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ABSTRACT (232 words) 41 

The preferential adaptation of pathogens to specific hosts, known as host tropism, evolves through 42 

host-pathogen interactions. Transmitted by ticks and maintained primarily in rodents and birds, 43 

the Lyme disease-causing bacterium Borrelia burgdorferi (Bb) is an ideal model to investigate the 44 

mechanisms of host tropism. In order to survive in hosts and escape complement-mediated 45 

clearance, a first-line host immune defense, Bb produces the outer surface protein CspZ that binds 46 

to the complement inhibitor factor H (FH) to facilitate bacterial dissemination in vertebrates. 47 

Despite high sequence conservation, CspZ variants vary in human FH-binding ability. Together 48 

with the FH polymorphisms found amongst vertebrate hosts, these findings raise a hypothesis that 49 

minor sequence variation in a bacterial outer surface protein confers dramatic differences in host-50 

specific, FH-binding-mediated infectivity. We tested this hypothesis by determining the crystal 51 

structure of the CspZ-human FH complex, identifying a minor change localized in the FH-binding 52 

interface, and uncovered that the bird and rodent FH-specific binding activity of different CspZ 53 

variants directly impacts infectivity. Swapping the divergent loop region in the FH-binding 54 

interface between rodent- and bird-associated CspZ variants alters the ability to promote rodent- 55 

and bird-specific early-onset dissemination. By employing phylogenetic tree thinking, we 56 

correlated these loops and respective host-specific, complement-dependent phenotypes with 57 

distinct CspZ lineages and elucidated evolutionary mechanisms driving CspZ emergence. Our 58 

multidisciplinary work provides mechanistic insights into how a single, short pathogen protein 59 

motif could greatly impact host tropism. 60 

 61 

 62 

 63 
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AUTHOR SUMMARY (186 words) 64 

Lyme disease presents a suitable model for the investigation of host tropism – a pathogen’s ability 65 

to colonize and survive in different host species – since its causative agent, the spirochete Borrelia 66 

burgdorferi (Bb) is transmitted by ticks and maintained in rodent and bird reservoir hosts. 67 

In order to survive in vertebrates and escape from killing by complement, a first-line host immune 68 

defense, Bb produces the outer surface protein CspZ that binds the complement inhibitor factor H 69 

(FH) to promote infection. Protein sequence conservation seems to be linked to FH-binding 70 

activity divergence, raising the hypothesis that even minor variation can confer host-specific, FH-71 

binding-mediated infectivity. Our work shows that that this minor variation is located in a loop in 72 

the CspZ protein localized in the CspZ-FH binding interface. Our functional experiments prove 73 

that this loop promotes bird- or rodent-specific FH-binding activity and infectivity. Swapping 74 

loops between rodent- and bird-associated CspZ variants alters their capability to confer host-75 

specific dissemination. We further investigated the evolutionary mechanisms driving the 76 

emergence of the CspZ loop-mediated, host-dependent complement evasion. This multifaceted 77 

work demonstrates how a single, short protein motif can significantly impact host tropism. 78 

   79 
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INTRODUCTION 80 

The emergence of most infectious disease outbreaks often involves changes in host tropism, 81 

the preferential adaptation of pathogens to selectively invade and persist in hosts (1, 2). Such host 82 

tropism is often the result of ongoing host-pathogen interactions (3). Evolution theoretically favors 83 

the emergence of host-specializing pathogens, but host-generalist strategies can be advantageous 84 

in environments when pathogens have the potential to regularly interact with multiple hosts (4). 85 

Specialism vs. generalism can be attributed to polymorphisms within pathogen proteins that 86 

differentially interact with host ligands (3). Such polymorphism-mediated host ranges are often 87 

thought to require complex host-specific adaptive mechanisms (e.g., (5, 6)) that can be conferred 88 

by merely a few amino acids (7-9). Understanding how such minor differences impact diverse 89 

host-adapted phenotypes can elucidate the mechanistic insights for the emergence of modern 90 

infectious diseases, allowing the development of earlier and more efficient public health 91 

interventions.  92 

Species within the Borrelia (also known as Borreliella) burgdorferi sensu lato genospecies 93 

complex cause Lyme disease. These spirochetal bacteria are transmitted by ticks and maintained 94 

by several reservoir hosts, primarily rodents and birds (10, 11). Lyme borreliae have been 95 

genotyped using different polymorphic loci, such as ospA, ospC, the 16S-23S rRNA intergenic 96 

spacer (RST[yping]), and the loci included in multilocus sequence typing (MLST) (12, 13). 97 

Laboratory and field studies have shown that not only Borrelia species differ in the host species 98 

they infect, but that individual genotypes within single spirochete species display distinct 99 

preferential host associations, particularly within B. burgdorferi sensu stricto (hereafter B. 100 

burgdorferi), the primary Lyme disease agent in North America (14, 15). This species- and 101 
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genotype -specific host selectivity distinguishes Lyme borreliae as a model system for the study 102 

of the molecular basis and evolutionary history of host tropism (14, 15).  103 

Lyme borreliae host associations require the spirochetes to transmit from infected ticks to 104 

hosts, establish an infection at tick biting sites, and disseminate hematogenously to persist at distal 105 

tissues (14, 15). The survival of Lyme borreliae during these discrete events necessitate evasion of 106 

multiple host immune responses, including complement, a first-line innate defense mechanism of 107 

vertebrate extracellular fluid and blood (16-18). This powerful immune mechanism can be 108 

activated by the classical, lectin, or alternative pathways (19). The activation of these pathways 109 

results in the cascading cleavage and recombination of multiple complement components, 110 

ultimately resulting in phagocytic clearance, inflammation, and pore formation on the pathogen 111 

surface by the C5b-9 protein complex to lyse the cells (20). Complement is downregulated by 112 

diverse regulatory proteins to inhibit activation, preventing native cell damage in the absence of 113 

pathogens (21). For example, the alternative pathway is inhibited by factor H (FH), which is 114 

comprised of 20 individual short consensus repeat (SCR) domains (22, 23). 115 

Similar to many bloodborne pathogens that evolved to circumvent complement-mediated 116 

clearance (20), Lyme borreliae produce several complement-inhibitory outer surface proteins (16-117 

18). These proteins bind and recruit complement components and/or regulatory proteins on 118 

spirochete surface to inactivate complement (16-18). One of these proteins is a FH-binding protein, 119 

CspA (also known as Complement Regulator Acquiring Surface Protein 1, CRASP-1) that we 120 

demonstrated to confer survival of spirochetes via complement evasion in the tick bloodmeal (24). 121 

However, this protein is downregulated after spirochetes infect hosts suggesting a possibilities of 122 

other functionally redundant proteins to facilitate spirochete survival at this infection stage. In fact, 123 

CspZ (also known as CRASP-2), which binds to the 6th and 7th domains of SCR from FH (SCR6-124 
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7), is upregulated when spirochetes reside in hosts (25, 26). This protein is highly conserved both 125 

between and within different Lyme borreliae species (>85% amino acid (aa) identity between 126 

species and 98% between B. burgdorferi strains) (27-30). We and others have previously reported 127 

that FH-binding activity of one CspZ variant promotes spirochete survival in vertebrate sera, and 128 

consequently promotes host infectivity when non-physiologically relevant infection routes are 129 

used (i.e., not tick-transmitted) (31, 32). However, CspZ variants differ in their human FH-binding 130 

activity (27, 28), and vertebrate complement components or regulatory proteins vary between host 131 

taxa (e.g., ~40% aa identity between mammalian and avian FH) (33). These findings raise several 132 

intriguing questions: Could such a minor divergence among CspZ variants confer host-specific 133 

differences in FH-binding activity, resulting in varying host infectivity phenotypes? Further, if 134 

those minor divergences are indeed a determinant of host tropism, how did such divergences 135 

evolve to impact Lyme borreliae-host associations?  136 

In this study, we solved the high-resolution structure of the CspZ-human FH complex, 137 

identified a polymorphic CspZ motif within the FH-binding interface, and defined its contribution 138 

to host-specific FH-binding activity. We then examined the role of this motif in dictating strain-139 

specific, host-dependent dissemination using mice and quail as rodent and avian models, 140 

respectively. Paired with evolutionary analyses of cspZ, we further elucidated how the 141 

evolutionary history behind a minor divergence in an immune evasion determinant can impact host 142 

tropism.  143 

 144 

RESULTS 145 

A polymorphic CspZ loop structure defines human FH-binding activity. We set to identify 146 

the regions driving the differences in human FH-binding activity among CspZ variants. We first 147 
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pinpointed the amino acids that are involved in FH-binding by co-crystalizing the SCR6-7 of 148 

human FH and a CspZ variant with human FH-binding activity from B. burgdorferi strain B408 149 

(CspZB408) (28). The resulting crystal structure at 2.59Å showed an extensive binding interface 150 

between CspZB408 and both SCR6 and SCR7 (Fig. 1A). Specifically, Asp47, Tyr50, Asn51, Thr54, 151 

Asn58, and Thr62 in helix-B, Arg142 in helix-F, Asn183 from helix-G, and Tyr214 in helix-I of 152 

CspZB408 interacted with SCR7 (Fig. 1B, Table S1). Additionally, Asp71, from the loop between 153 

helix-B and -C, and Asp73 and Ser75 from the same region, bound to SCR7 and SCR6, 154 

respectively (Fig. 1B, Table S1).  155 

To locate the residues that impact CspZ FH-binding activity, we aligned the sequences of 156 

CspZB408 with another CspZ variants that binds to human FH (i.e., CspZ from B. burgdorferi B31, 157 

CspZB31), as well as CspZ that lacks human FH-binding ability from strain B379 (CspZB379)(28). 158 

All the aforementioned residues involved in human FH-binding are conserved among all three 159 

variants, except Asn51 and Asp71 (Fig. S1A). Such conservation also reflects to the three-160 

dimensional overlayed structure of the previously resolved CspZB31 (30) with our newly-resolved 161 

crystal structures of CspZB379 and CspZB408 (2.10 and 2.45Å, respectively) (Fig. 1A). For those 162 

two non-conserved amino acids, Asn51 of CspZB408 is substituted to serine in CspZB379, but the 163 

superimposed structure suggests this would not inhibit human FH-binding in CspZB379 (Fig. 1B).  164 

Asp71 of CspZB408 interacts with Lys388 and Tyr390 of SCR6, but this residue is part of an 165 

insertion that is not present in CspZB31 and CspZB379 (Fig. 1B).  Therefore, these non-conserved 166 

residues alone cannot explain the differential human FH binding ability of these CspZ variants. 167 

However, the C-terminal helix-B and the following loop region between helix-B and -C do harbor 168 

polymorphisms (Fig. 1A), with the unique duplication of the last residues in helix-B (Ile60, Met61, 169 

Thr62, and Tyr63) of CspZB379 (Fig. S1A), resulting in an extended helix-B in this variant (Fig. 170 
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1B). Such a structural extension leads to steric hinderance between CspZB379 and human FH to 171 

selectively prevent human FH-binding activity by CspZB379. Overall, our results reveal variant-172 

specific CspZ structural differences in a loop and the adjacent helix-B (hereafter, “loop structures”), 173 

providing mechanistic insights into the CspZ-mediated, polymorphic human FH-binding activity. 174 

 175 

CspZ loop structures determine host-specific FH-binding activity. Similar to CspZ, SCR6-7 is 176 

divergent among vertebrate species (Fig. S1B), suggesting a role of the CspZ loop structures in 177 

dictating host-specific FH-binding activity. We found that CspZB31 and CspZB408 –but not 178 

CspZB379– bind to mouse FH, whereas CspZB31 and CspZB379 –but not CspZB408– bind to quail FH 179 

(Fig. 2A and S2, Table S2). We then searched for structural evidence of this FH-binding activity 180 

by superimposing the complex structure of CspZB408-human FH with CspZB31, CspZB379, as well 181 

as the previously resolved structures of mouse SCR6-7, and the AlphaFold-predicted structure of 182 

quail SCR6-7 (pLDDT > 70) (34, 35) (Fig. 2C). We noted the similar tertiary structures between 183 

mouse and human SCR6-7, consistent with the ability of FH from both origins selectively binds 184 

to CspZB31 and CspZB408 (28) (Table S2). Similar to human FH, the CspZB379-specific duplication 185 

by the extended C-terminal helix-B showed potential structural hinderance in the mouse FH-186 

binding interface (Fig. 2D). However, compared to a loop region within human and mouse SCR7, 187 

the equivalent region in quail SCR7 (median pLDDT: 92) is positioned away from the CspZ-FH-188 

binding interface, allowing sufficient space for extended helix-B of CspZB379 to interact with quail 189 

FH (Fig. 2D). Further, the crystal structure of CspZB408-SCR6-7 superimposed with the predicted 190 

structure of quail SCR6-7 showed that Asp71 within the loop of CspZB408 may collide with the 191 

opposite loop region of quail FH, while the equivalent region in mouse SCR7 would not interfere 192 

with the binding of CspZB408 (Fig. 2D).  193 
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   These structural differences among FH from mouse/human vs. quail, pairing with the respective 194 

impacting AAs from different CspZ variants, suggest a possibility of the loop structures of CspZ 195 

to determine CspZ allelically different, host-specific FH-binding activity. To test this possibility, 196 

we swapped the loop regions of the two CspZ variants with distinct host-specific FH-binding 197 

ability to generate two chimeric proteins: CspZB379LB408 has the backbone of a quail FH-binder 198 

(CspZB379) and the loop structures of a mouse FH-binder (CspZB408), whereas CspZB408LB379 has 199 

the backbone of CspZB408 and the loop structures of CspZB379 (Fig. S1A). We found that 200 

CspZB379LB408 and CspZB408LB379 selectively bound to mouse and quail FH, respectively, 201 

demonstrating the CspZ loop structures are a determinant of host-specific FH-binding activity (Fig. 202 

2B and S2). 203 

 204 

The CspZ loop structures dictate spirochete strain- and host-specific complement 205 

inactivation. We next examined the host-dependent complement inactivation of these CspZ 206 

variants produced on the spirochete surface. We thus obtained a wild-type B. burgdorferi strain 207 

B31-A3 (WT B31-A3) and a cspZ-deficient mutant strain in this background harboring an empty 208 

vector (ΔcspZ). We complemented this mutant with a plasmid encoding cspZB31 (pCspZB31) (32), 209 

cspZB379 (pCspZB379), or cspZB408 (pCspZB408), or one of the two loop-swapped mutants 210 

(pCspZB379LB408 and pCspZB408LB379). We verified there was a similar generation time of these 211 

strains (Table S3A), and that there were no differences in the CspZ surface production level (Fig. 212 

S3B). Additionally, surface-produced CspZ bound FH in the same host-specific manner as the 213 

recombinant proteins (Fig. S4). We then determined the ability of each of these CspZ variants and 214 

mutants to inactivate mouse and quail complement by measuring the deposition levels of mouse 215 

C5b-9 and quail C8, respectively, in the presence of sera from each animal using flow cytometry 216 
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(Fig. 3A-B). All strains had levels of mouse C5b-9 or quail C8 deposition significantly lower than 217 

the high passage, non-infectious, and mouse and quail complement-susceptible control strain B. 218 

burgdorferi B313 (Fig. 3C-D)(26). The ΔcspZ strain had significantly greater levels of mouse 219 

C5b-9 and quail C8 deposition than WT B31-A3 or pCspZB31 (Fig. 3C-D)(32, 36). Compared to 220 

ΔcspZ, pCspZB379 had indistinguishable levels of mouse C5b-9 deposition but significantly lower 221 

levels of quail C8, whereas pCspZB408 harbored significantly lower levels of mouse C5b-9 but 222 

indistinguishable levels of quail C8 (Fig. 3C-D). Further, pCspZB379LB408 recruited significantly 223 

lower levels of mouse C5b-9 but indistinguishable levels of quail C8 than ΔcspZ, while 224 

pCspZB408LB379 bound indistinguishable levels of mouse C5b-9 but significantly lower levels of 225 

quail C8 than ΔcspZ (Fig. 3C-D). These results correspond with these variants’ host-specific FH-226 

binding activity, suggesting that the CspZ loop structures-driven host-specific FH-binding activity 227 

confers host-specific complement inactivation. 228 

We also measured the survival of these strains in rodent and quail sera. Note that sera from 229 

white-footed mice (Peromyscus leucopus), rather than house mice (Mus musculus), were used to 230 

represent rodent sera, as complement of house mouse is labile in vitro, leading to inconsistent 231 

results (37, 38). Both WT B31-A3 and pCspZB31 survived in white-footed mouse and quail sera 232 

more efficiently than ΔcspZ (Fig. 3E-F) (32). Compared to ΔcspZ, pCspZB379 survived at 233 

significantly greater levels in quail but not white-footed mouse sera, whereas pCspZB408 survived 234 

at significantly higher levels in white-footed mouse but not quail sera (Fig. 3E-F). Relative to 235 

ΔcspZ, pCspZB379LB408 survived significantly higher in white-footed mouse but not in quail sera, 236 

whereas pCspZB408LB379 survived significantly higher in quail but not in white-footed mouse sera 237 

(Fig. 3E-F). However, these differences were not observed in the presence of sera treated with 238 

Cobra Venom factor (CVF) or Ornithodorus moubata complement inhibitor (OmCI) that deplete 239 
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functional rodent and quail complement, respectively (Fig. S5) (39, 40), suggesting that CspZ loop 240 

structures determine spirochete host-specific serum survival.  241 

  242 

The CspZ loop structures define host-specific, complement-dependent, early onset 243 

dissemination. We further evaluated if the CspZ loop structure variants determine host infectivity 244 

by allowing Ixodes scapularis nymphs carrying similar loads of each of the aforementioned B. 245 

burgdorferi strains to feed on mice and quail (Fig. S6A, S6D). The burdens of ΔcspZ were 246 

significantly lower than WT B31-A3 at 7- and 10-days post feeding (dpf) in mouse blood, and at 247 

10 dpf in distal tissues (joints, heart, and bladder), and at 9 dpf in quail blood and distal tissues 248 

(brain and heart) (Fig. S7). There were no differences in burdens by a later time point (i.e., 14 dpf, 249 

Fig. S7). We thus performed subsequent experiments on 10 and 9 dpf in mouse and quail, 250 

respectively, for the other of cspZ-complemented strains. In mice, we found indistinguishable 251 

spirochete burdens at initial infection sites (tick bite sites) between all seven strains tested at 10dpf 252 

(Fig. 4A). The strains pCspZB31, pCspZB408, and pCspZB379LB408, but neither pCspZB379 nor 253 

pCspZB408LB379, colonized mouse blood and distal tissues at significantly higher levels than ΔcspZ 254 

(Fig. 4B-E). At 9dpf in quail, we found no significantly different spirochete burdens at tick bite 255 

sites among strains. However, pCspZB31, pCspZB379, and pCspZB408LB379, but neither pCspZB408 256 

nor pCspZB379LB408, colonized quail blood and distal tissues at significantly greater levels than 257 

ΔcspZ (Fig. 4F-I). There were no significantly different burdens of any strain in any tissues from 258 

mice and quail with complement deficiency (C3-/- mice or OmCI-treated quail) (Fig. S8). These 259 

results demonstrate that the CspZ loop structures define complement-dependent, spirochete strain- 260 

and host-specific early onset dissemination. 261 

  262 



13 
 

The population-wide CspZ loop structures evolved from a variant with versatile FH-binding 263 

ability. To investigate the evolutionary history of the CspZ loop structures, we mined B. 264 

burgdorferi cspZ from NCBI GenBank and sequence read archive (totaling 174 high-quality cspZ 265 

isolates originated from ticks, reservoir hosts, and patients, across North America, Europe, and 266 

Asia). Phylogenetic analysis revealed three lineages with uncertain grouping among them, 267 

suggesting insufficient variation of cspZ to allow for well-established phylogenetic groups to 268 

emerge (data not shown). However, a haplotype-based phylogenetic network distinctly separated 269 

these three individual lineages, each of which contains one of the above-tested cspZ alleles: cspZB31, 270 

cspZB379, or cspZB408 (Fig. S9). Isolates within the same lineage had over 99% sequence identity 271 

and the same loop structure compared to cspZB408, cspZB379, or cspZB31 (containing the duplication, 272 

insertion, or neither at the loci encoding loop structure, respectively) (Fig. 5A). We pinpointed 273 

single amino acid polymorphisms (SAPs) in the isolates and found none of the SAPs within each 274 

lineage were located in the FH-binding interface (Table S1), with the exception of a SAP in one 275 

isolate in the CspZB379 lineage (Table S4)). Rather, the majority of the SAPs were between 276 

lineages, and were located in the loop structures that are driving the FH-binding abilities. While 277 

this present study has been the only one to investigate the abilities of CspZ variants to bind house 278 

mouse and quail FH, the human FH-binding abilities of 13% of these 174 isolates have been 279 

evaluated (27, 28, 32, 41). Incorporating these findings with the phylogeny, we found a 100% 280 

correlation of known host-specific FH-binding ability with lineage (Fig 5A). These results suggest 281 

each CspZ lineage with distinct loop structures can be linked to CspZ-specific, host-dependent 282 

FH-binding ability. 283 

 Additionally, we explored the evolutionary mechanisms that could have led to this minor 284 

loop structure-dependent FH-binding specificity. No evidence was found for recombination or past 285 
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changes to the effective population size (data not shown). Although there was no evidence of 286 

selection for cspZ in its entirety (data not shown), several codons were undergoing either positive 287 

or negative selection (Fig. S1A). We reconstructed the possible last common ancestor states 288 

(“LCAS”) of the entire B. burgdorferi CspZ population using the chromosome mutation rate 289 

estimated in a previous study (42). We found that the diversification of the three lineages was 290 

estimated to be 261 to 784 years ago (y.a.) whereas the diversification of the LCAS likely occurred 291 

approximately 2166y.a. (896-5718 HPD5-95%) (Table S5). The LCAS variants have a loop region 292 

resembling that of CspZB31 both in AAs and structure (Fig. S1A, S10), and versatilely bound to 293 

human, mouse, and quail FH, similar to CspZB31 (Fig. 5B, Table S6). These results suggest the 294 

diversification of CspZ is arisen relatively recently from a generalist variant with versatile FH-295 

binding features.  296 

 297 

DISCUSSION 298 

Host tropism is an outcome of ongoing host-pathogen interactions (15). In vector-borne 299 

zoonotic pathogens, such interactions include vector-to-host transmission, pathogen dissemination 300 

and persistence, and host-to-vector acquisition (43). For Lyme borreliae to survive throughout 301 

these infection steps, spirochetes need to overcome numerous host immunological mechanisms, 302 

including complement-mediated killing (17, 18, 44). In fact, Lyme borreliae inactivate 303 

complement in the tick blood meal for tick-to-host transmission and in the host bloodstream for 304 

dissemination and persistence (32, 45-47). In this study, we examined this inactivation conferred 305 

by a Lyme borreliae FH-binding protein, CspZ. We showed early colonization defects of a tick-306 

introduced, cspZ-deficient mutant at distal tissues, defining this polymorphic protein as a 307 

contributor to the early stages of dissemination. Superimposing the crystal structures of three 308 
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polymorphic CspZ variants from genotypically-diverse B. burgdorferi strains revealed a variable 309 

motif of a short AA stretch (30). Our newly-resolved and software-predicted complex structures 310 

of CspZ with human, mouse, and quail SCR6-7 further linked those loop-encoded variable residues 311 

to distinct host-specific FH binding activity. These results are congruent with the ability of CspZ 312 

variants and their associated mutants with swapped loop structures to promote host-specific FH-313 

binding activity, complement evasion, and dissemination, defining this CspZ loop structure as a 314 

determinant of host tropism. Our findings thus demonstrate the concept that minor variation could 315 

functionally impact host-adapted phenotypes, potentially modulating host tropism (7-9). Our 316 

findings can also be attributed to a structurally unique FH-binding mechanism, as the FH-binding 317 

interface of CspZ is significantly different from that of the only other structurally-characterized 318 

SCR6-7-binding pathogen protein, Neisseria meningitidis Fhbp (48)(Fig. S11). Taken together, 319 

these results provide a platform of using structure-guided approaches in identifying pathogens’ 320 

host tropism determinants and their biological functions. 321 

We also integrated an evolutionary approach to investigate the emergence of such host 322 

tropism determinants, an approach whose importance has been recently demonstrated to 323 

understand and track modern disease emergence (e.g., (49, 50)). Our findings demonstrate that the 324 

B. burgdorferi CspZ variants diversified from a last common ancestor that could bind human, 325 

mouse, and quail FH. This diversification occurred relatively recently (Table S10), compared to 326 

the previous finding showing that B. burgdorferi as a species evolved about 60,000 years BP, and 327 

the other FH-binding protein, CspA, diversified about 25,000 years y.a. (42, 45). The fact that 328 

CspZ has no orthologs in non-Borrelia organisms also supports the young age of this protein, 329 

suggesting CspZ may be undergoing weaker purifying and more variable selective pressure (30, 330 

51). We did not detect selective pressure on the entirety of the cspZ locus, but rather only in a few 331 
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individual codons, none of which were in the loop structures driving FH-binding phenotypes. The 332 

loop structures, which are the most variable part of these CspZ variants, contain indels, so the 333 

detection of gene-wide selective pressures was likely masked by the exclusion of gaps by the 334 

selection tests. In fact, other polymorphic anti-complement loci, particularly ospC, are undergoing 335 

balancing selection (52), (53). Both Multiple Niche Polymorphism (MNP) and Negative 336 

Frequency Dependent Selection (NFDS) have been proposed as mechanisms driving this selection. 337 

On the one hand, NFDS proposes that a high diversity of alleles emerge through the negative 338 

correlation between spirochete fitness and the frequency of any allele in the overall population 339 

(54). In Lyme borreliae, NFDS may explain the greater antibody-mediated clearance of spirochete 340 

strains harboring ospC alleles of higher frequency loci (55, 56). On the other hand, MNP proposes 341 

that the diversity of alleles/genotypes is maintained by fitness variation of these spirochetes across 342 

reservoir hosts (53, 57). Though it is possible that lack of selective pressure detection reflects the 343 

neutral selection experienced in cspZ, as a systemically redundant anti-complement protein (58), 344 

the possibility that cspZ is undergoing the same selective pressures as other functionally redundant 345 

proteins (e.g., ospC) cannot be excluded. In fact, balancing selection on one locus can increase 346 

diversity in another genetically-linked locus (59), and there is genetic linkage between CspZ types 347 

and ospC types (27, 28, 36). This may raise an intriguing possibility that the balancing selection 348 

on ospC may allow diversification through drift in other functionally redundant genes like cspZ 349 

without deleterious effect to the spirochetes, which warrants further investigations.   350 

Some Lyme borreliae species or strains carry determinants that promoting host-specific 351 

phenotypes that differ from the known host range of these species or strains (36, 60-62). For 352 

example, the B. burgdorferi strain 297 is highly infectious in mice, but its CspZ loop-structures 353 

are identical to those in CspZB379 from the strain B379 that is not mouse adapted (36, 62). This 354 
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reflects the fact that most conclusions from this study were drawn by using spirochete strains with 355 

the same genetic background but producing the CspZ variants of interest, which may not account 356 

for polygenic contributions of other proteins in different strains (36). One possibility that addresses 357 

this discrepancy is that host-adapted phenotypes are conferred by not only CspZ but other anti-358 

complement proteins, and the functional contribution from each of these proteins differ (and/or are 359 

host-dependent). In fact, the colonization defects of the cspZ-deficient B. burgdorferi were not 360 

found in the initial infection site at early infection stages, or in the distal tissues at later timepoints, 361 

consistent with the concurrent production of other FH-binding proteins (25, 45, 63-65). 362 

Additionally, non-FH-binding anti-complement proteins (66-68) and/or tick salivary proteins with 363 

anti-complement functions (69-71) could also drive complement-based phenotypes. Further, 364 

pathogen evasion to complement-independent mechanisms (e.g., antibodies), or even the host 365 

immune evasion-independent adaptive phenotypes (e.g., adhesion), can occur simultaneously with 366 

the anti-complement mechanisms (72), all contributing to the overall host-adapted phenotypes (6). 367 

All these confounding factors may complicate the delineation of the roles for CspZ at later stages 368 

of infection. Thus, our results do not rule out the possibility of CspZ-mediated complement evasion 369 

at distal tissues during post-dissemination timepoints, but rather highlight the importance of this 370 

protein immediately after spirochetes begin to disseminate. Despite such caveats, the strength of 371 

these isogenic strains needs to be emphasized in delineating the roles of a particular pathogen 372 

determinant from an enormous complexity of functionally redundant proteins (24, 45, 73, 74). 373 

Such potential polygenic or multi-factorial, and host-specific phenotypes should consider the 374 

complexity of numerous determinants across different mechanisms in defining the effect on host 375 

tropism.  376 
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In this study, we used Lyme borreliae as a model to apply structural, microbiological, and 377 

evolutionary approaches to identify a determinant of host-adapted phenotypes and the specific 378 

mechanism impacting host tropism. It should be noted that distinct B. burgdorferi infectivity have 379 

been observed for host species within the same taxa (e.g., house mice vs. the reservoir white-footed 380 

mice) (6, 75, 76). Thus, we do not intend to extend the host-specific phenotypes from these 381 

laboratory models to every individual reservoir animal in the same host taxa. Rather, our results 382 

establish a platform with more accessibility of tools to facilitate the identification of host tropism 383 

determinants and their underlying mechanisms. Such results build the foundation to further 384 

examine similar concepts in reservoir animals to recapitulate field findings in understanding the 385 

mechanisms of host tropism in a controllable laboratory setting. The information and the platform 386 

established in this multi-disciplinary study establishes greater insights of pathogen-host 387 

interactions, facilitating the understanding of host tropism as the cause of newly emergent 388 

infectious diseases.  389 

  390 

MATERIALS AND METHODS 391 

Ethics statement. All mouse and quail experiments were performed in strict accordance with all 392 

provisions of the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals, and 393 

the PHS Policy on Humane Care and Use of Laboratory Animals. The protocol was approved by 394 

the Institutional Animal Care and Use Committee (IACUC) of Wadsworth Center, New York State 395 

Department of Health (Protocol docket number 19-451). All efforts were made to minimize animal 396 

suffering. 397 

 398 
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Mice, quail, ticks, bacterial strains, animal sera, OmCI, and FH. BALB/c and Swiss Webster 399 

mice were purchased from Taconic (Hudson, NY). C3-/- mice in the BALB/c background were 400 

generated from the C3-/-(C57BL/6) from Jackson Laboratory (Bar Harbor, ME) as described (24). 401 

Coturnix quail were purchased from Cavendish Game Birds Farm (Springfield, VT). Ixodes 402 

scapularis tick larvae were purchased from National Tick Research and Education Center, 403 

Oklahoma State University (Stillwater, OK) or obtained from the CDC through BEI Resources 404 

(Manassas, VA).  405 

The Escherichia coli, Pichia pastoris and Borrelia strains used in this study are described 406 

in Table S7. E. coli strains DH5α, BL21(DE3), and derivatives were grown in LB broth or agar, 407 

supplemented with kanamycin (50µg/ml), ampicillin (100µg/ml), or no antibiotics as appropriate. 408 

P. pastoris strain X-33 was grown on YPD plates supplemented with zeocin (800µg/ml) or BMGY 409 

medium supplemented with 1% methanol. All B. burgdorferi strains were grown in BSK-II 410 

completed medium supplemented with kanamycin (200µg/mL), streptomycin (50µg/mL), or no 411 

antibiotics (Table S7).  412 

Mouse FH was purchased from MyBiosource (San Diego, CA). Quail FH and recombinant 413 

OmCI proteins were generated as described previously (24, 32, 36, 39). The mouse and quail sera 414 

were obtained from Southern Biotech, Inc (Birmingham, AL) and Canola Live Poultry Market 415 

(Brooklyn, NY), respectively. The sera from white-footed mice were obtained previously (6). Prior 416 

to being used, all these sera were screened for antibodies against the C6 peptide of the B. 417 

burgdorferi protein VlsE (77) with the C6 Lyme ELISA kit (Diamedix, Miami Lakes, FL) to 418 

ensure the mice did not have prior exposure to B. burgdorferi. 419 

 420 
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Generation of recombinant CspZ proteins and recombinant human FH SCR6-7. To generate 421 

recombinant CspZ proteins for crystallization, cspZB379 (GenBank: FJ911671.1) and cspZB408 422 

(GenBank: FJ911677.1) were amplified by PCR from the genomic DNA of B. burgdorferi strain 423 

B379 and B408 using the primers listed in Table S8. Note that B408 has two copies of cspZ, but 424 

they are functionally identical with only a single synonymous SNP at nucleotide 699 (36, 78). 425 

Based on the prediction by SignalP 4.1 (79) and according to our previous structural data from 426 

CspZB31 (30), the lipoprotein signal peptide (residues 1-22) was excluded from the amplified gene. 427 

The introduced NcoI and NotI restriction sites were used for ligation of the amplified fragments 428 

into the pETm-11 expression vector which contains the coding region for an N-terminal 6xHis tag 429 

and a tobacco etch virus (TEV) protease cleavage site. Expression in E. coli, purification by affinity 430 

chromatography, and 6xHis tag cleavage by TEV protease of both proteins CspZB379 and CspZB408 431 

were performed similarly as described previously for CspZB31 (30). The purified and cleaved 432 

proteins were buffer exchanged into 10 mM Tris-HCl (pH 8.0) and concentrated to 11 mg/ml using 433 

an Amicon centrifugal filter unit (Millipore, Burlington, MA, USA). 434 

To produce recombinant human FH for crystallization, the gene encoding the SCR6-7 of 435 

human FH was synthesized by BioCat GmbH (Heidelberg, Germany) and cloned into pPICZαA 436 

vector behind the α-factor secretion signal using XhoI and NotI restriction sites in a way to restore 437 

the Kex2 signal cleavage site. The plasmid was linearized with PmeI and transformed by 438 

electroporation into Pichia pastoris (reassigned as Komagataella phaffii) strain X-33. 439 

Transformants were obtained on YPD agar plates containing 800µg/ml of the antibiotic zeocin. 440 

The selected clone was cultivated 24-h in BMGY medium at 30°C with aeration (250rpm) 441 

following addition of 1% methanol daily, and cultivation was continued for three more days. The 442 

cell pellet was removed by low-speed centrifugation. Supernatant was buffer-exchanged into 443 
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50mM sodium phosphate (pH 6.0) by Sephadex G-25 Fine column (bed volume 360ml) (Cytiva, 444 

Marlborough, MA, USA) in 100ml portions at a flow rate of 20ml/min. Two liters of supernatant 445 

was passed through the CaptoS Improved Resolution column (bed volume 20ml) (Cytiva, 446 

Marlborough, MA, USA) and bound material was eluted with a linear salt gradient at a flow rate 447 

of 6ml/min. Target protein fractions were selected based on SDS-PAGE. The relevant fractions 448 

were pooled and buffer-exchanged into 20mM Tris-HCl (8.0), 50mM NaCl and 10mM NaH2PO4 449 

using an Amicon filter device (Millipore, Burlington, MA, USA). 450 

To generate recombinant CspZB379 and CspZB408 for the studies other than crystallization, 451 

the region encoding cspZB379 or cspZB408 without the signal peptide was amplified as described 452 

above and engineered to encode BamHI and SalI sites at the 5’ and 3’ ends, respectively, allowing 453 

subsequent cloning into the pJET cloning vector (Thermo Fisher Scientific, Waltham, MA). These 454 

pJET-derived plasmids encoding cspZB379 or cspZB408 were used as template for site-directed, 455 

ligase-independent mutagenesis (SLIM) (Table S7) to generate plasmids producing CspZB379-456 

LB408 and CspZB408-LB379 (80). After verifying the sequences of all the plasmids (Wadsworth 457 

ATGC facility), the DNA fragments were subsequently excised using BamHI and SalI and then 458 

inserted into the same sites in pGEX4T2 (GE Healthcare, Piscataway, NJ) (32). The pGEX4T2-459 

derived plasmids were then transformed into the E. coli strain BL21(DE3). The GST-tagged CspZ 460 

proteins were produced and purified by affinity chromatography. These proteins were verified for 461 

their secondary structures not impacted by the mutagenesis using CD (Fig. S12), as described in 462 

the section “Circular dichroism (CD) spectroscopy.” 463 

To generate recombinant CspZ from the last common ancestor states, pET-28a+ encoding 464 

these states flanked by BamHI and SalI sites at the 5’ and 3’ ends, respectively, were cloned 465 

(Synbio Technologies, Monmouth Junction, NJ). The plasmids were transformed into the E. coli 466 
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strain BL21(DE3), and the His-tagged CspZ proteins were produced and purified by affinity 467 

chromatography. 468 

 469 

Crystallization and structure determination. For crystallization of CspZB379 and CspZB408, 96-470 

well sitting drop plates were set using a Tecan Freedom EVO100 workstation (Tecan Group, 471 

Männedorf, Switzerland) by mixing 0.4μl of protein with 0.4μl of precipitant using the 96-reagent 472 

sparse-matrix screens JCSG+ and Structure Screen 1&2 (Molecular Dimensions, Newmarket, UK). 473 

The crystals for CspZB379 were obtained in 0.2M Ammonium citrate and 24% PEG 3350. For 474 

CspZB408, the crystals were formed in 0.2M potassium acetate, 0.1M Tris-HCl (pH 8.0) and 28% 475 

PEG 3350. Prior to the data collection, the crystals were frozen in liquid nitrogen. An additional 476 

20% glycerol was used as a cryoprotectant for CspZB379 crystals, whereas the respective precipitant 477 

with an additional 14% glycerol was used as cryoprotectant for CspZB408 crystals. 478 

CspZB408 (4mg/ml) and human SCR6-7 (3mg/ml) were mixed together at a molar ratio of 479 

1:2 and loaded on a HiLoad 16/600 Superdex 200 prep grade column (GE Healthcare, Chicago, 480 

IL, USA) pre-equilibrated with 20mM Tris-HCl (8.0), 50mM NaCl and 10mM NaH2PO4. The 481 

flow rate was set to 2ml/min. Size exclusion chromatography resulted in one major peak containing 482 

the complex, confirmed by SDS-PAGE. Crystallization was set as described earlier for CspZB379 483 

and CspZB408 by mixing 0.4μl of protein with 0.4μl of precipitant and using the 96-reagent sparse-484 

matrix screens. The crystals for CspZB408-SCR6-7 complex were obtained in 0.2M Zinc acetate, 485 

0.1M imidazole (pH 7.4) and 10% PEG 3000. Crystals were frozen in liquid nitrogen by using 486 

20% glycerol as a cryoprotectant. 487 

Diffraction data for CspZB379, CspZB408 and CspZB408-SCR6-7 complex were collected at 488 

the MX beamline instrument BL 14.1 at Helmholtz-Zentrum, Berlin (81). Reflections were 489 
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indexed by XDS and scaled by AIMLESS from the CCP4 suite (82-84). Initial phases for CspZB379 490 

and CspZB408 were obtained by molecular replacement using Phaser (85), with the crystal structure 491 

of the orthologous protein CspZB31 was used as a searching model (97% sequence identity, PDB: 492 

4CBE). For CspZB408-SCR6-7 complex, the phases were determined using CspZB408 (PDB: 7ZJK, 493 

RMSD 0.98 Å) and human FH SCR6-7 (PDB: 4AYD-A, RMSD 0.98 Å) as the searching models. 494 

After molecular replacement, the protein models were built automatically in BUCCANEER (86). 495 

The crystal structures were improved by manual rebuilding in COOT (87). Crystallographic 496 

refinement was performed using REFMAC5 (88). A summary of the data collection, refinement 497 

and validation statistics for CspZB379, CspZB408 and CspZB408-SCR6-7 complex are given in Table 498 

S9. 499 

 500 

Protein 3D structure prediction using AlphaFold. AlphaFold v2.0 (34) was used to predict the 501 

3D structure for quail FH SCR6-7 extrapolated from the sequences of Coturnix japonica 502 

complement FH (GenBank: XM_015869474.2). Structure prediction with AlphaFold v2.0 was 503 

performed according to the default parameters as indicated at the website 504 

https://github.com/deepmind/alphafold/ running on AMD Ryzen Threadripper 2990WX 32-Core; 505 

128 GB RAM; 4 x NVIDIA GeForce RTX 2080, and using the full databases downloaded on 506 

2021-09-25. For further structural analysis, only the predicted structure with the highest 507 

confidence was used (as ranked by using LDDT (pLDDT) scores).  508 

 509 

Circular dichroism (CD) spectroscopy. CD analysis was performed on a Jasco 810 510 

spectropolarimeter (Jasco Analytical Instrument, Easton, MD) under nitrogen. CD spectra were 511 

measured at room temperature (RT, 25°C) in a 1mm path length quartz cell. Spectra of each of the 512 
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CspZ proteins (10μM) were recorded in phosphate based saline buffer (PBS) at RT, and three far-513 

UV CD spectra were recorded from 190 to 250nm for far-UV CD in 1nm increments. The 514 

background spectrum of PBS without proteins was subtracted from the protein spectra. CD spectra 515 

were initially analyzed by the software Spectra Manager Program (Jasco). Analysis of spectra to 516 

extrapolate secondary structures were performed using the K2D3 analysis programs (89). 517 

 518 

ELISAs. Quantitative ELISA was used to determine FH-binding by CspZ proteins, or ancestral 519 

proteins, as described previously (24, 90), with the following modifications: Mouse anti-GST tag 520 

or mouse anti-His tag 1:200× (Sigma-Aldrich) and HRP-conjugated goat anti-mouse IgG 1:2,000× 521 

(Seracare Life Sciences) were used as primary and secondary antibodies, respectively, to detect 522 

the binding of GST- or histidine-tagged proteins.  523 

 524 

Surface Plasmon Resonance (SPR). Interactions of CspZ proteins with FH were analyzed by 525 

SPR using a Biacore T200 (Cytiva, Marlborough, MA). Ten micrograms of mouse or quail FH 526 

were conjugated to a CM5 chip (Cytiva) as described previously (90). For quantitative SPR 527 

experiments, 10µL of increasing concentrations (0.08, 0.03125, 0.0125, 0.5, 2µM) of each of the 528 

CspZ proteins were injected into the control cell and the flow cell immobilized with FH at 10μl/min, 529 

25oC. To obtain the kinetic parameters of the interaction, sensogram data were fitted by means of 530 

BIAevaluation software version 3.0 (GE Healthcare), using the one step biomolecular association 531 

reaction model (1:1 Langmuir model), resulting in optimum mathematical fit with the lowest Chi-532 

square values. 533 

 534 
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Shuttle vector construction and plasmid transformation into B. burgdorferi. “Loop swapped” 535 

CspZ variants (i.e., CspZB379LB408 and CspZB408LB379) were designed based on the full-length 536 

sequences (B379 accession: OM643341; B408: accession: OM643340) and purchased as double-537 

stranded DNA fragments flanked by BamHI and SalI on the 5’ and 3’, respectively (Integrated 538 

DNA Technologies, Inc., Coralville, IA). B31-A3∆cspZ was complemented with these variants, 539 

or with native CspZ from B379 and B408 flanked by the same restriction enzyme sites (Table S7), 540 

in the same manner as the previously published strains of B31-A3∆cspZ/pKFSS and B31-541 

A3∆cspZ/pCspZB31 (32). The plasmid profiles of these spirochetes were examined to ascertain 542 

identical profiles between these strains and their parental strain B31-A3 (91). The generation time 543 

of these transformants was calculated as previously described (32). 544 

 545 

Flow cytometry. CspZ production and FH-binding on spirochete surface were determined as 546 

described (24), including blood-treatment to induce the production of CspZ (32). To determine the 547 

levels of mouse C5b-9 or quail C8 deposition on the surface of spirochetes, mouse or quail sera 548 

were incubated with 1x107 spirochetes in PBS at a final concentration of 20% at 25oC for one hour 549 

and the detection procedure has been described previously (36). Basically, after incubation, 550 

spirochetes were washed then resuspended in HBSC-DB (25mM Hepes acid, 150mM sodium 551 

chloride, 1mM MnCl2, 1mM MgCl2, 0.25mM CaCl2, 0.1% glucose, and 0.2% BSA). Rabbit anti-552 

mouse C5b-9 polyclonal IgG (1:250x) (Complement Technology, Tyler, TX) or mouse anti-quail 553 

C8 polyclonal sera (1:250x) (36) were used as the primary antibodies. An Alexa 647-conjugated 554 

goat anti-rabbit (ThermoFisher) or a goat anti-mouse IgG (ThermoFisher) (1:250x) was used as 555 

the secondary antibody. After staining, the spirochetes were fixed with 0.1% formalin. The 556 
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resulting fluorescence intensity of spirochetes was measured and analyzed by flow cytometry 557 

using a FACSCalibur (BD Bioscience) as described (32, 36).  558 

  559 

Serum resistance assays. The serum resistance of B. burgdorferi was measured as described with 560 

modifications (6, 24, 32). Cultures in mid-log phase of each strain treated with human blood (32), 561 

as well as the high passaged, non-infectious, and serum-sensitive human blood-treated B. 562 

burgdorferi strain B313 (control), were cultivated in triplicate and diluted to a final concentration 563 

of 5×106 cells/mL in BSK-II medium without rabbit sera. The cell suspensions were mixed with 564 

sera collected from naïve white-footed mice or quail (60% spirochetes and 40% sera) in the 565 

presence or absence of 2µM of CVF (Complement Technology) or recombinant OmCI, to deplete 566 

complement from mouse and quail sera, respectively. Heat-inactivated sera (65°C for 2-h) were 567 

also included in each of the aforementioned combinations as a control (all strains survived equally; 568 

data not shown). To determine the bacteria survival, the number of motile spirochetes was counted 569 

under dark field microscopy at 0- and 4-h following incubation with sera as described (32), as we 570 

have shown that motile spirochetes determined using this methodology accurately reflect results 571 

using live-dead staining assays (39). The percent survival of B. burgdorferi was calculated by the 572 

normalization of motile spirochetes at 4-h post incubation to that immediately after incubation 573 

with sera.  574 

 575 

Mouse and quail infection by ticks. Generating flat, infected I. scapularis nymphs has been 576 

described previously (24, 92). The infected nymphs were placed in a chamber to feed on 4- to 6-577 

week old male and female BALB/c or C3-/- mice in BALB/c background, or on four- to six-week 578 

old male and female untreated or OmCI-treated quail, as described previously (45). For OmCI-579 
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treatment, the quail were subcutaneously injected with OmCI (1mg/kg of quail) one day prior to 580 

the nymph feeding. The engorged nymphs were obtained from the chambers at four days post tick 581 

feeding. Animals were sacrificed and tissues collected from the mice at 7-, 10-, or 14- (blood, tick 582 

bite site of the skin, heart, bladder, tibiotarsus joint), and quail (blood, tick bite site of the skin, 583 

heart, brain) at 9-, or 14-, days post nymph feeding. To ensure OmCI was still functional at these 584 

timepoints, quail were subcutaneously injected with OmCI (1mg/kg of quail) or PBS buffer 585 

(control), and the sera were collected at 10 days post injection (equivalent to 11 days post nymph 586 

feeding). The lack of the ability of this serum to kill the sera-sensitive B. burgdorferi strain B313 587 

(i.e., to ensure complement was still depleted) was assessed as described in the section “Serum 588 

resistance assays.” (Fig. S13) 589 

 590 

Quantification of spirochete burden The DNA from tissues, blood, and ticks was extracted as 591 

described previously (45). qPCR was then performed to quantitate bacterial loads. Spirochete 592 

genomic equivalents were calculated using an ABI 7500 Real-Time PCR System (ThermoFisher 593 

Scientific) in conjunction with PowerUp SYBR Green Master Mix (ThermoFisher Scientific) 594 

based on amplification of the Lyme borreliae recA gene using primers BBRecAfp and BBRecArp 595 

(Table S8) with the amplification cycle as described previously (32). The number of recA copies 596 

was calculated by establishing a threshold cycle (Cq) standard curve of a known number of recA 597 

gene extracted from B. burgdorferi strain B31-A3, then comparing the Cq values of the 598 

experimental samples.  599 

 600 

Genomic analyses. To generate the cspZ phylogenetic trees, we mined all publicly available cspZ 601 

sequences on NCBI as of September 2021, including assembled genomes, nucleotides, and 602 
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unassembled genomes on the SRA. To pull cspZ from unassembled genomes, the short reads were 603 

aligned to cspZ from B31, B379, or B408 with UGENE v39.0 using BWA-MEM at defaults (93, 604 

94). Strains were removed from the analyses if the coverage was too low, there was evidence of 605 

PCR/sequencing errors (e.g., non-conserved homopolymer length) or evidence of multiple CspZ 606 

variants within one strain. All resulting 174 cspZ sequences, plus the outgroup strains (B. 607 

spielmanii A14s accession: EU272854.1; B. afzelii FEM4 accession: OM243915; B. afzelii VS461 608 

accession: MN809989.1; B. garinii PBr accession: CP001307.1; B. bissettii DN127 accession: 609 

NC_015916.1; B. bissettii CO275 accession: JNBW01000464.1), were aligned by codons using 610 

TranslatorX (95). All isolates were collapsed into haplotypes in FaBox v1.61, and these haplotypes 611 

were used with the B. bissettii outgroup to generate a NeighborNet network in SplitsTree v4 (96, 612 

97). Phylogenetic trees were estimated using likelihood as optimality criterion in IQ-tree v1.6.12 613 

(98) and a full substitution model search procedure in ModelFinder (99). Internode branch support 614 

was estimated with 10,000 replicatess of both ultrafast bootstrapping and the SH-aLRT branch test 615 

(98-100). All resulting phylogenetic trees were visualized in iTOL v6.4.3 (101). The pairwise 616 

sequence similarity for each of the 174 B. burgdorferi cspZ isolates relative to CspZB31, CspZB408, 617 

or CspZB379 was determined in MEGA-X with default settings (102). Putative recombination 618 

breakpoints were analyzed with GARD (103), and evidence of selection for individual codons or 619 

branches on the cspZ gene tree were inferred with FUBAR (104), FEL (105) and MEME (106), 620 

all on the Datamonkey server (107). Selection tests for the entire cspZ gene included Tajima’s 621 

neutrality test in MEGA-X (102) and all tests available in DnaSP v5 with 10,000 coalescent 622 

simulations (108), all at default settings. The ancestor state for the entire B. burgdorferi ingroup 623 

was reconstructed using the LG model in GRASP 2020.05.05 (109, 110), as well as FireProt-ASR 624 

with default settings (111) using both full and haplotype phylogenies, a multitaxon outgroup and 625 



29 
 

solely B. bissettii  as outgroup. Divergence dating was carried out in BEAST v1.10.4 (112) using 626 

the HKY+Γ4 substitution model(113, 114), a coalescent Bayesian skyline coalescent model, and a 627 

strict clock with a uniform prior on the substitution rate using a previously determined rate of 628 

4.75e-06 substitutions/site/year(42). A Markov chain Monte Carlo chain length of 100 million 629 

steps was used with a 10,000-step thinning, resulting in effective sample sizes greater than 200, an 630 

indication of an adequate chain mixing. The analyses were ran in triplicate and combined after 631 

removing a 10% burn-in. 632 

The amino acids encoding SCRs 6-7 from human (GenBank accession U56979.1), mouse 633 

(NM_009888.3), or quail (XM_015869474.2) FH or CspZB31, CspZB379, and CspZB408, the loop-634 

swapped variants, and the reconstructed ancestral CspZ sequences were aligned in MEGA-X using 635 

ClustalW with default settings, analyzed with ESPript v3.0, and visualized with Jalview v2.11.0 636 

(102, 115, 116).  637 

 638 

Statistical analysis. Samples were compared using the Mann-Whitney U test or the Kruskal-639 

Wallis test with the two-stage step-up method of Benjamini, Krieger, and Yekutieli (117).  640 

 641 

Accession numbers. The coordinates and the structure factors for CspZB379, CspZB408, and human 642 

SCR-CspZB408 have been deposited in the Protein Data Bank with accession codes 7ZJJ, 7ZJK, 643 

and 7ZJM, respectively. 644 
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 992 

FIGURE LEGENDS 993 

Figure 1. Superimposed crystal structures of CspZB408-SCR6-7 complex, CspZB31, and 994 

CspZB379 reveals the FH-binding mechanisms of CspZ variants. (A) The crystal structure of 995 

human FH domains SCR6 (light grey) and SCR7 (dark grey) in complex with CspZB408 (orange) 996 

was superimposed with that of CspZB31 (purple) and CspZB379 (green). (B) The FH-binding 997 

interface with the location of the CspZB408 residues involved in human SCR6-7 binding, and the 998 

equvalent residues in CspZB31 and CspZB379. The numbering of the residues is given for CspZB408. 999 

α-helices in CspZ are labelled from A to I starting from the N-terminus. The polymorphic loop 1000 

region between α-helices B and C in CspZB408 (residues 60-IMTYSEVNNVTD-71), CspZB31 1001 

(residues 60-IMTYSEGT-67) and CspZB379 (residues 60-IMTYIMTYSEGT-71) are indicated. 1002 

 1003 
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Figure 2. The polymorphic loop region in CspZ promotes host-specific FH-binding ability.  1004 

 (A, B) Ten micrograms of mouse or quail FH were conjugated on a SPR chip. 0.008 to 2μM of 1005 

untagged (A) CspZB31, CspZB379, CspZB408, (B) CspZB379LB408, or CspZB408LB379 was flowed over 1006 

the chip surface. Binding was measured in response units (RU) by SPR. The experiments were 1007 

performed with a single preparation of recombinant proteins tested in three independent replicates 1008 

with samples ran in duplicate. The kon, koff, and KD values were determined from the average of 1009 

these three experiments (Table 1). Shown is one representative experiment. (C) The crystal 1010 

structure of CspZB408-SCR6-7 where human SCR6-7 (grey) is superimposed with mouse SCR6-7 1011 

(gold, PDB: 2YBY), and the predicted structure of quail SCR6-7 (brown), while CspZB408 (orange) 1012 

is superimposed with CspZB31 (purple) and CspZB379 (green). (D) The loop region in CspZ proteins 1013 

located between α-helices B and C. The Asp71 in CspZB408, and residues 60-IMTYIMTYSEGT-1014 

71 in CspZB379 are highlighted. The polymorphic loop region between α-helices B and C in CspZ 1015 

variants, as well as the loop region in human, mouse and quail SCR6-7 located at the interface 1016 

with helix-B in CspZ, is showed with a striped pattern.  1017 

 1018 

Figure 3. The CspZ loop-driven, variable FH-binding activity confers host-specific 1019 

complement inactivation on spirochete surface and serum resistance. (A to D) B. burgdorferi 1020 

strains B313 (negative control), B31-A3, B31-A3ΔcspZ harboring the empty vector pKFSS 1021 

(“ΔcspZ/Vector”), or this cspZ mutant producing CspZB31, CspZB379, CspZB379LB408, CspAB408, or 1022 

CspZB408LB379, were incubated with mouse or quail sera at a final concentration of 20%. The 1023 

bacteria were stained with antibodies that recognize mouse C5b-9 or quail C8 prior to analysis by 1024 

flow cytometry. Shown are the representative histograms of the analysis presenting the deposition 1025 

levels of (A) mouse C5b-9 or (B) quail C8 on the surface of the indicated B. burgdorferi strains. 1026 



47 
 

The deposition levels of (C) mouse C5b-9 or (D) quail C8 on the surface of the indicated strains 1027 

were measured by flow cytometry and presented as mean fluorescence index (MFI). Each bar 1028 

represents the mean of three independent experiments ± SEM. Significant differences (p < 0.05, 1029 

Kruskal-Wallis test with the two-stage step-up method of Benjamini, Krieger, and Yekutieli) in 1030 

the deposition levels of mouse C5b-9 or quail C8 relative to B313 (“Φ”), ΔcspZ/Vector (“*”), or 1031 

between two strains relative to each other (“#”), are indicated. (E, F) The B. burgdorferi strains 1032 

were incubated for 4-h with (E) white-footed mouse sera or (F) quail sera, to a final concentration 1033 

of 40%. The number of motile spirochetes was assessed microscopically. The precent survival of 1034 

the strains was calculated using the number of motile spirochetes at 4-h post incubation normalized 1035 

to that prior to incubation with sera. Each bar represents the mean of three independent experiments 1036 

± SEM. Significant differences (p < 0.05, Kruskal-Wallis test with the two-stage step-up method 1037 

of Benjamini, Krieger, and Yekutieli) in the percent survival of spirochetes relative to the 1038 

ΔcspZ/Vector (“*”) or between two strains relative to each other (“#”) are indicated.  1039 

 1040 

Figure 4. The CspZ loop-mediated FH-binding activity defines host-specific early 1041 

hematogenous dissemination in a complement-dependent manner. I. scapularis nymphs 1042 

carrying B31-A3, B31-A3ΔcspZ harboring the empty vector pKFSS (“ΔcspZ/Vector”), or this 1043 

cspZ mutant strain producing CspZB31, CspZB379, CspZB379LB408, CspZB408, or CspZB408LB379 were 1044 

allowed to feed until repletion on (A to E) BALB/c mice or (F to I) quail. The bacterial loads in 1045 

the indicated distal tissues were determined by qPCR at 10 days post nymphs feeding (dpf) in mice 1046 

and 9dpf in quail. The bacterial loads were normalized to 100ng total DNA. Shown are the 1047 

geometric mean of bacterial loads ± SEM of five mice or quail per group, except for the blood 1048 

from BALB/c mice, which has nine mice per group. Significant differences (p < 0.05, Kruskal-1049 
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Wallis test with the two-stage step-up method of Benjamini, Krieger, and Yekutieli) in the 1050 

spirochete burdens relative to the ΔcspZ/Vector (“*”) or between two strains relative to each other 1051 

(“#”) are indicated.  1052 

 1053 

Figure 5. Phylogeny and sequence comparisons support polymorphic CspZ loop arising from 1054 

host-specific adaptation of Lyme borreliae.  (A) Unrooted likelihood tree of 174 B. burgdorferi 1055 

cspZ isolates generated with IQ-tree and visualized in iTOL. The names of the isolates are 1056 

highlighted based on their CspZ loop type (CspZB379, CspZB408, and CspZB31 as green, orange, and 1057 

purple, respectively). The percent identity of each isolate relative to CspZB31 (purple), CspZB408 1058 

(orange), or CspZB379 (green) is indicated on the outer ring. The known FH-binding activity is 1059 

marked: black or gray stick figures, mice, and quail indicate FH binding or lack of thereof, 1060 

respectively, as determined herein and from previously published studies (27-29, 118, 119). (B) 1061 

The indicated concentrations of recombinant histidine-tagged, predicted last common ancestor 1062 

states of CspZ (“CspZ-LCAS1, CspZ-LCAS2, CspZ-LCAS3, and CspZ-LCAS4), CspZB31, or 1063 

DbpA (negative control) were added to triplicate wells coated with FH from human, mouse or 1064 

quail, and protein binding was quantitated by ELISA. The experiments were performed with a 1065 

single preparation of recombinant proteins tested in three independent iterations, in which samples 1066 

were ran in duplicate. The KD values (Table S6) representing the FH-binding affinity of each 1067 

protein were determined from the average of three experiments. Shown is a representative iteration 1068 

averaging the duplicates. 1069 

  1070 

SUPPLEMENTAL FIGURE LEGENDS 1071 



49 
 

Figure S1. Amino acid alignments of the CspZ and FH variants. Amino acid alignments of (A) 1072 

the indicated CspZ variants, mutants, and reconstructed ancestral states of variants or (B) human, 1073 

mammalian, and avian FH SCR 6-7. (A) The CspZ amino acids accounting for the loop structures 1074 

are indicated with the box, and the alpha-helices labeled above the sequences are extrapolated from 1075 

the high-resolution structure of CspZB408. The yellow and blue shading are indicative of loci 1076 

showing evidence of positive and negative selection, respectively. 1077 

 1078 

Figure S2. The polymorphic loop structures in recombinant CspZ proteins promote host-1079 

specific FH-binding ability determined by ELISA. The indicated concentrations of recombinant 1080 

GST-tagged CspZB379, CspZB408, CspZB379LB408, or CspZB408LB379, or GST (negative control) were 1081 

added to triplicate wells coated with FH from mouse or quail, and protein binding was quantitated 1082 

by ELISA. The experiments were performed with a single preparation of recombinant proteins 1083 

tested in three independent iterations, in which samples were ran in duplicate. The KD values 1084 

(Table S2) representing the FH-binding affinity of each protein were determined from the average 1085 

of three experiments. Shown is a representative iteration averaging the duplicates. 1086 

 1087 

Figure S3. Indistinguishable surface production of CspZ among B. burgdorferi strains was 1088 

observed using flow cytometry. Flow cytometry analysis of CspZ localized on the surface of B. 1089 

burgdorferi strains B31-A3, B31-A3ΔcspZ harboring the vector pKFSS (“ΔcspZ/Vector”), or this 1090 

cspZ mutant strain producing CspZB31, CspZB379, CspZB379LB408, CspAB408, or CspZB408LB379. (A) 1091 

Representative histograms of flow cytometry analysis showing the levels of CspZ surface 1092 

production on the indicated strains. (B) The production of FlaB (negative control) and CspZ on 1093 

the surface of indicated B. burgdorferi strains was detected by flow cytometry. Values are shown 1094 
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normalized to the production levels of FlaB or CspZ on the surface of permeabilized B31-A3. Each 1095 

bar represents the mean of four independent experiments ± the standard deviation. An asterisk (*) 1096 

indicates that relative surface production of the indicated proteins was significantly lower (p < 1097 

0.05, Kruskal-Wallis test with the two-stage step-up method of Benjamini, Krieger, and Yekutieli) 1098 

than that of permeabilized FlaB or CspZ by B31-A3. 1099 

 1100 

Figure S4. The polymorphic CspZ loop determines the host-specific, allelically variable FH-1101 

binding activity on spirochete surface. B. burgdorferi strains B313 (negative control), B31-A3, 1102 

B31-A3ΔcspZ harboring the empty vector pKFSS (“ΔcspZ/Vector”), or this mutant strain 1103 

producing CspZB31, CspZB379, CspZB379LB408, CspZB408, or CspZB408LB379, was incubated with 1104 

mouse or quail FH. The bacteria were stained with antibodies that recognize these FH variants 1105 

prior to flow cytometry. Shown are the representative histograms of flow cytometry analysis 1106 

presenting the levels of FH from (A) mouse or (B) quail binding to each B. burgdorferi strain. The 1107 

levels of (C) mouse or (D) quail FH-binding were measured by flow cytometry and presented as 1108 

mean fluorescence index (MFI). Each bar represents the mean of three independent experiments ± 1109 

SEM. Significant differences (p < 0.05, Kruskal-Wallis test with the two-stage step-up method of 1110 

Benjamini, Krieger, and Yekutieli) in the levels of FH-binding relative to the B313/Vector (“Φ”), 1111 

ΔcspZ/Vector (“*”), or between two strains relative to each other (“#”) are indicated.  1112 

 1113 

Figure S5. The CspZ loop-driven, host-specific serum resistance is recovered in complement-1114 

depleted sera. B. burgdorferi strains B313 (negative control), B31-A3, B31-A3ΔcspZ harboring 1115 

the empty vector pKFSS (“ΔcspZ/Vector”), or this mutant strain producing CspZB31, CspZB379, 1116 

CspZB379LB408, CspZB408, or CspZB408LB379were incubated for 4-h with (A) CVF-treated white-1117 
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footed mouse or (B) OMCI-treated quail sera, to a final concentration of 40%. The number of 1118 

motile spirochetes was assessed microscopically. The precent survival of the B. burgdorferi strains 1119 

was calculated using the number of motile spirochetes at 4-h post incubation normalized to that 1120 

prior to incubation with sera. Each bar represents the mean of three independent experiments ± 1121 

SEM. There were no significant differences (p < 0.05, Kruskal-Wallis test with the two-stage step-1122 

up method of Benjamini, Krieger, and Yekutieli) between the percent survival of any strain.  1123 

 1124 

Figure S6. B. burgdorferi strains exhibit similar burdens in flat and fed nymphs. B. 1125 

burgdorferi-infected flat nymphs were allowed to feed to repletion on (B, E) BALB/c or (G) C3-1126 

/- BALB/c mice, or (C, F) quail or (H) OmCI-treated quail. The spirochete loads in (A, D) flat or 1127 

(B, C, E, F, G, H) replate nymphs were determined by qPCR. Shown are the geometric mean ± 1128 

geometric standard deviation of at least five nymphs per group. There was no statistical difference 1129 

(p > 0.05) of the spirochete burdens between different groups of the replete ticks using a (A to C) 1130 

Mann-Whitney test or (D to H) Kruskal-Wallis test with the two-stage step-up method of 1131 

Benjamini, Krieger, and Yekutieli. 1132 

 1133 

Figure S7. CspZ facilitates early bacteremia and distal tissue colonization during tick 1134 

infection. The I. scapularis nymphs carrying B. burgdorferi strain B31-A3 or B31-A3ΔcspZ 1135 

harboring the vector pKFSS (“ΔcspZ/Vector”) were allowed to feed until repletion on (A to O) 1136 

BALB/c mice or (P to W) quail. The mice were euthanized at (A to E) 7, (F to J) 10, or (K to O) 1137 

14 days post nymphs feeding (dpf), whereas the quail were euthanized at (P to S) 9 or (T to W) 1138 

14dpf. (A, F, K) The site of the skin where nymphs fed (“Bite site”), (B, G, L) blood, (C, H, M) 1139 

tibiotarsus joints, (D, I, N) heart, and (E, J, O) bladder of mice; and (P, T) the bite site, (Q, U) 1140 
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blood, (R, V) brain, and (S, W) heart of quail, were collected immediately after euthanasia and 1141 

spirochete loads were determined by qPCR. The burdens were normalized to 100ng total DNA. 1142 

Shown are the geometric mean of bacterial loads ± SEM of five mice or quail per group, except 1143 

for samples from the mouse blood at 7 and 10dpf where the results are from six and nine mice, 1144 

respectively. Significant differences (p < 0.05, Mann-Whitney test) in the spirochete burdens 1145 

between two strains relative to each other (“#”) are indicated.  1146 

 1147 

Figure S8. The CspZ loop-mediated early hematogenous dissemination is recovered when 1148 

complement is depleted from hosts. I. scapularis nymphs carrying B31-A3, B31-A3ΔcspZ 1149 

harboring the empty vector pKFSS (“ΔcspZ/Vector”), or this cspZ mutant strain producing 1150 

CspZB31, CspZB379, CspZB379LB408, CspZB408, or CspZB408LB379 were allowed to feed until repletion 1151 

on (A to E) C3-/- mice in a BALB/c background or (F to I) OMCI-treated quail, both of which 1152 

deplete complement in the respective hosts. The bacterial loads in the indicated distal tissues were 1153 

determined by qPCR and were normalized to 100ng total DNA, at 10 days post nymphs feeding 1154 

(dpf) in mice and 9dpf in quail. Shown are the geometric mean of bacterial loads ± SEM of five 1155 

mice or quail per group, except for the blood from BALB/c mice, which has nine mice per group. 1156 

There were no significant differences (p < 0.05, Kruskal-Wallis test with the two-stage step-up 1157 

method of Benjamini, Krieger, and Yekutieli) in the spirochete burdens for any strain. 1158 

 1159 

Figure S9. Phylogenetic network of cspZ haplotypes. Edges are colored based on their loop 1160 

structure (CspZB379, CspZB408, and CspZB31 in green, orange, and purple, respectively).  1161 

 1162 
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Figure S10. The CspZ last common ancestor states are predicted to versatiley bind FH. The 1163 

crystal structure of CspZB408-SCR6-7 where human SCR6-7 (grey) is superimposed with mouse 1164 

FH SCR6-7 (gold, PDB: 2YBY) and the predicted structure of quail SCR6-7 (brown). CspZB408 1165 

(orange) is superimposed with CspZB31 (purple) and the last common ancestor states: LCAS1 1166 

(yellow), LCAS2 (blue), LCAS3 (green), and LCAS4 (pink). Residues that differ between CspZB31 1167 

and the LCAS variants are labelled. 1168 

 1169 

Figure S11. Structural comparison between CspZB408-human SCR6-7 and the N. meningitidis 1170 

Fhbp-human SCR6-7 complexes. Human FH SCR6-7 (light grey) from the complex structure 1171 

with CspZB408 (orange) was superimposed with human FH SCR6-7 (dark grey) from the complex 1172 

structure with Fhbp (dark blue, PDB: 2W81), the FH-binding protein from N. meningitidis. α-1173 

helices in CspZB408 are labelled from A to I starting from the N-terminus. 1174 

 1175 

Figure S12. CD spectra demonstrate no impacts of secondary structures by swapping the 1176 

loops. Far-UV CD analysis of CspZB379, CspZB408, CspZB379LB408, and CspZB408LB379. The molar 1177 

ellipticity, Φ, was measured from 190 to 250nm for 10μM of each protein in PBS.  1178 

 1179 

Figure S13. OmCI prevents quail serum-mediated killing of a complement-sensitive 1180 

spirochete strain at 11 days post injection. Coturnix quail were subcutaneously inoculated with 1181 

OmCI (1mg/kg of quail) or PBS buffer. Untreated (filled bars) or heat-treated (hatched bars) sera 1182 

collected from these quail at 11 days post inoculation (dpi) were incubated with a serum-sensitive, 1183 

highly passaged B. burgdorferi strain B313. The number of motile spirochetes were quantified 1184 

microscopically and the survival percentage of the spirochetes was calculated using the number of 1185 
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mobile spirochetes at 4 h post incubation normalized to that at 0 h. Each bar represents the mean 1186 

± SEM of three independent experiments from sera from four quail per group. Significant 1187 

differences (p < 0.05, Mann-Whitney test) in the percentage survival of spirochetes are indicated 1188 

(“#”).  1189 
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SUPPLEMENTAL TABLES 1190 

Table S1: The list of CspZB408 residues that binds to human FH based on CspZB408-human 1191 

SCR6-7 complex structure and their equivalent residues of CspZB31 and CspZB379.  1192 

CspZB408 CspZB31 CspZB379 
Asp47 
Tyr50 
Asn51 

Asp47 
Tyr50 
Asn51 

Asp47 
Tyr50 
Ser51 

Thr54 
Asn58 
Thr62 

Thr54 
Asn58 
Thr62 

Thr54 
Asn58 
Thr62 

Asp71 
Asp73a 
Ser75a 

- 
Asp70a 
Ser72a 

- 
Asp74a 
Ser76a 

Arg142 
Asn183 

Arg139 
Asn180 

Arg143 
Asn184 

Tyr214 Tyr211 Tyr215 
aInteracts with SCR6. 1193 

  1194 
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Table S2. CspZ variants differ in binding to Factor H from different animals 1195 

  ELISAa  -----  Surface Plasmon Resonanceb  ----- 

CspZ variant Factor H source KD (μM) KD (μM) kon (103s-1M-1) koff (s-1) 

      
CspZB31 Mouse 0.43±0.74c 0.20±0.02 45.78±15.36 0.0084±0.0022 

 Quail 0.91±0.08d 0.81±0.01 117.43±3.25 0.095±0.0032 
      

CspZB379 Mouse n.b.d n.b. n.b. n.b. 
 Quail 0.59±0.037 0.75±0.15 119.83±7.08 0.088±0.012 
      

CspZB379LB408 Mouse 1.39±0.12 0.90±0.12 21.16±10.58 0.018±0.0094 
 Quail n.b. n.b. n.b. n.b. 
      

CspZB408 Mouse 0.68±0.05 0.20±0.02 22.13±1.31 0.008±0.002 
 Quail n.b. n.b. n.b. n.b. 
      

CspZB408LB379 Mouse n.b. n.b. n.b. n.b. 
 Quail 1.38±0.47 0.99±0.06 72.43±2.14 0.072±0.006 
      

GSTe Mouse n.b. n.d. n.d. n.d. 
 Quail n.b. n.d. n.d. n.d. 
      

All values represent the mean ± SEM of three experiments. 1196 
aDetermined using GST tagged CspZ variants or mutant proteins.  1197 
bDetermined using untagged CspZ variants or mutant proteins. 1198 
cReported previously in (41). 1199 
dNo binding activity was detected. 1200 
eGST was included as a negative control.1201 
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Table S3. The generation time for B. burgdorferi strains used in this study. 1202 

Strain Generation timea, b 

B31-A3 16.45 ± 1.38 

B31-A3∆cspZ/vector 16.42 ± 1.79 

B31-A3∆cspZ/pCspZB31 17.12 ± 1.05 

B31-A3∆cspZ/pCspZB379 16.62 ± 2.07 

B31-A3∆cspZ/pCspZB379LB408 16.40 ± 0.83 

B31-A3∆cspZ/pCspZB408 17.31 ± 0.62 

B31-A3∆cspZ/pCspZB408LB379 18.66 ± 2.06 
aThe generation time was calculated as described previously (18) 1203 
bThere were no significant differences between generation time of any strain (Kruskal-Wallis test with the two-stage step-up 1204 
method of Benjamini, Krieger, and Yekutieli) 1205 

  1206 
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Table S4: The percentage of SAPs in CspZ variants  1207 

Loop type Position AA % AA % 
CspZB408 20 Asp 64.00 Asn 36.00 
 30 Asp 88.00 Asn 36.00 
 41 Val 56.00 Phe 44.00 
 84 Phe 52.00 Leu 48.00 
 95 Lys 92.00 Asn 8.00 
 107 Met 56.00 Ile 44.00 
 183 Asp 52.00 Asn 48.00 
CspZB31 30 Asn 88.30 Asp 11.70 
 66a Gly 80.85 Val 19.15 
 68a Phe 80.85 Tyr 19.15 
 81 Phe 88.30 Leu 11.70 
 88 Val 98.94 Ala 1.06 
 131 Val 94.68 Ala 5.32 
 154 Ser 98.64 Pro 1.06 
 161 Lys 96.81 Glu 3.19 
 203 Ser 98.94 Lys 1.06 
 204 Arg 98.94 Leu 1.06 
 208 Asn 67.02 Asp 32.98 
CspZB379 30 Asp 87.50 Asn 12.50 
 50b Tyr 97.92 His 2.08 
 235 Ile 97.92 Ser 2.08 

aPart of the loop structures 1208 
bPredicted to directly interact with FH 1209 

  1210 
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Table S5. Estimated diversification times for each lineage. 1211 

Lineage Mediana HPD5%a HPD95%a 
CspZ-B31 784 263 1860 
CspZ-B379 261 59 741 
CspZ-B408 671 179 1679 

aYears before present 1212 

  1213 
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Table S6. CspZ variants of last common ancestral states display versatile binding ability to 1214 
human, mouse, and quail FH  1215 

CspZ variant Factor H source KD (μM)a 

   
CspZB31 Human 0.31±0.03 
 Mouse 0.38±0.07 

 Quail 0.74±0.15 
   

CspZ-LCAS1 Human 0.34±0.10 
 Mouse 0.41±0.07 

 Quail 0.77±0.09 
   

CspZ-LCAS2 Human 0.23±0.02 
 Mouse 0.36±0.05 

 Quail 0.94±0.09 
   

CspZ-LCAS3 Human 0.25±0.02 
 Mouse 0.53±0.12 

 Quail 0.73±0.06 
   

CspZ-LCAS4 Human 0.30±0.01 
 Mouse 0.40±0.01 

 Quail 0.93±0.06 
   

DbpAb Human n.b.c 
 Mouse n.b. 

 Quail n.b. 
   

All values represent the mean ± SEM of three experiments. 1216 
aDetermined using histidine tagged CspZ variants or mutant proteins.  1217 
bDbpA was included as a negative control  1218 
cNo binding activity was detected. 1219 
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Table S7. The strains and plasmids used in this study.  1220 

Strain or plasmid Genotype or characteristic Source 

B. burgdorferi 
B313 High-passage B. burgdorferi B31 missing 

lp5, lp17, lp21, lp25, lp28-1, lp28-2, lp28-
3, lp28-4, lp36, lp38, lp54, lp56, cp9, 
cp32-4, cp32-6, cp32-8, cp32-9 
 

(120)  

B31-A3 
 

Clone of B. burgdorferi B31 missing cp9 
RST type 1, ospC type A 
 
 

(121)  

B379 Clone of B. burgdorferi B379 isolated 
from humans with erythema migrans. 
RST Type 2, ospC type K 
 

(21) 

B408 Clone of B. burgdorferi B379 isolated 
from humans with erythema migrans. 
RST type 3, ospC type K 
 

(21) 

B31-A3∆cspZ B31-A3∆cspZ::KanRa (122) 

B31-A3∆cspZ/Vector B31-A3∆cspZ::KanR carrying plasmid 
pKFSS  

(32)  

B31-A3∆cspZ/pCspZB31      B31-A3∆cspZ::KanR complemented with 
intact cspZ driven by the promoter of 
cspZB31 
 

(32) 

B31-A3∆cspZ/pCspZB379 B31-A3∆cspZ::KanR complemented with 
intact cspZB379 driven by the promoter of 
cspZB31 

This study 

B31-A3∆cspZ/pCspZB408 B31-A3∆cspZ::KanR complemented with 
intact cspZB408 driven by the promoter of 
cspZB31 

This study 

B31-
A3∆cspZ/pCspZB379LB408 

B31-A3∆cspZ::KanR complemented with 
intact cspZ B379 except the residues 190 to 
216 replaced by residues 190 to 213 from 
cspZB408 ,driven by the promoter of 
cspZB31 

This study 
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B31-
A3∆cspZ/pCspZB408LB379 

B31-A3∆cspZ::KanR complemented with 
intact cspZ B408 except the residues 190 to 
213 replaced by residues 190 to 216 from 
cspZB379, driven by the promoter of 
cspZB31 

This study 

   
E. coli 
DH5α F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 

recA1 endA1 hsdR17(rk-, mk+) phoA 
supE44 thi-1 gyrA96 relA1 λ- 
 

ThermoFisher 

BL21(DE3) F−, ompT hsdSB (rB− mB−) gal dcm 
(DE3) 
 

Novagen 

BL21(DE3)/pGEX4T2-
CspZB31 

BL21(DE3) producing GST-tagged 
residues 58 to 711 of CspZB31 

(32)  

BL21(DE3)/pGEX4T2-
CspZB379 

BL21(DE3) producing GST-tagged 
residues 58 to 723 of CspZB379  

 

This study 

BL21(DE3)/pGEX4T2-
CspZB408 

BL21(DE3) producing GST-tagged 
residues 58 to 720 of CspZB408  

 

This study 

BL21(DE3)/pGEX4T2-
CspZB379LB408 

BL21(DE3) producing GST-tagged 
residues 58 to 723 of CspZB379 except the 
residues 190 to 216 replaced by residues 
190 to 213 from CspZB408  
 

This study 

BL21(DE3)/pGEX4T2-
CspZB408LB379 

BL21(DE3) producing GST-tagged 
residues 58 to 720 of CspZB408 except the 
residues 190 to 213 replaced by residues 
190 to 216 from CspZB379  
 

This study 

BL21(DE3)/pET15b-
DbpAVS461 

BL21(DE3) producing histidine-tagged 
residues 22 to 170 of DbpAVS461 

(123)  

   
BL21(DE3)/pET28a-CspZ-
LCAS1 

BL21(DE3 producing histidine tagged 
residue 58 to 711 of CspZ-LCAS1 

This study 

   
BL21(DE3)/pET28a-CspZ-
LCAS2 

BL21(DE3 producing histidine tagged 
residue 58 to 711 of CspZ-LCAS2 

This study 
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BL21(DE3)/pET28a-CspZ-
LCAS3 

BL21(DE3 producing histidine tagged 
residue 58 to 711 of CspZ-LCAS3 

This study 

   
BL21(DE3)/pET28a-CspZ-
LCAS4 

BL21(DE3 producing histidine tagged 
residue 58 to 711 of CspZ-LCAS4 

This study 

   
Rosetta-gami(DE3) F– ompT hsdSB (rB– mB–) gal dcm 

lacY1 ahpC (DE3) gor522::Tn10 trxB 
pRARE (CamR, KanR, TetR) 
 

MilliporeSigma 

P. pastoris   

X-33/FH SCR6-7 
 

Wild-type Mut+ Pichia strain for 
expression of FH SCR6-7 (residues 321 to 
444 of human FH) 
 

Invitrogen 

Plasmids 
pJET1.2/Blunt AmpRa; PCR cloning vector 

 
ThermoFisher 

pGEX4T2 AmpR; GST-tagged protein expression 
vector 
 

Qiagen 

pGEX4T2-CspZ AmpR; pGEX4T2 encoding GST fusion 
protein residue 58 to 711 of CspZ  
 

(32)  

pGEX4T2-CspZ- CspZB379 AmpR; pGEX4T2 encoding GST fusion 
protein residue 58 to 723 of CspZB379  

 

This study 

pGEX4T2-CspZ- CspZB408 AmpR; pGEX4T2 encoding GST fusion 
protein residue 58 to 720 of CspZB408  

 

This study 

pGEX4T2-CspZ- 
CspZB379LB408 

AmpR; pGEX4T2 encoding GST fusion 
protein residue 58 to 723 of CspZB379 

except the residues 190 to 216 replaced by 
residues 190 to 213 from CspZB408  
 

This study 

pGEX4T2-CspZ- 
CspZB408LB379 

AmpR; pGEX4T2 encoding GST fusion 
protein residue 58 to 720 of CspZB408 
except the residues 190 to 213 replaced by 
residues 190 to 216 from CspZB379  

 

This study 
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pET28a KanRb; Histidine-tagged protein 
expression vector 
 

EMD Millipore 

pET28a-CspZ-LCAS1 KanR; pET28a encoding histidine protein 
residues 58 to 711 of the CspZ-LCAS1 

This study 

   
pET28a-CspZ-LCAS2 KanR; pET28a encoding histidine protein 

residues 58 to 711 of the CspZ-LCAS2 
This study 

   
pET28a-CspZ-LCAS3 KanR; pET28a encoding histidine protein 

residues 58 to 711 of the CspZ-LCAS3 
This study 

   
pET28a-CspZ-LCAS4 KanR; pET28a encoding histidine protein 

residues 58 to 711 of the CspZ-LCAS4 
 

This study 

pKFSS-1 StrRc; Borrelia shuttle vector  
 

(124) 

pKFSS/pCspZB31 StrR; pKFSS-1 encoding intact cspZB31, 
driven by the promoter of cspZB31 

 

(32)  

pKFSS/pCspZB379 StrR; pKFSS-1 encoding intact cspZB379, 
driven by the promoter of cspZB31 

 

This study 

pKFSS/pCspZB408 StrR; pKFSS-1 encoding intact cspZB408, 
driven by the promoter of cspZB31  
 

This study 

pKFSS/pCspZB379LB408 StrR; pKFSS-1 encoding intact cspZB379 

except the residues 190 to 216 replaced by 
residues 190 to 213 from cspZB408, driven 
by the promoter of cspZB31  
 

This study 

pKFSS/pCspZB408LB379 
 
 
 
 

StrR; pKFSS-1 encoding intact cspZB408 
except the residues 190 to 213 replaced by 
residues 190 to 216 from cspZB379, driven 
by the promoter of cspZB31 

 

This study 

pETm-11/pCspZB379 

 
KanR; 6xHis tag expression vector 
encoding CspZB379 residues 23-236 
 

This study 

pETm-11/pCspZB408 

 

 
pPICZα-FH 

KanR; 6xHis tag expression vector 
encoding CspZB408 residues 23-236 
 

This study 
 
 
This study 
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Zeocin resistant; yeast expression vector 
encoding SCR6-7 of human FH under 
αMF secretion signal 

aAmpicillin resistant  1221 
bKanamycin resistant 1222 
cStreptomycin resistant 1223 

  1224 
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Table S8. Primers used in this study. 1225 

Purpose Primer Sequence 
qPCR spirochete 
burden: recA 

BBRecAfp GTGGATCTATTGTATTAGATGAGGCTCTCG 

BBRecArp CAGCAACATGTCTGGCATTAGACAC 
Generate B379LB408: 
SLIM step 1 

B379LB408_A-1_mtsengtd CAGAAGATGTGTTACCTTCCGAAGTCATATAAGTCATAATATC
ATTATATGCTCCTGTA 

B379LB408_B-1_mtsengtd TATGACTTATATGACTTCGGAAGGTAACACATCTTCTGATAAA
AGTAAGGTTAATCAAG 

B379LB408_C-1_mtsengtd ATATCATTATATGCTCCTGTA 
B379LB408_D-1_mtsengtd ATAAAAGTAAGGTTAATCAAG 

Generate B379LB408: 
SLIM step 2 

B379LB408_A-2_tsenngtd TTTTATCAGAATCTGTGTTATTACCTTCCGAAGTATAAGTCATA
ATATCATTATATGCTCCTGTA 

B379LB408_B-2_tsenngtd TATGACTTATACTTCGGAAGGTAATAACACAGATTCTGATAAA
AGTAAGGTTAATCAAGCTATAT 

B379LB408_C-2_tsenngtd ATATCATTATATGCTCCTGTA 
B379LB408_D-2_tsenngtd GTAAGGTTAATCAAGCTATAT 

Generate B379LB408: 
SLIM step 3 

B379LB408_A-3_sevnnvtd CAGAATCTGTAACGTTATTAACTTCCGAATAAGTCATAATATCA
TTATATGCTCCTGTA 

B379LB408_B-3_sevnnvtd TATGACTTATTCGGAAGTTAATAACGTTACAGATTCTGATAAA
AGTAAGGTTAATCAAG 

B379LB408_C-3_sevnnvtd ATATCATTATATGCTCCTGTA 
 B379LB408_D-3_sevnnvtd ATAAAAGTAAGGTTAATCAAG 

Generate B408LB379: 
SLIM step 1 

B408LB379_A-1_tsenngtd CAGAATCTGTACCGTTATTTTCCGAAGTATAAGTCATAATATCA
TTATATGCTTCTGTA 

B408LB379_B-1_tsenngtd TATGACTTATACTTCGGAAAATAACGGTACAGATTCTGATAAA
AGTAAGGTTAATCAAG 

B408LB379_C-1_tsenngtd ATATCATTATATGCTTCTGTA 
B408LB379_D-1_tsenngtd TAAAAGTAAGGTTAATCAAG 

Generate B408LB379: 
SLIM step 2 

B408LB379_A-2_mtsengts TTTTATCAGAAGATGTACCGTTTTCCGAAGTCATATAAGTCATA
ATATCATTATATGCTTCTGTA 
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B408LB379_B-2_mtsengts TATGACTTATATGACTTCGGAAAACGGTACATCTTCTGATAAA
AGTAAGGTTAATCAAGCTATAT 

B408LB379_C-2_mtsengts ATATCATTATATGCTTCTGTA 
B408LB379_D-2_mtsengts GTAAGGTTAATCAAGCTATAT 

Generate B408LB379: 
SLIM step 3 

B408LB379_A-3_imtysegts AAGATGTACCTTCCGAATAAGTCATAATATAAGTCATAATATC
ATTATATGCTTCTGTA 

B408LB379_B-3_imtysegts TATGACTTATATTATGACTTATTCGGAAGGTACATCTTCTGATA
AAAGTAAGGTTAATC 

B408LB379_C-3_imtysegts ATATCATTATATGCTTCTGTA 
B408LB379_D-3_imtysegts CTGATAAAAGTAAGGTTAATC 

Generate 
CspZB379 residues 
23-236: structural 
studies 

cspZB379 Forw. 
cspZB379 Rev. 

CATGCCATGGGCAGATTAAATCAGAGAAAT 
GCTTGCGGCCGCTTATAATAAAGTTTGCTTAAT 

Generate 
CspZB408 residues 
23-236: structural 
studies 
 

cspZB408 Forw. 
cspZB408 Rev. 

CATGCCATGGGCAGATTAAATCAGAGAAAT 
GCTTGCGGCCGCTTATAATAAAGTTTGCTTAAT 

   
1226 
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Table S9. Data processing, refinement, and validation statistics of crystal structures.  1227 

Dataset CspZB408 CspZB379 CspZB408-
SCR6-7 

X-ray diffraction data    
PDB entry 7ZJK 7ZJJ 7ZJM 

Beamline BESSY II 
beamline 14.1 

BESSY II 
beamline 14.1 

BESSY II 
beamline 14.1 

Space group P21 P22121 P212121 

a, b, c (Å) 47.63, 87.49, 
48.86 

53.60, 59.95, 
61.05 

42.10, 71.07, 
147.75 

α, β, γ (°) 90.0, 97.1, 
90.0 

90.0, 90.0, 
90.0 

90.0, 90.0, 
90.0 

Wavelength (Å) 0.9798 0.9762 0.9798 
Resolution (Å) 48.49-2.45 61.05-2.10 73.87-2.59 
Highest resolution bin (Å) 2.55-2.45 2.16-2.10 2.65-2.59 
No. of reflections 97062 127094 101717 
No. of unique reflections 14406 11805 14404 
Completeness (%) 98.2 (88.4)a 98.9 (99.5) 99.8 (99.8) 
Rmerge 0.09 (0.38) 0.10 (0.35) 0.11 (0.38) 
CC1/2 0.997 (0.940) 0.998 (0.985) 0.988 (0.926) 
I/σ (I) 12.1 (4.2) 14.8 (6.3) 12.8 (4.9) 
Multiplicity 6.7 (6.2) 10.8 (11.1) 7.1 (7.5) 

Refinement    
Rwork 0.193 (0.248) 0.208 (0.371) 0.217 (0.270) 
Rfree 0.262 (0.399) 0.262 (0.431) 0.275 (0.354) 
Average B-factor (Å2)     
Overall               45.1 33.0 31.9 
From Wilson plot 36.9 15.9 24.1 
No. of atoms    
Protein 3592 1769 1914 
RMS deviations from ideal    
Bond lengths (Å)  0.007 0.008 0.010 
Bond angles (o) 1.435 1.541 1.548 
Ramachandran outliers (%)    
Residues in most favored regions (%) 93.74 95.31 94.93 
Residues in allowed regions (%) 5.10 4.69 4.17 
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aValues in parentheses are for the highest resolution bin. 1228 
 1229 

 1230 

Outliers (%) 1.16 0.00 0.90 
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	FIGURE LEGENDS
	Figure 1. Superimposed crystal structures of CspZB408-SCR6-7 complex, CspZB31, and CspZB379 reveals the FH-binding mechanisms of CspZ variants. (A) The crystal structure of human FH domains SCR6 (light grey) and SCR7 (dark grey) in complex with CspZB4...
	Figure 2. The polymorphic loop region in CspZ promotes host-specific FH-binding ability.
	(A, B) Ten micrograms of mouse or quail FH were conjugated on a SPR chip. 0.008 to 2μM of untagged (A) CspZB31, CspZB379, CspZB408, (B) CspZB379LB408, or CspZB408LB379 was flowed over the chip surface. Binding was measured in response units (RU) by S...
	Figure 3. The CspZ loop-driven, variable FH-binding activity confers host-specific complement inactivation on spirochete surface and serum resistance. (A to D) B. burgdorferi strains B313 (negative control), B31-A3, B31-A3ΔcspZ harboring the empty vec...
	Figure 4. The CspZ loop-mediated FH-binding activity defines host-specific early hematogenous dissemination in a complement-dependent manner. I. scapularis nymphs carrying B31-A3, B31-A3ΔcspZ harboring the empty vector pKFSS (“ΔcspZ/Vector”), or this ...
	Figure 5. Phylogeny and sequence comparisons support polymorphic CspZ loop arising from host-specific adaptation of Lyme borreliae.  (A) Unrooted likelihood tree of 174 B. burgdorferi cspZ isolates generated with IQ-tree and visualized in iTOL. The na...
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	Figure S1. Amino acid alignments of the CspZ and FH variants. Amino acid alignments of (A) the indicated CspZ variants, mutants, and reconstructed ancestral states of variants or (B) human, mammalian, and avian FH SCR 6-7. (A) The CspZ amino acids acc...
	Figure S2. The polymorphic loop structures in recombinant CspZ proteins promote host-specific FH-binding ability determined by ELISA. The indicated concentrations of recombinant GST-tagged CspZB379, CspZB408, CspZB379LB408, or CspZB408LB379, or GST (n...
	Figure S3. Indistinguishable surface production of CspZ among B. burgdorferi strains was observed using flow cytometry. Flow cytometry analysis of CspZ localized on the surface of B. burgdorferi strains B31-A3, B31-A3ΔcspZ harboring the vector pKFSS (...
	Figure S4. The polymorphic CspZ loop determines the host-specific, allelically variable FH-binding activity on spirochete surface. B. burgdorferi strains B313 (negative control), B31-A3, B31-A3ΔcspZ harboring the empty vector pKFSS (“ΔcspZ/Vector”), o...
	Figure S5. The CspZ loop-driven, host-specific serum resistance is recovered in complement-depleted sera. B. burgdorferi strains B313 (negative control), B31-A3, B31-A3ΔcspZ harboring the empty vector pKFSS (“ΔcspZ/Vector”), or this mutant strain prod...
	Figure S6. B. burgdorferi strains exhibit similar burdens in flat and fed nymphs. B. burgdorferi-infected flat nymphs were allowed to feed to repletion on (B, E) BALB/c or (G) C3-/- BALB/c mice, or (C, F) quail or (H) OmCI-treated quail. The spirochet...
	Figure S7. CspZ facilitates early bacteremia and distal tissue colonization during tick infection. The I. scapularis nymphs carrying B. burgdorferi strain B31-A3 or B31-A3ΔcspZ harboring the vector pKFSS (“ΔcspZ/Vector”) were allowed to feed until rep...
	Figure S8. The CspZ loop-mediated early hematogenous dissemination is recovered when complement is depleted from hosts. I. scapularis nymphs carrying B31-A3, B31-A3ΔcspZ harboring the empty vector pKFSS (“ΔcspZ/Vector”), or this cspZ mutant strain pro...
	Figure S9. Phylogenetic network of cspZ haplotypes. Edges are colored based on their loop structure (CspZB379, CspZB408, and CspZB31 in green, orange, and purple, respectively).
	Figure S10. The CspZ last common ancestor states are predicted to versatiley bind FH. The crystal structure of CspZB408-SCR6-7 where human SCR6-7 (grey) is superimposed with mouse FH SCR6-7 (gold, PDB: 2YBY) and the predicted structure of quail SCR6-7...
	Figure S11. Structural comparison between CspZB408-human SCR6-7 and the N. meningitidis Fhbp-human SCR6-7 complexes. Human FH SCR6-7 (light grey) from the complex structure with CspZB408 (orange) was superimposed with human FH SCR6-7 (dark grey) from ...
	Figure S12. CD spectra demonstrate no impacts of secondary structures by swapping the loops. Far-UV CD analysis of CspZB379, CspZB408, CspZB379LB408, and CspZB408LB379. The molar ellipticity, Φ, was measured from 190 to 250nm for 10μM of each protein ...
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