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Abstract	
Yes	

Key	Points	
! Interval	statistics	have	been	used	to	conclude	that	major	earthquakes	are	random	events	
in	time	and	cannot	be	anticipated	or	predicted	

! Machine	learning	is	a	powerful	new	technique	that	enhances	our	ability	to	understand	the	
information	content	of	earthquake	catalogs	

! We	 show	 that	 catalogs	 contain	 significant	 information	 on	 current	 hazard	 and	 future		
predictability	for	large	earthquakes	

Plain	Language	Summary	
The	question	of	whether	earthquake	occurrence	is	random	in	time,	or	perhaps	chaotic	

with	order	hidden	in	the	chaos,	 	 is	of	major	importance	to	the	determination	of	risk	from	
these	 events.	 	 It	 was	 shown	 many	 years	 ago	 that	 if	 aftershocks	 are	 removed	 from	 the	
earthquake	 catalogs,	 what	 remains	 are	 apparently	 events	 that	 occur	 at	 random	 time	
intervals,	 and	 therefore	 not	 predictable	 in	 time.	 	 In	 the	 present	work,	we	 enlist	machine	
learning	 methods	 using	 Receiver	 Operating	 Characteristic	 (ROC)	 analysis.	 	 With	 these	
methods,	 probabilities	 of	 large	 events	 and	 their	 associated	 information	 value	 can	 be	
computed.		Here	information	value	is	defined	using	Shannon	Information	Entropy,	shown	by	
Claude	Shannon	(Shannon,	1948)	to	define	the	surprise	value	of	a	communication	such	as	a	
string	of	 computer	bits.	 	Random	messages	 can	be	 shown	 to	have	high	entropy,	 surprise	
value,	or	uncertainty,	whereas	low	entropy	is	associated	with	reduced	uncertainty	and	high	
reliability.	 	 An	 earthquake	 nowcast	 probability	 associated	with	 reduced	 uncertainty	 and	
greater	reliability	is	most	desirable.		Examples	of	the	latter	could	be	the	statements	that	there	
is	 a	 90%	 probability	 of	 a	 major	 earthquake	 within	 3	 years,	 or	 a	 5%	 chance	 of	 a	major	
earthquake	within	1	year.		Despite	the	random	intervals	between	major	earthquakes,	we	find	
that	it	is	possible	to	make	low	uncertainty,	high	reliability	statements	on	current	hazard	by	
the	use	of	machine	learning	methods.	

Introduction	
Are	major	earthquakes	random	events	in	 time?		Or	possibly	chaotic,	with	order	 in	the	

chaos	if	we	know	where	to	look?		These	questions	lie	at	the	heart	of	the	debate	on	whether	
earthquakes	 can	 be	predicted	or	 anticipated,	 and	whether	 it	 is	possible	 to	quantitatively	
characterize	the	current	state	of	earthquake	hazard.			

Many	years	ago,	Gardner	and	Knopoff	(1974)	wrote	a	paper	with	the	title:	"Is the sequence 
of earthquakes in Southern California, with aftershocks removed, Poissonian?”	Their	abstract:	
"Yes.”	 	 The	 analysis	 they	 did	 was	 based	 on	 fitting	 the	 intervals	 between	 events	 to	 an	
exponential	probability	distribution,	which	 is	often	called	Poisson	statistics.	 	This	 type	of	
statistics	 is	 well-known	 to	 apply	 to	many	 types	 of	 random	 counting	 problems,	 from	 the	
arrivals	of	automobiles	in	parking	lots,	to	neutron	decay,	to	calls	per	hour	at	a	call	center,	
and	many	other	applications.	
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Since	 that	 time,	 many	 other	 researchers	 have	 searched	 for	 temporal	 structure	 in	
earthquake	 intervals,	 with	 generally	 negative	 results	 (e.g.,	 Scholz,	 2019;	 comprehensive	
review	by	Rundle	et	al.,	2021a	and	references	therein).		Exceptions	do	exist,	such	as	are	seen	
in	Episodic	Tremor	and	Slip	and	small	repeating	earthquakes	(Rundle	et	al.,	2021a;	Rouet-
Leduc,	2019),	but	this	behavior	does	not	generally	apply	to	large	damaging	earthquakes.	

In	all	of	these	studies,	the	fundamental	question	underlying	these	investigations	can	be	
phrased	as:	How	much	information	does	an	earthquake	catalog	contain?		This	is	the	question	
that	we	consider	in	this	paper.	

To	 summarize	 our	 results:	 	 We	 find	 that	 there	 is	 skill	 in	 earthquake	 nowcasts,	 as	
measured	by	the	Receiver	Operating	Characteristic	(ROC)	curve,	used	in	machine	learning	to	
evaluate	signal	detection.		Skill	is	defined	as	the	ability	to	discriminate	between	true	signals	
and	 false	 signals.	 	 We	 quantify	 this	 in	 terms	 of	 Shannon	 Information	 Entropy,	 using	 as	
probabilities	 the	ROC	 curve	 and	 its	 associated	 Precision	 (Positive	 Predictive	Value).	 	We	
show	 that	 nowcasts	 of	 real	 data	 have	 lower	 entropy	 (higher	 information	 content)	 than	
random	data.	 	 Using	 a	 simple	 simulation	 of	 a	 nowcast	 state	 variable	 curve	with	 random	
(exponential)	recurrence	times,	we	show	that	Poisson	recurrence	does	not	imply	a	lack	of	
predictability	or	skill	using	the	state	variable.		The	state	variable	time	series	resembles	the	
long-hypothesized	cycle	of	tectonic	stress	accumulation	and	release	for	major	earthquakes.		
We	conclude	that	the	observation	of	Poisson	recurrence	statistics	does	not	necessarily	imply	
a	lack	of	earthquake	predictability.	

Data	and	Method	
In recent research, we have developed methods that we call earthquake nowcasting whose goal 

is to estimate the current state of hazard.  A number of authors have now begun to use these 
methods in a variety of applications. Recent research has developed the idea of earthquake 
nowcasting, which uses state (“proxy”)  variables to infer the current state of the earthquake cycle 
(Rundle et al., 2016, 2018, 2019, 2021a,b; Rundle et al., 2022; Rundle and Donnellan, 2020; Pasari 
and Mehta, 2018; Pasari, 2019, 2020; Pasari and Sharma, 2020;  Luginbuhl et al. 2019;  2020).  
An approach such as this is needed since the cycle of stress accumulation and release is not 
observable (Rundle et al., 2021b; Scholz, 2019).  These first approaches to nowcasting has been 
based on the concept of natural time (Varotsos et al., 2001; 2002; 2011, 2013; 2014; 2020a,b; 
Sarlis et al., 2018).    

More	specifically,	in	this	work	we	analyze	the	result	of	applying	a	filter	that,	when	applied	
to	a	timeseries	of	small	earthquakes,	reveals	the	cycle	of	large	earthquake	occurrence	and	
recovery.		Details	of	the	process	of	building,	optimizing,	and	applying	the	filter	is	indicated	
in	Figure	1,	and	discussed	elsewhere	(Rundle	et	al,	2022).		The	Python	code	used	to	compute	
the	filter	is	available	on	the	ESSOAR	site	as	well.		In	this	section,	we	sketch	the	process,	details	
of	which	can	be	found	in	the	cited	references.	

A	critical	component	of	the	current	approach	 is	that	the	information	is	encoded	in	the	
earthquake	clusters	or	bursts,	a	series	of	events	closely	spaced	in	time	(Rundle	et	al.,	2020;	
Rundle	 and	 Donnellan,	 2020).	 	 Bursts	 are	 a	 temporal	 clustering	 of	 highly	 correlated	
seismicity,	typically	in	a	small	spatial	region.	

Data.	 	Referring	to	Figure	1,	we	begin	with	the	seismicity	in	a	regional	box	of	size	10o	
latitude	 by	 10o	 	 longitude	 centered	 on	 Los	 Angeles,	 CA	 (Figure	 1a).	 	 The	 timeseries	 of	
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earthquakes	in	that	region	since	1970,	having	magnitudes	M	>	3.29,	is	shown	in	Figure	1b	as	
a	 series	of	vertical	 lines.	 	Also	 	 shown	as	a	blue	 curve	 is	 the	exponential	moving	average	
(EMA)	with	number	of	weights	N	=	36	[1].		Note	that	the	blue	curve	shows	an	"inverted”	cycle	
of	large	earthquakes	that	is	the	primary	basis	for	the	nowcast	filter.	

In	Figure	1c,	we	show	a	time	series	for	the	mean	number	𝜇(𝑡)	of	small	earthquakes	as	a	
function	of	time.		The	mean	is	taken	beginning	in	1960,	and	is	also	shown	since	1970.		It	can	
be	seen	that	the	mean	does	not	indicate	a	steady	state.		Instead,	there	is	a	general	increase	in	
mean	number	of	events	up	to	about	1993,	after	which	it	shows	a	cycle	similar	to	that	in	Figure	
1b.			

This	 catalog	 behavior	 may	 be	 due	 either	 to	 actual	 tectonic	 processes,	 or	 perhaps	 to	
changes	in	methods	of	earthquake	detection	and	magnitude	assignment	in	the	early	1990#s,	
when	 the	 network	 was	 fully	 automated	 and	 digital	 (Hutton	 et	 al.,	 2010).	 	 In	 fact,	 it	 is	
interesting	 that	 the	 temporal	 trends	 in	 Figure	 1c	 	 seem	 to	 somewhat	mirror	 the	 general	
historical	change	in	number	of	seismic	stations	in	California	as	shown	in	Figure	3	of	Hutten	
et	al.	(2010).	

State	Variable	𝛩(𝑡).The	data	in	Figures	1b	and	1c	are	then	combined	to	form	the	state	
variable	timeseries	𝛩(𝑡)	shown	in	Figure	1d.		The	state	variable	itself	is	the	EMA	average	of	
the	 small	 earthquakes,	 then	 adjusted	 using	 the	 current	 mean	 number	𝜇(2022)of	 small	
earthquakes,	using	a	constant	of	proportionality	𝜆.		The	N-value	and	𝜆-value	are	obtained	by	
optimizing	the	ROC	skill.			

The	adjustment	corresponds	to	an	assumption	that	there	is	a	minimum	number	of	small	
earthquakes	 that	occur	 each	month.	 	 	 An	 important	 component	 of	 this	 adjustment	 is	 the	
assumption	that	there	appears	to	be	a	transition	from	unstable	seismic	slip,	observable	with	
seismometers,	 to	 stable	 sliding	 that	 is	 observable	 only	 with	 geodetic	 observational	
instruments	such	as	GNSS	or	InSAR.		Figure	1d	then	represents	an	"inverted”	and	adjusted	
and	EMA	averaged	timeseries	of	the	small	earthquakes.		

As	noted	above,	the	blue	curve	in	Figure	1	shows	a	sudden	increase	at	the	time	of	large	
earthquakes,	and	 thus	 the	state	variable	𝛩(𝑡),	which	 is	 the	 inverse,	shows	a	 sudden	
decrease.	

Receiver	Operating	Characteristic	(ROC).		To	calculate	the	the	EMA	N-value,	and	the	
contribution	 of	 the	 mean	 number	𝜇(𝑡) 	of	 small	 earthquakes,	 we	 construct	 the	 temporal	
Receiver	Operating	Characteristic		(ROC)	for	a	forward	time	window	𝑇𝑊 =3	years	beyond	a	
given	 time	 t	 (Rundle	 et	 al.,	 2022).	 	 We	 note	 that	 other	 researchers	 are	 also	 using	 ROC	
methods	in	earthquake	cluster	analysis	(Ben-Zion	and	Zaliapin,	2020;		Zaliapin	and	Ben-Zion,	
2022),	 similar	 in	 some	ways	 to	 ideas	 in	Rundle	 and	Donnellan	 (2020)	 and	Rundle	 et	 al.	
(2021a,b).	

The	ROC	curve	[2]	is	constructed	by	establishing	a	series	of	increasing	thresholds	TH	in	
the	state	variable	𝛩(𝑡)	from	low	values	to	high	values.		We	then	consider	all	values	of	time,	
and	a	series	of	4	clauses	(statements).		A	review	of	these	methods	can	be	found	in	Jolliffe	and	
Stephenson	(2003).	
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For	each	time	t:	if	a	given	𝛩(𝑡) ≥ 𝑇.	and	a	large	earthquake	occurs	within	the	next	TW	
years,	we	classify	that	as	true	positive	TP;		if		𝛩(𝑡) ≥ 𝑇. 	and	no	earthquake	occurs	within	
the	next	TW	years,	we	classify	as	false	positive	FP;		if	𝛩(𝑡) < 𝑇.	and	no	earthquake	occurs	
within	the	next	TW	years,	we	classify	as	true	negative		TN;		if	𝛩(𝑡) < 𝑇.		and	an	earthquake	
does	occur	within	the	next	TW	years,	we	classify	as	false	negative		FN.		We	then	repeat	this	
procedure	over	all	values	of	threshold	𝑇𝐻.			

Having	TP,	FP,	FN,	TN,	we	then	define	the	true	positive	rate	TPR	or	"hit	rate”	TP/(TP	+	
FN);	the	false	positive	rate	FPR	or	"false	alarm	rate”	FP/(FP+TN).		A	plot	of		TPR	against	FPR	
defines	the	ROC	curve,	which	is	the	red	curve	in	Figure	1e.		For	future	consideration,	we	also	
define	the	Precision,	or	positive	predictive	value	as	TP/(TP+FP),	the	fraction	of	predictions	
that	turn	out	to	be	accurate.	These	and	other	quantities	are	described	in	[2].	

Supervised	 Machine	 Learning.	 	 The	 area	 under	 the	 ROC	 curve	 is	 the	 Skill,	 which	
specifies	the	ability	of	the	method	to	discriminate	between	true	signals	and	false	signals.		The	
diagonal	line	in	Figure	1e	is	the	no	skill	line,	equivalent	to	a	random	predictor.		Note	that	the	
area	under	the	no	skill	line	is	0.5.			

For	a	method	to	have	skill,	the	ROC	curve	must	either	be	above	the	diagonal	line,	or	below	
it.		For	a	method	with	skill,	the	area	under	the	ROC	curve	can	either	be	a	maximum	of	1.0,	or	
a	minimum	of	0.0.		For	future	reference,	we	define	a	skill	index		SKI	in	%	as	a	function	of	the	
Relative	Skill	RS	=	|Skill	-	0.5|:		

	

𝑆𝐾𝐼	 = 	−100	(	𝑅8	𝐿𝑜𝑔<	𝑅8 	+	 (1 − 𝑅8)𝐿𝑜𝑔<(1 − 𝑅8)	)	 	 	 (1)	
	

SKI	can	then	range	from	0%	(when	skill	=	0.5),	to	100%	(when	skill	is	either	1.0	or	0.0).		
In	 Figure	 1e,	 the	 no	 skill	 area	 is	 indicated	 by	 the	 darker	 shaded	 area.	 	 The	 skill	 of	 the	
nowcasting	method	that	we	discuss	here	is	indicated	by	the	total	shaded	area.	

As	discussed	in	Rundle	et	al.	(2022),	we	find	the	optimal	values	of	N	for	the	EMA,	and	the	
contribution	 of	 the	mean	 earthquake	µ(t)	 adjustment	l,	 by	maximizing	 the	 skill.	 	This	 is	
indicated	in	Figure	1d	and	1e	as	a	feedback	between	the	state	variable	curve	and	the	ROC	
skill	 calculation.	 	 This	 procedure	 results	 in	 a	 filter	 that	 has	 been	 optimized	 by	 well-
understood,	reliable	methods.		We	note	that	the	code	is	available	on	the	AGU	preprint	archive	
ESSOAR	(Rundle	et	al.,	2022,	supplemental	tab).	

Shannon	Information.			Claude	Shannon#s	famous	paper	on	statistical	communication	
theory	 	 (Shannon,	 1948)	 describes	 a	 measure	 of	 the	 information	 content	 of	 a	 message	
between	communicating	parties.		It	is	based	on	the	idea	of	viewing	a	message	consisting	of	a	
bit	 string	 as	 a	 series	 of	 intermixed	 1#s	 and	 0#s,	 with	 an	 associated	 entropy	 of	 mixing.		
Examples	of	the	use	of	these	methods	can	be	found,	e.g.,	in	Cover	and	Thomas	(1991),	and	
Stone	(2015).	

The	usual	interpretation	of	Shannon	information	entropy	is	then	the	number	of	binary	
yes/no	questions	that	must	be	asked	in	order	to	determine	the	information	in	the	message	
being	 sent.	 	 If	 more	 questions	 are	 required,	 the	 entropy	 is	 higher	 and	 the	 information	
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communicated	is	more	surprising.		Conversely	if	fewer	questions	are	required,	the	entropy	
is	lower	and	the	information	communicated	is	not	as	surprising.			

For	a	message	in	which	symbols	in	an	alphabet	(i.e.,	the	1#s	and	0#s)	have	probability	mass	
function	p(𝜔),	where	𝜔 ∈[0,1],	the	self-information	𝐼𝑠𝑒𝑙𝑓	associated	with	a	given	symbol	is:	

𝐼𝑠𝑒𝑙𝑓 = −𝐿𝑜𝑔2𝑝(𝜔)		 	 	 	 	 	 (2)	

The	Shannon	information	of	a	string	of	symbols	is	then	given	by	the	expectation	of	the	
self-information:	

𝐼𝑆 = −∑
𝜔
𝑝(𝜔)𝐿𝑜𝑔2𝑝(𝜔)	 	 	 	 	 (3)	

Comparing	(3)	with	the	skill	index	SKI,	we	see	that	equation	(1)	is	an	information	entropy-
based	definition.	

Results	
In	this	section	we	compute	the	information	content/entropy	using	the	statistics	of	the	

ROC	 curve,	 and	 the	 time	 series	 precision.	 	 In	 Figure	 2,	 we	 first	 address	 the	 skill	 and	
information	 content	 of	 the	 method	 outlined	 in	 Figure	 1	 for	 a	 continuum	 of	 future	 time	
windows	𝑇𝑊 ∈ [0.125,8.5]	years.				

Skill.		Figure	2a	shows	the	same	ROC	diagram	as	in	Figure	1e	for	a	future	time	window	
of	𝑇𝑊 =1	year.		As	discussed	previously,	the	red	curve	is	the	true	positive	rate	(TPR),	which	
ranges	from	0	to	1.		The	diagonal	line	is	the	true	positive	rate	for	an	ensemble	of	50	random	
time	series,	each	of	which	were	obtained	from	the	state	variable	 time	series	𝛩(𝑡)	using	a	
bootstrap	procedure	of	random	sampling	with	replacement.		The	ensemble	of	random	time	
series	is	shown	as	the	cyan	curves	grouped	near	the	diagonal	line.	

The	skill,	which	is	the	area	under	the	ROC	curve,	is	shown	in	Figure	2b	as	function	of	the	
future	time	window	𝑇𝑊	,	for	fixed	EMA	N-value	and	𝜆-value.		Figure	2c	shows	the	skill	index	
SKI	 defined	 in	 (1),	 also	 as	 a	 function	 of	𝑇𝑊 .	 	 Both	 Figures	 2b,c	 indicate	 that	 there	 is	 a	
maximum	in	skill	at	a	value	𝑇𝑊	=	0.625	years,	and	no	skill	at	𝑇𝑊	=	6.875	years,	where	the	
skill	curve	crosses	the	no-skill	(dashed	horizontal)	line.	

Shannon	Information	from	ROC.	 	To	calculate	the	Shannon	Information	entropy	as	a	
function	of	𝑇𝑊	using	(3),	we	need	a	probability	mass	function	pmf.		For	this	purpose,	we	use	
the	 ROC	 curve	 as	 a	 cumulative	 distribution	 function,	 and	 difference	 it	 with	 respect	 to	
threshold	values	𝑇𝐻	to	obtain	the	pmf.	 	Because	the	ROC	curve	was	constructed	using	200	
values	of	𝑇𝐻,	there	are	199	values	of	the	pmf	=>	𝑝(𝜔)	to	be	used	in	equation	(3).			

To	compare	the	results	with	those	for	the	no	skill	diagonal	line,	we	note	that	the	diagonal	
line	can	also	be	regarded	as	a	cumulative	distribution,	but	for	a	uniform	pmf	whose	value	is	
the	constant	pmf	=>	𝑝(𝜔)	=	1/N.	For	this	value	of	pmf,	it	is	easy	to	show	that	𝐼𝑆 =7.64	bits.			

According	to	the	conventional	interpretation	of	Shannon	information,	one	would	need	to	
ask,	on	average,	7.64	yes/no	questions	to	establish	the	value	of	a	random	state	variable	just	
prior	to	the	occurrence	of	a	major	earthquake	during	the	following	𝑇𝑊	years.	 	Or	in	other	
words,	 the	 number	 of	 yes/no	 questions	 needed	 to	 determine	 whether	 a	 given	 random	
threshold	state	is	followed	by	a	window	𝑇𝑊		that	contains	a	large	earthquake.	
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By	contrast,	the	actual	ROC	curve	has	a	lower	value	of	𝐼𝑆,	and	therefore	more	information	
content,	and	lower	entropy,	than	the	random	ROC	(diagonal	line).		For	the	value	of	𝑇𝑊	=	1.0	
year,	we	find	𝐼𝑆	=	4.29	bits,	corresponding	on	average	to	4.29	yes/no	questions.			

A	selection	of	these	data	are	also	summarized	in	Table	1,	and	are	compared	to	data	from	
a	simple	illustrative	simulation	discussed	below.		Data	for	skill,	skill	index,	ROC	Information,	
Information	 from	 random	 ROC,	 Kullback-Leibler	 Divergence	 [3],	 and	 Jensen-Shannon	
Divergence[4]	are	shown	in	the	table	as	well.	 	These	latter	quantities	are	measures	of	the	
difference	in	information	entropy	between	the	data	and	a	random	nowcast.	

Shannon	 Information	 from	 Precision	 (PPV).	 	 More	 insight	 into	 the	 information	
content/entropy	 of	 the	 state	 variable	𝛩(𝑡) 	can	 be	 realized	 using	 the	 positive	 predictive	
value	 (PPV)	 probability,	 or	 precision.	 	 Figure	 3a	 shows	 the	 optimized	 state	variable	 as	 a	
function	of	time,	an	enlarged	version	of	Figure	1d.			

Note	in	particular	that	the	top	area	of	the		state	variable	curve	corresponds	to	enhanced	
quiescence	 prior	 to	 the	occurrence	of	 a	 large	earthquake,	 as	explained	previously	and	 in	
Rundle	et	al.	 (2022).	 	Conversely,	 the	bottom	area	of	 the	curve	 	corresponds	to	enhanced	
activation,	for	example	aftershock	occurrence	following	a	large	event.	

Figure	3b	shows	the	precision,	and	Figure	3c	shows	the	corresponding	self	information	
𝐼𝑠𝑒𝑙𝑓 	,	 equation	 (2),	both	quantities	on	 the	horizontal	 axis	 and	 shown	as	a	 function	of	 the	
threshold	value	TH	on	the	vertical	axis.		These	are	the	magenta	curves	in	those	figures.		Figure	
3	allows	one	to	read	horizontally	and	associate	a	value	of	PPV	and	self-information	𝐼𝑠𝑒𝑙𝑓	with		
a	given	value	of	𝛩(𝑡).			

Also	 shown	 in	 Figures	 3b,c	 are	 the	 PPV	 and	𝐼𝑠𝑒𝑙𝑓 	for	 an	 ensemble	 of	 50	 random	 time	
series,	these	are	the	cyan	curves.		The	mean	of	the	cyan	curves	is	shown	as	a	solid	black	line,	
and	the	1	𝜎	confidence	limits	are	shown	as	dashed	lines.	 	Each	random	time	series		in	the	
ensemble	is	again	computed	by	sampling	with	replacement	the	time	series		𝛩(𝑡),	then	for	
each	curve	calculating	the	PPV	and	𝐼𝑠𝑒𝑙𝑓		for	that	curve.			

A	main	 finding	 from	Figure	3	 is	 that	 the	 statistics	of	 future	 time	windows	𝑇𝑊 	for	 the	
ensemble	 of	 random	 time	 series	 do	 not	 depend	 on	 the	 value	 of	 the	 threshold	𝑇𝐻 	.	 	 The	
random	(uniform)	probability	of	a	future	window	𝑇𝑊	containing	a	large	earthquake	is	about	
10%,	for	example.		By	contrast,	the	probability	of	a	future	time	window	containing	a	large	
earthquake	 increases	 dramatically	 as	 the	 time	 series	𝛩(𝑡) 	increases	 from	 bottom	 of	 the	
chart	(activation	phase)	to	the	top	(quiescence	phase).		

We	 also	 see	 in	 Figure	 3c	 that	 the	 information	 entropy	 is	 basically	 the	 same	 for	 the	
ensemble	 or	 random	 curves	 as	 for	𝛩(𝑡) 	in	 the	 activation	 condition.	 	 Conversely,	 as	
quiescence	becomes	more	dominant	and	the	time	of	a	large	earthquake	approaches,	entropy	
for	𝛩(𝑡)	decreases	and	information	content	correspondingly	increases.			

We	 can	 also	 understand	 why	 the	 self-information	𝐼𝑠𝑒𝑙𝑓 	for	 the	 random	 time	 series	 is	
approximately	3.35	bits.		In	the	figure,	we	considered	a	series	of		𝑇𝑊	=	1	year	windows	from	
1970	to	early	2022.		There	are	thus	a	little	more	than	51	non-overlapping,	independent	time	
windows.			
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During	this	time	period,	 there	are	5	major	earthquakes	having	magnitudes	𝑀 ≥ 6.75:		
M6.9	 Loma	 Prieta;	M7.3	 Landers;	M7.1	 Hector	Mine;	M7.2	 El	Mayor	 Cucupah;	 and	M7.1	
Ridgecrest	earthquakes.		If	the	earthquakes	were	distributed	randomly	in	time,	there	would	
be	a	probability	of	𝑝(𝜔) = 5/51 = 0.098	of	finding	a	large	earthquake	in	any	of	these	time	
windows.		

Thus	 we	 calculate	 a	 self-information	 entropy	 for	 the	 mean	 of	 the	 random	 ensemble	
curves	 of	 𝐼𝑠𝑒𝑙𝑓 = −𝐿𝑜𝑔2(5/51) = 3.35 	bits.	 	 Therefore	 it	 would	 take	 on	 average	 3.35	
yes/no	 questions	 to	 determine	 if	 one	 of	 these	 future	 time	windows	𝑇𝑊 	contains	 a	 large	
earthquake.		Conversely,	it	is	apparent	that	the	self-information	entropy	of	the	PPV	of	𝛩(𝑡)	
approaches	0	as	the	seismically	quiescence	phase	becomes	fully	developed.	

The	primary	conclusion	from	these	calculations	is	that	the	information	content	is	higher	
in	the	quiescence	phase	of	seismicity	 than	the	activation	phase.	 	Or	alternatively,	 that	the	
activation	phase	has	higher	entropy	than	the	quiescence	phase.	

A	Simple	Example	
We	now	return	to	the	question	posed	at	 the	beginning	of	 this	paper	of	whether	 large	

earthquakes,	 which	 have	 been	 repeatedly	 found	 to	 have	 interval	 statistics	 that	 are	
exponentially	(Poisson)	distributed,	nonetheless	have	information	content	about	past	and	
future	events.			

To	 show	 that	 this	 is	 not	 a	 contradiction,	 we	 consider	 the	 following	 simple	 model	
simulation:	

! The	basic	state	variable	curve	𝛩𝑠𝑖𝑚(𝑡)	is	specified	as	the	logistic	function:	

𝛩TUV(𝑡) =
W

(WXYZ[(\]^)
	 	 	 	 	 (4)	

where:		𝑡′ = 𝛥𝑡
𝜏
+ 6		and	𝛥𝑡	is	the	time	since	the	last	large	“earthquake.”	

! Failure	 (a	 “large	earthquake”)	occurs	when	𝛩𝑠𝑖𝑚(𝑡)	=	0.995.	 	At	 failure,	we	 then	set	
𝛥𝑡 = 0,	and	declare	that	a	large	“earthquake”	has	occurred.	
! After	a	“large	earthquake”	occurs,	 the	next	value	of	𝜏	is	chosen	from	an	exponential	
distribution	whose	mean	is	taken	to	be	25	“months”.	

! The	future	time	window	𝑇𝑊	=	40	“months”	is	used	to	evaluate	nowcast	skill.	
! We	 then	 progressively	 increase	 𝛥𝑡 	by	 1	 “month”	 intervals	 until	 the	 next	 large	
“earthquake”	occurs,	at	which	point		we	repeat	the	process.	

The	results	of	a	long	simulation	of	183	large	“earthquakes”	is	shown	in	Figure	4.		There	
we	see	that	a	short	segment	of	the	time	series	𝛩𝑠𝑖𝑚(𝑡)	as	shown	in	Figure	4a	is	generally	
similar	to	that	shown	in	Figure	3a.		Figure	3b	shows	that	there	is	significant	nowcast	skill,	
equal	 to	 0.88,	 with	 a	 skill	 index	 of	 95.81%,	 meaning	 that	 the	 true	 signals	 can	 be	
differentiated	from	false	signals	with	a	high	degree	of	reliability.	

By	construction,	however,	we	also	see	from	Figures	4c	and	4d	that	the	interval	statistics	
for	𝛩𝑠𝑖𝑚(𝑡)conform	to	those	of	a	Poisson	 interval	distribution	(exponential	distribution).		
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We	 can	 therefore	 say	 that	 for	 this	 model	 simulation,	 the	 existence	 of	 Poisson	 interval	
statistics	does	not	imply	a	lack	of	predictability	for	𝛩𝑠𝑖𝑚(𝑡),	similar	to	what	we	found	with	
the	California	data	set.	

Conclusion	
In	this	paper	we	have	analyzed	earthquake	catalogs	to	understand	the	information	they	

contain.	 	 Interval	 statistics	 observed	 in	 catalogs	 are	 usually	 taken	 to	 indicate	 random	
(Poisson)	events	having	no	memory.		However,	we	have	shown	that	the	temporal	clustering,	
or	variation	in	monthly	rate	of	the	small	earthquakes,	does	contain	important	information.				

This	 temporal	 clustering	 is	 in	 the	 form	of	bursts	of	 activity	 that	 can	be	modeled	with	
invasion	percolation	networks	(Rundle	et	al.,	2020).		We	thus	find	that	the	process	of	de-
clustering	 a	 catalog	 is	 shown	 to	 remove	 information	 content,	 and	 to	 increase	 the	
information	entropy.	

The	 current	 results	 are	 consistent	with	 the	 cluster	 analysis	 of	 Rundle	 and	 Donnellan	
(2020).		We	also	note	that	this	general	decrease	in	monthly	rate	leading	up	to	the	next	big	
earthquake	might	also	be	regarded	as	the	“long	tail”	of	the	Omori	aftershock	distribution.	

We	have	used	this	idea	to	construct	a	state	variable	𝛩(𝑡)	by	defining	a	2-parameter	filter,	
based	on	an	exponential	moving	average	(EMA)	of	small	earthquake	seismicity,	 together	
with	an	assumption	about	the	minimum	number	of	small	earthquakes	during	a	month-long	
interval.	

The	 interplay	 between	 seismic	 activation,	 for	 example	 aftershocks,	 and	 seismic	
quiescence,	can	be	analyzed	by	standard	methods.		These	methods	are	receiver	operating	
characteristic	 (ROC),	 positive	 predictive	value	 (PPV),	 and	Shannon	 information	entropy.		
We	 note	 that	 quiescence	 has	 been	 identified	 as	 a	 precursor	 to	 major	 earthquakes	 in	
previous	research	(Kanamori,	1981;	Wyss	and	Haberman,	1988;	Haberman,	1988;	Main	and	
Meredith,	1991;	Huang	et	al.,	2001;		Chouliaras,	2009;	Weimer	and	Wyss,	1994;	Torman	et	
al.,	2010;	Rundle	et	al.,	2011;	Katsumata,	2011;	Nanjo,	2020).	

ROC	analysis	clearly	shows	that	use	of	the	optimized	state	variable	𝛩(𝑡)	to	describe	the	
earthquake	cycle	in	California	has	nowcast	skill.		Skill	is	the	ability	to	distinguish	between	
future	time	windows	𝑇𝑊	that	are	likely	to	contain	a	large	earthquake	(true	signal)	and	those	
that	 are	 not	 (false	 signal).	 	 The	 positive	 predictive	 value	 PPV	 can	 be	 interpreted	 as	 an	
indicator	of	the	chance	of	a	large	earthquake	during	𝑇𝑊.			
Furthermore,	 the	 Shannon	 information	 content	 of	 both	 the	 ROC	 and	 PPV	 can	 be	

demonstrated	 to	 contain	 more	 information,	 or	 lower	 surprise	 value,	 than	 a	 random	
predictor.	 	Or	 in	other	words	the	random	predictor	has	higher	information	entropy	than		
𝛩(𝑡).			
To	 summarize,	 in	 reference	 to	 the	 original	 question	 posed	 by	 Gardner	 and	 Knopoff	

(1974)	regarding	earthquake	predictability,	we	find	the	following.	 	Their	conclusion	may	
apply	to	earthquake	interval	statistics	where	the	ordering	of	temporal	bursts	and	clustering	
(variation	 in	 monthly	 rate)	 has	 been	 lost	 through	 the	 de-clustering	 process,	 thereby	
increasing	the	information	entropy	in	the	catalog.			
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But	if	small	earthquakes	are	used	to	build	a	state	variable,	to	which	a	threshold	criterion	
is	 then	 applied,	 we	 find	 that	 	 there	 does	 exist	 information	 value	 in	 the	 resulting	 state	
variable	𝛩(𝑡).		The	original	(non-declustered)	catalog	is	thus	found	to	contain	significant	
information	that	can	be	used	to	compute	and	test	earthquake	probabilities	without	need	to	
resort	to	models	of	stress	accumulation	and	release,	for	example.	
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Figure	1.		a)	Seismicity	in	a	regional	box	of	size	10o	latitude	by	10o		longitude	centered	
on	Los	Angeles,	CA	(Figure	1a).	Large	red	circles	represent	earthquakes	having	magnitudes	
M>6.9.		Smaller	blue	circles	are	earthquakes	with	M>5.9.		b)	The	timeseries	of	earthquakes	
in	that	region	since	1970,	having	magnitudes	M	>	3.29.		Blue	curve	is	the	exponential	moving	
average	(EMA)	with	number	of	weights	N	=	36	[1].		c)	Time	series	for	the	mean	number	𝜇(𝑡)	
of	small	earthquakes	as	a	function	of	time.		The	mean	is	taken	beginning	in	1960,	and	is	also	
shown	since	1970.		d)	Optimized	state	variable	timeseries	𝛩(𝑡).		State	variable	is	the	EMA	
average	of	the	small	earthquakes,	then	adjusted	using	the	current	mean	number	𝜇(2022)of	
small	earthquakes,	using	a	constant	of	proportionality	𝜆.	 	e)	The	N-value	and	𝜆-value	are	
obtained	by	optimizing	the	ROC	skill,	which	is	shown	as	the	total	area	under	the	red	curve.		
Skill	for	the	random	time	series	is	shown	as	the	area	under	the	diagonal	line,	thus	random	
skill	=	0.5.			
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Figure	2.		a)	Shows	the	same	ROC	diagram	as	in	Figure	1e	for	a	future	time	window	of	
𝑇𝑊 =1	year.		ROC	is	the	red	curve,	representing	a	plot	of	the	true	positive	rate	(hit	rate)	as	a	
function	of	the	false	positive	rate	(false	alarm	rate).	The	diagonal	line	is	the	true	positive	rate	
for	 an	 ensemble	 of	 50	 random	 time	 series,	 each	 of	which	were	 obtained	 from	 the	 state	
variable	 time	 series	 𝛩(𝑡) 	using	 a	 bootstrap	 procedure	 of	 random	 sampling	 with	
replacement.		The	ensemble	of	random	time	series	is	shown	as	the	cyan	curves	grouped	near	
the	diagonal	line.	b)	Shows	the	skill,	as	a	function	of	the	future	time	window	𝑇𝑊	,	for	fixed	
EMA	N-value	and	𝜆-value.	 	c).	Shows	the	skill	 index	SKI	defined	 in	equation	(1),	also	as	a	
function	of	𝑇𝑊.		d).	Shows	the	Shannon	information	entropy,	equation	(3),	as	a	function	of	
future	 time	 window	𝑇𝑊 .	 	 Here	 the	 information	 is	 computed	 from	 the	 probability	 mass	
function	associated	with	the	ROC	curve.		Horizontal	dashed	line	is	the	information	entropy	
for	the	random	ROC	curve	(diagonal	line),	assuming	N	=	200	threshold	values.	
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Figure	3.	a)	Shows	the	optimized	state	variable	as	a	function	of	time,	an	enlarged	version	
of	Figure	1d.		b)	Shows	the	Positive	Predictive	Value,	PPV	or	Precision.		Red	cuve	is	the	PPV	
for	the	state	variable	shown	in	a),	where	the	vertical	axis	is	the	threshold	TH.			The	cyan	lines	
represent	the	PPV	for	50	random	time	series.		Mean	of	the	time	series	is	the	solid	black	line,	
and	1s	 confidence	 is	 shown	as	the	dashed	 lines.	 	c).	Red	curve	 is	 the	corresponding	self	
information	𝐼𝑠𝑒𝑙𝑓,	equation	(2),	on	the	horizontal	axis	as	a	function	of	the	threshold	value	TH	
on	the	vertical	axis.		Again,	the	cyan	curves	are	the	self-information	for	the	ensemble	of	50	
random	time	series,	with	mean	(solid	black	line)	and	1s	confidence	as	the	dashed	lines.	

	

	

	

	
	

	

 	

ESSOAr | https://doi.org/10.1002/essoar.10512008.5 | Non-exclusive | First posted online: Wed, 31 Aug 2022 09:42:18 | This content has not been peer reviewed. 



 17 
Information	Content	of	Earthquake	Catalogs	

Figure	4.		Results	of	a	long	simulation	of	183	large	“earthquakes”.		We	have	constructed	
a	time	series	𝛩TUV(𝑡)	using	equation	(4),	which	yields	results	generally	similar	to	those	in	
Figures	1	and	3.		a)	Time	series	𝛩TUV(𝑡)	as	a	function	of	"time"	in	"months"	on	the	left,	PPV	
on	the	right.		Compare	to	Figure	3.			The	vertical	red	line	at	bottom	of	the	time	series	is	the	
large	"earthquake",	the	dashed	blue	line	is	the	derivative	of	the	time	series	representing	the	
activity.		On	the	left	is	the	time	series,	on	the	right	is	the	associated	Precision	(PPV).		b)	ROC	
curve	for	the	time	series	as	discussed	in	the	text.		Area	of	0.88	under	the	ROC	curve	is	larger	
than	0.5,	indicating	skill.	Cyan	curves	are	the	skill	from	50	random	time	series.	c)	Histogram	
of	intervals	between	183	large	"earthquakes".	 	d)	Cumulative	interval	statistics,	obtained	
from	integrating	histogram	in	c).		Also	shown	is	the	dashed	curve	for	Poisson	(exponential)	
statistics	having	the	same	mean	as	the	time	series.		
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Table	1.	 	Data	 for	 skill,	 skill	 index,	 ROC	 Information,	 Information	 from	 random	ROC,	
Kullback-Leibler	Divergence	[3],	and	Jensen-Shannon	Divergence[4].		The	latter	two	terms	
refer	to	evaluating	the	distance	in	information	space	between	the	ROC	from	the	filtered	data	
and	 a	 random	 ROC	 curve	 (diagonal	 line	 on	 the	 ROC	 diagram).	 	 While	 both	 divergence	
quantities	measure	 the	difference	 in	entropy	between	 the	 two	distributions,	 the	 Jensen-
Shannon	is	the	only	one	that	represents	a	true	metric.		The	top	4	rows	of	data	in	the	table	
are	from	the	California	data,	whereas	the	bottom	row	is	from	the	simulation	discussed	in	
the	text.	
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