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Abstract. While deep networks have demonstrated state-of-the-art per-
formance in medical image analysis, they suffer from biases caused by
undesirable confounding variables (e.g., sex, age, race). Traditional sta-
tistical methods for removing confounders are often incompatible with
modern deep networks. To address this challenge, we introduce a novel
learning framework, named ReConfirm, based on the invariant risk min-
imization (IRM) theory to eliminate the biases caused by confounding
variables and make deep networks more robust. Our approach allows
end-to-end model training while capturing causal features responsible
for pathological findings instead of spurious correlations. We evaluate
our approach on NIH chest X-ray classification tasks where sex and age
are confounders.
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1 Introduction

Deep neural networks for medical data analysis suffer from undesirable biases
created by confounding variables. These models can use the confounders as short-
cuts to establish spurious connections between clinically meaningless variables
and diagnosis outcomes [15,8,17,25]. For example, when we train a model on a
chest radiograph dataset where male patients are more likely to have a disease,
the classifier can use breast regions to predict the absence of the disease. This
behavior leads to a higher error rate for female patients [12]. Fig. 1 provides
empirical evidence to illustrate this problem. Specifically, while breast features
are not clinically meaningful for performing chest radiograph diagnosis, deep
networks rely heavily on these features as indicated by the visualization (see
section 3 for more experimental details). Other factors such as age [25,8], text
markers on images [5,8], testing condition [6], institutions where data were col-
lected, or even the pubertal development scale of subjects [25] may all function as
confounders and impact the model performance. Relying on these confounders
will significantly reduce the model’s generalizability and reliability [12,20] be-
cause the model does not capture true pathologies underlying the diagnostic
outcomes.

Frequent deep learning methods simply assume that if confounders such as
gender are not directly included to the training dataset, we can remove their ef-
fects. A key issue, however, is that strongly correlated features may act as proxies
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Fig. 1. Activation heat-map visualization for a DenseNet121 trained on a Chest-Xray
dataset confounded by sex. As marked in images, the model considers the breasts
as abnormalities. This confounding effect culminated in higher false positive rate for
females.

for confounders (e.g., inferring gender from chest x-ray images based on anatom-
ical differences) [16]. Traditional statistical methods to mitigate the effects of
confounders contain pre-processing, matching or stratification of input variables
or post-processing of the outputs [1,14]. However, because of the demand for
end-to-end training schemes and large training datasets, these approaches have
fallen out of favor with the machine learning community. How to eliminate con-
founding variables in deep networks remains an important research question.
Recent methods use adversarial domain-invariant representation learning to re-
move the confounder [25]. However, when the class-conditional distributions of
input features change between source and target domains, this approach cannot
guarantee successful generalization [24].

Invariant Risk Minimization (IRM) [4] is a robust framework for learning
invariant features in multi-source domain adaptation. IRM relies on the idea that
invariance is a proxy for causality; the causal components of the data remain
constant (invariant) across environments. Although powerful, IRM requires a
discrete set of environments, each corresponding to specific data distribution,
during the training stage. As a result, one cannot directly apply this method to
the confounder removal problem where pre-defined environments are unavailable.

To this end, we propose a novel strategy to optimally split the training dataset
into different environments based on the available confounders (e.g., age, sex, test
condition). We note that our method does not need the confounders during test-
ing the model. Our experiments show that the generated environments facilitate
IRM to learn features highly invariant to confounding variables. In addition, the
original IRM formulation enforces the same conditional distribution among all
classes, which potentially leads to learning unstable features as discussed in [3].
We propose the first conditional IRM method for medical images to relax this
assumption and enable the model to learn more robust features specific to each
diagnosis. The main contributions of this paper are as follows:

– We develop a novel confounder removal framework based on the invariant
risk minimization theory. We extend this framework to accommodate class-
conditional variants, where the invariance learning penalty is conditioned on
each class.
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– We design a strategy for optimally splitting the dataset into different envi-
ronments based on the maximum violation of the invariant learning principle.

– We compare the classification performance and visualization of our method
to baseline CNN models trained under the traditional empirical risk mini-
mization framework.

Related Works. Many recent studies in the medical domain raise the concern
that deep learning models may have biases in their predictions. Larrazabal et al.
[12] and Seyyed Kalantari et al. [20] provided experimental evidence that gender,
race, age, and socioeconomic status of the patients confound the model predic-
tions. They suggested the models should be trained on a multi-source balanced
dataset to minimize the bias. While promising, creating large and diverse medi-
cal datasets is time-consuming and expensive. Examples of other techniques for
removing the confounding factors are reweighting [21] and stratifying the batch
sampling [17]. We note that these methods do not learn the invariant or causal
medical pathologies underlying the disease. It can lead to a performance drop in
the test environments where the spurious associations are different. Zhao et al.
[25] used adversarial domain-invariant representation learning to remove the con-
founder via a min-max training approach. As mentioned, one major limitation
of the adversarial learning method is that we cannot guarantee their successful
generalization [24]. It is also possible for the predictor to move in a direction that
helps the adversary decrease its loss [23]. Invariant Risk Minimization (IRM) [4]
was proposed to overcome the limitations of adversarial domain-invariant rep-
resentation learning. In this work, we are interested in evaluating the ability of
IRM to remove the confounding effects in medical data analysis. Adragna et
al. [2] previously utilized IRM to achieve fairness in comment toxicity classifi-
cation. Our work is different in two ways: i) we introduce a strategy to define
training environments when we have a collection of data, ii) we propose the
class-conditional invariance learning penalty; our goal is to remove the associa-
tion between the confounder and model prediction in a more proper way, as we
will describe. We also note Rosenfeld et al. [18] argue that IRM does not improve
over standard Empirical Risk Minimization in the non-linear setting. However,
their theorem only indicates the existence of a non-invariant model that approx-
imately satisfies the IRM criterion. This is similar to showing the existence of
neural network parameters that fit the training set but do not generalize to the
test set. This is not sufficient to question the efficiency of the method [11].

2 Removal of Confounders via Invariant Risk
Minimization (ReConfirm)

In this section, we describe our approach for REmoval of CONFounders via
IRM (ReConfirm). We first introduce the IRM approach from the perspective of
confounder removal. Then, we will describe our strategy to split a dataset into
training environments and our extensions to IRM. Suppose we have a set of train-
ing environments e ∈ Etr and in each environment, datasets De := {(xe

i , y
e
i )}

Ne
i=1
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are generated from the same input and label spaces X × Y according to some
distribution P (Xe, Y e). The environments differ in how the labels are spuriously
correlated with the confounder variable c. For instance, in environment e0, older
people have a higher probability of being diseased, while in environment e1, this
association is reversed. We aim to find a predictor function f : X → Y that
generalizes well for all confounded environments. Empirical Risk Minimization
(ERM), which is the standard method for solving learning problems, minimizes
the average loss over all training samples from all environments. On the other
hand, IRM looks for features that remain invariant across training environments
and ignores the confounding associations specific to each environment. It as-
sumes that f is a compositional model f := ω ◦ Φ, where Φ : X → Z is the
invariant data representation and ω : Z → Y is the classifier on top of Φ. Using
this notation, IRM minimizes the total risk of all training environments through
a constrained optimization problem:

min
Φ,ω

∑
e∈Etr

Re(ω ◦ Φ)

subject to ω ∈ argmin
ω̄

Re(ω̄ ◦ Φ), for all e ∈ Etr
(1)

where Re := E(Xe,Y e)∼De [L(f(Xe), Y e)] is the risk for environment e and L is
the loss function (e.g. cross entropy). To solve this bi-level optimization problem,
the authors in [4] simplified Eq. 1 to:

min
Φ

∑
e∈Etr

Re(ω ◦ Φ) + λ∥∇ω|ω=1.0R
e(ω ◦ Φ)∥2 (2)

where λ is a regularization hyperparameter and ω is a fixed dummy variable
[4]. This formulation enables end-to-end network training. While IRM is a com-
pelling approach for domain-generalization problems, we cannot immediately
apply it to a medical dataset to remove the confounder variables. IRM requires
a set of environments to find features that remain invariant across them. Thus,
to take advantage of IRM in discovering the underlying medical pathologies in
a confounded dataset, we have to create training environments. Environments
should share the same underlying biomarkers that we expect our model to learn.
However, they should differ in how the confounders generate spurious correla-
tions. In what follows, we introduce our strategy to split the dataset to ensure
learning invariant features while ignoring the confounding effects.
Creating training environments for ReConfirm. To use IRM to remove
the spurious effects of confounders, we have to partition our dataset into differ-
ent environments. Following [4,11], we use only two training environments: e0
and e1. The class label and the confounder have strong but spurious correla-
tions in each environment. To construct the environment, we use the invariant
learning principle. Specifically, ω is simultaneously optimal for all environments
due to the constraint in Eq. 1. In addition, for regular loss functions like the
cross-entropy and mean squared error, optimal classifiers can be expressed as
conditional expectations of the output variable. Therefore, an invariant data
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representation function Φ must satisfy the below invariant learning principle:

E[Y |Φ(x) = h, e0] = E[Y |Φ(x) = h, e1] (3)

where h is in the intersection of the supports of Φ(Xe). This condition means
that IRM learns a set of features such that the conditional distribution of the
outcomes given the predictors is invariant across all training environments. Given
a collection of data, we seek partitions that maximally violate the invariance
principle. This would be equivalent to the worst-case scenario on which we would
like to train our model. We note that Creager et al. [7] show that maximizing
the invariance principle violation corresponds to maximizing the regularization
term in Eq. 2. Motivated by this observation, we maximize the following gap
between our environments to find optimal environment splitting:

e0, e1 = argmax
e0,e1

g = argmax
e0,e1

∣∣E[Y |Φ(x) = h, e0]− E[Y |Φ(x) = h, e1]
∣∣ (4)

Suppose our input X-ray (MRI, CT scan, etc.) images contain both authentic
medical biomarkers and spurious confounding features. The worst-case classifier
only relies on the confounder variable c to make predictions, i.e. Φ(x) = c. Then
the gap would be g =

∣∣E[Y |c, e0] − E[Y |c, e1]
∣∣. Therefore, we are looking for an

environment partitioning strategy that maximizes g. One possible solution would
be to define the environments based on the agreement between the confounder
and the label [7]. This means, for example, in environment e0, all diseased pa-
tients (y = 1) are old (c = 1) and healthy controls (y = 0) are young (c = 0),
while in environment e1, all diseased patients (y = 1) are young (c = 0), and
healthy controls (y = 0) are old (c = 1). In this case, we have the maximum
confounding association in each environment, and the gap is g = 1, which is its
maximum value. The proof can be found in the supplementary materials.
Class-conditional ReConfirm. While the IRM framework promotes invariant
learning, it applies one penalty term to all classes (see Eq. 2). This formulation
potentially leads to features that are less stable for each class [3]. To address
this issue, we propose to use class-conditional penalties. Our formulation can
correct confounding effects specific to each class while potentially promoting
more diverse features. For instance, age (as a confounder) can impact healthy and
diseased patients differently. Rather than learning a global effect as in IRM, our
class-conditional method separately models each class’s confounding influences.
This way, we encourage our model to learn invariant medical pathologies only
related to the diseased class (or healthy class as well), thus diversifying the
learned features. The mathematical formulation of class-conditional ReConfirm
is given as follows:

min
Φ

∑
e∈Etr

Re(ω ◦ Φ) +
M−1∑
j=0

∑
e∈Etr

λ∥∇ω|ω=1.0R
e,j(ω ◦ Φ)∥2 (5)

where M is the number of classes and Re,j(ω ◦Φ) denotes the risk corresponding
to samples from j-th class. A more systematic way to deal with the confounders
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is to remove their direct influence on the predictions. For example, we can remove
the common effects of age or gender on chest X-ray images or brain MRIs while
preserving their actual effects on the development of a disease [25]. We can
condition our ReConfirm regularization only on the control class to achieve this
behavior.

3 Results and Discussion

Dataset. We particularly evaluate the efficacy of our model on binary classi-
fication (normal versus abnormal) of frontal chest radiographs using the NIH
Chest-Xray14 (NIH-CXR) dataset [22]. The abnormalities include 14 abnormal
findings defined in [22]. This dataset contains age (0–95) and sex (Male and
Female) as meta variables. It is shown that the deep learning models have poor
performance on female patients and younger patients [12,20]. Given that some
anatomical attributes (probably considering the breasts as abnormalities) and
age-related alterations [9,13] are reflected in X-ray images, sex and age could
be considered as confounders. In order to highlight the ability of our model to
mitigate the effect of confounders on predictions, we created a subset of the
NIH-CXR dataset where age and gender are confounders for the label. Fig. 2
and 3 show the age and gender distributions within each class.
Implementation Details. We used a densely connected CNN (DenseNet) ar-
chitecture [10], which has been shown to accomplish state-of-the-art results in
X-ray image classification. We used the ImageNet setting to normalize all of the
images, and standard online transformations to augment images while training.
We also had the Adam optimizer with standard settings, a batch size of 96, a
learning rate of 1× 10−4, and image size of 224× 224. We use the same training
settings across all models to ensure fair comparisons. The penalty coefficient λ
and the number of training epochs to linearly ramp it up to its full value are
among the hyperparameters for the ReConfirm method. Similar to [4,11], we
found ramping in λ over several epochs and scaling down the ERM term by
the penalty coefficient when it is more than 1 are useful for stable training. All
codes will be available at https://github.com/samzare/ConfounderRemoval
for research purposes.
Sex as Confounder. In our dataset, male patients are more probable to be in
the diseased class, as shown in Fig. 2 a. In order to remove the confounding as-
sociation, we utilize ReConfirm and conditional variants. First, we construct our
training environment based on the setting described in Fig. 2 b. In environment
e0 all females are in the control group, while in e1 this correlation is reversed.
We have the ERM model as the baseline where the confounder effects are not re-
moved. We expect that ERM predictions rely more on spurious correlations and
consequently have lower performance compared to the variants of ReConfirm
methods. We implement ReConfirm, class-conditioned ReConfirm conditioned
on all classes (cReConfirm (all)), and only on the control class (cReConfirm
(y=0)). Conditioning on all classes would encourage the model to specifically
learn features that are invariant (among males and females) in each class. Also,
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Table 1. Prediction performance of models trained on sex-confounded dataset.

Whole Cohort Male Female
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

ERM 84.23 0.9010 0.7690 83.66 0.9051 0.7521 84.79 0.8971 0.7859
ReConfirm 86.69 0.9278 0.7958 85.92 0.9352 0.7718 87.46 0.9209 0.8197
cReConfirm (all) 86.41 0.9045 0.8141 85.63 0.9042 0.7972 87.18 0.9049 0.8310
cReConfirm (y=0) 87.18 0.9244 0.8099 85.92 0.9153 0.7915 88.45 0.9333 0.8282
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Fig. 2. Difference in sex distribution between normal and abnormal classes resulted
in the baseline ERM learning the confounding effects, while cReConfirm removed this
effect: a. sex distribution for each class, b. the ReConfirm environment setting, c, d.
distribution of prediction scores. e, f. qualitative visualization of the learned features.

conditioning only on the control group helps the model learn the “normal” effects
of sex that can be observed in the X-ray images (like the breasts). Table 1 lists
the perfromance of all models for the balanced whole cohort, female and male
patients separately. In the whole cohort setting, we have both male and female
patients from both classes. We then restricted the test dataset to one sex to have
a closer look at the model performance in each subgroup. We also have the re-
sults from worst-case scenarios where sex and class labels are strongly correlated
in the supplementary materials. Overall, ReConfirm variants could achieve bet-
ter performance compared to the ERM method. We could achieve an accuracy
of 87.18% on the whole cohort with cIRM conditioned on the control group. To
investigate more, we also have the score distributions (Fig. 2 c, d) and GRAD-
CAM [19] visualizations (Fig. 2 e, f) for ERM and cReConfirm conditioned on
the control group. Note that the score distributions show that the cReConfirm
model is more confident in its predictions for all experiments (we used markers
to illustrate the difference in Fig. 2). Activations also illustrate how the baseline
ERM model is confounded by the sex-related anatomical features in the X-ray.
As discussed by Larrazabal et al. [12], female patients are more likely to have
false positive predictions. Our visualizations can explain this confounding effect;
the ERM model considered the breasts as abnormalities (see Fig. 3 e), while
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Table 2. Prediction performance of models trained on age-confounded dataset.

Whole Cohort Young Old
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

ERM 82.77 0.884 0.7561 85.67 0.8481 0.7585 80.75 0.9012 0.7551
ReConfirm 86.05 0.8854 0.8296 88.25 0.8617 0.8226 84.52 0.8964 0.8328
cReConfirm (all) 85.46 0.9212 0.7771 86.53 0.9091 0.7170 84.72 0.9261 0.8041
cReConfirm (y=0) 86.22 0.9237 0.7911 87.97 0.8986 0.7698 85.02 0.9349 0.8007
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Fig. 3. Difference in age distribution between normal and abnormal classes confounded
the baseline ERM while cReConfirm removed this effect: a. age distribution for normal
and abnormal classes, b. the ReConfirm environment setting, c, d. distribution of
prediction scores for ERM and cReConfirm conditioned on control class.

using ReConfirm, we can learn more meaningful features (Fig. 3 f). While ERM
misclassified this case, cReConfirm could find more proper biomarkers and cor-
rectly classified the image. More results and visualizations can be found in the
supplementary materials.

Age as Confounder. The average age of the diseased class is higher than the
healthy controls (48.73 ± 16.77 vs. 42.61 ± 15.65), as shown in Fig. 3 a. We
construct our training environments based on the same strategy and the setting
we used is described in Fig. 3 b. In order to define the young and old groups,
we set a threshold of 40 years old on the age; Seyyed Kalantari et al. [20] have
shown that age groups under 40 experienced the highest performance disparities.

Table 2 lists the performance of all models for the balanced whole cohort,
younger and older patients separately. The results from worst-case scenarios
where age and class labels are strongly correlated are in the supplementary ma-
terials. We have ReConfirm, cReConfirm conditioned on all classes, and cReCon-
firm conditioned on the control group. Conditioning on all classes would preserve
the diversity of learned features, while conditioning only on the control group
would encourage the model to learn the normal aging effects on the lungs that
can be captured in the X-ray images and confound the model. Overall, ReCon-
firm variants could achieve better performance compared to the ERM method.
We have an accuracy of 86.22% on the whole cohort with cReConfirm condi-
tioned on the control group. The score distributions (Fig. 3 c, d) for ERM and
cReConfirm conditioned on the control show that our cReConfirm model is more
confident in its predictions for all experiments. More results and visualizations
can be found in the supplementary materials.
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4 Conclusion

In this work, we applied IRM to a binary chest X-ray classification task in or-
der to evaluate its ability in removing the effect of confounder variables. We
also proposed two variants of class-conditional ReConfirm; conditioning on all
classes results in similar predictive behaviour in each class among different values
of confounders, and conditioning only on control class help us to remove direct
associations while preserving the indirect ones. Our experiments show that Re-
Confirm is significantly more robust than ERM against undesirable confounders.
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dation (1910973).
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