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Abstract—Next Generation Radio Access Networks (NG-
RANSs) have become a promising paradigm to meet the strict
demands of the 5G and beyond applications by distributively
pushing the radio and computing functionalities in the close
approximate to end-users. With the emergence of new tech-
nologies, network densification, and richer and more demanding
applications, the limited capacity of the fronthaul links and
privacy concerns poses a severe constraint on realizing NG-RAN
systems in the real environment. To tackle these challenges, we
propose a Federated Learning (FL)-based NG-RAN algorithm,
named FedNG, in which the User Equipment (UEs), as well as
NG-RAN infrastructures, collaborate throughout the learning
process and the sharing prediction model to ensure privacy
and relieve the burden on fronthaul interface. Specifically, our
proposed scheme enables Distributed Units (DUs) to cooperatively
learn a shared predictive model by taking the first-phase training
models of the DUs as the initial input of the local training
and then uploading sub-optimal DU models to the Central
Unit (CU) to involve in the next phase of global training.
Finally, numerical results are provided to evaluate our proposed
scheme in terms of accuracy, service latency, and traffic size.
The convergence of our proposed algorithm confirms that our
approach significantly outperforms the existing state-of-the-art
solution based on Federated Averaging (FedAvg).

Index Terms—Federated learning; Next Generation Radio
Access Network; Fronthaul Capacity; Resource Managements.

I. INTRODUCTION

Background and Motivation: The last decades have wit-
nessed huge growth in portable and Internet of Things (IoT)
equipment, making numerous limited computation capacity
devices interact with wireless network systems via cellular
channels. It is expected that the connected number of IoT
devices increasing to 14.7 billion by 2023 [1]. Practically,
the portable IoT sensing units usually are embedded with
lightweight capabilities (i.e., computing, storage, and com-
munication), and they continuously run to generate a large
amount of traffic data demanded to process and analyze. The
most popular solution to address this issue is based on cloud-
based computation task offloading approaches, such as in [2]-
[4], in which the User Equipment (UEs) (e.g., IoT devices,
smartphones, wireless sensors, etc.) offload the raw data, pre-
processed data, to edge cloud servers for additional assistance.
However, computation task offloading incurs extra overheads
in terms of latency and computing cost due to the additional
communication cost needed for transmitting workload from

end-user devices to edge servers and computation cost required
for data executing.

In light of the above, many mobile network operators are
working to meet beyond 5G network demands, including;
i) opening and virtualizing the Radio Access Network (RAN)
layers; ii) achieving ultra-low latency, high data rate, and low
operational expenses; and iii) providing privacy, scalability,
efficiency, as well as enabling machine learning-based cloud
services to end-users. Next Generation RAN (NG-RAN) has
been recently emerged as a key candidate solution to enable
flexibility and efficiency [5]. The NG-RAN architecture, de-
fined by 3GPP, comprises a Distributed Units (DUs) located
in the close proximity to the Base Station (BS) tower that
can communicate with a Central Unit (CU) via Next Gener-
ation Fronthaul Interface (NGFI) standard [6], in which the
PHY/MAC layers of the network flexibly splits between the
CU and DU locations. Despite the significant improvements
brought from deploying NGFI in NG-RAN, different specifica-
tions in terms of reducing fronthaul traffic and securing privacy
should be considered to better support the NG-RAN large-
scale deployment and prevent the fronthaul interface from
being the bottleneck of NG-RAN.

The RAN systems with an embedded traditional machine
learning approach usually consider that all local data is
forwarded to a centralized cloud server for performing and
training. However, the difficulty of satisfying private constraint
and the high cost of transmitting the raw data to the central
servers due to high round trip latency are driving the need for
a highly decentralized machine learning approach. Motivated
by this, Federated Learning (FL) has emerged to realize the
collaborative training of a machine learning model without
requiring to publish the original stream data with any third-
party application. In such a scenario, it is possible for machine
learning algorithms to gain experience from a vast range of
data located at several locations. Enabling FLL in NG-RAN
is beneficial in terms of providing privacy for the end-users
while running applications. Accordingly, the DUs and CUs
can be enabled to collaborate on the development of tanning
models, in a distributed machine learning manner, without
needing to directly share sensitive data collected from user
devices. Specifically, In this work, we aim at answering the
key question, how can FL be leveraged in NG-RAN systems
to ensure privacy and relieve the burden on the fronthaul
interface?



Related Works: Several existing works with respect to
wireless radio systems generally emphasize on centralized
learning schemes [7], [8]. The work [7] presented a compre-
hensive survey of implying centralized deep learning and ma-
chine learning models to realize intelligent network paradigms.
The authors in [8] proposed a distributed cooperative massive
access approach based on deep reinforcement learning to meet
the user’s demands while satisfying reliability and latency
constraints in massive access scenarios. However, applying
the existing centralized-based machine learning in RANSs is
challenging. That is because it demands large truing data in
order to perform better than other techniques. Besides, due to
complex data models, it is considered an costly method to get
high accuracy in terms of computation resources.

In terms of the benefit of cloud-based RAN architectures,
there has been a considerable number of works studying the
cooperative communications perspectives to deal with resource
allocation and cost reduction. Considering constraints on ser-
vice latency, quality loss, and edge capacity, the problem of
joint task offloading, latency, and approximate computing, the
work in [9] proposed a novel optimization approach for latency
and quality tradeoff task allocation in NG-RANSs. In [10], the
authors introduced a resource manager for virtual RANs based
on deep reinforcement learning, named vrAln, that can save in
computing capacity of up to 30% over CPU-agnostic methods
and improve throughput by 25% over existing schemes. The
work in [11] presented allocation algorithms that optimize
the energy consumption of a cloud-RAN, including real time
experiments on a programmables cloud-RAN testbed to show
the characteristics of the baseband unit in terms of CPU
utilization and radio resources.

Recently, FL has attracted a lot of focus as a novel dis-
tributed machine learning approach over the past few years.
For instance, based on iterative model averaging, Google
presented, in 2017, a practical method for the FL to train a
deep learning model without centralizing the data at the data
center [12]. The work in [13] provided a survey on FL con-
cepts in terms of classification, essential challenges, and new
designs. Besides, FL has been shown as an effective method to
fundamentally enhance the performance of cloud-based RAN
systems [14]-[16]. In [14], the authors utilized the FL. method
in a Device-to-Device (D2D) communication and Mobile Edge
Computing (MEC), in which the D2D groups transmit their
training models to the MEC server to reduce traffic. Liu et
al. [15] introduced a client-edge-cloud hierarchical FL system
associated with a HierFAVG algorithm to enable multiple edge
servers. Despite many research efforts, there are still open
challenges for learning-based in NG-RAN. (i) privacy, most
of the real-time applications (e.g., aerial search and rescue,
mobile healthcare, and video caching) are developed on the
gathered massive data from UEs. However, uploading these
data to a central server for model training may outcome in
critical privacy issues, and (ii) the fronthaul capacity constraint
in NG-RAN represents the critical communication bottlenecks.
Therefore, we propose a FL-based scheme to maintain privacy
and relieve the burden on fronthaul in NG-RANS.

Main Contributions: The main contributions in this paper
can be summarized as follows,

« To overcome the challenges of the privacy demand and
the limited capacity of the fronthaul links in NG-RAN,
we leverage FL for privacy-preserving and latency-aware
services in the NG-RAN systems. Our proposed FedNG
algorithm enables DUs to cooperatively learn a shared
predictive model by assuming the first-phase training
models of the DUs as the initial input of the local training
and then uploading sub-optimal local models to the CUs
to involve in the next phase of global training.

o We address the privacy and traffic management problem
in two scenarios: (i) distributed FL solution, NG-FedAvg
algorithm, in which a learning model can be trained
cooperatively between the computing servers, DUs, and
the end-users, UEs, to achieve the required accuracy level;
and (ii) proposed FedNG algorithm, in which a two-layer-
aggregation federated learning paradigm is to improve the
overall system performance. Hence, a learning model can
be trained cooperatively between the CU, DUs, and the
UEs, to achieve the required accuracy level.

o To efficiently evaluate our proposed framework, we
perform extensive experiments using three real-world
datasets—MNIST with Dense Neural Networks (DNNs,
CI- FAR10 with convolutional neural networks (CNNs),
and IMDB sentimental analysis dataset with recurrent
neural networks (RNNs). In the three datasets, the per-
formance of our proposed framework shows a significant
improvement compared with existing traditional Feder-
ated Averaging (FedAvg) in terms of accuracy, service
latency, and traffic size.

Paper Organization: The rest of this paper is organized as
follows. Sect. II describes the overall system models used in
this paper. Sect. III introduces the proposed privacy-preserving
FL schemes for NG-RAN systems. Simulation results are
provided in Sect. IV. Finally, we conclude the paper in Sect. V.

II. OVERALL NG-RAN SYSTEM DESIGN

This section first presents the network description, including
NG-RAN architecture and network layers. Followed by the
learning model, which presents the main terms and equations
of the FL framework, as well as a distributed solution for the
NG-FedAvg algorithm.

A. Network Description

In this paper, we assume that a generic NG-RAN architec-
ture comprises three layers (see Fig. 1) listed as follows,

Central unit layer: contains powerful processing servers,
providing on-demand computation /radio functions for up-
link/downlink wireless communication channels between the
UEs and gNBs. In terms of FL, the local model generated by
mobile user devices can be collected as a global model and
sent back to the UEs for extra training.

Distributed unit layer: consists of a set of edge servers de-
ployed in proximity to end-users to provide radio/computation
services. In the context FL, DU servers can be exploited to
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Fig. 1. NG-RAN architecture with enabling a federated learning technique.

perform local data processing functions, in which each DU
server is used as a local aggregator to exchange the model
between end-users and CU servers.

UE layer: comprises a set of UEs, U = {1,2,...,U},
randomly distributed in the network cell. Each UE is equipped
with an antenna/sensor to collect data, which is used for
training purposes, from the NG-RAN environment. Due to
the UE location in the vicinity of the DUs, each UE has the
ability to exchange the training model to its DUs for local
aggregations to experiment with high QoS and low latency.
Accordingly, we assume that each DU interacts with a set
S = {1,2,..,S} of S servers. Plus, we assume that DU s
associates with a set Us; = {1,2,...,Us} of Us UEs with
U =) ,cs Us, and each UE is served by one DU server.

B. Learning Model

Let consider a NG-RAN system, as depicted in Fig. 1, in

which each mobile user u, Vu € Us, in this system is connected
to DU s,Vs € S via wireless channel to collect a local input
dataset Dy, = {xd,yd}‘fiﬁsl, where x4 € Rf and y; € R
are a f-dimensional input vector and the corresponding label,
respectively. Assuming non-i.i.d. distributed data thought the
wireless network, we consider that D, N Dyg = 0,V(u, s) #
(i, $).
Definition 1. The terms “local model” and “local aggregation
model” are referred to as the models generated by UEs and
DUs, respectively, while averaging at CU is referred to as the
“global model”.

The key goal of the FL system is to leverage the datasets of
all UEs without sacrificing their privacy. In the light of this,
we first denote a loss function as I(w,x4,yq) for each data
sample (x4,yq) to specify the estimated error between the
input x on the learning model w € R/ and the corresponding
label y4. Similar to [17], [18], the local loss function of the
learning model w on the dataset D, ; can be defined as,

1
Lys(W|Dys) = D ZdeDus W, Xq,Yd)- (1)

Due to the randomness of the UE data distributions, we assume
that the empirical loss function thought the overall network
dataset D = U, sD,s can be modeled as,

~ 2ueu, 2oses Lus(W|Dus)

In general, the target of designing a FL algorithm is to achieve
the optimal model w* minimizing the global loss value as,

w' = arg min Lys(w[Dy) 3)

In this work, we aim at developing an algorithm for the end
users in the NG-RAN system to efficiently achieve the solution
of the optimization problem in (3).

C. Distributed Solution

To achieve the optimal solution in (3), we have extended the
Federated Averaging (FedAvg) algorithm [14], [19], which is
a standard algorithm in the FL using a distributed approach to
iterative minimize the local loss in (3). The main steps of our
proposed NG-FedAvg algorithm for the NG-RAN system can
be listed as follows,

(i) Data Collecting: For the first time, each UE sends
its collected data from a third-party application. Then, the
learning models can be constructed based on the empirical risk
minimization criterion with respect to the loss function [20], in
which the Deterministic Gradient Descent (DGD) method [12],
[19] algorithms are usually utilized to adjust the local param-
eters.

(ii) Global model broadcasting: At the beginning of the
global round i, CU sends the latest version of global model
w(® to the all associated UEs in set Us.

(iii) Local training update: In this phase, each UE w that
associates with DU s updates the local parameters as,

Wit = wid — €OV L (Wi Do), Vie T,j € 7,
“)
where the learning set size, & () > 0, is often decreased over
the time; and J = {0,1,..,J—1} and I = {0,1,..,] — 1} are
the sets of I global rounds and J local iterations, respectively.
(iv) Local uploading: When the the local model, wi(fS)’J , of
UE (u,s) is accomplished, it will be sent back to the DU s
server via the wireless cellular channels. Practically, the model
parameters are sent into the baseband signals via different pro-
cesses (e.g., modulation, coding, and compression) to preserve
transmission reliability. Then, DU s forward the local training
model, w'J”, to CU for averaging.
(v) Global uploading: After uploading all local tanning
models to the CU, CU conducts global training updates as,

D1 _ Dauells Duses wil” (5)
— = .

wi

The steps (i) — (v) in the NG-FedAvg algorithm are repeated
until convergence. Although the NG-FedAvg algorithm can
distributively find the solution for (3), forwarding the local
models from DUs to CU can incur the fronthaul link extra
traffic load, which is prohibitive in a large-scale NG-RAN. To



Algorithm 1 NG-FedAvg Algorithm
1: Initialize local model weights
2: Initialize CU Aggregation frequency F'
3: repeat
4: The CU broadcast w(?) thought DUs to all users
5 Each UE (u,s) computes the local training update
according to (4)
6: UEs upload their updated learning model to the asso-
ciated DUs
Each DU forwards the received learning model to CU
: CU determines the global learning model according
to (5)
9: until Convergence

tackle this issue, we will propose a FedNG algorithm for local
aggregations in the next section. The NG-FedAvg algorithm
is detailed in Algorithm 1.

III. FEDNG ALGORITHM DESIGN

In this section, we propose a FL algorithm, named FedNG,
to achieve the optimal value of w in (3), followed by the proof
of FedNG convergence.

A. Proposed FedNG Algorithm

One of the major challenges in performing the NG-FedAvg
algorithm at the NG-RAN system is the capacity-limited fron-
thaul constraint. Hence, in Fig. 2, we have detailed the training
processes of our proposed FedNG algorithm. In the beginning,
at round ¢, the end-user (u, s) determines .J gradient updates
on the collected data. In the DU layer, each DU aggregates the
collected local gradient models from the associated UEs and
forwards these models to CU for global updating. In the CU
layer, CU computes from the latest global model, w® | the
updated global model, w(9)+1, which is later returned to the
end-users through the DUs to start a new round. Specifically,
we present the key steps of the FedNG algorithm as follows,

(i) Local model update: As mentioned in Sect. II-C, in the
NG-FedAvg algorithm, each UE determines its training model
by utilizing DGD method [12], [19], which is considered
the fronthaul-capacity is consuming in a large-scale NG-
RAN scenario. Therefore, in the FedNG algorithm, instead
of performing the local training process for each UE in (4),
we utilize the Stochastic Gradient Descent (SGD) method
to determine the gradient on mini-batches. Accordingly, we
assume that A,(fg ) is the mini-bach with size A = |A$}2 7,
which is randomly sampled from end-user (u, s) at round (4)of
the local iteration j. Hence, UE (u,s) can update the local
parameters as,

Wit = Wi — €OV Ly (Wi AGT), = 0,1, T 1,
(6)
where the stochastic gradient can be calculated as,
(1),3
o o (1),5 VZ(WL y Xdsy Yd
VLus (WSS)J |-A,(JS)J) _ ZdGAus us ) (7)
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Fig. 2. An completed iteration in the FedNG algorithm.

Hence, the constraint, E{V Ly, (w\l7 A7)}
VLM(WUS J |Dys), should be established to estimate
the gradlent in (7) properly. Practically, since the only size of
Aus’] is fixed during the training rounds, the total stochastic
updates for each end user can be written as,

) = L (8),3) A(@)3 8

VW Zjejv US(Wus |Au9 )3 ( )

where (8) leads to satisfy the condition, wgfs) W WEQ’O =
—f(i)Vng.

(ii) Local model aggregation: In this step, DU s repeatedly
aggregate gradient parameters as,

= Zueu Zjé..’] VL
- Zueu us

(ii) Global model update: After all the DUs forward the
aggregated gradient parameters to CU for global update, which
can be determined as,

wii ! |AG)
©

€(i) Zueus ZSES VwSZ;?

, u (10)
5(1) ZSGS
= ees,

After the aggregated gradient parameters are determined, it
will be forwarded back to the end user to begin a new global
round. Algorithm 2 shows the details of the proposed FedNG
algorithm. It can be observed that our FedNG algorithm does
not require end users to send their raw data to DUs and CU.
Hence, the FedNG algorithm can secure more privacy for UEs
while reducing the overhead fronthaul traffic in NG-RAN.

Wt = @) _

G

B. FedNG Convergence

The convergence of our FedNG algorithm is discussed and
proven in Theorem 1 as,



Algorithm 2 FedNG Algorithm
1: Input: I, J, U, S Dys,Vu e U,s €S
2: Initialize local model weights
3: Initialize the global model, w(© at CU with learning rate

£
4: for : € 7 do
5: w(® sent from CU to all DUs
6: for u € U, in parallel do
7 for s € S in parallel do
8 DU s sends w')” to each UEs
9: for j € J do o
10: Each UE samples a new minbach A(z) 7

with size A and calculates VLW,(wl(fS J |.Aus’7) as in (7)

11: end for o

12: Each UE wus calculate ngs)’j as in (8) and
uploads it to the associated DU

13: end for

14: Each DU s aggregates all the received gradient
parameters as in (9)

15: end for

16: CU calculates global update as in (10)

17: end for

18: Output: w0

Theorem 1. Given w* E{HW —w*|[?}, T = max{ %2 GIA 4G}
and learning step size £V = W, the upper bound of
our FedNG can be achieved after I global bound as,

max{T2E{||w° — w*|[?}, (20)21Q}

E I _ * |12 <
(I — w2 < (HT)Q
(1)
where Q@ = 2(Gu)®> + (2 + /4N — 1)Lp®> +
Iy veu, 22

s€ESKZ 6AT
U? +7 Zueus >ses Eus

Proof. In order to prove Theorem 1 (i.e., the convergence of
our proposed algorithm), we have made several assumptions
while doing the analysis.

Assumption 1. Let L,s(w) : R/ — R is A-smooth and
k-strongly convex function [21], i.e., Lys(w) > Lys(W) +
VLus(W)(w—w)+5||lw—w|[*,Vw,w € R/, Also, L,s(W)

is an A-Lipschitz continuous gradient, i.e., ||VL,s(w) —
VLus(W)|| < Allw — w||, Yw,w € Rf A > 0.
Assumption 2. (Bounding the variance ) Szmllar

fo [22], [23] at UE (u,s), let E{VLUS(WM |A 7 -
V(w7 Do)} < a2Vu € Us,s € S,i € I, € J,

is an upper bound on the variance o2, and

E{||VLyus(wi2ADN |2} < w2 Vu € Uy,s € S,i €
T,j € J is an upper bound on the variance ji°.

By holding Assumption 1, we can have,

2l Zueu Z eS U (Vs (w
< Zueus ZSES
< 2

W) = VLus(wid?)|?}

12)

By holding Assumption 2, we can get,

—wiIP < (7

DJ(ED)??

By holding Assumptions 1 and 2, the expected upper bound
of w* when ﬁ(i) < 1/4A, can be written as,

%E{wa (13)

E{|[wH+1 — W*\|2} <(1- Lif(i))]Eﬂ\VAV(i)’lJr1 - w*[[*}
(5( )) R + Z Z]E{ us - (W(i)’j))}a
ueEUs seS
(14)

where ®()J — 2 + (%) = DHp? + U2 > el ZSG[ a?, +
6A Zuel/l 256/ Tuss Tus = Lus(W|Dys) — LY, is the data
heterogenelty factor between one user and the other; and L7,
is the minimum local loss function. Hence, the convergence of
our FedNG can be calculated in (11). The proof is complete.

O

IV. PERFORMANCE EVALUATION

In this section, we evaluate our proposed FL-based scheme
on three datasets with three different types of models—
MNIST [24] with Dense Neural Networks (DNNs), CI-
FAR10 [25] with convolutional neural networks (CNNs), and
IMDB sentimental analysis dataset [26] with recurrent neural
networks (RNNs). We compare the different UE-DU associa-
tion methods including nearest, in which each UE connects to
the closest DU, and best-SINR, in which each UE selects the
one with best SINR from the visible DUs. We also compare
these two methods with the baseline model FedAvg.

Simulation Settings: For NG-RAN simulation, we con-
sider randomly scattered UEs with uniformly located DUs.
Taking fading channel into account, we assume that large
scale fading is the same for all sub-bands and small scale
fading is frequency-selective and flat. Define gj;, as the
channel gain from DU j to UE u and it is determined as,
Gus = A5 hus|?,Yu € U,s € S, where d'?, is the large
scale fading including pass loss and shadowing, and h, is the
small-scale Rayleigh fading. To model the Rayleigh fading,
we adopt Jake’s model [27] and the small-scale fading is
modeled as a first-order complex Gauss-Markov process and
the update rule is, hys = phys + /1 — peys,Vu e U,s € S,
where p = Jo(27f4T) is the correlation between two adjacent
fading blocks, Jy is the zero-order Bessel function of the
first kind and f; is the maximum Doppler frequency. T is
the time separation that we re-estimate the channel gain. e,
is the channel innovation process and they follow circularly
symmetric complex Gaussian distribution. A greater value of
p means that the channel has changed significantly since the
last channel estimation, which could be caused by large 7" or a
rapidly changing f,. Further, we used three types of models—
DNN, CNN, and RNN. The DNN is realized with two layers
with [128, 128] units for the layers. The CNN is implemented
with three convolutional module, which consists of a 2D
convoutional layer, a 2D max-pooling layer and a activation
function, with kernel size 3 and stride 1. The RNN model is
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Fig. 5. (a) Latency against the number of UEs; (b) Latency vs. the number of DUs. (c) Testing accuracy vs. CU aggregation interval. Fig. (c) is generated

on MNIST dataset.

realized with a two-layer Long Short Term Memory (LSTM)
unit with one fully connected layer as the last layer for the
output. The learning rate is 0.01 for all models and the batch
sizes are 32, 4, and 128 for three datasets, respectively. The
framework is implemented with Python 3.6 and Pytorch [28],
a deep learning toolkit.

Comparison of Accuracy: To show how the proposed
model work in terms of accuracy, we plot the accuracy change
during training in Fig. 3. We can observe that in all three
datasets, three models achieve similar performances. Particu-
larly, in Fig. 3(b) FedAvg slightly outperforms the other two
models but this advantage is acceptable. We will show later
in this subsection that the proposed framework can achieve a
much lower latency without reducing a significant level of the
accuracy.

Comparison of Traffic: To compare the traffic between
CU and DUs needed to update the proposed FL frameworks
with other frameworks, we present the results in Fig. 4. We

vary the number of UEs involved in the training process in
Fig. 4(a) and it is obvious that as the number UEs increase,
the traffic size increases as well. Additionally, we can also
observe that, in FedAvg framework, more traffic is transmitted
than it in NG-FedAvg and the difference is growing larger as
the number of UEs increase. In Fig. 4(b), we vary the number
of DUs to see how the traffic size changes. For FedAvg, every
UE needs to connect to the CU for aggregation and therefore
the traffic size does not change. For NG-FedAvg however, the
traffic size grows slowly as the number of DU increases, which
is because the DU distribution becomes more dense and UEs
are connecting to more different DUs. Finally, in Fig. 4(c), we
keep the ratio of the number of DUs over the number of UEs
unchanged and vary the absolute values of them to see how the
traffic sizes will be affected. From the figure, we can observe
that the number of UEs seem to dominate the results as the
difference between two frameworks grows as the number of
UEs and DUs vary.



Comparison of Latency: In Figs. 5(a) and 5(b), we plot the
latency perceived by the UEs for all three frameworks. We can
observe that FedAvg has a much larger latency than the other
two frameworks. This is because that for each communication
round in FedAvg, the UE needs to communicate with the
centralized CU while, in the proposed framework, UEs only
need to exchange information with the DUs which is closer
to them physically and thus the latency is reduced.

Impact of CU Aggregation Interval: In the proposed
framework, the centralized CU aggregates the models on
DUs with a predefined interval. To show how this interval
affects the accuracy of the federated learning framework,
we generate a corresponding plot in Fig. 5(c). As we can
observe that, as the aggregation interval increases, the accuracy
of the two models do not change much at the beginning,
and then drop dramatically. We can observe a threshold at
around 45 after which the performance of the models will
drop significantly. Furthermore, we can see that different UE-
DU association connection can get quite different results. This
figure is generated using the MNIST dataset with 30 UEs.

V. CONCLUSION

In this paper, we introduced Next Generation Radio Access
Networks (NG-RANs) as a promising architecture to satisfy
the high on-demand requirements for 5G and beyond appli-
cations. To address the main challenging in NG-RAN, the
limited fronthaul capacity and privacy, we proposed a Feder-
ated Learning (FL)-based NG-RAN algorithm, named FedNG,
in which the User Equipment (UEs), as well as NG-RAN
infrastructures, help each other throughout the learning and
the training process to relieve the burden on fronthaul interface
and secure the privacy for end-users. Finally, we carried out
numerical simulations using three real-world datasets, MNIST,
Fashion-MNIST, and IMDB. The performance of our proposed
algorithm showed a significant improvement compared with
existing traditional Federated Averaging (FedAvg) in terms of
accuracy, service latency, and traffic size.
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