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ABSTRACT

Perceiving and manipulating 3D articulated objects (e.g., cabinets, doors) in hu-
man environments is an important yet challenging task for future home-assistant
robots. The space of 3D articulated objects is exceptionally rich in their myriad
semantic categories, diverse shape geometry, and complicated part functionality.
Previous works mostly abstract kinematic structure with estimated joint parame-
ters and part poses as the visual representations for manipulating 3D articulated
objects. In this paper, we propose object-centric actionable visual priors as a
novel perception-interaction handshaking point that the perception system outputs
more actionable guidance than kinematic structure estimation, by predicting dense
geometry-aware, interaction-aware, and task-aware visual action affordance and
trajectory proposals.
We design an interaction-for-perception framework VAT-MART to learn such
actionable visual representations by simultaneously training a curiosity-driven rein-
forcement learning policy exploring diverse interaction trajectories and a perception
module summarizing and generalizing the explored knowledge for pointwise pre-
dictions among diverse shapes. Experiments prove the effectiveness of the proposed
approach using the large-scale PartNet-Mobility dataset in SAPIEN environment
and show promising generalization capabilities to novel test shapes, unseen object
categories, and real-world data.

1 INTRODUCTION

We live in a 3D world composed of a plethora of 3D objects. To help humans perform everyday tasks,
future home-assistant robots need to gain the capabilities of perceiving and manipulating a wide range
of 3D objects in human environments. Articulated objects that contain functionally important and
semantically interesting articulated parts (e.g., cabinets with drawers and doors) especially require
significantly more attention, as they are more often interacted with by humans and artificial intelligent
agents. Having much higher degree-of-freedom (DoF) state spaces, articulated objects are, however,
generally more difficult to understand and subsequently to interact with, compared to 3D rigid objects
that have only 6-DoF for their global poses.

There has been a long line of research studying the perception and manipulation of 3D articulated
objects in computer vision and robotics. On the perception side, researchers have developed various
successful visual systems for estimating kinematic structures (Abbatematteo et al., 2019; Staszak
et al., 2020), articulated part poses (Li et al., 2020; Jain et al., 2020; Liu et al., 2020), and joint
parameters (Wang et al., 2019b; Yan et al., 2019). Then, with these estimated visual articulation
models, robotic manipulation planners and controllers can be leveraged to produce action trajectories
for robot executions (Klingbeil et al., 2010; Arduengo et al., 2019; Florence et al., 2019; Urakami
et al., 2019; Mittal et al., 2021). While the commonly used two-stage solution underlying most of
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Figure 1: Given an input 3D articulated object (a), we propose a novel perception-interaction
handshaking point for robotic manipulation tasks - object-centric actionable visual priors, including
per-point visual action affordance predictions (b) indicating where to interact, and diverse trajectory
proposals (c) for selected contact points (marked with green dots) suggesting how to interact.

these systems reasonably breaks the whole system into two phases and thus allows bringing together
well-developed techniques from vision and robotics communities, the current handshaking point –
the standardized visual articulation models (i.e. kinematic structure, articulated part poses, and joint
parameters), may not be the best choice, since essential geometric and semantic features for robotic
manipulation tasks, such as interaction hotspots (e.g. edges, holes, bars) and part functionality (e.g.
handles, doors), are inadvertently abstracted away in these canonical representations.

We propose a new type of actionable visual representations (Do et al., 2018; Nagarajan et al., 2019;
Mo et al., 2021) exploring a more geometry-aware, interaction-aware, and task-aware perception-
interaction handshaking point for manipulating 3D articulated objects. Concretely, we train the
perception system to predict action possibility and visual action trajectory proposals at every point
over parts of 3D articulated objects (See Figure 1). In contrast to previous work that use standardized
visual articulation models as visual representations, our framework VAT-MART predicts per-point
dense action trajectories that are adaptive to the change of geometric context (e.g., handles, door
edges), interactions (e.g., pushing, pulling), and tasks (e.g., open a door for 30◦, close up a drawer
by 0.1-unit-length). Abstracting away from concrete external manipulation environments, such as
robot arm configurations, robot base locations, and scene contexts, we aim for learning unified object-
centric visual priors with a dense and diverse superset of visual proposals that can be potentially
applied to different manipulation setups, avoiding learning separate manipulation representations
under different circumstances.

The proposed actionable visual priors, as a ”preparation for future tasks” (Ramakrishnan et al., 2021)
or ”visually-guided plans” (Wang et al., 2019a; Karamcheti et al., 2021), can provide informative
guidance for downstream robotic planning and control. Sharing a similar spirit with Nagarajan et al.
(2019); Mo et al. (2021), we formulate our visual action possibility predictions as per-point affordance
maps, on which the downstream robotic planners may sample a position to interact according to the
predicted likelihood of success. Then, for a chosen point for interaction, the discrete task planner
may search for applicable interaction modes (e.g., whether to attempt a grasp) within a much smaller
space formed by the visual action trajectory distribution, instead of searching in the entire solution
space. Next, considering the robot kinematic constraints and physic collisions, the continuous motion
planner can further select an open-loop trajectory from the set of proposed visual action trajectory
candidates as an initial value for optimization, and finally pass to the robot controller for execution.
More recent reinforcement learning (RL) based planners and controllers can also benefit from our
proposed solution spaces for more efficient exploration.

To obtain such desired actionable visual priors, we design an interaction-for-perception learning
framework VAT-MART, as shown in Figure 2. By conducting trial-and-error manipulation with a set
of diverse 3D articulated objects, we train an RL policy to learn successful interaction trajectories
for accomplishing various manipulation tasks (e.g., open a door for 30◦, close up a drawer by 0.1-
unit-length). In the meantime, the perception networks are simultaneously trained to summarize the
RL discoveries and generalize the knowledge across points over the same shape and among various
shapes. For discovering diverse trajectories, we leverage curiosity feedback (Pathak et al., 2017) for
enabling the learning of perception networks to reversely affect the learning of RL policy.

We conduct experiments using SAPIEN (Xiang et al., 2020) over the large-scale PartNet-
Mobility (Chang et al., 2015; Mo et al., 2019) dataset of 3D articulated objects. We use 562
shapes in 7 object categories to perform our experiments and show that our VAT-MART framework
can successfully learn the desired actionable visual priors. We also observe reasonably good gen-
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eralization capabilities over unseen shapes, novel object categories, and real-world data, thanks to
large-scale training over diverse textureless geometry.

In summary, we make the following contributions in this work:

• We formulate a novel kind of actionable visual priors making one more step towards
bridging the perception-interaction gap for manipulating 3D articulated objects;

• We propose an interaction-for-perception framework VAT-MART to learn such priors with
novel designs on the joint learning between exploratory RL and perception networks;

• Experiments conducted over the PartNet-Mobility dataset in SAPIEN demonstrate that our
system works at a large scale and learns representations that generalize over unseen test
shapes, across object categories, and even real-world data.

2 RELATED WORK

Perceiving and Manipulating 3D Articulated Objects has been a long-lasting research topic in
computer vision and robotics. A vast literature (Yan & Pollefeys, 2006; Katz et al., 2008; Sturm
et al., 2009; 2011; Huang et al., 2012; Katz et al., 2013; Martin & Brock, 2014; Höfer et al., 2014;
Katz et al., 2014; Schmidt et al., 2014; Hausman et al., 2015; Martı́n-Martı́n et al., 2016; Tzionas &
Gall, 2016; Paolillo et al., 2017; Martın-Martın & Brock, 2017; Paolillo et al., 2018; Martı́n-Martı́n &
Brock, 2019; Desingh et al., 2019; Nunes & Demiris, 2019) has demonstrated successful systems,
powered by visual feature trackers, motion segmentation predictors, and probabilistic estimators, for
obtaining accurate link poses, joint parameters, kinematic structures, and even system dynamics of
3D articulated objects. Previous works (Peterson et al., 2000; Jain & Kemp, 2009; Chitta et al., 2010;
Burget et al., 2013) have also explored various robotic planning and control methods for manipulating
3D articulated objects. More recent works further leveraged learning techniques for better predicting
articulated part configurations, parameters, and states (Wang et al., 2019b; Yan et al., 2019; Jain
et al., 2020; Zeng et al., 2020; Li et al., 2020; Liu et al., 2020; Mu et al., 2021), estimating kinematic
structures (Abbatematteo et al., 2019; Staszak et al., 2020), as well as manipulating 3D articulated
objects with the learned visual knowledge (Klingbeil et al., 2010; Arduengo et al., 2019; Florence
et al., 2019; Urakami et al., 2019; Mittal et al., 2021). While most of these works represented visual
data with link poses, joint parameters, and kinematic structures, such standardized abstractions may
be insufficient if fine-grained part geometry, such as drawer handles and faucet switches that exhibit
rich geometric diversity among different shapes, matters for downstream robotic tasks.

Learning Actionable Visual Representations aims for learning visual representations that are
strongly aware of downstream robotic manipulation tasks and directly indicative of action probabilities
for robotic executions, in contrast to predicting standardized visual semantics, such as category
labels (Russakovsky et al., 2015; Wu et al., 2015b), segmentation masks (Lin et al., 2014; Mo et al.,
2019), and object poses (Hinterstoisser et al., 2011; Xiang et al., 2016), which are usually defined
independently from any specific robotic manipulation task. Grasping (Montesano & Lopes, 2009;
Lenz et al., 2015; Mahler et al., 2017; Fang et al., 2020; Mandikal & Grauman, 2021; Corona et al.,
2020; Kokic et al., 2020; Yang et al., 2020; Jiang et al., 2021) or manipulation affordance (Kjellström
et al., 2011; Do et al., 2018; Fang et al., 2018; Goff et al., 2019; Nagarajan et al., 2019; Nagarajan
& Grauman, 2020; Nagarajan et al., 2020; Xu et al., 2021; Mo et al., 2021) is one major kind of
actionable visual representations, while many other types have been also explored recently (e.g.,
spatial maps (Wu et al., 2020; 2021), keypoints (Wang et al., 2020; Qin et al., 2020), contact
points (You et al., 2021), etc). Following the recent work Where2Act (Mo et al., 2021), we employ
dense affordance maps as the actionable visual representations to suggest action possibility at every
point on 3D articulated objects. Extending beyond Where2Act which considers task-less short-term
manipulation, we further augment the per-point action predictions with task-aware distributions of
trajectory proposals, providing more actionable information for downstream executions.

Learning Perception from Interaction augments the tremendously successful learning paradigm
using offline curated datasets (Russakovsky et al., 2015; Lin et al., 2014; Chang et al., 2015; Mo
et al., 2019) by allowing learning agents to collect online active data samples, which are more
task-aware and learning-efficient, during navigation (Anderson et al., 2018; Ramakrishnan et al.,
2021), recognition (Wilkes & Tsotsos, 1992; Yang et al., 2019; Jayaraman & Grauman, 2018),
segmentation (Pathak et al., 2018; Gadre et al., 2021), and manipulation (Pinto et al., 2016; Bohg
et al., 2017). Many works have also demonstrated the usefulness of simulated interactions for
learning perception (Wu et al., 2015a; Mahler et al., 2017; Xu et al., 2019; Ramakrishnan et al., 2021;
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Nagarajan & Grauman, 2020; Lohmann et al., 2020; Mo et al., 2021) and promising generalizability
to the real world (James et al., 2019; Chebotar et al., 2019; Hundt et al., 2019; Liang et al., 2020;
Kadian et al., 2020; Anderson et al., 2020; Rao et al., 2020). Our method follows the route of learning
perception from interaction via using the action trajectories discovered by an RL interaction policy to
supervise a jointly trained perception system, which reversely produces curiosity feedback (Pathak
et al., 2017) to encourage the RL policy to explore diverse action proposals.

3 ACTIONABLE VISUAL PRIORS: Action Affordance and Trajectory Proposals

We propose novel actionable visual representations for manipulating 3D articulated objects (see
Fig. 1). For each articulated object, we learn object-centric actionable visual priors, which are
comprised of: 1) an actionability map over articulated parts indicating where to interact; 2) per-point
distributions of visual action trajectory proposals suggesting how to interact; and 3) estimated success
likelihood scores rating the outcomes of the interaction. All predictions are interaction-conditioned
(e.g., pushing, pulling) and task-aware (e.g., open a door for 30◦, close a drawer by 0.1-unit-length).

Concretely, given a 3D articulated object O with its articulated parts P = {P1,P2, · · ·}, an interaction
type T , and a manipulation task θ , we train a perception system that makes dense predictions at
each point p over each articulated part p ∈ ∪P: 1) an actionability score ap|O,T,θ ∈ [0,1] indicating
how likely there exists an action trajectory of interaction type T at point p that can successfully
accomplish the task θ ; 2) a distribution of visual action trajectories Pp(·|O,T,θ), from which we
can sample diverse action trajectories τp|O,T,θ ∼ Pp(·|O,T,θ) of interaction type T to accomplish the
task θ at point p; and 3) a per-trajectory success likelihood score rτ|O,p,T,θ ∈ [0,1].

Inputs. We represent the input 3D articulated object O as a partial point cloud SO. We consider
two typical interaction types: pushing and pulling. A pushing trajectory maintains a closed gripper
and has 6-DoF motion performing the pushing, whereas a pulling trajectory first performs a grasping
operation at the point of interaction by closing an initially opened gripper and then has the same
6-DoF motion during the pulling. For articulated objects we use in this work, we only consider 1-DoF
part articulation and thus restrict the task specification θ ∈ R. For example, a cabinet drawer has a
1-DoF prismatic translation-joint and a refrigerator door is modeled by a 1-DoF revolute hinge-joint.
We use the absolute angular degrees in radian (i.e. θ ∈ [−π,π]) for revolute joints and use the units
of length (i.e. θ ∈ [−1,1]) relative to the global shape scale for prismatic joints.

Outputs. Both the actionability score ap|O,T,θ and per-trajectory success likelihood score rτ|O,p,T,θ
are scalars within [0,1], where larger values indicate higher likelihood. One can use a threshold
of 0.5 to obtain binary decisions if needed. Every action trajectory τp|O,T,θ is a sequence of 6-
DoF end-effector waypoints (wp0,wp1, · · · ,wpk), with variable trajectory length (k ≤ 5). In our
implementation, we adopt a residual representation (wp0,wp1−wp0, · · · ,wpk−wpk−1) for the action
trajectory, as it empirically yields better performance. Each 6-DoF waypoint is comprised of a 3-DoF
robot hand center x and 3-DoF orientation R. We use the 6D-rotation representation (Zhou et al.,
2019) for the orientation of wp0 and predict 3-DoF euler angles for subsequent orientation changes.

4 VAT-MART: AN Interaction-for-perception LEARNING FRAMEWORK

The VAT-MART system (Fig. 2) consists of two parts: an RL policy exploring diverse action
trajectories and a perception system learning the proposed actionable visual priors. While the RL
policy collects interaction trajectories for supervising the perception networks, the perception system
provides curiosity feedback (Pathak et al., 2017) for encouraging the RL policy to further explore
diverse solutions. In our implementation, we first pretrain the RL policy, then train the perception
network with RL-collected data, and finally finetune the two parts jointly with curiosity-feedback
enabled. We describe key system designs below and will release code for our implementation.

4.1 THE RL POLICY FOR INTERACTIVE TRAJECTORY EXPLORATION

For every interaction type T and part articulation type, we train a single conditional RL policy using
TD3 (Fujimoto et al., 2018) to collect trajectories τ that can accomplish the interaction of varying
task specifications θ across all shapes O and contact points p. In the RL training, since the RL policy
is trained in the simulation for only collecting training data to supervise the perception networks, we
can have access to the ground-truth state information of the simulation environment, such as the part
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Figure 2: Our proposed VAT-MART framework is composed of an RL policy (left) exploring
interaction trajectories and a perception system (right) learning the desired actionable visual priors.
We build bidirectional supervisory channels between the two parts: 1) the RL policy collects data
to supervise the perception system, and 2) the perception system produces curiosity feedbacks
encouraging the RL networks to explore diverse solutions.

poses, joint axis, and gripper poses. At the test time, we discard the RL network and only use the
learned perception networks to predict the proposed actionable visual priors.

Fig. 2 (left) illustrates the RL training scheme and example explored diverse trajectory proposals for
the task of pulling open the microwave door for 30 degrees. Below, we describe the RL specifications.

Task Initialization. For the shape to interact with, we first randomly sample a shape category with
equal probability, alleviating the potential category imbalance issue, and then uniformly sample a
shape from the selected category for training. For the task specification θ , we randomly sample
within [10◦,70◦] for revolute parts and [0.1,0.7] for prismatic parts. We also randomly sample a
starting part pose θ0 with the guarantee that the task θ can be accomplished. For the gripper, we
initialize it with fingertip 0.02-unit-length away from the contact point p and pointing within a cone
of 30 degrees along the negative direction of the surface normal at p.

State Space. The RL state includes the 1-DoF part pose change ∆θi = θi−θ0 at the current timestep,
the target task θ , the difference θ −∆θi, the gripper pose wp0 = (x0,R0) ∈ SE(3) at the first timestep
of interaction, the current gripper pose wpi = (xi,Ri) ∈ SE(3), the local positions for the gripper
fingers x f ∈ R2, the current contact point location pi ∈ R3, a normalized direction of the articulated
part joint axis n j ∈ R3, the articulated part joint location x j ∈ R3 (defined as the closest point on the
joint axis to the contact point p), the closest distance from the contact point to the joint axis dc j ∈ R,
and a directional vector nc j ∈ R3 from the joint location to the contact point. We concatenate all the
information together as a 33-dimensional state vector for feeding to the RL networks.

Action Space. At each timestep, we predict a residual gripper pose wpi −wpi−1 ∈ SE(3) to
determine the next-step waypoint wpi as the action output of the RL networks. We estimate a center
offset xi− xi−1 ∈ R3 and an euler angle difference Ri−Ri−1 ∈ SO(3).

Reward Design. There are two kinds of rewards: extrinsic task rewards and intrinsic curiosity
feedbacks. For the extrinsic task rewards, we use: 1) a final-step success reward of 500 for a task
completion when the current part pose reaches the target within 15% relative tolerance range, 2) a
step-wise guidance reward of 300(|θ −∆θi−1|− |θ −∆θi|) encouraging the current part pose to get
closer to the target than previous part pose, and 3) a distance penalty of 300 ·1[dgc > 0.1]+150dgc
to discourage the gripper from flying away from the intended contact point p, where dgc denotes the
l2 distance from the contact point p to the current fingertip position and 1[q] is a zero or one function
indicating the boolean value of the predicate q. We will describe the curiosity rewards in Sec. 4.3.

Stopping Criterion. We stop an interaction trial until the task’s success or after five maximal
waypoint steps.

Implementation and Training. We implement the TD3 networks using MLPs and use a replay
buffer of size 2048. To improve the positive data rates for efficient learning, we leverage Hindsight
Experience Replay (Andrychowicz et al., 2017): an interaction trial may fail to accomplish the desired
task θ , but it finally achieves the task of θk−θ0. See Sec. A in appendix for more details.
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4.2 THE PERCEPTION NETWORKS FOR ACTIONABLE VISUAL PRIORS

The perception system learns from the interaction trajectories collected by the RL exploration policy
and predicts the desired per-pixel actionable visual priors. Besides several information encoding
modules, there are three decoding heads: 1) an actionability prediction module that outputs the
actionability score ap|O,T,θ ∈ [0,1], 2) a trajectory proposal module that models per-point distribution
of diverse visual action trajectories τp|O,T,θ = (wp0,wp1−wp0, · · · ,wpk−wpk−1), and 3) a trajectory
scoring module that rates the per-trajectory success likelihood rτ|O,p,T,θ ∈ [0,1]. Fig. 2 (right) presents
an overview of the system. Below we describe detailed designs and training strategies.

Input Encoders. The perception networks require four input entities: a partial object point cloud
SO, a contact point p, a trajectory τ , and a task θ . For the point cloud input SO, we use a segmentation-
version PointNet++ (Qi et al., 2017) to extract a per-point feature fs ∈ R128. We employ three MLP
networks that respectively encode the inputs p, τ , and θ into fp ∈ R32, fτ ∈ R128, and fθ ∈ R32. We
serialize each trajectory as a 30-dimensional vector after flattening all waypoint information. We
augment the trajectories that are shorter than five waypoint steps simply by zero paddings.

Actionability Prediction Module. The actionability prediction network Da, similar to
Where2Act (Mo et al., 2021), is implemented as a simple MLP that consumes a feature concatenation
of fp, fs, and fθ , and predicts a per-point actionability score ap|O,T,θ ∈ [0,1]. Aggregating over all
contact points p, one can obtain an actionability map AO,T,θ over the input partial scan SO, from which
one can sample an interaction point at test time according to a normalized actionability distribution.

Trajectory Proposal Module. The trajectory proposal module is implemented as a conditional
variational autoencoder (cVAE, Sohn et al. (2015)), composed of a trajectory encoder Eτ that maps
the input trajectory τ into a Gaussian noise z and a trajectory decoder Dτ that reconstructs the
trajectory input from the noise vector. Both networks take additional input features of fp, fs, and fθ

as conditions. We use MLPs to realize the two networks. We regularize the resultant noise vectors to
get closer to a uniform Gaussian distribution so that one can sample diverse trajectory proposals by
feeding random Gaussian noises to the decoder Dτ with the conditional features as inputs.

Trajectory Scoring Module. The trajectory scoring module Ds, implemented as another MLP,
takes as inputs features of fp, fs, and fθ , as well as the trajectory feature fτ , and predicts the success
likelihood rτ |O,p,T,θ ∈ [0,1]. One can use a success threshold of 0.5 to obtain a binary decision.

Data Collection for Training. We collect interaction data from the RL exploration to supervise
the training of the perception system. We randomly pick shapes, tasks, and starting part poses similar
to the RL task initialization. For positive data, we sample 5000 successful interaction trajectories
outputted by the RL. We sample the same amount of negative data, which are produced by offsetting
the desired task θ0 of a successful trajectory by a random value with [0.1θ0,45◦] for revolute parts
and [0.1θ0,0.45] for prismatic parts. For the pulling experiments, we also consider another type of
negative data that the first grasping attempt fails.

Implementation and Training. We train the trajectory scoring and the trajectory proposal modules
before the actionability prediction module. We use the standard binary cross-entropy loss to train
the trajectory scoring module Ds. To train the trajectory proposal cVAE of Eτ and Dτ , besides the
KL divergence loss for regularizing Gaussian bottleneck noises, we use an L1 loss to regress the
trajectory waypoint positions and a 6D-rotation loss (Zhou et al., 2019) for training the waypoints
orientations. For training the actionability prediction module Da, we sample 100 random trajectories
proposed by Dτ , estimate their success likelihood scores using Ds, and regress the prediction to the
mean score of the top-5 rated trajectories with a L1 loss. See Sec. B in appendix for more details.

4.3 CURIOSITY-DRIVEN EXPLORATION

We build a bidirectional supervisory mechanism between the RL policy and the perception system.
While the RL policy collects data to supervise the perception networks, we also add a curiosity-
feedback (Pathak et al., 2017) from the perception networks to inversely affect the RL policy learning
for exploring more diverse and novel interaction trajectories, which will eventually diversify the
per-point trajectory distributions produced by the trajectory proposal decoder Dτ . The intuitive idea
is to encourage the RL network to explore novel trajectories that the perception system currently
gives low success scores. In our implementation, during the joint training of the RL and perception
networks, we generate an additional intrinsic curiosity reward of −500rτ |O,p,T,θ for a trajectory τ
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Table 1: We report quantitative evaluations of the learned actionable visual priors. For each metric,
we report numbers over test shapes from the training categories (before slash) and shapes from the
test categories (after slash). Higher numbers indicate better results.

Accuracy (%) Precision (%) Recall (%) F-score (%) Coverage (%)

door pushing 82.24 / 72.44 81.28 / 72.83 85.22 / 73.86 82.76 / 72.54 82.00 / 70.54
pulling 74.01 / 71.31 70.52 / 70.26 84.09 / 75.85 76.06 / 72.01 58.68 / 48.29

drawer pushing 79.69 / 71.59 74.65 / 71.80 91.19 / 70.45 81.65 / 70.52 74.15 / 68.08
pulling 78.41 / 71.88 74.54 / 72.29 87.50 / 72.44 80.23 / 71.71 81.15 / 64.31
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Figure 3: We show qualitative results of the actionability prediction and trajectory proposal modules.
In each result block, from left to right, we present the input shape with the task, the predicted
actionability heatmap, and three example trajectory proposals at a selected contact point.

proposed by the RL policy and use the novel interaction data to continue supervising the perception
system. We make sure to have training trajectory proposals generated by the RL network at different
epochs in the buffer to avoid mode chasing of training the generative model Dτ .

5 EXPERIMENTS

We perform our experiments using the SAPIEN simulator (Xiang et al., 2020) and PartNet-Mobility
dataset (Chang et al., 2015; Mo et al., 2019). We evaluate the prediction quality of the learned visual
priors and compare them to several baselines for downstream manipulation tasks. Qualitative results
over novel shapes and real-world data show promising generalization capability of our approach.

Data and Settings. In total, we use 562 shapes from 7 categories in the PartNet-Mobility dataset.
We conduct experiments over two commonly seen part articulation types: doors and drawers. For
each experiment, we randomly split the applicable object categories into training and test categories.
We further split the data from the training categories into training and test shapes. We train all
methods over training shapes from the training categories and report performance over test shapes
from the training categories and shapes from the test categories to test the generalization capabilities
over novel shapes and unseen categories. We use the Panda flying gripper as the robot actuator and
employ a velocity-based PID-controller to realize the actuation torques between consecutive trajectory
waypoints. We use an RGB-D camera of resolution 448×448 and randomly sample viewpoints in
front of the objects. See Sec. D E in appendix for more data statistics and implementation details.

5.1 ACTIONABLE VISUAL PRIORS

We present qualitative and quantitative evaluations of our learned actionable visual priors.

Metrics. For quantitatively evaluating the trajectory scoring module, we use standard metrics that
are commonly used for evaluating binary classification problems: accuracy, precision, recall, and F-
score. Since there is no ground-truth annotation of successful and failed interaction trajectories, we run
our learned RL policy over test shapes and collect test interaction trajectories. In our implementation,
we gather 350 positive and 350 negative trajectories for each experiment. To evaluate if the learned
trajectory proposal module can propose diverse trajectories to cover the collected ground-truth ones,
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Figure 4: We present qualitative analysis of the learned trajectory scoring module. In each result
block, from left to right, we show the input shape with the task, the input trajectory with its close-up
view, and our network predictions of success likelihood applying the trajectory over all the points.

we compute a coverage score measuring the percentage of ground-truth trajectories that is similar
enough to the closest predicted trajectory. See Sec. G in appendix for detailed metric definitions.

Results and Analysis. Table 1 presents quantitative results which demonstrate that we successfully
learn the desired representations and that our learned model also generalizes to shapes from totally
unseen object categories. Since we are the first to propose such actionable visual priors, there is no
baseline to compare against. Fig. 3 presents qualitative results of the actionability prediction and
trajectory proposal modules, from which we can observe that, to accomplish the desired tasks: 1) the
actionability heatmap highlights where to interact (e.g., to pull open a drawer, the gripper either grasp
and pull open the handle from outside, or push outwards from inside), and 2) the trajectory proposals
suggest diverse solutions for how to interact (e.g., to push closed the door, various trajectories
may succeed). In Fig. 4, we additionally illustrate the trajectory scoring predictions using heatmap
visualization, where we observe interesting learned patterns indicating which points to interact with
when executing the input trajectories. Fig. 5 (left) further visualizes the trajectory scoring predictions
over the same input shape and observe different visual patterns given different trajectories and tasks.

5.2 DOWNSTREAM MANIPULATION

We can easily use our learned actionable visual priors to accomplish the downstream manipulation of
3D articulated objects. To this end, we first sample a contact point according to the estimated action-
ability heatmap and then execute the top-rated trajectory among 100 random trajectory proposals.

Baselines. We compare to three baselines: 1) a naive TD3 RL that takes the shape point cloud
together with the desired task as input and directly outputs trajectory waypoints for accomplishing
the task; 2) a heuristic approach, in which we hand-engineer a set of rules for different tasks (e.g., to
pull open a drawer, we grasp the handle and pull straight backward). Note that we use ground-truth
handle masks and joint parameters for the heuristic baseline; 3) a multi-step Where2Act (Mo et al.,
2021) baseline that concatenates multiple (up to 15 steps) Where2Act-generated short-term pushing
or pulling interactions that gradually accumulates the part pose changes for accomplishing the task.
While the Where2Act work originally considers task-less short-term interactions, different from our
long-term task-driven setting, we adapt it as a baseline by assuming an oracle part pose tracker is
given. See Sec. H in appendix for more detailed descriptions of the baseline methods.

Metrics. We run interaction trials in simulation and report success rates for quantitative evaluation.

Results and Analysis. Table 2 presents the quantitative comparisons. Our method outperforms
baselines on most comparisons. See below for detailed result analysis and more results in appendix.

For the naive RL baseline, it largely fails since we find it extremely difficult to train from scratch an
end-to-end RL over highly diverse shapes for all tasks, which in fact implies the necessity of certain
intermediate visual abstractions.
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Table 2: We report task success rates (within 15% tolerance to tasks) of manipulating articulated
objects comparing our method against three baseline methods.

pushing door pulling door pushing drawer pulling drawer
RL-baseline 1.43 / 3.72 0.0 / 0.0 0.43 / 0.43 0.0 / 0.0
Heuristic 25.74 / 25.23 8.82 / 3.73 40.25 / 57.99 25.02 / 22.85
Where2Act 32.67 / 32.27 6.02 / 3.51 29.79 / 23.67 8.31 / 9.71
Ours 55.14 / 36.49 12.04 / 14.33 56.02 / 38.28 43.53 / 31.14
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Figure 5: Left: qualitative analysis of the trajectory scoring prediction (each column shares the same
task; every row uses the same trajectory); Middle: promising results testing on real-world data (from
left to right: input, affordance prediction, trajectory proposals); Right: real-robot experiment.

For the heuristic baseline, we find that we win all comparisons except one task of drawer pushing.
Knowing the ground-truth front board and prismatic joint axis, it is quite easy for the rule-based
method to push a drawer along a straight-line trajectory, while our method does not take the ground-
truth information and achieves worse results since we have to predict such information. However, our
method achieves better performance for the other three experiments since we find that the heuristic
method fails (see Fig. H.7) severely when 1) there are no handle parts for pulling, 2) some grasps over
intricate handle geometry may slip and fail, or 3) the motion dynamics (e.g., inertia) for non-prehensile
manipulation (pushing) affects the accurate task accomplishment (e.g., in case of an overshoot).

For the Where2Act baseline, it consistently performs worse than ours since it does not explicitly
take the desired task as input and thus is more vulnerable of overshooting. Besides, the Where2Act
baseline has the following issues: 1) it assumes an accurate part pose tracker, 2) it has to execute
multiple segmented interactions and thus is empirically found 30 times slower, and 3) the gripper
needs to be driven to multiple independent positions across different trajectory segments and thus it
is very time-consuming and fragile if cases of motion planning failures.

5.3 REAL-WORLD EXPERIMENTS

Fig. 5 (middle) presents qualitative results directly testing our model on real-world data: a microwave
from the RBO dataset (Martı́n-Martı́n et al., 2019), one cabinet from Google Scanned Object (Open-
Robotics), and one real-world 3D cabinet scan we capture using a ZED MINI RGB-D camera. We
observe that our model trained on synthetic textureless data can generalize to real-world depth scans
to some degree. We also show real-robot experiment in Fig. 5 (right) and supplementary video.

6 CONCLUSION

In this paper, we propose a novel perception-interaction handshaking point –object-centric actionable
visual priors– for manipulating 3D articulated objects, which contains dense action affordance
predictions and diverse visual trajectory proposals. We formulate a novel interaction-for-perception
framework VAT-MART to learn such representations. Experiments conducted on the large-scale
PartNet-Mobility dataset and real-world data have proved the effectiveness of our approach.

Limitations and Future Works. First, our work is only a first attempt at learning such representa-
tions and future works can further improve the performance. Besides, the current open-loop trajectory
prediction is based on a single-frame input. One may obtain better results considering multiple frames
during an interaction. Lastly, future works may study more interaction and articulation types.
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APPENDIX

A MORE DETAILS FOR THE RL POLICY (SEC. 4.1)
A.1 NETWORK ARCHITECTURE DETAILS

We leverage TD3 (Fujimoto et al., 2018) to train the RL policy. It consists of a policy network and a
Q-value network, both implemented as a Multi-layer Perception (MLP). The policy network receives
the state as input (R33), and predicts the residual gripper pose as action (R6). Its network architecture
is implemented as a 4-layer MLP (33→ 512→ 512→ 512→ 512), followed by two separate fully
connected layers (512→ 6) that estimate the mean and variance of action probabilities respectively.
The Q-value network receives both the state and action as input (R39), and predicts a single Q value
(R1). Its network architecture is implemented as a 4-layer MLP (39→ 512→ 512→ 512→ 1).

A.2 MORE IMPLEMENTATION AND TRAINING DETAILS

We use the following hyper-parameters to train the RL policy: 2048 (buffer size); 512 (batch size);
0.0001 (learning rate of the Adam optimizer (Kingma & Ba, 2015) for both the policy and Q-value
network); 0.1 (initial exploration range, decayed by 0.5 every 500 epochs.

B MORE DETAILS FOR THE PERCEPTION NETWORKS (SEC. 4.2)
B.1 NETWORK ARCHITECTURE DETAILS

The perception networks consist of four input encoders that extract high-dimensional features from
the input partial point cloud SO, contact point p, trajectory τ and task θ , and three parallel output
modules that estimate the actionability ap|O,T,θ , trajectory proposal τp|O,T,θ and scores rτ|O,p,T,θ from
the extracted high-dimensional features of input encoders.

Regarding the four input encoders

• The input point cloud SO with point-wise coordinate (R3) is fed through the PointNet++ (Qi
et al., 2017) with the segmentation head and single-scale grouping (SSG) to extract the
point-wise feature fs ∈ R128.

• The input contact point p ∈ R3 is fed through a fully connected layer (3→ 32) to extract a
high-dimensional contact point feature fp ∈ R32.

• The input trajectory τ ∈ R30 is composed of five waypoints, each of which contains 3D
rotation and 3D translation information. The input trajectory is further flattened to be fed
through a 3-layer MLP (30→ 128→ 128→ 128) to extract a high-dimensional trajectory
feature fτ ∈ R128.
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• The input task θ ∈ R1 is fed through a fully connected layer (1→ 32) to extract a high-
dimensional task feature fθ ∈ R32.

Regarding the three output modules

• The actionability prediction module Da concatenates the extracted point cloud fs, contact
point fp and task fθ features to form a high-dimensional vector (R192), which is fed through
a 5-layer MLP (192→ 128→ 128→ 128→ 128→ 1) to predict a per-point actionability
score ap|O,T,θ .

• The trajectory proposal module is implemented as a conditional variational auto-encoder
(cVAE), which learns to generate diverse trajectories from the sampled Gaussian value and
given conditions (point cloud fs, contact point fp and task fθ features). The encoder Eτ is
implemented as a 3-layer MLP (320→ 128→ 128→ 256) that takes the concatenation of
the trajectory feature fτ and given conditions as input and estimates a Gaussian distribution
(µ ∈R128,σ ∈R128). The decoder Dτ is also implemented as a 3-layer MLP (320→ 512→
256→ 30) that takes the concatenation of the sampled Gaussian value z ∈ R128 and given
conditions as input to recover the trajectory τ .

• The trajectory scoring module Ds concatenates the extracted point cloud fs, contact point
fp, trajectory fτ and task fθ features to form a high-dimensional vector (R320), which is fed
through a 2-layer MLP (320→ 128→ 1) to predict the success likelihood rτ|O,p,T,θ .

B.2 MORE IMPLEMENTATION AND TRAINING DETAILS

The interaction data provided by the RL policy provides the ground truth label to train the perception
networks. We start by training the trajectory scoring module, followed by joint training of all the
three modules.

To train the trajectory scoring module Ds, we firstly collect 5000 successful and 5000 unsuccessful
interaction trajectories produced by the RL policy, then supervise the estimated success likelihood of
the trajectory with binary cross entropy loss.

To train the trajectory proposal module, we supervise the output rotation and translation with the
6D-rotation loss (Zhou et al., 2019) and L1 loss respectively from the 5000 successful collected
interaction trajectories. We follow the common cVAE training process to add a KL divergence loss
on the estimated Gaussian distribution for regularization.

To train the actionability prediction module Da, we estimate the scores from 100 sampled trajectories
with both the trajectory proposal and scoring modules, then calculate the mean value of top-5 rated
scores as the ground truth label to supervise the actionability predictions. We adopt L1 loss for
supervision.

We use the following hyper-parameters to train the perception networks: 32 (batch size); 0.001
(learning rate of the Adam optimizer (Kingma & Ba, 2015) for all three modules).

C MORE DETAILS FOR THE CURIOSITY-DRIVEN EXPLORATION (SEC. 4.3)

The curiosity-driven exploration alternates between training the RL policy and perception networks at
odd and even epochs respectively. It aims for exploring more diverse trajectories with the RL policy
that the perception networks are not confident with and are further used to diversify the trajectory
proposals generated by the perception networks.

When training the RL policy, besides the extrinsic task rewards, it also awards the policy with the
intrinsic curiosity reward. It is computed as −500rτ|O,p,T,θ , which is the weighted negative success
likelihood estimated by the trajectory scoring module. It penalizes the learned trajectories that the
trajectory scoring module is confident with and encourage more diverse trajectories generated by the
RL policy.

When training the perception networks, we collect the equal number of successful and unsuccessful
trajectories produced by the RL policy. To encourage the perception networks to learn more diverse
trajectories, we sample the successful trajectories fifty-fifty with both high (¿0.5) and low (¡0.5)
success likelihood estimated by the trajectory scoring module. Then we use these data to train the
perception networks.
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Train-Cats All
Door Cabinet Door Mirco Fridge All

Drawer Cabinet
Train-Data 328 270 17 9 32 270 270
Test-Data 94 75 5 3 11 75 75
Test-Cats Safe Table Washing Table
Test-Data 140 29 95 16 95 95

Table D.3: We summarize the shape counts in our dataset. Here, Micro and Washing are short for
microwave and washing machine.
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Figure D.6: Data Visualization. We show one example shape from each of the seven object categories
we use in our paper.

D MORE DETAILED DATA STATISTICS

Table D.3 summarizes the data statistics and splits.

Fig. D.6 presents a visualization of some example shapes from our dataset.

E SAPIEN SIMULATION ENVIRONMENT SETTINGS

We follow exactly the virtual environment settings as in (Mo et al., 2021), except that we randomly
sample camera viewpoints only in front of the target shape since most articulated parts are present
in the front side of the PartNet-Mobility shapes and it is very unlikely that robot agents need to
manipulate object parts from the back of objects. By default, the camera looks at the center of the
target shape, and the location is sampled on a unit sphere centered at the origin. For the spherical
sampling of the camera location, we set the range of the azimuth angle to [-90◦, 90◦], and the elevation
angle to [30◦, 60◦]. Please refer to Section A and Section B in the appendix of (Mo et al., 2021) for
more in-depth details of the virtual environment.

F COMPUTATIONAL COSTS AND TIMING

Training of the proposed system took around 3 days per experiment on a single Nvidia V100 GPU.
More specifically, the initial RL policy training took around 18 hours, followed by a 15-hour training
of the perception module using the RL-collected data. The subsequent curiosity-driven exploration
stage took around 10 hours to jointly train the RL and the perception networks. At last, the three
prediction branches in the perception module were further fine-tuned for around 20 hours.
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During the inference time, a forward pass takes around 15 ms, 8 ms, and 8 ms for the actionability
map prediction, diverse trajectory proposals, and success rate predictions, respectively. Our model
only consumes 1,063 MB memory of the GPU in test time.

G MORE METRIC DEFINITION DETAILS

G.1 EVALUATING ACTIONABLE VISUAL PRIORS (SEC. 5.1)

We adopt the following evaluation metrics for quantitative evaluation: precision, recall and F-score
for the positive data, and the average accuracy equally balancing the negative and positive recalls.
Formally, let fp, fn, tp, and tn denote the data counts for false positives, false negatives, true positives,
and true negatives, respectively. The F-score is the harmonic mean of precision and recall, and the
other metrics are defined as follow:

precision =
tp

tp + fp
,

recall =
tp

tp + fn
,

accuracy =
1
2
(

tp

tp + fn
+

tn
tn + fp

).

We also compute a coverage score for evaluation, which is calculated as the percentage of ground-
truth trajectories that are similar enough to be matched in the predicted trajectories. To this end,
we need to measure the distance D(l1, l2) between two trajectories l1 and l2, which takes into
account both the position difference and the orientation difference at every waypoint. Concretely,
we calculate the L1 distance of the waypoint positions as the position distance Dpos between the
two trajectories. Then, the orientation distance Dori is measured as the 6D-rotation distance of
the waypoint orientations. To balance the dimension of the quantities, D(l1, l2) is calculated as:
D(l1, l2) = 5Dpos(l1, l2)+Dori(l1, l2). We consider a ground truth trajectory to be covered if the
distance between this ground truth trajectory and a predicted trajectory is lower than a threshold (10,
in all our experiments), and then report the percentage of the ground truth trajectories that are covered
by the predictions. To compensate the stochastic error, all reported quantitative results are averaged
over 10 test runs.

G.2 EVALUATING DOWNSTREAM MANIPULATION (SEC. 5.2)

For each downstream manipulation task, we locate the contact point sample with the highest action-
ability score over the surface on each test shape, and then generate 100 diverse trajectories at this
contact point, and pick the trajectory with the highest success rate for executing the downstream task.
This results in 350 trajectories for each of the door pushing, door pulling, drawer pushing, and drawer
pulling tasks.

In practice, generating trajectories that can perfectly fulfill the given task specification (e.g., push to
open a door by 30◦) is very hard. Hence, we consider a trajectory can successfully accomplish the
task if the specification is fulfilled within a tolerance threshold in percentage ε = 15%. For example,
if the task is to push a door open by 10◦, a trajectory that can open the door between 8.5◦ and 11.5◦ is
counted as a successful sample. We then report the success rate in percentage of all the generated
trajectories on each task.

H MORE DETAILS OF BASELINES IN SEC. 5.2

In the following, we present more details about the baseline methods that we compare against in
Section 5.2.

H.1 NAIVE RL BASELINE

The naive RL baseline, which is comprised of two sub-RL modules denoted as sub-RL1 and sub-RL2
respectively. Sub-RL1 module takes as input the initial state of the target shape (i.e., the partial scan
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of the initial shape, and the mask of the target part), and the task specification, and then outputs the
initial position and orientation of the gripper (i.e., the parameters of the first waypoint). Sub-RL2
module takes as input the state of the initial scene (i.e., the partial scan of the shape, the mask of the
target part, and the position and orientation of the gripper at the initial state), the state of the current
scene (i.e., the partial scan of the shape, the mask of the target part, and the position and orientation
of the gripper at the current state), and the task specification, and then predicts the parameters of the
next waypoint using the residual representation.

The network architectures of sub-RL1 and sub-RL2 are based on our RL networks as described in
Section A.1, with minor adaptations for different input and output dimensionalities. We use a buffer
size of 2048 and a batch size of 64 for training both sub-RL1 and sub-RL2 modules. We use the
Adam optimizer and a learning rate 0.0001 for the policy and Q-value networks in both modules. We
set the initial exploration range to 0.1, which is linearly decayed by a factor of 0.5 every 500 epochs
during training.

H.2 RULE-BASED HEURISTIC BASELINE

For the rule-based heuristic baseline, we hand-craft a set of rules for different tasks. We describe the
details as follows.

• Door pushing: we randomly sample a point p on the door surface, then initialize the gripper
such that the gripper fingertips touch the point p and set the forward orientation along the
negative direction of the surface normal at p. Let d denotes the distance between p and the
rotation shaft of the door, to push the door by a degree θ , we push the door by a degree θ

4
each time and repeat for four times. During each process, we simply move the gripper along
the negative direction of the surface normal by a distance of d sin( θ

4 ).

• Door pulling: we initialize the gripper at a point p sampled on the handle of the door and
set the forward orientation along the negative direction of the surface normal at p. And then
we pull the door by a degree θ by pulling θ

4 each time as in door pushing. Different from
door pushing, we also perform a grasping at contact point p for pulling.

• Drawer pushing: similarly, we randomly sample a point p on the front board of the drawer,
and then initialize the gripper such that the gripper fingertips touch the point p and set the
forward orientation along the negative direction of the normal at p. Let t denote the push
distance in the task specification, we simply move the gripper by a distance of t along the
slide-to-close direction of the drawer.

• Drawer pulling: the middle point of the handle is particularly sampled as the contact point.
Note that we count the trial as a failure if the drawer does not have handles. Then we
initialize the gripper as in drawer pushing, and move the gripper by a distance of t along the
slide-to-open direction.

In Fig. H.7, we present some failure cases for the rule-based heuristic baseline to explain why such
seemingly intuitive and easy heuristics often fail. See the figure caption for detailed explanations.
Such rule-based heuristics require careful human hand-engineering given different task semantics.
One needs to hand-design rules for different tasks and sometimes will find it difficult to enumerate all
possible rules. Our system, instead, provides a unified system that automatically discovers useful
knowledge for different tasks, without the need of spending human efforts, and learn a rich collection
of data-driven priors from training over diverse shapes.

H.3 WHERE2ACT BASELINE

For the Where2Act baseline, we use the pre-trained networks released by Mo et al. (2021) to
generate multiple short-term trajectory segments, each of which samples a contact point and an action
direction from Where2Act. We assume an oracle part pose tracker and choose the pushing or pulling
Where2Act network to query at each time by comparing the ground-truth pose and the goal pose of
the target part. Since Where2Act only executes short-term task-less interaction trajectories and does
not explicitly consider task degree, we allow it to operate for up to 15 steps and record the closest
distance it has ever reached to the desired target part pose. Concretely, in each step, this method
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Figure H.7: We present some failure cases for the rule-based heuristic baseline to explain why such
seemingly intuitive and easy heuristics often fail. Fist column: these two cabinets have no handle
for pulling; Second column: from these viewpoints, these drawer front boards or door handles are
occluded; Third column and fourth column: grasps over intricate handle geometry may fail or slip;
Fifth column: dynamic factors (e.g., inertia) affects the final achieved part pose, and the drawer moves
farther than desired.

Table I.4: We compare our final approach to an ablated version that removes the curiosity-feedback
channel and report quantitative evaluations of the visual actionable priors. For each metric, we report
numbers over the test shapes from the training categories (before slash) and the shapes from the test
categories (after slash). Higher numbers indicate better results.

Curiosity Accuracy (%) Precision (%) Recall (%) F-score (%) Coverage (%)

pushing door w/o 77.70 / 71.73 77.83 / 72.62 76.99 / 69.89 77.55 / 70.80 82.35 / 75.52
w 82.24 / 72.44 81.28 / 72.83 85.22 / 73.86 82.76 / 72.54 82.00 / 70.54

pulling door w/o 68.89 / 67.90 64.62 / 65.29 84.09 / 76.40 72.62 / 69.94 50.17 / 43.52
w 74.01 / 71.31 70.52 / 70.26 84.09 / 75.85 76.06 / 72.01 58.68 / 48.29

pushing drawer w/o 76.85 / 68.32 78.82 / 70.67 73.86 / 61.65 75.45 / 64.89 63.25 / 60.08
w 79.69 / 71.59 74.65 / 71.80 91.19 / 70.45 81.65 / 70.52 74.15 / 68.08

pulling drawer w/o 71.02 / 69.46 74.79 / 73.20 67.05 / 63.64 68.89 / 66.47 62.56 / 49.43
w 78.41 / 71.88 74.54 / 72.29 87.50 / 72.44 80.23 / 71.71 81.15 / 64.31

• uses Where2Act’s actionability module to predict the affordance of each point, randomly
selects a contact point within the estimated top-5 actionable points, and initializes the gripper
in front of the selected contact point;

• initializes the gripper’s initial 6D pose by running Where2Act’s action proposal network
and selecting the top-rated action;

• if pushing, directly moves the gripper 0.05 unit-length forward;

• if pulling, moves the gripper slightly forward, closes the gripper to grasp, and moves the
gripper 0.05 unit-length backward when the gripper successfully grasps the target part;

• checks if the target part’s pose achieves the goal pose, using the target part’s ground-truth
pose.

I ABLATION STUDY ON CURIOSITY FEEDBACK

We compare our final approach to an ablated version that removes the curiosity feedback (Sec. 5.3),
in order to validate that the proposed curiosity-feedback mechanism is beneficial.

In Table I.4, we evaluate the prediction quality of the proposed actionable visual priors.

From this table, it is clear to see that the introduced curiosity feedback mechanism (Sec. 5.3) is
beneficial as it improves the performance in most entries.
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Figure J.8: We show additional qualitative results of the actionability prediction and trajectory
proposal modules to augment Fig. 3 in the main paper. In each result block, from left to right, we
present the input shape with the task, the predicted actionability heatmap, and three example trajectory
proposals at a selected contact point.

J MORE RESULTS AND ANALYSIS

In Fig. J.8, we show additional qualitative results of the actionability prediction and trajectory
proposal modules to augment Fig. 3 in the main paper.

In Fig. J.9, we present an additional qualitative analysis of the learned trajectory scoring module to
augment Fig. 4 in the main paper.

In addition, we provide another set of result analyses in Fig. J.10, where we show that to accomplish
the same task, interacting at different contact points over the shape will give different trajectories.

K REAL-ROBOT SETTINGS AND EXPERIMENTS

For real-robot experiments, we use one real cabinet and set up one Franka Panda robot facing the
front of the cabinet. One ZED MINI RGB-D camera is mounted at the front right of the cabinet. The
camera captures 3D point cloud data as inputs to our learned models.

We control the robot using Robot Operating System (ROS) (Quigley et al., 2009). The robot is
programmed to execute each waypoint in the predicted trajectory step by step. We use MoveIt! (Chitta
et al., 2012) for the motion planning between every adjacent waypoint pair.

We demonstrate various tasks on the cabinet, including pulling open the door at the edge or handle,
pushing closed the door at different contact points, pulling open the drawer by grasping the edge or
handle. Please check our results in the supplementary video.
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Figure J.9: We present an additional qualitative analysis of the learned trajectory scoring module to
augment Fig. 4 in the main paper. In each result block, from left to right, we show the input shape
with the task, the input trajectory with its close-up view, and our network predictions of success
likelihood applying the trajectory over all the points.
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Figure J.10: We use some examples to show that, to accomplish the same task, interacting at different
contact points over the shape will give different trajectories. In each result block, from left to right, we
show the input shape with the task, the predicted actionability heatmap, and three example trajectory
proposals at three different contact points.
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