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Abstract—Two-dimensional (2D) analytical models are only
approximations for 3D structures where one cross-sectional
dimension is much larger than the other. This paper uses the
finite-difference time-domain method (FDTD) to perform nu-
merical experiments on fully 3D dielectric waveguide structures
to compute the wave-impedance and the propagation-constant
for finite-width dielectric waveguides. These data are used to
determine the width required to achieve good correlation against
2D analytical models. Results show that width ≥ 10× height is
the limit for good approximation.

I. INTRODUCTION

Nano-scale dielectric waveguides are a critical component
in modern integrated circuit design for both signal/power
integrity and ultra high-speed data transfer. Analytical formu-
lation of dielectric waveguides has historically been limited to
the spatially two-dimensional (2D) canonical form of the slab
waveguide [1]–[7]. However, realistic dielectric waveguides
are fully three-dimensional (3D) structures. Despite the di-
mensional discrepancy, 2D analytical models are often used as
approximations, provided that there is only tight confinement
in one of the two cross-sectional dimensions, where length
is functionally infinite along the longitudinal-section in both
directions. 3D dielectric waveguides with width much larger
than height are spatially inefficient. Therefore, in this paper
we conduct numerical experiments in FDTD to determine the
limit for width where 2D analytical models may be considered
a good approximation of 3D dielectric waveguides. The 2D
analytical models for wave-impedance Zw (Ohm) and the
propagation-constant β (rad/m) are used for comparison.

II. FORMULATION

The waveguides of interest are fully 3D and have step index
contrast between core and cladding regions with refractive
indices n1 = 3.5 and n2 = 1.5 (corresponding to Si/SiO2),
respectively, where the core is surrounded uniformly on all
sides by a cladding which is assumed to be infinite in extent.
The core region geometry is shown in Fig. 1, where we note
the top and bottom walls of the waveguide are separated by
the height (δ), the left and right walls are separated by the
width (w), and all walls are smooth.

The 2D analytical Zw model is defined in (1) [4] may be
used as an approximation for comparison with 3D simulations
data.
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Fig. 1: 3D waveguide geometry.

where  =
√
−1, γ =

√
β2 − n22k20 (rad/m), µ0 is the free-

space magnetic permeability (H/m), angular frequency ω =
2πf (rad/s), cyclic frequency f (Hz), and field components
Ey (V/m) and Hz (A/m) are time-harmonic frequency-domain
phasors, and Zw is purely imaginary for a smooth dielectric
waveguide with no added loss mechanism (such as surface
roughness or lossy material).

The propagation constant can be evaluated from the relation
of E-field components using the imaginary component of the
complex logarithm in (2) [8]

β =
1

`
(arg(E1)− arg(E2)) = neffk0, (rad/m) (2)

where k0 is the free-space wave number at the source wave-
length λ0, neff is the effective refractive index as calculated
from the Effective Index Method [2, §D.C], log(E1/E2) =
α+β, α = 0 in the absence of any additional loss mechanism,
and ` is the distance between E2 and E1. The arg function
returns the complex angle including any and all additional
2πm turns with m ∈ Z.

III. RESULTS AND DISCUSSION

For computing Zw using (1), each numerical experiment
uses λ0 = 1.54 µm and δ = 200 nm, and reported values are
evaluated at f = 194.8 THz. FDTD field data are collected at
the midpoints along ` and w, with a three-cell offset from the
bottom of the waveguide core region.

These data are collected over widths varying from 200 nm
to 5 µm. Those results are shown in Fig. 2, where ={Z}
is the imaginary component of the complex number Z. We
see therein that Zw calculated with FDTD approaches the
2D analytical model and saturates at w ≈ 800 nm. There
is a noticeable offset between the 3D FDTD data and the 2D
analytical approximation below that point but little variation



Fig. 2: Zw across widths.

between FDTD and analytical calculations above that point.
In this case, the 2D analytical model is a good approximation
for w ≥ 4δ.

Sample FDTD Zw data are shown with all discrete cells
in the w × ` cross-section in Fig. 3. The boundary of the
region directly below the waveguide core is shown as dotted
lines. Within the below core region there is minimal variation
along length. Zw settles to a stable value within 2 µm from
the source location at z = 0, and the variations along w
appear only near the region boundary. Outside the boundary
there are several null points appearing periodically along
length. The length interval between nulls seems to be inversely
proportional to waveguide width. The null points are likely the
result of 3D multi-modal behavior as more propagating modes
exist in the waveguide with increasing w.

Fig. 3: Zw vs. w and length.

FDTD fields data are also collected at two w×δ planes along
length. The average of all Ey values in those planes is then
related to β using (2), where ` = 5 µm. We see saturation-like
behavior in Fig. 4 similar to Fig. 2. However, the saturation
point for β appears to be at w ≈ 2 µm. This implies that

Fig. 4: β across widths.

the 2D analytical model is a good approximation for the 3D
dielectric waveguide where w ≥ 10δ. Since Zw is an implicit
function of β through γ, this w limit should be used when
utilizing the 2D analytical approximations.

Fig. 5 shows the point-to-point β calculations (without field-
averaging), where the boundary between core and cladding is
shown as a red dotted line. The mode configuration changes
as w increases, hence the use of field-averaging in Fig. 4.

Fig. 5: Point-to-point β across w and δ.

IV. CONCLUSION

The experiments conducted in this paper showed that funda-
mental parameters Zw and β have a strong dependence on the
w/δ ratio, where in this case, good correlation to 2D analytical
model is achieved for w ≥ 10δ; the data suggests an order-of-
magnitude difference would be sufficient. Further experiments
should be conducted for additional parameters, e.g., α, in both
smooth and rough waveguides.

ACKNOWLEDGMENT

This work was funded, in part, by the National Science
Foundation [9].

REFERENCES

[1] B. Guiana and A. Zadehgol, “Characterizing THz scattering loss in
nano-scale SOI waveguides exhibiting stochastic surface roughness with
exponential autocorrelation,” Electronics, vol. 11, no. 3, 2022. [Online].
Available: https://www.mdpi.com/2079-9292/11/3/307

[2] A. Zadehgol, “Complex s-plane modeling and 2d characterization of
the stochastic scattering loss in symmetric dielectric slab waveguides
exhibiting ergodic surface-roughness with an exponential autocorrelation
function,” IEEE Access, vol. 9, pp. 92 326–92 344, 2021.

[3] F. Payne and J. Lacey, “A theoretical analysis of scattering loss from
planar optical waveguides,” vol. 26, pp. 977–986, 1994.

[4] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. USA:
Wiley, 2012.

[5] D. M. Pozar, Microwave Electronics, 4th ed. USA: Wiley, 2012.
[6] H. Kogelnik, Theory of Dielectric Waveguides. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1975, pp. 13–81.
[7] B. Guiana and A. Zadehgol, “Analytical Models of Stochastic

Scattering Loss for TM and TE Modes in Dielectric
Waveguides Exhibiting Exponential Surface Roughness, and a
Validation Methodology in 3D FDTD,” May 2022. [Online].
Available: https://www.techrxiv.org/articles/preprint/Analytical
Models of Stochastic Scattering Loss for TM and TE Modes
in Dielectric Waveguides Exhibiting Exponential Surface Roughness
and a Validation Methodology in 3D FDTD/19799737

[8] ——, “S-parameter extraction methodology in FDTD for nano-scale
optical interconnects,” in 15th International Conference on Advanced
Technologies, Systems and Services in Telecommunications, October 20-
22 2021, pp. 1–4.

[9] A. Zadehgol, “SHF: SMALL: A novel algorithm for automated synthesis
of passive, causal, and stable models for optical interconnects,” National
Science Foundation (NSF) Award #1816542.


	Width Confinement in 3D Dielectric Waveguides and Comparison to 2D Analytical Models

