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Abstract
Yes
Key Points

* Interval statistics have been used to conclude that major earthquakes are random events
in time and cannot be anticipated or predicted

* Machine learning is a powerful new technique that enhances our ability to understand the
information content of earthquake catalogs

* We show that catalogs contain significant information on current hazard and future
predictability for large earthquakes

Plain Language Summary

The question of whether earthquake occurrence is random in time, or perhaps chaotic
with order hidden in the chaos, is of major importance to the determination of risk from
these events. It was shown many years ago that if aftershocks are removed from the
earthquake catalogs, what remains are apparently events that occur at random time
intervals, and therefore not predictable in time. In the present work, we enlist machine
learning methods using Receiver Operating Characteristic (ROC) analysis. With these
methods, probabilities of large events and their associated information value can be
computed. Here information value is defined using Shannon Information Entropy, shown by
Claude Shannon (Shannon, 1948) to define the surprise value of a communication such as a
string of computer bits. Random messages can be shown to have high entropy, surprise
value, or uncertainty, whereas low entropy is associated with reduced uncertainty and high
reliability. An earthquake nowecast probability associated with reduced uncertainty and
greater reliability is most desirable. Examples of the latter could be the statements that there
is a 90% probability of a major earthquake within 3 years, or a 5% chance of a major
earthquake within 1 year. Despite the random intervals between major earthquakes, we find
that it is possible to make low uncertainty, high reliability statements on current hazard by
the use of machine learning methods.

Introduction

Are major earthquakes random events in time? Or possibly chaotic, with order in the
chaos if we know where to look? These questions lie at the heart of the debate on whether
earthquakes can be predicted or anticipated, and whether it is possible to quantitatively
characterize the current state of earthquake hazard.

Many years ago, Gardner and Knopoff (1974) wrote a paper with the title: “Is the sequence
of earthquakes in Southern California, with aftershocks removed, Poissonian?” Their abstract:
“Yes.” The analysis they did was based on fitting the intervals between events to an
exponential probability distribution, which is often called Poisson statistics. This type of
statistics is well-known to apply to many types of random counting problems, from the
arrivals of automobiles in parking lots, to neutron decay, to calls per hour at a call center,
and many other applications.

2
Information Content of Earthquake Catalogs



ESSOATr | https://doi.org/10.1002/essoar.10512008.5 | Non-exclusive | First posted online: Wed, 31 Aug 2022 09:42:18 | This content has not been peer reviewed.

Since that time, many other researchers have searched for temporal structure in
earthquake intervals, with generally negative results (e.g., Scholz, 2019; comprehensive
review by Rundle et al., 2021a and references therein). Exceptions do exist, such as are seen
in Episodic Tremor and Slip and small repeating earthquakes (Rundle et al., 2021a; Rouet-
Leduc, 2019), but this behavior does not generally apply to large damaging earthquakes.

In all of these studies, the fundamental question underlying these investigations can be
phrased as: How much information does an earthquake catalog contain? This is the question
that we consider in this paper.

To summarize our results: We find that there is skill in earthquake nowcasts, as
measured by the Receiver Operating Characteristic (ROC) curve, used in machine learning to
evaluate signal detection. Skill is defined as the ability to discriminate between true signals
and false signals. We quantify this in terms of Shannon Information Entropy, using as
probabilities the ROC curve and its associated Precision (Positive Predictive Value). We
show that nowcasts of real data have lower entropy (higher information content) than
random data. Using a simple simulation of a nowcast state variable curve with random
(exponential) recurrence times, we show that Poisson recurrence does not imply a lack of
predictability or skill using the state variable. The state variable time series resembles the
long-hypothesized cycle of tectonic stress accumulation and release for major earthquakes.
We conclude that the observation of Poisson recurrence statistics does not necessarily imply
a lack of earthquake predictability.

Data and Method

In recent research, we have developed methods that we call earthquake nowcasting whose goal
is to estimate the current state of hazard. A number of authors have now begun to use these
methods in a variety of applications. Recent research has developed the idea of earthquake
nowcasting, which uses state (“proxy’’) variables to infer the current state of the earthquake cycle
(Rundle et al., 2016, 2018, 2019, 2021a,b; Rundle et al., 2022; Rundle and Donnellan, 2020; Pasari
and Mehta, 2018; Pasari, 2019, 2020; Pasari and Sharma, 2020; Luginbuhl et al. 2019; 2020).
An approach such as this is needed since the cycle of stress accumulation and release is not
observable (Rundle et al., 2021b; Scholz, 2019). These first approaches to nowcasting has been
based on the concept of natural time (Varotsos et al., 2001; 2002; 2011, 2013; 2014; 2020a,b;
Sarlis et al., 2018).

More specifically, in this work we analyze the result of applying a filter that, when applied
to a timeseries of small earthquakes, reveals the cycle of large earthquake occurrence and
recovery. Details of the process of building, optimizing, and applying the filter is indicated
in Figure 1, and discussed elsewhere (Rundle et al, 2022). The Python code used to compute
the filter is available on the ESSOAR site as well. In this section, we sketch the process, details
of which can be found in the cited references.

A critical component of the current approach is that the information is encoded in the
earthquake clusters or bursts, a series of events closely spaced in time (Rundle et al., 2020;
Rundle and Donnellan, 2020). Bursts are a temporal clustering of highly correlated
seismicity, typically in a small spatial region.

Data. Referring to Figure 1, we begin with the seismicity in a regional box of size 10°
latitude by 10° longitude centered on Los Angeles, CA (Figure 1a). The timeseries of
3
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earthquakes in that region since 1970, having magnitudes M > 3.29, is shown in Figure 1b as
a series of vertical lines. Also shown as a blue curve is the exponential moving average
(EMA) with number of weights N = 36 [1]. Note that the blue curve shows an “inverted” cycle
of large earthquakes that is the primary basis for the nowcast filter.

In Figure 1c, we show a time series for the mean number p(t) of small earthquakes as a
function of time. The mean is taken beginning in 1960, and is also shown since 1970. It can
be seen that the mean does not indicate a steady state. Instead, there is a general increase in
mean number of events up to about 1993, after which it shows a cycle similar to that in Figure
1b.

This catalog behavior may be due either to actual tectonic processes, or perhaps to
changes in methods of earthquake detection and magnitude assignment in the early 1990’s,
when the network was fully automated and digital (Hutton et al., 2010). In fact, it is
interesting that the temporal trends in Figure 1c¢ seem to somewhat mirror the general

historical change in number of seismic stations in California as shown in Figure 3 of Hutten
etal. (2010).

State Variable O (t).The data in Figures 1b and 1c are then combined to form the state
variable timeseries @ (t) shown in Figure 1d. The state variable itself is the EMA average of
the small earthquakes, then adjusted using the current mean number ©(2022)of small

earthquakes, using a constant of proportionality A. The N-value and A-value are obtained by
optimizing the ROC skill.

The adjustment corresponds to an assumption that there is a minimum number of small
earthquakes that occur each month. An important component of this adjustment is the
assumption that there appears to be a transition from unstable seismic slip, observable with
seismometers, to stable sliding that is observable only with geodetic observational
instruments such as GNSS or InSAR. Figure 1d then represents an “inverted” and adjusted
and EMA averaged timeseries of the small earthquakes.

As noted above, the blue curve in Figure 1 shows a sudden increase at the time of large
earthquakes, and thus the state variable @(t), which is the inverse, shows a sudden
decrease.

Receiver Operating Characteristic (ROC). To calculate the the EMA N-value, and the
contribution of the mean number u(t) of small earthquakes, we construct the temporal
Receiver Operating Characteristic (ROC) for a forward time window T}, =3 years beyond a
given time t (Rundle et al,, 2022). We note that other researchers are also using ROC
methods in earthquake cluster analysis (Ben-Zion and Zaliapin, 2020; Zaliapin and Ben-Zion,
2022), similar in some ways to ideas in Rundle and Donnellan (2020) and Rundle et al.
(2021a,b).

The ROC curve [2] is constructed by establishing a series of increasing thresholds Ty in
the state variable @ (t) from low values to high values. We then consider all values of time,

and a series of 4 clauses (statements). A review of these methods can be found in Jolliffe and
Stephenson (2003).
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For each time t: if a given O (t) = Ty and a large earthquake occurs within the next Tw
years, we classify that as true positive TP; if @(t) = Ty and no earthquake occurs within
the next Tw years, we classify as false positive FP; if @(t) < Ty and no earthquake occurs
within the next Tw years, we classify as true negative TN; if @(t) < Ty and an earthquake
does occur within the next Tw years, we classify as false negative FN. We then repeat this
procedure over all values of threshold T'y.

Having TP, FP, FN, TN, we then define the true positive rate TPR or “hit rate” TP/(TP +
FN); the false positive rate FPR or “false alarm rate” FP/(FP+TN). A plot of TPR against FPR
defines the ROC curve, which is the red curve in Figure 1le. For future consideration, we also
define the Precision, or positive predictive value as TP/(TP+FP), the fraction of predictions
that turn out to be accurate. These and other quantities are described in [2].

Supervised Machine Learning. The area under the ROC curve is the Skill, which
specifies the ability of the method to discriminate between true signals and false signals. The
diagonal line in Figure 1e is the no skill line, equivalent to a random predictor. Note that the
area under the no skill line is 0.5.

For a method to have skill, the ROC curve must either be above the diagonal line, or below
it. For a method with skill, the area under the ROC curve can either be a maximum of 1.0, or

a minimum of 0.0. For future reference, we define a skill index SKI in % as a function of the
Relative SKkill Rs = |Skill - 0.5]:

SKI = —100 (Rs Log, Rs + (1 — Rg)Log,(1 — Ry)) 1)

SKI can then range from 0% (when skill = 0.5), to 100% (when skill is either 1.0 or 0.0).
In Figure 1le, the no skill area is indicated by the darker shaded area. The skill of the
nowcasting method that we discuss here is indicated by the total shaded area.

As discussed in Rundle et al. (2022), we find the optimal values of N for the EMA, and the
contribution of the mean earthquake u(t) adjustment A, by maximizing the skill. This is
indicated in Figure 1d and 1e as a feedback between the state variable curve and the ROC
skill calculation. This procedure results in a filter that has been optimized by well-
understood, reliable methods. We note that the code is available on the AGU preprint archive
ESSOAR (Rundle et al.,, 2022, supplemental tab).

Shannon Information. Claude Shannon’s famous paper on statistical communication
theory (Shannon, 1948) describes a measure of the information content of a message
between communicating parties. Itis based on the idea of viewing a message consisting of a
bit string as a series of intermixed 1’s and 0’s, with an associated entropy of mixing.
Examples of the use of these methods can be found, e.g., in Cover and Thomas (1991), and
Stone (2015).

The usual interpretation of Shannon information entropy is then the number of binary
yes/no questions that must be asked in order to determine the information in the message
being sent. If more questions are required, the entropy is higher and the information
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communicated is more surprising. Conversely if fewer questions are required, the entropy
is lower and the information communicated is not as surprising.

For a message in which symbols in an alphabet (i.e., the 1’s and 0’s) have probability mass
function p(w), where w €[0,1], the self-information I, associated with a given symbol is:

Iself = —LOQZP((U) (2)

The Shannon information of a string of symbols is then given by the expectation of the
self-information:

Is = —%p(w)Logzp(w) (3)

Comparing (3) with the skill index SKI, we see that equation (1) is an information entropy-
based definition.

Results

In this section we compute the information content/entropy using the statistics of the
ROC curve, and the time series precision. In Figure 2, we first address the skill and
information content of the method outlined in Figure 1 for a continuum of future time
windows Ty, € [0.125,8.5] years.

Skill. Figure 2a shows the same ROC diagram as in Figure 1e for a future time window
of Ty, =1 year. As discussed previously, the red curve is the true positive rate (TPR), which
ranges from 0 to 1. The diagonal line is the true positive rate for an ensemble of 50 random
time series, each of which were obtained from the state variable time series @ (t) using a
bootstrap procedure of random sampling with replacement. The ensemble of random time
series is shown as the cyan curves grouped near the diagonal line.

The skill, which is the area under the ROC curve, is shown in Figure 2b as function of the
future time window T, , for fixed EMA N-value and A-value. Figure 2c shows the skill index
SKI defined in (1), also as a function of T},. Both Figures 2b,c indicate that there is a
maximum in skill at a value T}, = 0.625 years, and no skill at Ty, = 6.875 years, where the
skill curve crosses the no-skill (dashed horizontal) line.

Shannon Information from ROC. To calculate the Shannon Information entropy as a
function of Ty, using (3), we need a probability mass function pmf. For this purpose, we use
the ROC curve as a cumulative distribution function, and difference it with respect to
threshold values T to obtain the pmf. Because the ROC curve was constructed using 200
values of T'y, there are 199 values of the pmf=> p(w) to be used in equation (3).

To compare the results with those for the no skill diagonal line, we note that the diagonal
line can also be regarded as a cumulative distribution, but for a uniform pmf whose value is
the constant pmf=>p(w) = 1/N. For this value of pmf, it is easy to show that I =7.64 bits.

According to the conventional interpretation of Shannon information, one would need to
ask, on average, 7.64 yes/no questions to establish the value of a random state variable just
prior to the occurrence of a major earthquake during the following T, years. Or in other
words, the number of yes/no questions needed to determine whether a given random
threshold state is followed by a window T, that contains a large earthquake.
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By contrast, the actual ROC curve has a lower value of I, and therefore more information
content, and lower entropy, than the random ROC (diagonal line). For the value of T, = 1.0
year, we find I = 4.29 bits, corresponding on average to 4.29 yes/no questions.

A selection of these data are also summarized in Table 1, and are compared to data from
a simple illustrative simulation discussed below. Data for skill, skill index, ROC Information,
Information from random ROC, Kullback-Leibler Divergence [3], and Jensen-Shannon
Divergence[4] are shown in the table as well. These latter quantities are measures of the
difference in information entropy between the data and a random nowcast.

Shannon Information from Precision (PPV). More insight into the information
content/entropy of the state variable @ (t) can be realized using the positive predictive
value (PPV) probability, or precision. Figure 3a shows the optimized state variable as a
function of time, an enlarged version of Figure 1d.

Note in particular that the top area of the state variable curve corresponds to enhanced
quiescence prior to the occurrence of a large earthquake, as explained previously and in
Rundle et al. (2022). Conversely, the bottom area of the curve corresponds to enhanced
activation, for example aftershock occurrence following a large event.

Figure 3b shows the precision, and Figure 3¢ shows the corresponding self information
Iir , equation (2), both quantities on the horizontal axis and shown as a function of the
threshold value Ty on the vertical axis. These are the magenta curves in those figures. Figure
3 allows one to read horizontally and associate a value of PPV and self-information I, with

a given value of @ (t).

Also shown in Figures 3b,c are the PPV and I for an ensemble of 50 random time
series, these are the cyan curves. The mean of the cyan curves is shown as a solid black line,
and the 1 o confidence limits are shown as dashed lines. Each random time series in the
ensemble is again computed by sampling with replacement the time series @ (t), then for
each curve calculating the PPV and I, for that curve.

A main finding from Figure 3 is that the statistics of future time windows T, for the
ensemble of random time series do not depend on the value of the threshold Ty . The
random (uniform) probability of a future window T}, containing a large earthquake is about
10%, for example. By contrast, the probability of a future time window containing a large
earthquake increases dramatically as the time series @ (t) increases from bottom of the
chart (activation phase) to the top (quiescence phase).

We also see in Figure 3c that the information entropy is basically the same for the
ensemble or random curves as for @(t) in the activation condition. Conversely, as
quiescence becomes more dominant and the time of a large earthquake approaches, entropy
for @ (t) decreases and information content correspondingly increases.

We can also understand why the self-information I, for the random time series is
approximately 3.35 bits. In the figure, we considered a series of T}, = 1 year windows from
1970 to early 2022. There are thus a little more than 51 non-overlapping, independent time
windows.
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During this time period, there are 5 major earthquakes having magnitudes M > 6.75:
M6.9 Loma Prieta; M7.3 Landers; M7.1 Hector Mine; M7.2 El Mayor Cucupah; and M7.1
Ridgecrest earthquakes. If the earthquakes were distributed randomly in time, there would
be a probability of p(w) = 5/51 = 0.098 of finding a large earthquake in any of these time
windows.

Thus we calculate a self-information entropy for the mean of the random ensemble
curves of Iyr = —Log,(5/51) = 3.35 bits. Therefore it would take on average 3.35
yes/no questions to determine if one of these future time windows T, contains a large
earthquake. Conversely, it is apparent that the self-information entropy of the PPV of @ (t)
approaches 0 as the seismically quiescence phase becomes fully developed.

The primary conclusion from these calculations is that the information content is higher
in the quiescence phase of seismicity than the activation phase. Or alternatively, that the
activation phase has higher entropy than the quiescence phase.

A Simple Example

We now return to the question posed at the beginning of this paper of whether large
earthquakes, which have been repeatedly found to have interval statistics that are
exponentially (Poisson) distributed, nonetheless have information content about past and
future events.

To show that this is not a contradiction, we consider the following simple model
simulation:

* The basic state variable curve Oy, (t) is specified as the logistic function:
_ 1
@sim(t) -

(1+exp(-t")
where: t = % + 6 and At is the time since the last large “earthquake.”

(4)

* Failure (a “large earthquake”) occurs when @, (t) = 0.995. At failure, we then set
At = 0, and declare that a large “earthquake” has occurred.

+ After a “large earthquake” occurs, the next value of 7 is chosen from an exponential
distribution whose mean is taken to be 25 “months”.

* The future time window T, = 40 “months” is used to evaluate nowcast skill.

* We then progressively increase At by 1 “month” intervals until the next large
“earthquake” occurs, at which point we repeat the process.

The results of a long simulation of 183 large “earthquakes” is shown in Figure 4. There
we see that a short segment of the time series O;,,,(t) as shown in Figure 4a is generally
similar to that shown in Figure 3a. Figure 3b shows that there is significant nowcast skill,
equal to 0.88, with a skill index of 95.81%, meaning that the true signals can be
differentiated from false signals with a high degree of reliability.

By construction, however, we also see from Figures 4c and 4d that the interval statistics
for O, (t)conform to those of a Poisson interval distribution (exponential distribution).
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We can therefore say that for this model simulation, the existence of Poisson interval
statistics does not imply a lack of predictability for O, (t), similar to what we found with
the California data set.

Conclusion

In this paper we have analyzed earthquake catalogs to understand the information they
contain. Interval statistics observed in catalogs are usually taken to indicate random
(Poisson) events having no memory. However, we have shown that the temporal clustering,
or variation in monthly rate of the small earthquakes, does contain important information.

This temporal clustering is in the form of bursts of activity that can be modeled with
invasion percolation networks (Rundle et al., 2020). We thus find that the process of de-
clustering a catalog is shown to remove information content, and to increase the
information entropy.

The current results are consistent with the cluster analysis of Rundle and Donnellan
(2020). We also note that this general decrease in monthly rate leading up to the next big
earthquake might also be regarded as the “long tail” of the Omori aftershock distribution.

We have used this idea to construct a state variable @ (t) by defining a 2-parameter filter,
based on an exponential moving average (EMA) of small earthquake seismicity, together
with an assumption about the minimum number of small earthquakes during a month-long
interval.

The interplay between seismic activation, for example aftershocks, and seismic
quiescence, can be analyzed by standard methods. These methods are receiver operating
characteristic (ROC), positive predictive value (PPV), and Shannon information entropy.
We note that quiescence has been identified as a precursor to major earthquakes in
previous research (Kanamori, 1981; Wyss and Haberman, 1988; Haberman, 1988; Main and
Meredith, 1991; Huang et al., 2001; Chouliaras, 2009; Weimer and Wyss, 1994; Torman et
al,, 2010; Rundle et al., 2011; Katsumata, 2011; Nanjo, 2020).

ROC analysis clearly shows that use of the optimized state variable @ (t) to describe the
earthquake cycle in California has nowcast skill. Skill is the ability to distinguish between
future time windows Ty, that are likely to contain a large earthquake (true signal) and those
that are not (false signal). The positive predictive value PPV can be interpreted as an
indicator of the chance of a large earthquake during T',.

Furthermore, the Shannon information content of both the ROC and PPV can be
demonstrated to contain more information, or lower surprise value, than a random
predictor. Or in other words the random predictor has higher information entropy than

o(t).

To summarize, in reference to the original question posed by Gardner and Knopoff
(1974) regarding earthquake predictability, we find the following. Their conclusion may
apply to earthquake interval statistics where the ordering of temporal bursts and clustering
(variation in monthly rate) has been lost through the de-clustering process, thereby
increasing the information entropy in the catalog.

9
Information Content of Earthquake Catalogs



ESSOATr | https://doi.org/10.1002/essoar.10512008.5 | Non-exclusive | First posted online: Wed, 31 Aug 2022 09:42:18 | This content has not been peer reviewed.

But if small earthquakes are used to build a state variable, to which a threshold criterion
is then applied, we find that there does exist information value in the resulting state
variable @ (t). The original (non-declustered) catalog is thus found to contain significant
information that can be used to compute and test earthquake probabilities without need to
resort to models of stress accumulation and release, for example.
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Supplementary Material. Python code that can be used to reproduce the results of this paper can
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paper.
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are freely available there. The Python code mentioned above can be used to download these data
for analysis.
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Figure 1. a) Seismicity in a regional box of size 10° latitude by 10° longitude centered
on Los Angeles, CA (Figure 1a). Large red circles represent earthquakes having magnitudes
M>6.9. Smaller blue circles are earthquakes with M>5.9. b) The timeseries of earthquakes
in that region since 1970, having magnitudes M > 3.29. Blue curve is the exponential moving
average (EMA) with number of weights N = 36 [1]. c) Time series for the mean number p(t)
of small earthquakes as a function of time. The mean is taken beginning in 1960, and is also
shown since 1970. d) Optimized state variable timeseries @ (t). State variable is the EMA
average of the small earthquakes, then adjusted using the current mean number u(2022)of
small earthquakes, using a constant of proportionality A. €) The N-value and A-value are
obtained by optimizing the ROC skill, which is shown as the total area under the red curve.
Skill for the random time series is shown as the area under the diagonal line, thus random

skill = 0.5.
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Figure 2. a) Shows the same ROC diagram as in Figure 1e for a future time window of
Ty, =1year. ROC is the red curve, representing a plot of the true positive rate (hit rate) as a
function of the false positive rate (false alarm rate). The diagonal line is the true positive rate
for an ensemble of 50 random time series, each of which were obtained from the state
variable time series @(t) using a bootstrap procedure of random sampling with
replacement. The ensemble of random time series is shown as the cyan curves grouped near
the diagonal line. b) Shows the skill, as a function of the future time window Ty , for fixed
EMA N-value and A-value. c). Shows the skill index SKI defined in equation (1), also as a
function of Ty,. d). Shows the Shannon information entropy, equation (3), as a function of
future time window T},. Here the information is computed from the probability mass
function associated with the ROC curve. Horizontal dashed line is the information entropy
for the random ROC curve (diagonal line), assuming N = 200 threshold values.
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Figure 3. a) Shows the optimized state variable as a function of time, an enlarged version
of Figure 1d. b) Shows the Positive Predictive Value, PPV or Precision. Red cuve is the PPV
for the state variable shown in a), where the vertical axis is the threshold Ty. The cyan lines
represent the PPV for 50 random time series. Mean of the time series is the solid black line,
and 1o confidence is shown as the dashed lines. c). Red curve is the corresponding self
information /¢, equation (2), on the horizontal axis as a function of the threshold value Ty
on the vertical axis. Again, the cyan curves are the self-information for the ensemble of 50
random time series, with mean (solid black line) and 1o confidence as the dashed lines.

Information Content of Seismicity

Within 5.0° Latitude and 5.0° Longitude of Los Angeles

PPV Information Entropy

1.55 4

1.60 A

1.65 A

1.70 A

1.75 A1

1.80 A

—— Nowcast Information
—— Random Information
------ 1o Confidence

State Variable ©(t) vs. Time PPV Precision
---------- 69 >M = 6.0 _
----- M= 6.9
1.55 A V 1.55 A1
/
1.60 - 1.60 A
1.65 A 1.65 -
1.70 A
1.70 A
1.75 A
1.75 A
M:;@ea :6.75 : :
1.80 A Tw: 1.0 Years E
EMA Samples (N): 36.0 E ! i p
Time Step: 1 Month - i 1.80 —— Nowcast Precision
Rpmin: 35.0 E i 1 : —— Random Precision
AM"”" 329 e 1 o Confidence
1970 1980 1990 2000 2010 2020 0 50
Time (Year) Probability (%)
16

Information Content of Earthquake Catalogs

100

T T

2 4
Self Information (Bits)




.org/10.1002/essoar.10512008.5 | Non-exclusive | First posted online: Wed, 31 Aug 2022 09:42:18 | This content has not been peer reviewed.

Figure 4. Results of a long simulation of 183 large “earthquakes”. We have constructed
a time series Og;,, (t) using equation (4), which yields results generally similar to those in
Figures 1 and 3. a) Time series Oq;,,(t) as a function of "time" in "months" on the left, PPV
on the right. Compare to Figure 3. The vertical red line at bottom of the time series is the
large "earthquake", the dashed blue line is the derivative of the time series representing the
activity. On the left is the time series, on the right is the associated Precision (PPV). b) ROC
curve for the time series as discussed in the text. Area of 0.88 under the ROC curve is larger
than 0.5, indicating skill. Cyan curves are the skill from 50 random time series. c) Histogram
of intervals between 183 large "earthquakes". d) Cumulative interval statistics, obtained
from integrating histogram in c). Also shown is the dashed curve for Poisson (exponential)
statistics having the same mean as the time series.
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Table 1. Data for skill, skill index, ROC Information, Information from random ROC,
Kullback-Leibler Divergence [3], and Jensen-Shannon Divergence[4]. The latter two terms
refer to evaluating the distance in information space between the ROC from the filtered data
and a random ROC curve (diagonal line on the ROC diagram). While both divergence
quantities measure the difference in entropy between the two distributions, the Jensen-
Shannon is the only one that represents a true metric. The top 4 rows of data in the table
are from the California data, whereas the bottom row is from the simulation discussed in

the text.
Tw Skill Skill Index leoc (Bits) 1 ongom (Bits)  JSp;, (Bits) KLy, (Bits)

California Data

1 Years 0.77 83.6% 4.29 7.64 0.71 3.36

3 Years 0.71 74.1% 5.28 7.64 0.55 2.36

5 Years 0.64 58.7 % 5.80 7.64 0.47 1.84

7 Years 0.49 9.7% 6.34 7.64 0.35 1.30
Simulation Data

13 “Months” 0.97 99.7 % 1.27 7.64 0.9 6.37
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