
a three-arm environment with A = {z1 = (0,1),29 =
(1,2),z5 = (—1,2)}. Suppose the target arm T = x;

Typically, the high probability refers to 1 — § probability
for an arbitrarily small §. Please see theorems later for rigorous
statements.

Figure 1. Illustration of attackability of a linear stochastic bandit
environment.

and the ground-truth bandit parameter 8* = (1,1)3. The
expected true rewards of the arms are r{ = 1,75 = 3,715 =
1 and x5 is the best arm in this environment. Based on
Definition 1, we will need to identify a no-regret learning
algorithm that cannot be attacked in this environment, and
we argue that LinUCB is such an algorithm. Suppose, for
the sake of contradiction, that there exists an efficient attack
which fools LinUCB to pull x1 T —o(T') times. LinUCB then
must estimate 0" in the x’s direction almost accurately as
T becomes large, since the Q(T) amount of true reward
feedback in x1 direction will ultimately dominate the o(T)
adversarial manipulations. This suggests that the estimated
parameter 6, will be close to (a, 1) for some a. Since
(a, 1) (x3 + x3) = 4, implying that either x5 or x3 will
have its estimated reward larger than 2 (i.e., strictly larger
than x1’s estimated reward) for any a. This shows that for
large T, x1 cannot be the arm with the highest UCB during
the execution of LinUCB, which causes a contradiction.
Therefore, this environment cannot be efficiently attacked
with o(T) cost. Here we give an intuitive argument about
this environment with target arm I is not attackable, while
its formal proof is an instantiation of our Theorem 1.

Note that when A = {x, 22}, the environment becomes
attackable: as shown in Figure 1, a feasible attack strategy is
to perturb reward according to 6 = (—2,1). The key idea is
that in the null space of 1, 8, reduces the reward of x5 to
make x; the best arm without changing the actual reward of
x1 from the environment. The presence of arm x3 prevents
the existence of such a 6 | (and therefore é) and makes the
environment unattackable.

The above example motivates us to study when a linear
stochastic bandit environment is attackable. After all, only
when facing an unattackable environment, we can ensure
the existence of a no-regret algorithm that will be robust to
any o(7T") poisoning attacks.

Next we show that there indeed exists a complete character-

3One can re-scale all vectors with norms smaller than 1, e.g.,
divide each dimension by 10, without changing the conclusion that
the environment is unattackable.
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ization about when a linear stochastic bandit environment
is attackable. As Example 1 shows, the attackability of a
bandit environment depends on the arm set A = {z;}F_,,
the target arm Z, and the underlying bandit parameter 6*.
For clarity of presentation, in this section, we shall always
assume that the adversary knows exactly the ground-truth
bandit parameter 8™ and thus the true expected reward of
each arm. This is also called the oracle attack in previous
works (Jun et al., 2018; Rakhsha et al., 2020). But in the
next section, we will show that this assumption is not neces-
sary: when the bandit environment is indeed attackable, we
can design provably successful attacks even if the adversary
does not know the underlying bandit parameter 6*.

We need the following convenient notation to state our re-
sults. Let
. 71O
= Nia;‘
NTETE

(D

denote the projection of ground-truth bandit parameter 6™
onto the targeted  direction. Since the attackability depends
on the target arm x as well, we shall include the target arm
Z as part of the bandit environment. The following theorem
provides a clean characterization about the attackability of
a linear stochastic bandit environment.

Theorem 1 (Characterization of Attackability). A bandit
environment (A = {x;}%_,, 0% &) is attackable if and only
if the optimal objective €* of the following convex quadratic
program (CQP) satisfies €* > Q.

maximize €

;”an,ﬁ >e+ fUaT(oﬁ +0,), forx, #17.
10, =0

10 +0L]2<1

subject to

2)

where € € R and 0 | € R% are variables.

Since the conceptual message of Theorem 1 significantly
differs from previous studies on adversarial attacks in bandit
algorithms, we would like to elaborate on its implications.

First of all, we, for the first time, point out some learning en-
vironment is intrinsically robust. Even the vanilla LinUCB
algorithm, as we will analyze in the proof of Theorem 1,
cannot be efficiently attacked when CQP (2) is not satisfied.
Notably, although almost all previous works have focused
on the vulnerability of bandit algorithms, e.g., by designing
attacks against UCB, e-Greedy (Jun et al., 2018), LinUCB
(Garcelon et al., 2020), it just so happens that they were
already studied under an attackable environment (see our
Corollary 2). To our best knowledge, the problem about the
intrinsic robustness of a linear bandit environment has not
been studied before and can be viewed as a complement
to these previous works. Second, as we will show next,
our proof techniques are also significantly different from

existing ones, since what is central to our proof is to demon-
strate that when CQP (2) is not satisfied, there will exist a
robust algorithm that cannot be efficiently attacked by any
adversary. This can be viewed as analyzing the robustness
of certain bandit algorithms when ¢* < 0 in CQP (2).

Since CQP (2) and its solutions will show up very often in
our later analysis, we provide the following definition for
reference convenience.

Definition 2 (Attackability Index and Certificate). The op-
timal objective ¢* of CQP (2) is called the attackability
index and the optimal solution 0 | to COP (2) is called the
attackability certificate.*

We should note both the index ¢* and certificate 8| are
intrinsic to the bandit environment (A = {z;}¥_,, 0", %),
and are irrelevant to any bandit algorithms used. As we will
see in the next section when designing attack algorithms
without the knowledge of 8%, the index ¢* will determine
how difficult it is to attack the environment.

Proof Sketch of Theorem 1. Proof of sufficiency. This di-
rection is relatively straightforward. Suppose the attackabil-
ity index ¢* > 0 and let @ ; be a certificate. We design the
oracle null space attack based on the knowledge of bandit
parameter 0. Let target parameter 6 = 0} + 6. where 0]
is defined in Eq (1). The adversary perturbs the reward of
any non-target arm x, # T by 7o+ = l’l—é +1)¢, whereas the
reward of the target arm Z is not touched. To make attack
appear less “suspicious”, a sub-Gaussian noise 7; is added
to the perturbed reward to make it stochastic. The first con-
straint in CQP (2) ensures the non-target arms’ rewards are
smaller than the target arm’s, and thus any no-regret bandit
algorithm will only pull the non-target arms o(7’) times.
The resulting cost is also o(7T") since the expected cost on
each attack is bounded by a constant. Hence, such an attack
is successful. Importantly, we note that this argument only
relies on the definition of “no regret” but does not depend
on what the algorithm is. This is crucial for proving the
sufficiency of attackability.

Proof of necessity. This is the more difficult direction. We
shall prove that if ¢* < 0, the bandit environment is not at-
tackable. To do so, we need to identify at least one no-regret
bandit algorithm such that no attack strategy can success-
fully attack it. We argue that even the vanilla LinUCB is
already robust to any attack strategy with o(7") cost when
€* < 0. Recall that LinUCB maintains an estimate 9,5 at
round ¢ using the attacked rewards {r1.; }. We consider Lin-
UCB with the choice of L2-regularization parameter A that
guarantees ||0;]|2 < 1 in order to satisfy the last constraint
in CQP (2). Consider the decomposition 9t = étl\ + ét, 1,

*We sometimes omit “attackability” when it is clear from the
context, and simply mention index and certificate.
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where T L ét# and 7 || ét’”.

Suppose, for the sake of contradiction, that LinUCB is at-
tackable when €* < 0. According to Definition 1, the target
arm & will be pulled T — o(7T") times with high probability
for infinitely many different time horizons 7'. Fix any large
T'; we know that £ must have the largest UCB score when-
ever it is pulled at some round ¢ € [T, or formally, for any
x, # T we must have the following:

770, +CBy (%) > 210, + 210, 1 +CBy(z,). (3)

By attackability, we know that the above inequality will hold
for infinitely many ¢s. Our main idea to construct the proof
is that as t — oo, we have CB(Z) — 0 and CBy(z,) > 0.
Moreover, the estimation of 9t7 I will converge to HW, since ¥
will be pulled for t—o(t) times. The key challenge is to show
CB¢(z,) — CB4(Z), due to Inequality (3), is strictly greater
log(t/9) )

o(t)
lower bound for CB(x,) (Lemma 3 in Appendix B) and

an O(y/ M) upper bound for CB;(Z) (Lemma 2). The
main technical barrier we overcome is the lower bound proof

for the confidence bound term, which employs non-standard
arguments since most (if not all) of the bandit algorithm
analysis only needs the upper bound of the confidence bound
terms. Due to this reason, we believe this technical proof
is of independent interest, particularly for the analysis of
robust properties of linear bandit algorithms.

than 0 for all large ¢. To do so, we prove a © (

By letting ¢ — oo, we obtain the following condition:
E10) > al0] + 10 1, Ve, # & €y

This implies that for any sufficiently large ¢, there must
exist a 9,57 1 that and makes the optimal objective of CQP (2)
€* positive. But this contradicts the starting assumption of
€* < 0; hence, the bandit environment is not attackable. [

We now provide an intuitive explanation about Theorem 1.
CQP (2) is to find @, such that: 1) it is orthogonal to =
(hence its subscript); and 2) it maximizes the gap € between
Z7 0] and the largest x; (8] + 6 ) among all z, # . The-
orem 1 states that the bandit environment is attackable if
and only if such a gap is strictly larger than 0, i.e., when the
geometry of context vectors allows the adversary to lower
non-target arms’ rewards in the null space of . The con-
straint ||} + 01 ||2 < 1 ensures the attacked rewards are in
the same scale as the unattacked rewards.

Recent works have shown that any no-regret algorithm for
the context-free k-armed setting (where arm set A is or-
thonormal) can always be attacked (Liu & Shroff, 2019).
This finding turns out to be a corollary of Theorem 1.

Corollary 2. For standard stochastic multi-armed bandit
setting where arm set A is orthonormal, the environment
(A ={x,},0", ) is attackable for any target arm 7.

Proof. Since arms are orthogonal to each other, it is easy to
see that @, = —C[>_,, .z, 4z Ta] achieves objective value
C - §7T0T| in CQP (2). Let C' be a large enough positive
constant such that the objective value is positive gives us a
feasible 8 | to CQP (2), which yields the corollary. O]

The intuition behind this corollary is that arms in context-
free stochastic multi-armed bandits are independent, and
an adversary can arbitrarily lower the rewards of non-target
arms to make the target arm optimal. This is also the attack
strategy in (Jun et al., 2018; Liu & Shroff, 2019). Garcelon
et al. (2020) showed that similar idea works for k-armed
linear contextual bandits where each arm is associated with
an unknown bandit parameter and the reward estimations
are independent among different arms.

We should point an important distinction between poisoning
attacks to k-armed bandits and another line of research on
stochastic bandits under adversarial corruption initiated by
Lykouris et al. (2018). For poisoning attacks considered in
this paper, the adversary manipulates the realized rewards
after the algorithm selects an action, whereas in (Lykouris
et al., 2018), the adversary manipulates the entire reward
vector before the algorithm selects any action. Obviously,
the later threat model is strictly weaker and has led to various
bandit algorithms that can have sublinear regret so long as
the total manipulation is sublinear in 7" (Lykouris et al.,
2018; Zimmert & Seldin, 2021).

4. Effective Attacks without Knowledge of
True Model Parameters

In the previous section, we characterized the attackability
of a linear stochastic bandit environment by assuming the
knowledge of ground-truth bandit parameter 6*. We now
show that such prior knowledge is not needed when de-
signing practical attacks. Towards this end, we propose
provably effective attacks against two representative bandit
algorithms: the most well-known LinUCB and a state-of-
the-art robust linear stochastic bandit algorithm, Robust
Phase Elimination (Bogunovic et al., 2021). We remark
that the optimal attacks to these algorithms depend on the
characteristics of algorithms themselves and are generally
different, due to their different levels of robustness. This also
resonates the important message mentioned in the introduc-
tion, i.e., the attackability analysis often goes hand-in-hand
with the understanding of robustness of different algorithms,
as reflected in various parts of our analysis. However, we
point out that it is an intriguing open question to understand
whether there is a single attack strategy that can manipulate
any no-regret algorithm in an attackable environment.

Two-stage Null Space Attack. Our proposed attack
method is presented in Algorithm 1. The method spends
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the first 7 rounds as the first stage to attack rewards on all
arms by imitating a bandit environment 8, in which z is the
best arm such that arm Z will be pulled most often by the
bandit algorithm. This stage is for the adversary to observe
the true rewards of = from the environment, which helps it
estimate the parameter 0‘*|. At round 77, the method uses the
estimate of Gﬁ, denoted as é”, to perform the “attackability
test” by solving CQP (2) using él\ to obtain an estimated
index & and certificate 0 1. If € > 0, the method asserts
the environment is attackable and starts the second stage of
attack. From 77 to 7', the method perturbs the reward of
non-target arms by ¥, = .}, (él\ +6.) + 7 (just like the
oracle attack but using the estimated é”). When the bandit
algorithm pulls the target arm z for the first time in the sec-
ond stage, the method will compensate the reward of ¥ as
shown in line 20, where n(Z) is the number of times target
arm is pulled before 77 . The goal is to correct the rewards
on Z collected in the first stage to follow 0 instead of 6.
Note that a larger 77 brings in more observations on Z to
improve the estimate of 0*|; but it also means a higher attack
cost. The optimal choice of T} depends on the “robustness”
of the bandit algorithm to be attacked. Consequently, it also
leads to different attack cost for different algorithms. For
example, as we will show next, the attack to Robust Phase
Elimination will be more costly than the attack to LinUCB.

Note that our attackability test might make both false posi-
tive and false negative assertions due to the estimation error
in é\l' But as 7" becomes larger, the estimate gets more
accurate and the assertion is correct with high probability.

Remark 1. We acknowledge that the rewards from the two
stages follow different reward distributions and could be
detected, e.g., using some homogeneity test (Li et al., 2021).
Thus a bandit player could realize the attack if equipped with
some change detector. However, attacking such a cautious
bandit algorithm is beyond the scope of this paper. Moreover,
it is very difficult (if not impossible) to attack with a station-
ary reward distribution or undetectable perturbations (e.g.,
using a fixed target parameter 6 ). We could easily find cases
where the adversary’s parameter 0 is limited to extremely
Jfew choices and it is almost impossible to directly start the
attack with a valid 6 without knowing 0*. For example, if we
change the third arm in Example I to x3 = (—1+¢,0) with
a small €, we can see that the valid parameters are only in a
small range around 6 = (=1 — €, 1). Therefore, in order to
attack with a stationary reward distribution, the adversary
needs to start from somewhere very close to 6= (=1—¢,1),
which we believe is extremely difficult without knowing 0*.
Overall, we think designing an attack strategy against a ban-
dit algorithm with reward change detector or showing the
inability to attack such cautious algorithms is an important
future work of ours.

Algorithm 1 Two-stage Null Space Attack
1: Inputs: T\, T

2: By = argmax|g|,<1 [@TO—maxza¢;g 2] 0], let €; be

its optimal objective
if €5 < 0 then
return Not attackable
end if
for t =1to 71} do
Set 7y = xlﬁ 0o + 1 // Attack as if 7 is the best
Bandit algorithm observes modified reward 7
end for

10: Estimate él\ =

// Initial attackability test

R A A

S @) -
n(Z)[|#]13

11: Solve CQP (2) using él\ to obtain the estimated attacka-
bility index €* and certificate 0.

12: if €* < 0 then /I Attackability test
13:  return Not attackable

14: else /I Attack stage
15: Seté:éH—FéL

16: fort=T,+1toT do

17: if x,, # % then

18: Set 7 =z} 0 + 7

19: else if x,, = 1z for the first time then

20: Set 7 = n(%) x (0 — 0g) + 70 + 7

21: else

22: Set Ft =T¢

23: end if

24: Bandit algorithm observes modified reward 7
25:  end for

26: end if

Attack against LinUCB. We now show how LinUCB
algorithm can be attacked by Algorithm 1.

Theorem 3. For large enough Ti, the attack strategy in
Algorithm 1 will correctly assert the attackability with prob-
ability at least 1 — 8. Moreover, when the environment
is attackable, with probability at least 1 — 30 the attack
strategy will fool LinUCB to pull non-target arms at most

O(d(\/10g(T/3) + /Ty log (T3 /9)
+ /T log(1/3)//T1) /T log(T/3) /e*)

rounds. And with probability at least 1 — 406, the adversary’s
cost is at most

O(Ty-+d(\/1og(T/3) + /Ty log (T3 /9)
+/Tlog(1/3)/\/Ty) \/Tlog(T/é)/e*).

Specifically, when Ty = T'/?, the strategy gives the mini-
mum aitack cost in the order of O(T®/*), and the non-target
arms are pulled at most O(T>/*) rounds.
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Proof Sketch. To prove the the assertion is correct with
high probability, the key idea is that the estimated é\l is
close to the true parameter Gﬁ. We first note that in the
first stage, the bandit algorithm will pull the target arm z
Ty — O(y/T}) times, since 7 is the best arm according to
6y. According to the Hoeffding’s inequality, the estimation

error ”é\l =02 < 1/%(2/\/%' Therefore, with a large

enough 77, the error on Z’s reward estimation is smaller
than €*. Thus solving CQP (2) with él\ and we can correctly
assert attackability with positive estimated index €* when
the environment is attackable with index €*.

To prove the success and the cost of the attack, we need to
analyze the behavior of LinUCB under the reward discrep-
ancy between the two stages. Our proof crucially hinges on
the following robustness result of LinUCB.

Lemma 1. Consider LinUCB with ridge regression under
poisoning attack. Let Si =) coy 4 o 25 |Ar| be the
total corruption on non-target arms until time t and assume
every corruption on target arm is bounded by ~. For any
t =1...T, with probability at least 1 — § we have

16 — 0u)la, < o+ Sp/VA+VE (5)

where oy = 4/ dlog (#) + VA

Based on this lemma, we can derive the regret Ry (0) of
LinUCB with 6 as the true parameter. The total corrup-
tion on non-target arms is O (dv/T} log (T1/6)) given the
rewards are generated by 8 (the rewards of target arm in
the first stage are compensated in line 20). Because the
target arm’s rewards are not attacked in the second stage and
follows 8%, we have v = O(1/y/T1). Since the non-target
arms are pulled at most Rr()/e* rounds, substitute the
total corruption back and we have the resulting bound.

The attack cost has two sources: attacks in the first stage
for T3 times, and attacks on the non-target arms in the
second stage. The second term has the same order as the
number of rounds where the non-target arms are pulled
by LinUCB. Each attack cost can be decomposed as 1)
the change of mean reward |z} (6 — 8")|, and 2) the sub-
Gaussian noise |7};|, the sum of which increases linearly
with high probability. By setting 7; = 7'/, the total cost
achieves O(T3/4). O

Remark 2. Lemma 1 shows that LinUCB still enjoys sub-
linear regret for any corruption amount S = o(ﬁ ). This
tolerance of o(N'T) attack turns out to be the same as
the recently proposed robust linear contextual bandit al-
gorithm based on phase elimination in (Bogunovic et al.,
2021) (which we examine next). However, the regret term
SV/T in LinUCB has a worse dependence on S within the

S = o(\/T) regime compared to the O(S?) regret depen-
dence of the robust algorithm in (Bogunovic et al., 2021).

Attack against Robust Phase Elimination. We now
show that Robust Phase Elimination (RobustPhE) (Bo-
gunovic et al., 2021) can also be attacked by Algorithm 1.
Comparing to attacking LinUCB, the robustness of Robust-
PhE brings challenge to the first stage attack, as the attack
cost is more sensitive to the length of this stage.

Corollary 4. For any large enough T, the attack strategy in
Algorithm 1 will correctly assert the attackability with high
probability. Moreover, when the environment is attackable,

with probability at least 1 — 20 the attack strategy will fool
RobustPhE to pull non-target arms at most

O((d\/T log(T/8) + VdT log(T) log(1/8)//Ti + T?) /e*)

rounds. And with probability at least 1 — 30, the adversary’s
cost is at most

0 (T1—|— (dV'T log(T/8)+V/dT log(T) log(1/5) /N/Ti +T7) /e*)

Specifically, setting T1 = T2/5 gives the minimum attack
cost order O(T*/®) and the non-target arms are pulled at
most O(T*/®) rounds.

RobustPhE has an additional regret term O(S?) for total
corruption S (assuming S is unknown to the bandit algo-
rithm). If we view the second stage attack model 0 as the
underlying environment bandit model, rewards generated
by 6y in the first stage should be considered as corrupted re-
wards. The 77 amount of rewards from the first stage means
T4 amount of corruption, which leads to the additional Tf
term compared with the results in Theorem 3. Hence, the
adversary can only run fewer iterations in the first stage
but spend more attack cost there. On the other hand, this
also facilitates the design of attack such that line 19-20 in
Algorithm 1 is not necessary: the corruption in the first
stage can be handled by the robustness of RobustPhE. The
unattacked rewards in second stage are viewed as misspeci-
fication from @ with error -y, which leads to the O(yT) term
(the second term) in the bound. Our success in attacking Ro-
bustPhE does not violate the robustness claim in the original
paper (Bogunovic et al., 2021): RobustPhE could tolerate
o(~/T) corruption and our attack cost is O(T*/°).

5. Experiments

We use simulation-based experiments to validate the effec-
tiveness and cost-efficiency of our proposed attack meth-
ods. In our simulations, we generate a size-k arm pool A,
in which each arm a is associated with a context vector
24 € R?. Each dimension of z, is drawn from a set of zero-
mean Gaussian distributions with variances sampled from
a uniform distribution U (0, 1). Each z,, is then normalized
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Figure 2. Total cost of attack under different attack methods. We
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Figure 3. Target arm pulls under different attack methods.

to ||z, ||2 = 1. The bandit model parameter 8™ is sampled
from N (0, 1) and normalized to [|0*||2 = 1. We set d to
10, the standard derivation o of Gaussian noise 7; and 7; to
0.1, and the arm pool size k to 30 in our simulations. We
run the experiment for 7" = 10, 000 iterations. To create an
attackable environment, we will re-sample the environment
(A, 0%, %) until it is attackable, following Theorem 1.

We compared the two proposed attack methods, oracle null
space attack and two-stage null space attack, against Lin-
UCB (Li et al., 2010) and Robust Phase Elimination (Ro-
bustPhE) (Bogunovic et al., 2021). We report average results
of 10 runs where in each run we randomly sample an attack-
able environment. Both oracle attack and two-stage attack
can effectively fool the two bandit algorithms to pull the
target arm linear times as shown in Figure 3, and the total
cost of the attack is shown in Figure 2. We observe that
both attack methods are cost-efficient with a sublinear total
cost, while the two-stage attack requires higher attack cost
when attacking the same bandit algorithm. Specifically, we
notice that the adversary spends almost linear cost in the
first stage. This is because in the first stage the adversary
attacks according to parameter 6, which leads to an almost
constant cost at every round. This is to help the adversary
to estimate bandit model parameter in order to construct

target parameter 6. In the second stage, the cost gets much
smaller since the adversary only attacks the non-target arms.
We also notice that for the same attack method, attacking
RobustPhE requires a higher cost and the number of target
arm pull is also smaller comparing with attacking LinUCB,
due to the robustness of the algorithm.

6. Related Work

Adversarial attacks to bandit algorithms was first studied in
the stochastic multi-armed bandit setting (Jun et al., 2018;
Liu & Shroff, 2019) and recently in linear contextual ban-
dits (Garcelon et al., 2020). These works share a similar
attack idea: lowering the rewards of non-target arms while
not modifying the reward of target arm. However, as our
attackability analysis revealed, this idea can fail in a linear
stochastic bandit environment where one cannot lower the
rewards of non-target arms without modifying the reward
of target arm, due to their correlation. This insight is a key
reason that gives rise to unattackable environments. Ma
et al. (2018) also considered the attackability issue of linear
bandits, but under the setting of offline data poisoning attack
where the adversary has the power to modify the rewards
in history. There are also several recent works on reward
poisoning attacks against reinforcement learning (Yu & Sra,
2019; Zhang et al., 2020; Rakhsha et al., 2021; 2020), but
with quite different focus as ours. Besides reward poisoning
attacks, recent works also studied other threat model such
as action poisoning attacks (Liu & Lai, 2020; 2021).

A parallel line of works focused on improving the robust-
ness of bandit algorithms. Lykouris et al. (2018) pro-
posed a robust MAB algorithm and Gupta et al. (2019)
further improved the solution with additive regret depen-
dency on attack cost. Zimmert & Seldin (2021); Masoudian
& Seldin (2021) proposed best-of-both-world solutions for
both stochastic and adversarial bandits which also solved
stochastic bandits with adversarial corruption. Ito (2021)
further proposed optimal robust algorithm to adversarial cor-
ruption. These work assumed a weaker oblivious adversary
who determines the manipulation before the bandit algo-
rithm pulls an arm. Hajiesmaili et al. (2020) studied robust
adversarial bandit algorithm. Guan et al. (2020) proposed
a median-based robust bandit algorithm for probabilistic
unbounded attack. Bogunovic et al. (2021) proposed robust
phase elimination algorithm for linear stochastic bandits un-
der a stronger adversary (same as ours), which could tolerate
o(v/T) corruption when the total corruption is unknown to
the algorithm. We showed that our two-stage null space
attack could effectively attack this algorithm with O(T*/%)
cost. Recently, Zhao et al. (2021) proposed an OFUL style
robust algorithm that can handle infinite action set, but only
tolerates o(7"/*) corruption.
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7. Conclusion

In this paper, we studied the problem of poisoning attacks
in k-armed linear stochastic bandits. Different from context-
free stochastic bandits and k-armed linear contextual bandits
where the environment is always attackable, we showed that
some linear stochastic bandit environments are not attack-
able due to the correlation among arms. We characterized
the attackability condition as the feasibility of a CQP based
on the geometry of the arms’ context vectors. Our key
insight is that given the ground-truth parameter 8%, the ad-
versary should perform oracle attack that lowers the reward
of non-target arms in the null space of the target arm’s
convex vector Z. Based on this insight, we proposed a two-
stage null space attack without the knowledge of 8 and
applied it against LinUCB and Robust Phase Elimination.
We showed that the proposed attack methods are effective
and cost-efficient, both theoretically and empirically.

As our future work, it is interesting to study the lower bound
of attack cost in linear stochastic bandits and also design
cost-optimal attack method with a matching upper bound.
One idea is to design a multi-stage attack method follow-
ing the doubling trick idea, which was brief discussed in
Appendix C.3. Although the analysis could be much more
challenging than our two-stage attack, it may lead to a lower
attack cost as well as handling unknown time horizon T'.
Another intriguing direction is to study algorithm-oblivious
choice of the length of the first stage 77 — or more generally,
algorithm-oblivious attack strategies — that can achieve
sublinear cost for arbitrary no-regret algorithm without the
knowledge of 6*.
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A. Notations

For clarity, we collect the notations used in the paper below.

T Context vector of target arm

z, | Context vector of arm a

0" | Unknown bandit model parameter of the environment

| | Projection of 8" on 7

T Unattacked reward feedback at time ¢

n: | Sub-Gaussian noise in reward, i.e., r; = x] 8" + 1;.

Tt Attacked reward

6 | Parameter estimated by the victim bandit algorithm with attacked rewards {71+ }
0, | Parameter parallel to Z, estimated by adversary with unattacked rewards
0 Paramter of adversary’s attack strategy

6, | Attackability certificate, the parameter orthogonal to Z solved by CQP (2)
€* | Attackability index, optimal objective of CQP (2)

€* | Estimated index, optimal objective of CQP (2) with éH replacing 0?“

B. Details on Attackability of Linear Stochastic Bandits

We illustrate the details of oracle null space attack in Algorithm 2, which is constructed for the sufficiency proof of Theorem
1.

Algorithm 2 Oracle Null Space Attack
1: Inputs: T, 6"
2: Initialize:
3: if Optimal objective €* of CQP (2) > 0 then /I Attackability Test
4:  Find the optimal solution 0.
5: Set é = Gﬁ + é 1
6: else
7.
8
9

: return Not attackable
. end if
:for t =1toT do
10:  Bandit algorithm pulls arm a,
11:  Attacker observes the corresponding reward r; = xaTtB* + m; from the environment
12:  if x4, #  then

13:  Seti, =al 0+ /I Attack
14:  else

15: Set 7, =14

16:  end if

17:  Bandit algorithm observes modified reward 7

18: end for

B.1. Sufficiency Proof of Theorem 1
Proof. For sufficiency proof, we show that there exists an efficient attack strategy if CQP (2) holds.

Suppose the attackability index €* > 0 and let 6 be a certificate. In Algorithm 2, we design the oracle null space attack
based on the knowledge of bandit parameter 8*. Let 6 = OT‘ + 6 where Hﬁ is defined in Eq (1). The adversary perturbs

the reward of any non-target arm =, # Z by 7, ; = xlé + 7¢, whereas the reward of the target arm  is not touched. In
other words, the adversary misleads the algorithm to believe that 0 is the ground-truth parameter We should note both 0
and 6" generate the same expected reward on Z, i.e., e = iTOﬁ = #70*. To make the attack appear less “suspicious”, a
sub-Gaussian noise term 7j; is added to the perturbed reward to make it stochastic. The key idea is that the attacker does not

need to perturb the reward of the target arm because the original reward is the same as perturbed reward in expectation.
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Instead, the attacker only perturbs the reward in the null space of & according to 6., which guarantees the cost-efficiency of
the attack.

Since the perturbed rewards observed by the bandit algorithm are generated by 0, the target arm Z is the optimal arm in
this environment due to the attackability index ¢* being strictly positive. According to the definition, any no-regret bandit
algorithm will only pull suboptimal arms, i.e., the non-target arms, o(7") times and pull target arm 7' — o(T) times with high
probability. Thus the attack is successful. Moreover, the cost of oracle attack is o(T") because the attacker only perturbs
rewards on the non-target arms for o(7") times, and the cost on each attack is bounded by a constant (because of the finite
norm of z, and 8™). O

B.2. Necessity Proof of Theorem 1

To prove its necessity, we will rely on the following results.

Lemma 2. Suppose arm x is pulled n times till round t by LinUCB. Its confidence bound CB(x) in LinUCB satisfies

CB,(z) < X

ST (6)

with probability at least 1 — 0, where a; = 4 | dlog (Ht/’\) +V/\. Furthermore, we have

CB,(x) < O ( W) ™)

n

with probability at least 1 — 0.

Proof. In (Abbasi-yadkori et al., 2011), the exploration bonus term is computed as CB;(z) = ozl a7t~ Denote
A} =n x xzT + AL Since A; = 22:1 Zq, 7, + AL we have A; - Aj]. We can thus bound Hx||A:1 by

1
2]l o0 < ll#]lag-1 < 7n ®)
According to Theorem 2 in (Abbasi-yadkori et al., 2011),
14+t/A
o = y[dlog ( +5/ ) + VA = 0(/log(t/0)). )
Combining oy and (8) finishes the proof. O

Claim 1. Target arm % is pulled n = T — o(T) times till round T. According to Lemma 2, we have

CB,(#) < 0 ( ng_(T@J (10)

Lemma 3. Suppose arm x is pulled t — m times till round t by LinUCB, and other arms are pulled m times in total.
Confidence bound CB(x,) of any arm x, that is not parallel to x satisfies

1 b
CBt(m“)>at<\/m+/\_\/t—m+>\> (v

with probability at least 1 — 0, where oy = [ dlog (H't/’\) + V/AS and constant b =

cai(z) > 0 (VioB@o) (= ﬁl_im)) (12)

with probability at least 1 — §



When Are Linear Stochastic Bandits Attackable?

Proof. Since CBy(z) = Oét”zHA;l’ we need to show a lower bound of Hxa”A;l. Since z, }f x, we decompose z, =

xﬂ + a2k, where xtll || z. By the reverse triangle inequality we have

1
HiCaHAt—l > lzg HA;l - ||$MA;1 (13)

First we analyze the term ||z [|5-1. Decompose A; = (t —m) x az’ + 3, xq2q, + Al and let A} =

T . L
Zi,waiiz Tq,7,, + AL Since z, L x, we have

LTA b LT a1
ry Ay =z Ayxg.

There are at most m terms in the summation of Ay =37, a4, x) + A, thus

T T m T
rr Alxt <at <|| e X Tr Ty +)\I> zr<m+ A
Lo ll2

Then we have

1 1
Y R . > (14)

Similar to Eq (8), we have

P

laelar < 0, = (15)
Let constant b = ”ﬂ;””; = i;z Substitute the terms and we have
CBia) = adlellas 2 a (Jod s = labllag) 2 o0 (g = ). (16)
¢ ¢ ¢ Vm+A Vt—m+ A
O

Claim 2. Non-target arms are pulled m = o(T') times till round T. According to Lemma 3, any arm x, }f T satisfies

CBi(z4) > © (x/log(T/cS) ( \/Ol(T) - = O(ﬂ)) (17)

with probability at least 1 — 6.
Lemma 4. Suppose the non-target arms {x, # &} are pulled o(T) times, the arm Z is pulled T — o(T) times, and the total

manipulation is C. With probability at least 1 — 6, reward estimation error satisfies

Cr Qi

. VzeA 18
_o(T)+ T—o(T) re (18)

Tg T p*
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Proof.
a * xT(éT - 9*) ~
107, — Ojjll2 = %
.
1 T
= H~||2 fi’TA;l (Z xtft(mt) - At0*> T
L2 t=1 2
1 T
= —— ||ZTA; " (Z xy (7o () — 27 0%) — )\0*> z
EE 2 2
1 T T
S H~||2 JNUTAt_l (Z ZCtAt + th’f]t — A0 ) T
Tli2 t=1 t=1 2
1 El 1 / / L
T A -1 - T A —1/2 4 —1/2 )\ =
< | A (Z“)“” R A A (Z;W_M )x )

Q

T (677

= T —o(T) * T —o(T)

Note that ||Z]ls < 1. In the last step, the first term is because there are T — o(7) number of &' in A; and

[ZTA e < ﬁ(T)’ and || 3}, #:A||2 is bounded by total manipulation Cp. Similarly, in the second term we

have [T A; s < <A, and A7 (S i = 207) ll2 < A (S @) 12 + 14722672 =

I Zthl el o—1 + [[AO7| art < ay is the self-normalized bound for vector-valued martingales following Theorem 1 in
(Abbasi-yadkori etal., 2011). O

Now we are ready to prove that the index €* in CQP (2) being positive is the necessary condition of an attackable environment.

Proof of Necessity of Theorem 1. We prove if €* < 0, the bandit environment is not attackable. To prove this, we show
that there exists some no-regret bandit algorithm (LinUCB in particular) such that no attacking strategy can succeed. In
particular, we will show that LinUCB (with a specific choice of its L2-regularization parameter \) is robust under any
attacking strategy with o(T") cost when €* < 0. We prove it by contradiction: assume LinUCB is attackable with o(7T") cost
when €* < 0. According to Definition 1, the target arm & will be pulled 7' — o(T') times for infinitely many different time
horizons 7’, and the following inequalities hold when arm z is pulled by LinUCB:

#'07 + CBr(%) > 2007 + 21071 + CBr(x,),Va, £ 7 (19)

where ét is LinUCB’s estimated parameter at round ¢ based on the attacked rewards. We decompose 9T = éT,H + 9T7 1,
where T L ét, L and 7 || éT,”. We will now show that the above inequalities lead to

§cT0‘*| > :CaTBﬁ + .’L‘IéT’J_,VfL'a £ T
when T" — oo.

By Lemma 4 we have

. C o
T T n* T T
waBT,H 2 :CCLGH o T — O(T) o T — O(T)
- C «
~T ~T n* T T
X 0T,H§$ GH—"_T*O(T)J'_ T—o(T)

Substitute them back and we have that with probability at least 1 — 20,

7107 > 2107 + 2107, + CBr(z,) — CBy(3) — - Nig # & (20)




When Are Linear Stochastic Bandits Attackable?

Let us first consider the case of x,, Jf Z. Substitute Claim 1 and Claim 2 back and we have with probability at least 1 — 49

50T >al07 + ) 0r, +06 < log(T'/4) <\/01(T) - T _1 0(T)>>

log(T/é) QCT 20£T ~
-0 ( T—o(T)) S T—oT) T—o(T)’VIaHx

Taking T' — oo and noticing that the last three terms diminish to 0 faster than the third term, there must exists a 7y such that
forany T' > T,

7100 > 2 00 + )01 Vo, £ 0 1)

satisfies when x, }f .

Now we consider the special case that some z, || Z and show that the above inequality is still strict. Let z, = cZ. If |¢| > 1,
we have CBr(z,) — CB7(Z) = (¢ — 1)CBr (%) > 0. If |¢| < 1, since Z is pulled linear times for any large ¢ with sublinear

cost, then :%TL‘)M‘ > (; otherwise the cost would be linear. We directly have icTét?H = xlém +(1- C)L%Téu‘ > xaTét,”.
This leads to #7607 > 1 07 (inequality (21)) since z, L 07, .

Combining the two cases, we know there must exist a 9T7 1 that satisfies inequality (21) (the first constraint of CQP (2)),
T L éT, 1 (the second constraint of CQP (2)), and makes the objective of CQP (2) larger than 0. To satisfy the last
constraint, we consider LinUCB with the choice of L2-regularization parameter A that guarantees ||9t ll2 < 1 given the
data for large enough 7" and any ¢t < T'. Note that ridge regression is equivalent to minimizing square loss under some
constraint ||9t l2 < ¢, and there always exists a one-to-one correspondence between A and ¢ (one simple way to show the
correspondence is using KKT conditions). Therefore, we are guaranteed to find a A that gives us ¢ = 1 — ¢ where ( is an
arbitrarily small constant. Then we know that 9T’ | satisfies ||9T = 9T7H + éT_, 1]l2 < ¢ < 1. We prove the last constraint
16 = o) + 07,1 |2 < 1 by the fact that HéT,H + 07|l <1and 6] — 9T,|| |2 is arbitrarily small for large enough T
according to Lemma 4.

Now we proved that there exists a 9T7 1 that satisfies all the constraints in CQP (2) with positive objective, which means the
optimal objective €* must also be positive. This however contradicts our assumption €* < 0, implying that such LinUCB is
not attackable by any attack strategy. O

C. Details on Effective Attacks Without Knowledge of Model Parameters

We now prove the theorems of using Two-stage Null Space Attack (Algorithm 1) against LinUCB and Robust Phase
Elimination.

C.1. Proof of Theorem 3

Proof of Theorem 3. We first prove that for a large enough 7', Algorithm 1 will correctly assert the attackability with
probability at least 1 — J. We rely on the following lemma to show 6 estimated in step 11 of Algorithm 1 is close to the
true parameter 6.

Lemma 5 (Estimation error of é\l)‘ Algorithm 1 estimates Oﬁ by

n(&) ., (=
n()[|Z]l3
With probability at least 1 — 6, the estimation error is bounded by
~ N 2R21og(1/6
16y — 0> < 2B 23)

where the rewards have R-sub-Gaussian noise.
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Proof. ] is the projected vector of 6 onto &, which is

. JETG*@
1z )13

as defined in Eq (1). Though we need to estimate the vector é\l € R?, we actually only need to estimate the scale of it by
P X (@)
n(z)[z]3 >

rewards on Z is bounded by

since the direction is known to be z. Based on Hoeffding’s inequality, the estimation error of averaged

n(#) . (= 2R2 loo(1
P Z’L:l ~’I”Z(£C) _ ’I"* (j) 2 R Og~( /5) S 5 (24)
n(z) n(z)
where 7* (%) = 270", Considering ||Z||2 = 1 and we finish the proof. O

In the first stage, the bandit algorithm will pull the target arm & for 77 — O(+/11) times, since Z is the best arm according to
6. According to Lemma 5, with probability at least 1 — ¢ the estimation error is bounded as

2R?log(1/0)

0 —0fl2< /="

As a result, with a large enough 77, the error of &’s reward estimation satisfies

2R log(1/0)
T, — O(VT)

270 — 2T0]| < ||Z[|2(10) — 6]l> < <e

Thus solving CQP (2) with é” replacing Oﬁ and we could correctly assert attackability with an estimated positive index €*
when the environment is attackable with index €*.

Remark 3. From the analysis above, we notice that the adversary requires sufficiently large T to collect enough rewards
on the target arm, in order to make the correct attackability assertion. When T is not large enough, the attackability test
may have false positive or false negative conclusions. We empirically test the error rate and report the results in Additional
Experiments section.

We now prove the success and total cost of the proposed attack. The analysis relies on the “robustnes” property of LinUCB
stated in Lemma 1, which is restated and proved below.

Lemma 6 (Robustness of ridge regression). Consider LinUCB with ridge regression under poisoning attack. Let S; =
Zre (1.4} w0, #7 |A | be the total corruption on non-target arms until time t and assume every corruption on target arm is
bounded by . Then for any t = 1...T, with probability at least 1 — § we have

10 — 0|4, < ar+ S /VA+VE (25)

where oy = 4/ dlog (%) +VA

Proof. Based on the closed form solution of ridge regression, we have

t
ét:é—)\A;lé—l—A;leaT[nT—i—AT}

T=1
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Therefore, using ideas from (Abbasi-yadkori et al., 2011), we can have

t t
2007+ 3 el + 13 w0 A0

16: —6]la, <
T=1 T7=1
t
< o+ || ZxaTATHA;l
T=1
< a A Z Ta, Arll g1 + || Z Ta, Drlla
{1t} Ta, £F re{l..t},za, =3
< o Z xaTATHAgl + ”'Yn(j)i”A;l
Te{l...t}, xq, #T
< a > Ta, Arll2/VA+ [7n(#)E] 5
Te{l...t},xq, #T
< ap+ SUVA+ (@)l
n(x
< ap+ S VA+ (~)
n(z)
< o + S{/ﬁ + ’)/\/E

with probability at least 1 — §, where n(Z) is the times target arm has been pulled. The second step is based on the definition
of ay and introduces the high probability bound, the fourth step is because we have |A.| < v if x,_ = Z; the fifth step is
because of A; = AI; and the second last inequality follows Eq (8). Finally, notice that n(Z) < t and we finish the proof. [

Let us first analyze the attack in the first stage. Denote R () as the regret of LinUCB until round 7', where 6 is the
ground-truth parameter. We know from (Abbasi-yadkori et al., 2011) that if the rewards are all generated by 6 then with
probability at least 1 —  we have

Rr(0) = aT\/ dT log <1ZT/A> = O(dVT log(T/6)) (26)

where a; = 4/dlog /AN V). Then the attack in the first 7} rounds based on 6, should make the bandit algorithm
5 g

pull Z at least Ty — R, (0¢)/€j times. According to Lemma 5, with probability at least 1 — § parameter estimation error is
bounded by

167, — 6]ll2 < /2108(1/8)/\/ Ty — Rr, (80) /€ < 2/210g(1/5)// T 27)

for large enough 7. This means we have
v =1 (8),r, —0])Il < 2v/2log(1/8)/V/Th (28)

Now we prove the attack is successful with high probability. Consider the regret of the LinUCB against 0 as the ground-truth
parameter. The estimation error in ét — 0 has three sources: the sub-Gaussian noise, the rewards on non-target arms in the
first stage generated by 6 (the rewards on the target arm are corrected to 6 in step 19-20 in Algorithm 1), and the unattacked
rewards on target arm in the second stage generated by 8. According to Lemma 1, with probability at least 1 — 34, we have

160; — 0)|a, < o + Ry, (80)/VX +24/2t1og(1/8) //T1,t > Ty.
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To show the number of rounds pulling non-target arms, we first look at the regret against 0,ie., Ry (é)

Rr(0) <

M=

(iTé — xIﬁ)

#
Il
_

M=

< (:i:Tét +CBy(#) — o, é)

#
Il
_

™=

(J)Ztét + CBt(xat) — l‘;lrté)

ﬂ
Il
-

M=

QCBt(l'at)

t=1

<207 — 8l|ar

T
Tl
t=1 )
< 2(ar + R, (60)/ VA + 21/2T log(1/3)//T1) %mog (W)

holds with probability at least 1 — 35. And LinUCB will pull non-target arms at most Rz (8)/e* times, which can be
bounded by

RT(é)/e* <2 (OzT + R, (00)/\[\+ QW/\/E) \/dTlog <1+6T/>‘>/€*

< fartos (LT 4 Vit 0 V3 4 2 AT V) o (T2

and is in the order of
O (d (Viog(T/2) + v/Ti log (T3 /) + v/Tlog(1/0)/\/Tr ) /Tlog(T/3) /<" ) (29)

The +/T7 log (17 /6) term is due to the “corrupted” rewards of non-target arms observed in the first stage. Setting 77 = T2
gives us the minimum number of rounds pulling non-target arms in O(T3/ 4) according to Eq (29).

Now we prove the total cost C(T"). Note that in order to make the attack “stealthy”, we inject sub-Gaussian noise 7j; on
perturbed reward to make it stochastic. We separate the total cost by the cost on changing the mean reward and the cost of
sub-Gaussian noise as

N N
o= > Ar] <Y |2l (069 + il (30)
=1 =1

t={1..T},Ft#r:

where i € {t = {1.T} : 7+ # ri}. Let N = |{i}| be the total rounds of attack. Since we know the times attacking
non-target arms is bounded by Eq 29 and attack target arm at most 77 times, we have with probablity 1 — 4,

N=T,+0 (d (\/log(T/é) + /T; log (T1/8) + /T log(1/9) /JTT) T log(T/5) /e*) —OT¥Yy 31

when setting T, = T/2.
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Notice that since 7j; is R-sub-Gaussian, its absolute value |7;| is also R-sub-Gaussian, and E[|7;|] < L for some constant L
following Proposition 2.5.2 in (Vershynin, 2018). According to the general Hoeffding’s inequality, with probability at least
1-46,

N
> il £ NL+ /NLlog(2/6) = O(N + +/Nlog(1/6)) (32)

Thus the second term of Eq (30) has the order of O(N) = O(T3/%). The first term of Eq (30) is bounded by 2N + 27T
because each attack changes the mean reward at most 2 except the compensation step in line 20, and the reward compensation
on target arm can be bounded by 27} because target arm is pulled at most 773 times in the first stage. Overall, with probability
atleast 1 — 49

N N
o) <Y [al (8- 6%+ |fs| < 2N +2T1 + NL + /NLlog(2/6) = O(N) = O(T*/*) 33)
=1 i=1

when setting Ty = T/2.

C.2. Proof Sketch of Corollary 4
The proof is similar to the proof of Theorem 3, and thus we only explain the difference here.

Instead of using Lemma 1 to analyze the impact of perturbed rewards generated by 8 (against 0) collected in the first
stage, we know RobustPhE has an additional regret term O(S?) for corruption S (assuming S is unknown to the bandit
algorithm). Since the bandit algorithm observes 77 rewards in the first stage, S < 273 and the additional regret due to
rewards from first stage is O(Tf) For the unattacked rewards on target arm in the second stage generated by 0™, we view
them as rewards generated by 6 with misspecification error v, i.e., |7 (6" — é)| < ~v. Proposition 5.1 in (Lattimore et al.,
2020) showed that the phase elimination algorithm with misspecification + has additional regret in O(yv/dT log(T)). With

v < 24/2log(1/68)/+/T1 by Eq (28), the total regret is
Rr(8) = O(av/T1og(T/8) + VT log(T) 1og(1/8)/v/T; + T )

with probability at least 1 — 24. Therefore, we have with probability at least 1 — 20, the attack strategy will fool RobustPhE
to pull non-target arms at most O ((d\/f log(T/8) + v/ dT log(T) log(1/6) //Ti + Tf)/e*) rounds.

Similar to Eq (31), we bound the total rounds of attacking RobustPhE by
N=1+ o( (AVT log(T/6) + VdT log(T) log(1/5)/+/Ty + T2) /e*) (34)

From Eq (33), we know the total cost is in the same order as the rounds of attack. So with probability at least 1 — 39 the
total cost is

o(:r1 + (dVT log(T/8) + VdT log(T) log(1/6)/\/Ti + T?) /e*).

Setting T} = T/ gives us the minimum attack cost O(7"*/%), and the non-target arms are pulled at most O(T*/5) rounds.

Remark 4. Note that we bound the total corruption by Ty, which means the adversary does not need to compensate the
rewards on the target arm as shown in line 20 in Algorithm 1. The robustness of RobustPhE allows us to carry over the
rewards in the first stage while LinUCB does not.

C.3. Attack under unknown 7T

Our two-stage null space attack algorithm requires that 7" is known for the convenience of analysis. Here we discuss a
promising idea that leveraging the doubling trick to extend the attack to the case of unknown 7', which will lead to a
multi-stage attack that repeatedly adjusts the target parameter 0 at each stage. More concretely, to attack LinUCB without
knowing T, the adversary can start with a pre-specified horizon Tj and run the two-stage attack. Once the actual horizon
reaches Ty, the adversary will expand the horizon to 7§ (i.e., the “doubling” trick), and views previous Ty rounds as the
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new first stage, re-calculates target parameter 6 using rewards from the Tj rounds and runs the new attack strategy until 7.
Using this exponential horizon sequence {1; = T, 021 ;1 € N}, we have a multi-stage attack on LinUCB with unknown time
horizon. Similarly, to attack RobustPhE, we will need to adjust the horizon sequence to be {T; = T0(5/ 2)1, i € N}, which
will lead to a similar multi-stage attack on RobustPhE. We believe this direction is feasible based on our current analysis,
and more thorough and complete proof should be the target of our next work.

D. Additional Experiments
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Figure 4. False negative rate of attackability test

In Figure 4, we study the false negative rate of the attackability test in Algorithm 1, i.e., how often the adversary mistakenly
asserts that an attackable environment is not attackable. As we explained in Proof of Theorem 1, the wrong assertion is
because of using estimated é\l instead of the ground-truth bandit parameter. In this experiment, we consider a challenging
attackable three-arm environment with A = {z1 = (0,1), 22 = (0.11,1.1), 25 = (—2,0)}, Z = 21 and 8" = (0,0.5). By
solving CQP (2), we have attackability index € = 0.005 and certificate 0, = (—0.5,0)°. We test two-stage null space
attack against LinUCB with 7' = 10, 000 and the adversary will test the attackability after the first 7; = 7""/2 = 100 rounds.
We vary 77 from 1 to 100 to see how many iterations is sufficient for attackability test. We report averaged results of 100
runs. We also vary the standard derivation o of Gaussian noise from 0.1 to 0.3. In Figure 4, we can see that the false negative
rate is almost zero when 77 > 50, suggesting 77 = 100 is sufficient. When o = 0.1 the adversary only needs around 10
rounds to make a correct assertion. We also notice the false negative rate becomes higher under a larger noise scale. As
suggested in Lemma 5, the error in é” estimation is larger if noise scale is larger or the number of target arm’s rewards n(Z)

is smaller, which highly depends on 7. Larger error means CQP (2) with é\l is more likely to be unfeasible and gives false
negative assertion. However, 77 = 100 is still enough for the attackability test when €* = 0.005.

SWe introduce arm x3 to guarantee the first dimension of 0 L cannot be smaller than —0.5. Comparing Z and x> and we can see the
optimal solution is €* = 0.005.



