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Abstract. Computer Aided Diagnosis (CAD) systems for renal histopathology
applications aim to understand and replicate nephropathologists’ assessments of
individual morphological compartments (e.g. glomeruli) to render case-level his-
tological diagnoses. Deep neural networks (DNNs) hold great promise in address-
ing the poor intra- and interobserver agreement between pathologists. This being
said, the generalization ability of DNNs heavily depends on the quality and quan-
tity of training labels. Current “consensus” labeling strategies require multiple
pathologists to evaluate every compartment unit over thousands of crops, result-
ing in enormous annotative costs. Additionally, these techniques fail to address
the underlying reproducibility issues we observe across various diagnostic feature
assessment tasks. To address both of these limitations, we introduce MorphSet, an
end-to-end architecture inspired by Set Transformers which maps the combined
encoded representations of Monte Carlo (MC) sampled glomerular compartment
crops to produce Whole Slide Image (WSI) predictions on a case basis without the
need for expensive fine-grained morphological feature labels. To evaluate perfor-
mance, we use a kidney transplant Antibody Mediated Rejection (AMR) dataset,
and show that we are able to achieve 98.9% case level accuracy, outperforming
the consensus label baseline. Finally, we generate a visualization of prediction
confidence derived from our MC evaluation experiments, which provides physi-
cians with valuable feedback.
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1 Introduction

Histopathology is on the verge of transforming into a highly quantitative and com-
putational discipline. Within the next decade, Deep Neural Network (DNN) based
Computer Aided Diagnosis (CAD) systems are expected to become indispensable for
c© Springer Nature Switzerland AG 2021

M. de Bruijne et al. (Eds.): MICCAI 2021, LNCS 12908, pp. 319–328, 2021.
https://doi.org/10.1007/978-3-030-87237-3_31



320 P. A. Cicalese et al.

histopathologists in their daily routine diagnostics, improving reproducibility and accu-
racy at considerably lower costs and with better transparency than molecular tests.
Nephropathology is a subspecialty of histopathology that integrates paraffin histology,
immunohistology and transmission electron microscopy observations into a single diag-
nosis for non-tumor diseases in native and transplant kidneys. In nephropathology, the
diagnosis of disease entities like glomerulonephritis (as either present or absent) is highly
reproducible. On the other hand, the assistance of such CADs is much more urgently
needed for fine-grained prognostic details and disease entities with discriminative, grad-
ual biology, such as Antibody-Mediated Rejection (AMR). For diagnostic simplicity,
AMR is diagnosed as present (chronic active, chronic, or active) or absent according to
the Banff Classification of histopathological and clinical parameters [11]. To address the
limitations observed in existing classification methods for diseases with gradual mani-
festation, several research groups have developed supervised Convolutional Neural Net-
work (CNN) classification architectures that can approximate the scoring criteria devel-
oped for several renal pathologies with variable success. They do not, however, solve
the issues underlying pathologists’ scores of individual compartment units.

Various research groups have opted to have multiple renal pathologists annotate
the same images independently, treating their assessments as votes that can be used to
approximate the general concepts underlying the given scoring criteria. This allows the
CNN to generalize well to new cases, but it introduces significant annotative cost. In
addition, consensus voting schemes aim to reflect the general opinion of the patholo-
gists, but the fact that the minority votes are discarded may be harmful to performance
since these discarded votes may still be informative for a disease with a gradual mani-
festation [12]. While other approaches may attempt to make use of all annotations, these
processes still depend on votes generated with scoring criteria that lack reproducibility
and undergo frequent revision [10]. We were interested in bypassing the scoring process
for individual compartments entirely, leveraging the ability of DNNs to learn prognos-
tic features in order to achieve reliable case-level accuracy. This could bypass the need
for standardized nephropathology descriptors, as recently defined by Haas et al. [5],
which have unknown underlying biology and uncertain reproducibility. Moreover, it
would obviate the need for pre-analytical standardization of laboratory procedures as
proposed by Barisoni et al. [3]. Thus, we introduce MorphSet, an architecture capable
of attributing prognostic features to individual morphological compartments through a
mechanism inspired by Set Transformers [9]. Our contributions are as follows:

– We propose a novel Monte Carlo (MC) glomeruli sampling method for generating
unique subsets of available images for a given case, which we use to produce case-
level predictions while improving regularization.

– We introduce two case-level architectures; the first architecture uses convolutional
layers to process the input images for a given case, while the second architecture,
which we call MorphSet, utilizes a multi-head self attention mechanism to compare
embeddings of input images to various learned prognostic vectors.

– We repeat the MC sampling step which allows us to produce an aggregate predic-
tion that is more representative of the input case. We subsequently use these MC
predictions to generate model confidence visualizations, which provide meaningful
feedback to the pathologist.
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Related Works. Much of the recent DNN-based classification work in renal histo-
pathology has been centered around the prediction of pathological findings in individ-
ual morphological compartments, particularly in glomeruli due to its diagnostic or prog-
nostic relevance. Uchino et al. developed glomerular classifiers for seven pathological
findings by fine-tuning an InceptionV3 network and using a majority decision approach
to predict consensus labels on glomerular image crops [14]. While promising, we note
that several important pathological findings could not be accurately classified, meaning
that performance across the full spectrum of renal diseases remains elusive. Possible rea-
sons for this are data scarcity and interobserver disagreement for the compartment unit
labels, even with consensus descriptors. Overcoming scarcity problems and correcting
for annotative disagreements in available nephropathology datasets will be a critical step
for the further digitization of histopathology.

Other techniques for case-level classification of renal diseases have focused on
resisting label noise and non-descriptive images in renal datasets, as well as patch-
evaluation methods for WSI prediction. Cicalese et al. proposed an uncertainty-guided
CAD system for kidney-level case prediction that assigned case-level labels to individ-
ual morphological compartments in images and allowed the classifier to filter out non-
descriptive images in its predictions [4]. Xu et al. used a Multiple-Instance Learning
(MIL) framework to classify high resolution colon histopathology images, aggregating
patch predictions by a voting criterion in which a WSI is predicted positive if it contains
a patch that is predicted positive [16]. While promising, the vote aggregating criterion
used is not robust, potentially giving single patches disproportionate influence over the
final WSI prediction. Hou et al. addressed this by training a decision fusion model
to aggregate high-resolution patch predictions into WSI-level predictions, outperform-
ing both max-pooling and voting aggregation mechanisms on glioma and Non-Small-
Cell Lung Carcinoma WSI cases [6]. This technique, however, relies on the automated
extraction of discriminative crops from WSIs through the use of an Expectation Maxi-
mum (EM) based CNN method, which risks rejecting patches that are hard to classify
but still biologically relevant. We were interested in explicitly learning prognostic fea-
tures which we could use to produce unique embeddings corresponding to individual
discriminative concepts with prognostic relevance. To accomplish this, we took inspi-
ration from the Set Transformer architecture, which computes pixel-wise interactions
with respect to a series of learned concepts for an input set [9]. We could then use these
learned concepts to map a set of glomerular images to its relevant disease diagnosis,
thus circumventing the need for fine-grained glomerular labels.

2 Methodology

2.1 AMR Dataset Generation and Annotation

To evaluate the effectiveness of our method with respect to a fine-grained annotation
scheme, we used an Antibody Mediated Rejection (AMR) glomerular crop dataset. We
chose this dataset given that we knew the case-level ground truths prior to data process-
ing (i.e. we knew which transplants were positive for AMR through other criteria as
donor-specific antibodies or C4d positive on immunohistology). We randomly selected
a total of 89 (51 chronic active, chronic, or active AMR and 38 Non-AMR) blood group
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Fig. 1. The overall MorphSet architecture. a) We begin by sampling our M images across N
cases, and encode each image as an individual batch element. After passing our encoded images
through our Squeeze-Excitation Dimensionality Reduction (SEDR) block, we compare each
image to a set of J parametrized Prognostic Vectors (PVs). b) Once we have computed our
similarity scores, we proceed to produce unique embeddings for each μj , thus generating image-
level assessments for each PV. We then pass our outputs through a second SEDR block, and
concatenate the M encoded image embeddings together, yielding a batch size of N . After our
global pooling and linear classification blocks, we can then perform Monte Carlo (MC) sampling
during the evaluation phase to generate probability density curves, providing valuable feedback
to the physician.

ABO- compatible, paraffin embedded kidney transplant biopsies, all of which satisfied
the minimum sample criteria (≥7 glomeruli, ≥1 artery) [11]. All sections were cut to
2 μm and were Periodic acid-Schiff (PAS) stained in the same pathology lab over a two
year time frame. Micrographs were taken from all non-globally sclerosed glomeruli
that were at least four levels apart at a resolution of 1024 × 768, yielding a total of
1,655 glomerular crops. Each of these images were then labeled by any combination of
three experienced nephropathologists (from a group of four) using the LabelBox plat-
form, with choices being AMR, non-AMR, or inconclusive [1]. In the event of a three
way disagreement, the fourth pathologist would break the tie (54 tiebreakers, yielding a
total of 5,019 annotations). Each image was then manually segmented by a single expe-
rienced pathologist using QuPath, a digital pathology software, to produce fine-grained
masks for the biologically relevant glomerular compartment unit which were then used
to extract the glomerular information prior to classification [2].

2.2 MorphSet

Given the variable number of glomerular crops that we see for any of our given N
cases, we chose to pursue a MC sampling scheme; this allows us to sample M unique
images at each iteration of training for a given case n. By doing this, we ensure that
the architecture sees a new combination of images for each pass through the network,
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allowing it to account for the variability we see between glomerular crops and entire
cases. In the event that there are fewer than M images available for a given case, we
simply use online augmentation on the available set to produce the remaining images.
We then pass these images through a CNN encoder to produce our initial feature embed-
dings. Once this is done, we then pass the outputs of our encoder network through a
Squeeze-Excitation Dimensionality Reduction (SEDR) block (see Fig. 1), which con-
sists of Squeeze-Excitation (SE) attention, followed by a linear layer, batch normaliza-
tion, a ReLU activation function, and another SE attention operation [7].

A key component of our architecture lies in its ability to generate output represen-
tations for each image with respect to every encoded Prognostic Vector (PV), which
we refer to as the MorphSet operation. We define PVs as learned discriminative feature
embeddings that can be used to interpret individual images with respect to a specified
number of key concepts (i.e. the number of PVs). Let Em,n ∈ R

p×p represent the
encoded representation of the mth image from the nth case, with p × p features. These
embeddings are then transformed to yield our votes V m,n

j ∈ R
p×p, where j repre-

sents a particular PV that we wish to learn. We generate our votes using shared learned
transformation matrices Wj ∈ R

p×p, following

V m,n
j = WjE

m,n (1)

The vote generation process can be interpreted as a preparatory step which we will use
to learn to compare each discriminative feature separately, mimicking how pathologists
assess tissue morphology with respect to each relevant scoring task.

We chose to use an attention mechanism similar to that described in the Set Trans-
former architecture to compute the similarity between a set of votes Vj and their respec-
tive parametrized PVs μj , which were Kaiming initialized [9]. We accomplish this by
generating a similarity measure between each vote and its parametrized PV, thus bias-
ing the network to information that is representative of the given discriminative marker.
Using this set operation also allows our comparison mechanism to retain linear time
complexity O(J), where J is the number of learned PVs. To describe our comparison
mechanism, we adopt the following naming conventions: the number of attention heads
is denoted by Nh, while the number of dimensions for the key and value vectors are
given by dk and dv , respectively. We define multi-head attention as evenly dividing the
features in dk and dv into Nh pairs of output vectors such that dh

k and dh
v represent the

key and value vectors of head h. We will omit the image indices m and n for the sake
of simplicity while describing this mechanism.

We begin by flattening our vote matrices Vj to then generate Nh different dh
k and

dh
v dimensional key (kh

j ) and value (vh
j ) vectors, using a set of learnable transformation

matrices Λ = {W h
k ,W h

v }Nh

h=1, where W h
k ∈ R

p2×dh
k and W h

v ∈ R
p2×dh

v . To simplify
our presentation, we will set d = dh

v = dh
k throughout the remainder of the paper.

We parametrize our PV as μh and compute each element of our similarity matrix S ∈
R

Nh×J following
sh

j = kh
j · μh

j (2)

We can now generate our output using our computed similarity matrix with
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rh
j = μh

j + ah
j · vh

j where ah = softmax(sh/
√

d) (3)

We scale the similarity vectors sh by a factor of 1/
√

d to avoid the vanishing gradient
problem described in [15], and then softmax the result to generate our final attention
coefficients ah. We can think of each PV μh

j as a static memory component, encoding
the typical appearance of some discriminative feature, while the dynamic component
ah

j · vh
j represents the degree to which a given input image deviates from the static

concept. We then transform our concatenated outputs following

R = Norm[concat(r1, ..., rNh)Wo] (4)

using Batch-Normalization (BN) for our Norm computation [8]. Finally, the fully pro-
cessed output representation is given by

O = Norm[R + rFF(R)] (5)

with rFF corresponding to a linear transformation that processes the inputs identically.
We then pass our feature embeddings through another SEDR dimensionality reduc-

tion block to facilitate our case-level computations. At this point, we edit the batch size
to be of size N , where each stack of M image embeddings correspond to a single batch
element n. Once this is done, we perform global pooling and pass our model through
three linear layers to generate our case-level predictions. Another advantage of this
architecture lies in its MC sampling protocol, which allows us to construct confidence
metrics during evaluation. We may chose to sample multiple times in order to construct
a probability density curve, which provides the operating physician with valuable feed-
back about the model’s confidence in its assessment.

3 Results and Discussion

Training Settings. Throughout our experiments, we used an EfficientNet-B3 encoder
that was pre-trained on ImageNet, given its computational efficiency and high perfor-
mance [13]. To analyze the benefits of treating each case as an unlabeled set during
classification, we also trained an EfficientNet-B3 AMR/Non-AMR glomerulus level
classifier using a consensus labeling scheme (pre-trained on ImageNet, all inconclu-
sive glomeruli removed). To analyze the impact of our PV embeddings, we trained a
separate model that replaced the MorphSet operation with a simple convolution with
the same output dimensionality, yielding our convolutional baseline model. All mod-
els were trained using a Binary Cross Entropy loss function with the Adam optimizer
for 400 epochs with a learning rate of 1 × 10−4, a β1 value of 0.9, β2 value of 0.999,
and L2 coefficient of 0.01. For all of our experiments, we used a five-fold cross vali-
dation scheme, and all images were resized to 256 × 256 before being passed through
each model. During training of both the convolutional baseline model and MorphSet,
a batch size of three cases was used, with 12 glomerular crops being sampled from
each case, yielding 36 input images per batch. To ensure that our comparisons were
fair, we trained the EfficientNet-B3 glomerulus level classifier using a batch size of 36.
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All images were ImageNet normalized, and were augmented during training using stan-
dard online transformations, where each image had a 50% chance of being horizontally
flipped, vertically flipped, cropped to 70%–100% of its input size, and rotated between
0–90◦, in that order.

Fig. 2. ROC case-level curves for our three experimental models. The EfficientNet-B3 model’s
ROC curve was computed using the percentage of glomeruli classified as AMR for each case to
avoid introducing a threshold bias. The models trained using the MC sampling scheme yielded
higher AUC scores when compared to the EfficientNet-B3 baseline model.

MorphSet Performance. After encoding each of our input images with our
EfficientNet-B3 encoder, we then reduce the dimensionality of the output from
[36, 1536, 8, 8] to [36, 256, 8, 8] using our SEDR block (as shown in Fig. 1a). We train
our architecture using eight parametrized PVs with one attention head (k = 3, s = 2,
p = 1), resulting in an output dimensionality of [32, 2048, 4, 4]. We then pass the result-
ing outputs through our second SEDR block, concatenate the image embeddings for
each case, and perform global pooling, producing an output dimensionality of [3, 6144]
(as shown in Fig. 1b). Our linear block consists of three linear layers, two of which
reduce the dimensionality by a factor of two with batch normalization, followed by an
output layer. We then perform MC sampling 100 times on each validation set, taking the
average of our sigmoid activation outputs to produce our final predictions. To compare
our EfficientNet-B3 baseline to both MC architecture’s case-level scores, we chose to
assign the percentage of glomeruli classified as AMR by the EfficientNet-B3 architec-
ture for each case as it’s respective case-level score. We then used an ROC curve to
compare the performance between the three models (as shown in Fig. 2). We did this
as opposed to fixing some classification threshold for EfficientNet-B3 AMR case level
predictions (i.e. >50% of glomeruli classified as AMR constitutes an AMR case pre-
diction) because pathologists do not generate case level diagnoses by using a hard set
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threshold on their glomerular assessments. Reporting case level accuracy in this way
would therefore not be particularly meaningful from a medical standpoint, whereas
reporting our results using an ROC curve allows us to avoid introducing a threshold
bias, thus allowing us to compare the models fairly. Our resulting ROC curve highlights
the performance improvements that we can attribute to our MC sampling set approach,
with AUC increases in both the MorphSet and convolutional baseline models when
compared to the glomerular level classifier. The convolutional baseline and MorphSet
models achieve a case-level validation accuracy of 97.8% and 98.9%, respectively.

Probability Density Curves. To better understand the differences between MorphSet
and the convolutional baseline model, we produced probability density curves using the
100 sigmoid activation outputs generated for each case during the MC sampling step.
We found that MorphSet tended to produce higher probability point estimates for each
AMR case, while also remaining more confident than the convolutional baseline model,
as determined by our standard deviation (STD) computation, illustrated in Fig. 3. This
result implies that MorphSet was better suited to learning the glomerular characteristics
of AMR, and highlights the potential of our PV approach.
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Fig. 3. Density versus probability point estimate curves generated using the convolutional base-
line architecture (green) and MorphSet (red) for three AMR examples. We note that higher pre-
diction densities at higher probability point estimate values imply that a model is more confident
in its case level AMR prediction. MorphSet tended to produce AMR predictions with higher
confidence, suggesting that MorphSet achieved a better understanding of glomerular AMR char-
acteristics. (Color figure online)

4 Conclusion

In this work, we present an MC sampling approach for the case-level assessment of
AMR in PAS stained renal histopathology glomerular crops, relieving the need for
fine-grained structural annotation. We introduce both a convolutional case-level clas-
sifier and MorphSet, which learns unique Prognostic Vectors (PVs) meant to represent
the discriminative concepts used by a pathologist when assessing tissue biopsies. We
show that both of our proposed models outperform our fine-grained glomerulus clas-
sifier without having to remove inconclusive images or rely on using glomerular-level
annotations. We also show that MorphSet was more confident in its AMR predictions
while producing higher probability point estimates, suggesting it achieved a stronger
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understanding of the disease characteristics. Future works should aim to investigate the
performance of MorphSet with larger datasets and multiple disease cases to improve our
understanding of its generalization ability and how well it adapts to an increased num-
ber of discriminative concepts. The ability of the architecture to identify discriminative
images for cases is another potential area of further study, as is the possibility of scaling
up learning sets through reference pathologist cases without the need for fine-grained
annotation.
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