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Abstract
The Small Business Innovation Research (SBIR) program provides federally funded 
research awards to companies with 500 or fewer employees. We explore the differential 
effects of the National Aeronautics and Space Administration SBIR program on firms of 
various sizes on their future patenting activity. Using propensity score matching, we con-
struct comparable samples of selected and non-selected Phase II SBIR applicants by firm 
size. We then estimate the effect of selection for the matched sample on the probability 
of forward patent activity and conditional on any forward patenting, the count of patents 
within three years of the proposal. While firms with fewer than 10 employees, are least 
likely to patent, their probability of patenting is positively affected by receiving a Phase II 
award. We find sparse evidence of corresponding increase for larger firms. Nor do we find 
any evidence that a Phase II award impacts the conditional number of forward patents in 
the three years following the award. These data suggest that the Phase II award serves to 
advance the smallest teams "over the hump" to creating a potential source of competitive 
advantage.
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1  Introduction

The United States Small Business Innovation Research (SBIR) program, one of the pil-
lars of government effort to enhance innovation, has offered research and development 
(R&D) awards to firms with 500 or fewer employees since 1982. The rationale of the 
program is straightforward; by providing early-stage financing to small companies that 
might not attract funding in the market, the program focuses on the population with the 
highest potential for growth, both in revenue and employment. In fiscal year (FY) 2017, 
all eleven federal agencies with R&D budgets in excess of $100 million allocated 3.2 
percent of their budget to SBIR awards, shown previously in some agencies to be linked 
to increases in entrepreneurial activity, venture capital, company growth, revenue, and 
patents. (Cumming & Li, 2013; Howell, 2017; Lerner, 1999).

The National Aeronautics and Space Administration (NASA) SBIR program is one 
such agency—providing more than $150 million a year in grants to aerospace industry 
firms (NASA 2016). The aerospace industry is important because of its size, world-
wide scope, innovation capacity, and technological complexity (Niosi & Zhegu, 2005, 
2010), as well as its importance as a source of patents and invention (Ardito et al., 2016; 
Mcguire & Islam, 2015), a potentially important outcome of the SBIR program. It there-
fore presents a rich laboratory to study the interplay of small businesses, innovation, 
and federal intervention. Using a propensity score matching methodology, we analyze 
data from the NASA SBIR program to study its effect across different firm sizes within 
its small-firm universe. We study the second-stage (larger) SBIR award and its impact 
on the invention performance of so-called “microfirms” of 1–9 employees, comparing 
it with that of larger small businesses (10–249 employees) and ask: are selected firms 
more likely to patent after receiving the award and if so, does the number of patents 
increase with the award?

We find that receiving a Phase II SBIR award positively impacts a microfirm’s prob-
ability of patenting. Specifically, selected firms show a nearly 8 percent increase in the 
probability of patenting compared to non-selected firms. This is a sizable effect for 
microfirms in our sample as only 12 percent of them patent. In contrast, we do not find 
a similar effect for larger firms. In each subsample, conditional on patenting, we find 
no impact on the number of patents generated. Thus, the SBIR award helps the small-
est companies take some of the first important steps to cross the so-called "Valley of 
Death" (VOD), a lack of funds needed at the earliest stages of technology development. 
Clouded in technical risk, the smallest companies are most vulnerable to such financing 
constraints since they are unlikely to self-finance and often lack a track record (i.e. rev-
enue, stock of intangible assets) that attracts investors.

This paper contributes to the general literature on entrepreneurial finance and so-
called "deep technology ventures" by exploring a subset of technologies of great impor-
tance to the economy; in parallel, our results have implications for the aerospace indus-
try. We also contribute to the dialogue on the outcomes related to federal interventions 
and their potential impact on innovation.
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2 � Literature review

In initial product development, a small technology firm may struggle to attract resources 
from private capital due to high risk (Gompers & Lerner, 2001), especially in less active 
investment periods (Nanda & Rhodes-Kropf, 2013). This is problematic because small 
companies are more innovative than large ones (Belz et al., 2019; Edwards & Gordon, 
1984). They are of particular interest on a national level because the newest small firms 
contribute disproportionately to economic growth, and yet formation is on the decline 
(Akcigit & Kerr, 2018; Decker et al., 2016; Haltiwanger et al., 2013).

2.1 � Subsidies and SBIR

Subsidy programs have developed to remedy market failures (Hall & Lerner, 2010; 
Zúñiga-Vicente et al., 2014). Although public funding could “crowd-out” private invest-
ment (Wallsten, 2000), studies from around the world suggest that this is not the case 
(Bronzini & Iachini, 2014; Choi & Lee, 2017; Dimos & Pugh, 2016; González & Pazó, 
2008; Huergo & Moreno, 2017; Lach, 2002; Smith et al., 2018). Instead, evidence exists 
that small firms respond to public subsidies by increasing their internal R&D expendi-
ture (Almus & Czarnitzki, 2003; Bronzini & Iachini, 2014; Lach, 2002). Alternatively, 
the subsidy may enable a firm to pursue research that would be otherwise discontin-
ued (Belz & Giga, 2018; Feldman & Kelley, 2006). Additionally, public subsidy impact 
depends on the firm’s prior R&D experience (Caloffi et al., 2018), and its ties to univer-
sities (Siegel & Wessner, 2012). Public support may inhibit growth of academic spinoffs 
(Ayoub et  al., 2017) and combinations of public support may decrease the subsidy’s 
effectiveness (Dumont, 2017; Marino et  al., 2016). However, government grants have 
also been shown to increase a firm’s likelihood of subsequent survival (Smith et  al., 
2018), attracting future funding (Feldman & Kelley, 2006), debt financing (Meuleman 
& De Maeseneire, 2012), and venture capital (Islam et al., 2018; Toole & Turvey, 2009). 
Regarding the latter outcome of venture capital, studies are mixed on whether this link 
results from certification (Lerner, 1999) or directly funding important technology devel-
opment (Howell, 2017).

In the United States, the SBIR program provides such subsidies under a structure with 
objectives including: stimulating innovation; using small businesses to meet federal needs; 
creating access for historically disadvantaged groups; and accelerating commercialization 
of federally funded research (Wessner, 2008). SBIR awards have been positively linked to 
increases in entrepreneurial activity, venture capital, company growth, high-tech entrepre-
neurship, patent generation, externally generated patents, and technological advancement 
(Belz et al., 2019; Cumming & Li, 2013; Galope, 2016; Howell, 2017; Lerner, 1999; Qian 
& Haynes, 2014; Toole & Turvey, 2009).

These benefits are especially important because of the decline in research conducted by 
the largest firms; their share has dropped by about one-quarter between 1985 and 1998 as 
companies have focused on advanced development more than basic research (Arora et al., 
2018), and acquisitions over R&D (Blonigen & Taylor, 2000). Simultaneously, venture 
capital has migrated dramatically away from hardware-driven technologies (Belz, 2016), 
necessitating intervention because smaller firms may not have enough internal funds to 
finance risky but potentially rewarding R&D projects (Ughetto, 2008). These dynamics 
make federal support of basic research in small companies even more critical.
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2.2 � Aerospace industry

The aerospace industry is nationally strategic, characterized by complex, advanced tech-
nologies linking the defense and civil markets. As a strategic employer of highly skilled 
engineers, it represents a quintessential industry to anchor regional growth and its evolu-
tion has thus been studied extensively (Alberti & Pizzurno, 2015; Cooke & Ehret, 2009; 
Niosi & Zhegu, 2005, 2010; Sammarra & Biggiero, 2008; Turkina et al., 2016). However, 
technology infusion is complicated by high development costs, complex products, lim-
ited markets with cyclical cash flow, high industrial concentration with few key players, 
and complex products conforming to strict performance and reliability standards (Corallo 
et al., 2009). The need for high customization leads to extended product life cycles and a 
tendency toward launching variants of existing models rather than new products, leading 
to networked models of knowledge-sharing (Corallo et al., , 2012, 2014; McAdam et al., 
2008).

Because development costs increase as a technology advances, it becomes difficult to 
demonstrate the satisfactory performance of a technology in order to obtain funding (Ter-
rile & Jackson, 2013). This intermediate range of technology advancement—beyond proof 
of principle and prior to prototype—defines the "Valley of Death," and funding these activ-
ities is a critical challenge (Auerswald & Branscomb, 2003; Beard et al., 2009; Frank et al., 
1996; Islam, 2017) intensified in space agencies by the limited frequency and number of 
mission opportunities (Szajnfarber, 2014). New frameworks to manage a space agency 
early-stage portfolio have been proposed (Szajnfarber & Weigel, 2013; Terrile & Jackson, 
2013; Terrile et al., 2014; Wicht & Szajnfarber, 2014). In the context of the SBIR program, 
these issues are important because the very small firms experience the widest distribution 
of technical outcomes (Belz et al., 2019).

2.3 � Innovation and patents

Over the years, as data-mining techniques have become more accessible and popular, pat-
ents have become an important tool in studying innovation. Although patent generation is 
an incomplete measure (Archibugi & Pianta, 1996; Fontana et al., 2013) and not the only 
way to protect intellectual property (Strumsky & Lobo, 2015) it is linked to firm value 
(Hall et al., 2005; Trajtenberg, 1990) and startup growth (Helmers & Rogers, 2011). The 
importance of patents varies with firm size (Brouwer & Kleinknecht, 1999) and indus-
try (Arora et al., 2008; Fontana et al., 2013; Pérez-Cano & Villén-Altamirano, 2013). In 
the aerospace industry, patents are tracked as a signal of cluster development (Mcguire & 
Islam, 2015).

Patents may be an important waypoint between government funding and commerciali-
zation. Subsidies show positive effects on patent generation (Bronzini & Piselli, 2016; Jaffe 
& Le, 2015) and government loans focusing more on commercialization lead to higher 
patent renewal rates (Svensson, 2013). Patents serve as signals in external financing, but 
only for small firms (Hottenrott et al., 2016) and in attracting venture capital (Conti et al., 
2013); indeed, the impact of patents as a signaling mechanism decreases in later funding 
rounds when more information is available (Ardito et al., 2016; Hoenen et al., 2014). For 
very small companies in particular, this form of intellectual property may play an outsized 
role: venture-backed startups were reported to hold an average of six patents or applica-
tions, while those without venture capital generally had none (Graham et al., 2009). For 
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the “deep-technology” companies that are based on the cutting edge of scientific and tech-
nological advances, patenting is a natural choice to build competitive advantage, and the 
patent process may be carefully managed at the strategic level (Zahringer et al., 2018). Fur-
thermore, as they precede sales, patents measure the success of technology development, 
not ambiguated by the business acumen.

Thus, though imperfect, not only are patent outcomes important as a direct innovation 
measure, but as an indicator of potential success in the financing marketplace. The com-
plexity of technologies in the aerospace industry conspires to create an even larger chal-
lenge in the VOD, enhancing the need for federal intervention. Scholars have previously 
determined that NASA SBIR award recipients proposed projects with commercial potential 
(Archibald & Finifter, 2003) and that progress on the technology’s development is indeed 
made in the program (Belz et  al., 2019). However, innovation outcomes have not previ-
ously been explored thoroughly, nor has the relationship between early-stage technology 
subsidies and the funding agency’s mission (Edler & Fagerberg, 2018; Mazzucato & Sem-
ieniuk, 2017).

3 � Data

NASA manages its own SBIR program in a highly structured fashion, producing open 
solicitations for research proposals and selecting the entirety of the coming year’s pro-
ject portfolio at one time. Decisions for the next tranche of investment are similarly made 
simultaneously for all proposals that seek continued funding. This two-phase structure is 
pervasive throughout the federal agencies administering the SBIR program. The contract 
purchases no rights for the agencies; they do not demand equity nor the rights to a selected 
firm’s intellectual property.

In fiscal year 2016, the NASA SBIR budget exceeded $150 million (NASA 2016). 
It addresses the agency’s needs in executing its strategy of earth and space exploration. 
NASA SBIR funding is awarded in an initial six-month Phase I with a maximum award 
that has grown from $70,000 to $125,000 in the past decade. Typically, about 24 percent 
of proposing companies are selected for funding.1 At the end of the Phase I performance 
period, awarded firms may submit a Phase II proposal for an estimated $500,000–750,000 
and a term of two years.2 Each Phase I award makes a firm eligible for one subsequent 
Phase II award. An eligible company (e.g. an American firm with up to 500 employees) 
may propose up to 10 Phase I proposals in a given year. With that constraint in mind, there 
is no further limitations to how many Phase II awards a company can win. If a company 
wins 10 Phase I awards in a given year, it can win up to 10 subsequent Phase II awards. 
At NASA, over 96 percent of Phase I awardees elect to submit a Phase II proposal, with 
approximately 41 percent succeeding.3 Funded technologies span many disciplines of inter-
est to NASA, and each technology topic is managed at one of the twelve NASA Centers.

1  NASA SBIR/STTR Participation Guide: https://​sbir.​gsfc.​nasa.​gov/​sites/​defau​lt/​files/​012-​19-​001-​010.​pdf. 
(reference last accessed on October 18th, 2019).
2  The cost information contained in this document is of a budgetary and planning nature and is intended for 
informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.
3  NASA SBIR/STTR Participation Guide: https://​sbir.​gsfc.​nasa.​gov/​sites/​defau​lt/​files/​012-​19-​001-​010.​pdf 
(accessed on October 18th, 2019).

https://sbir.gsfc.nasa.gov/sites/default/files/012-19-001-010.pdf
https://sbir.gsfc.nasa.gov/sites/default/files/012-19-001-010.pdf
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NASA SBIR data used for this analysis were compiled from the Electronic Handbook 
(EHB) with permission from the NASA SBIR program. This data set is for restricted use, 
but is searchable over many years of the program. To protect the procurement sensitive 
nature of these data, we compiled data from 1999 to 2012 over all NASA Mission Directo-
rates and present only aggregated results to prevent identification of individual companies. 
A portion of the EHB data was previously used in a pilot study.

For the present study, we examine the Phase II selection process and subsequent pat-
enting activity of applicants. We define the unit of observation as that of a firm in a given 
year with firms with proposals in multiple years treated as independent observations. The 
dataset includes all NASA SBIR Phase II applicants from 1999 to 2012. We complement 
this with patents granted to the applicants from both the US Patent and Trademark Office 
(USPTO) and Google Patents databases until the end of 2015. Phase II applicants are 
matched via firm name to patent assignee name.

To link the appropriate patents to firms, we first match via firm name. To minimize 
errors, further validation is conducted using the firm’s address and the Principal Investiga-
tor (PI) name listed in the SBIR proposal. Specifically, after matching via firm name, we 
count matches as valid only if the PI name has at least an 80 percent fuzzy match to one of 
the names on the patent’s inventor list, or if the city and the state of the firm matches the 
patent’s assignee address. Once we create this subset of validated patents, we identify other 
inventors and possible address changes connected to the firm. We then use this informa-
tion to further validate other patents that share the same firm name but were not initially 
counted as valid. Finally, random manual inspection confirmed the quality of the matching.

The full NASA proposal database includes 4,016 Phase II proposal observations. We 
reduce the sample across three dimensions for improved analysis. First, we remove obser-
vations of firms with multiple proposals within the same year to resolve potential ambi-
guities resulting from a firm that may both win and lose in a given year; this restriction is 
more likely to impact the larger firms than the small ones of interest. Additionally, because 
patents are assigned to a firm and not on a project basis, focusing on firms with one pro-
posed project in a year allows us to link the patents to the firm while properly maintaining 
a constant relationship of attempts to awards. This reduction should also remove so-called 
“SBIR mills”, firms that generate revenue mainly from SBIR contracts and may not be 
focused on transitions to broader commercial markets. Second, we remove observations 
that are missing a Technical Score. This variable is discussed in detail in the following 

Table 1   Sample selection

Technical Scores became available in the dataset in 2002; thus the 
timeframe is reduced to 2002–2012 for our analysis

(1) (2)
1999–2012 2002–2012

Full Proposal Population 4016 3177
Firms with Multiple Proposals in a Year  − 1697  − 1354
Firms Missing a Technical Score  − 501  − 5
Firms with > 249 Employees  − 24  − 24
Final Sample Size 1794 1794
Firms with 1–9 Employees 774 774
Firms with 10–49 Employees 766 766
Firms with 50–249 Employees 254 254
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section, but is critical to the selection process. Technical Scores become available in our 
dataset in 2002, thus this decision also reduces our timeframe to 2002 to 2012. Finally, 
we also remove observations from firms with 250 to 499 employees. This is the largest, 
and arguably more mature, bin of firms eligible for SBIR funding, but represents a very 
small sample—just 24 proposals. These selections reduce our full sample to 1,794 firm-
year observations. Table 1 details the sample selection process.

Table 2 presents the descriptive statistics of the reduced sample and stratified across two 
dimensions: Phase II selection status and firm size by employee bins. Overall, 26 percent 
of the sample has subsequent patent activity after their Phase II proposal with an average of 
1.03 patents within three years of proposal. This is driven both by selected firms and firms 
with higher employee headcounts. Nearly half of firms in the sample have prior patents (46 
percent); again, driven by the larger firms. Of the firms with fewer than 10 employees, only 
25 percent have prior patenting activity and only 12 percent go on to have patents issued 
after the Phase II proposal.

4 � Research design

Intervention programs often suffer from potential endogeneity problems—i.e., the better 
companies are more successful and more likely to be award recipients, thereby confound-
ing the study of the impact of the program (Bertoni et al., 2011). To address this, we use 
the Technical Score assigned to proposals at the time of selection. Multiple reviewers, both 
internal and external to NASA, independently provide appraisals of the scientific merit 
and feasibility, the capability of the team to execute, and the proposed plan’s effective-
ness. These scores are averaged in an aggregated Technical Score ranging from 1 to 100, 
a key factor in the selection process. As expected, higher scores enjoy a higher likelihood 
of selection (Table  3). The minimum Technical Score for consideration in the selection 
process is 85.

Table 2   Descriptive Statistics

Means (standard deviations) reported for continuous variables; proportions presented for binary variables

(1) (2) (3) (4) (5) (6)
Full Sample Phase II Award Status Firm Size Employee Bin

Selected Non-Selected 1 to 9 10 to 49 50 to 249

Any Forward Patents 0.26 0.30 0.22 0.12 0.33 0.42
Count of FP within 3 Years, 0–245 1.03 1.26 0.83 0.24 0.98 3.63

(6.97) (9.44) (3.59) (1.08) (2.81) (17.65)
Number of Employees, 1–247 26.59 27.16 26.08 4.82 21.64 107.84

(39.28) (38.95) (39.59) (2.25) (10.43) (49.40)
Technical Score, 20–100 92.51 95.82 89.56 92.33 92.71 92.47

(7.05) (3.46) (8.07) (7.30) (7.05) (6.26)
Any Prior Patents 0.46 0.48 0.45 0.25 0.59 0.72
Any Prior Phase II Awards 0.49 0.52 0.47 0.32 0.61 0.66
Observations 1794 846 948 774 766 254
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To obviate this endogeneity issue, we match selected and non-selected firms using pro-
pensity score matching (PSM) (Caliendo & Kopeinig, 2008; Rosenbaum & Rubin, 1983) 
to control for these selection effects. Like other empirical studies (Bertoni et  al., 2011), 
we borrow experimental concepts, such as "treated" and "untreated" observations, to indi-
cate if an observation was impacted by the main independent variable. In our case, a firm 
selected for an award in a given year is considered "treated", and non-selected counterparts 
are regarded as "untreated". However, to create both the treatment sample and the control 
group, it is important to verify that the untreated and treated observations are sufficiently 
similar to justify a comparison.

Matching methodologies identify selected and non-selected observations appropri-
ate for comparison; propensity score matching is such a method measuring the likelihood 
of selection with relevant predictors. In particular, we use the Technical Score because it 
impacts selection significantly by design, but is not directly related to patent outcomes. 
This excludes outliers, such as exceptionally strong selected proposals, or particularly weak 
ones not selected, from inclusion in the sample.

We estimate a propensity score through a logit model. Other predictors are used to refine 
the understanding of selection. These include employee headcount at the time of Phase II 
application using the natural logarithm functional form. A prior study on a reduced data 
sample shows that it has only a minimal effect in Phase II selection (Belz et  al., 2019). 
Fixed effects are included for the proposal year. Finally, we include fixed effects for the 
technology type by controlling for the NASA Center because each technology topic is man-
aged at a specific Center. Table 3 presents a correlation matrix of the outcome variables 
and selection variables. Appendix Table 7 presents the logistic regression estimations of 
the propensity scores for the full sample as well as stratified by employee headcount bins.

The estimated propensity scores are then used to identify the observations appropriate 
for the treatment and control groups by matching selected firms with non-selected ones. We 
used two different matching methodologies. The first, radius matching, matches a selected 
observation to all non-selected ones within 0.01 (the radius) of their propensity score. Non-
selected observations identified by matching are included in the control group. This tech-
nique allows for replacement—i.e., a single non-selected observation may be matched with 
multiple selected counterparts, rather than creating a one-to-one sample selection process. 
Figure  1 presents the distribution of propensity scores that spans the selected and non-
selected groups for the full sample and by employee headcount bins. Unmatched selected 
observations (such as those with particularly high Technical Scores without equivalent 
non-selected firms) that cannot be matched are excluded from the analysis, as are those 
non-selected observations that do not fall within the radius. Selected and non-selected 
observations that can be matched are assigned to treatment and control groups, respec-
tively. To validate the matching, a series of t-tests is conducted comparing the covariate 
distributions of the newly formed treatment and control groups. These results are presented 
in Appendix Table 8 for the full sample and by employee headcount bins and indicate that 
the matched samples are not statistically different across the four variables of selection. 
To illustrate the effect of matching, we consider Technical Score: in the pre-matched sam-
ple, selected firms have an average score of 95.8 compared to 89.6 for non-selected firms. 
Post-matching, the selected firms remain with an average score of 95.8, but now the non-
selected firms have an average score of 95.9.

The second matching methodology is nearest-neighbor matching, a close relative of 
radius matching. For this method, up to three untreated observations can be matched to one 
treated counterpart if they are within 0.01 propensity score. Table 9 presents the results and 
covariate comparison using the nearest-neighbor approach. The results between the two 
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methods are consistent and robust. However, radius matching yields a larger sample size 
and thus is used as the primary analysis.

Using the radius-matched treatment (selected) and control (non-selected) groups, we 
then assess the average treatment effect on the treated (ATET) on the probability of patent-
ing by using t-tests for the full matched sample and employee headcount bins. We conduct 
a series of regression analyses to further examine the relationship between Phase II selec-
tion and future patenting. Our objectives are to examine if selection: (1) impacts the likeli-
hood of patenting; and (2) affects the number of subsequent patents.

To estimate these effects, we use a two-part model to first assess the award’s impact on 
the probability of patenting; and then, conditional on patenting, its extent. We estimate 
two models for comparison. First, we estimate an independent two-part model using the 
matched groups. In this method, we first estimate a logistic regression on the probabil-
ity of patenting after the Phase II proposal. Specifically, this estimates the impact on gen-
erating any patents after the proposal year (2002–2012) through 2015, when patent data 
were obtained. Second, we reduce the matched sample to those with any forward patents 
over the full time frame and estimate an OLS regression on the number of forward patents 
within three years of the proposal using the natural log functional form. We truncate the 
count outcome variable after three years because our set of proposals range from 2002 to 
2012 and our patent data is through 2015. Thus, with a three-year window, each proposal 
is given a comparable range of time to patent and compare counts. Alternate calculations 
of forward patents were considered including the sum of forward patents across the full 
available timeframe as well as the annual average count of forward patents; both alterna-
tives produce consistent results. We weight the observations in the regression analyses to 
account for repeated non-selected (control) observations used by the radius and nearest 
neighbor matching methodologies.

It is important to note that an independent two-part model assumes that the errors from 
each part are independent. Should this not be the case, an alternative method is necessary. 
To address this issue, we also estimate a Heckman selection model on the matched sub-
samples as a robustness check. The Heckman analysis uses a probit model for the selection 
stage (any forward patents) and then OLS for the second stage (natural log of count of pat-
ents within three years). The end estimation provides the marginal effects of the potential 
outcome—that is, the effect on the rate of forward patenting if we had observed it for the 
full sample. The test of independent equations confirms the use of the selection model in 
three of the four regression samples. This is discussed in turn in the results section below 
(Sect. 5). The Heckman model estimated includes the same set of covariates as in Part 1 of 
the independent two-part model. The second stage, however, excludes the Technical Score 
and prior patent activity as it is assumed these variables matter in determining whether a 
firm patents, but not the extent to which they patent.

5 � Results

Table 4 presents the Average Treatment Effect on the Treated using the radius matching 
technique. The simple difference of means between the matched treatment and control 
groups finds an average treatment effect of 6.1 percentage points for the full sample on the 
probability of patenting. This difference is driven by the sample of microfirms, those with 
fewer than 10 employees. For this sub-sample, selected firms show a 7.9 percentage point 
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increase in the probability of patenting compared to non-selected firms, yet their probabil-
ity of patenting is the lowest across firm sizes at 12 percent (Table 2).

To better assess this impact, a two-part model is estimated using the matched sub-sam-
ples. Table 5 presents these results. Panel A presents the marginal effects from the logistic 
regressions on the probability of patenting. Panel B presents the OLS regression estima-
tions on the log of forward patents within three years, conditional on ever patenting after 
the proposal. The results from part 1 (Panel A) are consistent and robust with the ATET 
presented in Table 4. Selection for a Phase II award is associated with a 6.7 percentage 
point increase in the probability of patenting. Firms with fewer than ten employees exhibit 
an increase of 7.3 percentage points, with no statistically significant difference between 
selected and non-selected firms for larger firms. Also of note but not surprising, prior pat-
enting activity is positively associated with future patenting across all firm sizes. Similarly, 
receiving a prior Phase II award is positively associated with patenting for the full sample 
and sub-sample of the largest firms (column 4).

To investigate these findings further, we estimate these models on two sub-samples: one 
omitting firms with prior Phase II awards and the other omitting firms with prior patents. 
the sub-sample of firms without previous Phase II awards (Table 10). Among the firms that 
did not patent previously, the positive award impact is present among microfirms as well as 
the larger firms with fewer than 50 employees (Table 11). Due to sample size limitations, 
we are not able to estimate on the subset of largest firms, those with 50 to 249 employees.

Panel B shows a different story on the conditional count of forward patents. Conditional 
on forward patenting, Phase II selection is not a significant predictor of the number of pat-
ents within three years. Consistent with Part 1, prior patenting activity is a positive indica-
tor of a higher count of future patents. The results on the sub-samples by firm size should 
be interpreted with caution given the small sample sizes of firms with at least one forward 
patent.

As discussed in the methodology, the independent model assumes the errors of each 
part to be independent. However, this is often not the case. As an alternative, a Heckman 
selection model is estimated. The results are presented in Table 6. The assumption of inde-
pendent equations is rejected for the full sample estimation as well as the sub-samples of 
firms with fewer than 10 employees and those with 10 to 49 employees. However, for these 

Table 4   PSM ATET Estimation of the Probability of Patenting

T-tests of matched sample treated vs. control using radius caliper (0.01) propensity score matching with 
replacement; standard errors in parentheses; ***p < 0.01, ** p < 0.05, * p < 0.1

(1) (2) (3) (4)
Full Sample 1 to 9 Employees 10 to 49 Employees 50 to 249 

Employ-
ees

Treated Mean 0.30 0.16 0.35 0.44
Control Mean 0.24 0.082 0.35 0.47
Difference (ATET) 0.061** 0.079** 0.0036 − 0.031

(0.030) (0.037) (0.050) (0.110)
Observations 1683 618 642 174
Matched Treated 842 323 331 102
Matched Control 841 295 311 72
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Table 5   Independent Two-Part Model Estimation Results on PSM Sub-Sample

Marginal effects presented from logistic regressions on any forward patents using radius caliper propensity 
score matched sample; weights, based on the matching methodology, are used to account for repeated con-
trol observations; standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1
Conditional OLS coefficients presented on LN count of forward patents within 3 years of proposal using 
radius caliper propensity score matched sample if any forward patents; weights, based on the match-
ing methodology, are used to account for repeated control observations; standard errors in parentheses; 
***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4)
Full Sample 1 to 9 Employees 10 to 49 Employees 50 to 249 Employees

Panel A: Logistic Marginal Effects on Any Forward Patents
Win Phase II Award 0.067*** 0.073** 0.012 0.023

(0.025) (0.029) (0.040) (0.069)
Technical Score  − 0.003  − 0.010***  − 0.001 0.006

(0.004) (0.004) (0.006) (0.011)
LN Employees 0.044*** 0.019 0.053 0.046

(0.012) (0.025) (0.043) (0.090)
Prior Patents 0.272*** 0.158*** 0.314*** 0.462***

(0.022) (0.029) (0.035) (0.076)
Prior Phase II Awards 0.046*  − 0.034 0.054 0.195***

(0.025) (0.031) (0.044) (0.059)
Observations 1,683 572 642 156
Log Likelihood  − 730.3  − 177.2  − 333.0  − 72.09
Chi-2 223.8 89.38 87.02 46.18
P-value 0 9.04e-10 4.47e-09 0.00188
Year Controls Yes Yes Yes Yes
Center Controls Yes Yes Yes Yes
Weights Yes Yes Yes Yes
Panel B: If Any: OLS Estimations on LN of Forward Patent Count within 3 Years of Proposal
Win Phase II Award  − 0.113 0.500  − 0.128 0.212

(0.138) (0.311) (0.112) (0.373)
Technical Score 0.004  − 0.037 0.010 0.009

(0.020) (0.059) (0.018) (0.082)
LN Employees 0.239*** 0.227 0.216 0.947*

(0.080) (0.275) (0.140) (0.528)
Prior Patents 0.624*** 0.433* 0.688*** 0.429

(0.163) (0.215) (0.140) (1.389)
Prior Phase II Awards  − 0.206  − 0.306  − 0.135  − 0.653

(0.188) (0.305) (0.152) (0.667)
Constant  − 0.361 3.292  − 1.929  − 2.919

(1.885) (5.440) (1.756) (7.994)
Observations 354 61 171 65
Adjusted R-squared 0.148 0.00678 0.198 0.0181
Year Controls Yes Yes Yes Yes
Center Controls Yes Yes Yes Yes
Weights Yes Yes Yes Yes
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two samples, the limited sample size impacts the overall validity of the model. As a result, 
we concentrate our discussion on the full sample estimation presented in columns 1 and 2. 
Column 2 presents the coefficients of the Probit selection model. Column 1 presents the 
marginal effects of the potential outcome. The results are consistent with the independent 
two-part model. While Phase II selection positively impacts the probability of future pat-
enting, it does not impact the number of patents within three years of the award.

6 � Discussion

While companies prefer to fund R&D internally (Brown et al., 2009; Hall, 1992; Himmel-
berg & Petersen, 1994; Ughetto, 2008), small firms may not have enough internal funds to 
finance risky but potentially rewarding R&D projects (Ughetto, 2008), and are likely to be 
financially constrained in several ways. Debt financing may be difficult to obtain for R&D 

Table 6   Heckman Selection Model Estimation Results on PSM Sub-Sample

Heckman selection model estimation results presented using radius caliper propensity score matched sam-
ple; part 1 estimates probability of any forward patents and part 2 estimates the count of forward patents 
within three years of the SBIR proposal, conditional on any patenting. For each estimation result, part 2 
(part 1) is presented in the left (right) column. Weights, based on the matching methodology, are used to 
account for repeated control observations; standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4) (5) (6) (7) (8)
Full Sample 1 to 9 Employees 10 to 49 Employ-

ees
50 to 249 
Employees

Win Phase II 
Award

 − 0.193 0.203* 0.269 0.426**  − 0.102  − 0.090 0.164 0.106

(0.136) (0.106) (0.210) (0.178) (0.118) (0.144) (0.323) (0.283)
Technical Score  − 0.012  − 0.051**  − 0.014 0.024

(0.015) (0.024) (0.020) (0.055)
LN Employees 0.185** 0.174*** 0.246  − 0.007 0.119 0.310** 0.941** 0.093

(0.081) (0.052) (0.238) (0.146) (0.137) (0.149) (0.442) (0.351)
Prior Patents 1.221*** 1.074*** 1.334*** 2.024***

(0.104) (0.172) (0.144) (0.392)
Prior Phase II 

Awards
 − 0.237 0.095  − 0.247  − 0.323*  − 0.139 0.053  − 0.810 0.987***

(0.195) (0.106) (0.251) (0.176) (0.148) (0.152) (0.603) (0.301)
Constant 1.304***  − 0.829 1.110 2.802 0.368  − 0.959  − 1.476  − 3.888

(0.474) (1.434) (0.773) (2.335) (0.620) (1.924) (2.167) (5.375)
Observations 1,683 618 642 174
Selected Observa-

tions
354 61 171 65

Log Likelihood − 1122 − 191.1 − 484.6 − 197.0
Rho Indep. Eq. 

Chi− 2
21.89 8.806 23.39 1.022

P− Value (0.000) (0.003) (0.000) (0.312)
Year Controls Yes Yes Yes Yes
Center Controls Yes Yes Yes Yes
Weights Yes Yes Yes Yes
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projects generating intangible assets; in particular, new, small firms may not have the track 
records attractive to banks and other traditional lenders, and even older small firms may not 
have easily valued assets (i.e., assets outside the patent portfolio) to collateralize a loan. In 
addition, independent equity investors may demand too high a price for their capital, due 
to the intrinsic uncertainty of the projects and the fact that, as outsiders, they cannot fully 
evaluate the technical merit and potential benefit. Therefore, a firm may not credibly prove 
to an investor that “the view is worth the climb.” These constraints define the “Valley Of 
Death” (VOD) (Auerswald & Branscomb, 2003).

The SBIR award acts as an important funding source of attempting to cross the VOD. 
We observe the award’s impact only on the microfirms because they are likely the most 
constrained group within the universe of small firms. For example, in our sample, micro-
firms are less likely to have prior Phase II awards or prior patenting that the investors may 
use as evidence of market potential (Tables 2 and 3). Given the fixed award amount and 
the general absence of the effect among larger firms, we posit that the effect is driven by 
the relaxation of the cash constraints that microfirms face. Phase II funding may provide 
enough resources ($500,000–750,000) and time to bring the technology to a patentable 
level and to free additional cash for the costs related to the patenting process. This also 
explains why award effect is stronger among microfirms with no prior Phase II awards 
(Table  10) as they are likely to be younger and less liquid. Similarly, the benefit of the 
reduced cash constraint also applies to larger firms that have not patented previously 
(Table 11). In contrast, Phase I is not likely to provide such an opportunity. It offers a con-
siderably smaller award ($70,000–125,000) and only a six-month window, most of which 
is spent working to secure Phase II funding.

Preceding sales or employment growth, patents are evidence of firms achieving early 
milestones to cross the VOD. This is particularly significant in the case of technologies 
sponsored by NASA. As deep technologies (i.e. sensors, equipment for aerospace vehicles) 
they are more likely to turn to patents as their source of competitive advantage. Addition-
ally, once the microfirms protect the technology, they may turn to other priorities such as 
turning the invention into a commercialized product. That is likely why we do not observe 
an impact on the number of patents produced, but rather on the likelihood of patenting.

Given that our results pertain to the aerospace industry, it may not only be the lack of 
private financing that drives the differential award impact of firm sizes. It may be the abil-
ity of the company to become a government vendor. The aerospace industry caters to mis-
sion-driven agencies such as NASA and the Department of Defense. At least in the case 
of the military, the agency may serve as both the sole investor and the sole initial buyer of 
the technology (Laguerre, 2009; Mowery, 2012). In addition, the small companies face a 
bigger challenge in becoming prime contractors (Leitzel, 1992). It is not hard to believe 
that the same market structure and challenges operate in NASA’s case. Therefore, observ-
ing differential impact may mean that larger companies have already established procure-
ment relationship with the government, of which SBIR awards are a small part. However, 
for the fledgling companies, an SBIR award may be the only such source. Thus, an SBIR 
award may serve an essential function of being the first step in establishing a procurement 
relationship.

While we observe that the award impacts microfirms companies the most, this may not 
imply necessarily that NASA ought to change their funding strategy. As a mission-driven 
agency, NASA solicits technologies that it wishes to infuse in its missions, and hence faces 
a trade-off. It may increase the impact of the award by funding microfirms more, but it may 
reduce the number of the technologies that fulfill programmatic needs. Further research is 
necessary to correctly evaluate such trade-off.
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7 � Limitations and future research

Our reduced sample does not represent the entirety of the program. Furthermore, our 
dataset does not include the firm age, but our measurements seem to indirectly align with 
those of Howell (2017), who found a larger impact of Department of Energy SBIR Phase 
I awards on younger firms. This has significant implications because young firms, rather 
than small firms, spur innovation and growth (Haltiwanger et al. 2013).

In addition, this study sheds light on the invention outcomes of firms of various sizes 
but only hint at their innovation—that is, generating value from invention. Further research 
can elaborate on whether a larger firm, potentially closer to the marketplace and possessing 
prior experience at product launch, will have stronger innovation capabilities. The meas-
ures of commercialization and market activity may show a different effect on the exten-
sive margin. While it may not be expected that microfirms produce many patents, it may 
be expected that existing intellectual property produces larger value in the market (meas-
ured by revenue generation and employment growth), and that this intellectual capital con-
tributes to the combination of resources leading to greater outcomes from SBIR funding 
(Audretsch & Link, 2018).

Finally, it would be interesting to examine the role of the SBIR award as a stepping-
stone to a vendor role of a mission-driven agency. In particular, does the award prove more 
valuable for the firms without prior procurement, and if so, how long and how many SBIR 
investments are required for a small technology company to become a government contrac-
tor? Future research can focus on the impact of NASA awards on the measures reflecting 
further progress across the VOD: survival and commercial success.

8 � Conclusion

To date the literature has documented the generally positive effects of the SBIR program, 
including an increase in innovation. In this paper, we use a proprietary database of the 
NASA SBIR program that allows exploration of the underlying mechanisms, as measured 
by patents issued to award recipients. Using a propensity score matching methodology, we 
show that Phase II award recipients are more likely to patent. The effect seems to stem 
from the impact the award has on the smallest firms (9 employees or fewer). In addition, 
we observe no measurable impact on the total number of patents produced. This work con-
tributes to the literature on R&D subsidies with insight specifically for the smallest firms 
and their invention output. In addition, this is one of the first comprehensive examinations 
of the NASA program, studying small businesses in an industry of great importance to the 
United States economy.

Appendix

See Tables 7, 8, 9, 10, 11 and Fig. 1.    
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Table 7   Propensity score logistic regression estimations

Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3) (4)
Full Sample 1 to 9 Employees 10 to 49 Employees 50 to 249 Employees

LN Employees 0.039 0.192 0.129 0.235
(0.055) (0.172) (0.202) (0.391)

Technical Score 0.267*** 0.299*** 0.243*** 0.331***
(0.015) (0.026) (0.023) (0.049)

Prior Patents 0.173 0.141 0.268  − 0.010
(0.128) (0.219) (0.186) (0.385)

Prior Phase II Awards 0.125 0.161  − 0.034 0.561
(0.124) (0.201) (0.192) (0.360)

Constant  − 24.323***  − 27.383***  − 22.788***  − 31.014***
(1.483) (2.516) (2.244) (5.174)

Observations 1794 774 766 254
Year Controls Included Yes Yes Yes Yes
Center Controls Included Yes Yes Yes Yes
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Table 9   Alternate estimation of propensity scores via nearest neighbor matching

Note: T-tests of treated and control means from matched sample using nearest neighbor (3) propensity score 
matching with replacement; T-stats (p-values) presented below sample means; ***p < 0.01, **p < 0.05, 
*p < 0.1

Panel A: Average 
Treatment Effect on 
the Treated (ATET) on 
Probability of Patenting

(1) (2) (3) (4)
Full Sample 1 to 9 Employees 10 to 49 Employees 50 to 249 

Employ-
ees

Treated Mean 0.30 0.16 0.35 0.44
Control Mean 0.23 0.085 0.35 0.48
Difference (ATET) 0.069** 0.076*** 0.0045 − 0.39

(0.031) (0.037) (0.052) (0.11)
Observations 1357 544 573 167
Matched Treated 842 323 331 102
Matched Control 515 221 242 65

Panel B: 
Comparison 
of Covariate 
Distribu-
tions Post-
Matching

(1) (2) (3) (4) (5) (6) (7) (8)
Full Sample 1 to 9 Employees 10 to 49 Employees 50 to 249 Employees

Treated Control Treated Control Treated Control Treated Control

LN Employ-
ees

2.59 2.55 1.46 1.44 2.96 2.95 4.57 4.58

0.68 (0.495) 0.40 (0.692) 0.50 (0.619) − 0.29 (0.776)
Technical 

Score
95.8 95.9 95.9 95.8 95.6 95.4 95.3 95.8

− 0.55 (0.579) − 0.03 (0.976) 0.59 (0.556) − 1.22 (0.223)
Prior Pat-

enting
0.48 0.46 0.25 0.19 0.61 0.62 0.74 0.75

1.10 (0.272) 1.63 (0.104) − 0.33 (0.740) − 0.32 (0.749)
Prior Phase 

II Awards
0.52 0.53 0.35 0.34 0.62 0.64 0.67 0.65

− 0.36 (0.718) 0.34 (0.736) − 0.58 (0.564) 0.29 (0.769)
Observa-

tions
842 515 323 221 331 242 102 65
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Table 10   Estimation results on sub-sample omitting prior phase II awardees

Panel A shows T-tests of matched sample treated vs. control using radius caliper (0.01) propensity score 
matching; Panel B shows marginal effects of logistic regressions on any forward patents using radius caliper 
propensity score matching. weights, based on the matching methodology, are used to account for repeated 
control observations. Standard errors are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3)
Full Sample 1 to 9 Employees 10 to 49 Employees

Panel A: ATET Estimation of the Probability of Patenting
Treated Mean 0.24 0.18 0.33
Control Mean 0.17 0.066 0.35
Difference (ATET) 0.077** 0.12*** − 0.018

(0.038) (0.045) (0.098)
Observations 801 392 197
On-Support Treated 372 211 100
Matched Control 429 181 97
Panel B: Logit ME’s on Any Forward Patents
Win Phase II Award 0.077** 0.088** 0.010

(0.034) (0.036) (0.074)
Engineering Score  − 0.005  − 0.005 0.002

(0.006) (0.005) (0.006)
LN Employees 0.029* 0.054* 0.078

(0.017) (0.031) (0.081)
Prior Patents 0.225*** 0.138*** 0.275***

(0.033) (0.032) (0.073)
Observations 748 354 173
Log Likelihood  − 283.1  − 114.8  − 89.09
Chi-2 90.22 72.57 34.87
P-value 3.14e-10 1.35e-07 0.0292
Year Controls Yes Yes Yes
Center Controls Yes Yes Yes
Weights Yes Yes Yes
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Table 11   Estimation results on sub-sample omitting firms with prior patents

Panel A shows T-tests of matched sample treated vs. control using radius caliper (0.01) propensity score 
matching; Panel B shows marginal effects of logistic regressions on any forward patents using radius caliper 
propensity score matching. weights, based on the matching methodology, are used to account for repeated 
control observations. Standard errors are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1

(1) (2) (3)
Full Sample 1 to 9 Employees 10 to 49 Employees

Panel A: ATET Estimation of the Probability of Patenting
Treated Mean 0.13 0.10 0.22
Control Mean 0.089 0.048 0.093
Difference (ATET) 0.038 0.048 0.13**

(0.027) (0.033) (0.060)
Observations 818 457 217
On-Support Treated 424 250 109
Matched Control 394 207 108

Full Sample 1 to 9 Employees 10 to 49 Employees
Panel B: Logit ME’s on Any Forward Patents
Win Phase II Award 0.042 0.064* 0.133**

(0.027) (0.034) (0.054)
Engineering Score  − 0.007**  − 0.002  − 0.011

(0.003) (0.005) (0.008)
LN Employees 0.022* 0.020  − 0.032

(0.013) (0.033) (0.078)
Prior Phase II Awards 0.005  − 0.044 0.111*

(0.029) (0.040) (0.062)
Observations 760 324 195
Log Likelihood  − 251.6  − 98.13  − 75.66
Chi-2 52.26 34.15 37.03
P-value 0.000287 0.0121 0.0167
Year Controls Yes Yes Yes
Center Controls Yes Yes Yes
Weights Yes Yes Yes
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Fig. 1   Common Support 
Graphs. Note: The red bars 
above the line are observations 
treated (selected) and matched 
(on-support); green above the 
line observations are treated 
and unmatched (off-support); 
blue below the line observations 
are matched untreated (non-
selected) observations. Firms 
are off support (unmatched) if 
their pre-selection characteristics 
conducive to selection are too 
high (low) to be matched to a 
non-selected (selected) counter-
part (Color figure online)
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