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Abstract: We have derived a 3-D kinetic-based discrete dynamic system (DDS) from the
lattice Boltzmann equation (LBE) for incompressible flows through a Galerkin procedure.
Expressed by a poor-man lattice Boltzmann equation (PMLBE)), it involves five bifurcation
parameters including relaxation time from the LBE, splitting factor of large and sub-grid
motion scales, and wavevector components from the Fourier space. Numerical experiments
have shown that the DDS can capture laminar behaviors of periodic, subharmonic, n-period,
and quasi-periodic and turbulent behaviors of noisy periodic with harmonic, noisy
subharmonic, noisy quasi-periodic, and broadband power spectra. In this work, we
investigated the effects of bifurcation parameters on the capturing of the laminar and
turbulent flows in terms of the convergence of time series and the pattern of power spectra.
We have found that the 2nd order and 3rd order PMLBEs are both able to capture laminar
and turbulent flow behaviors but the 2nd order DDS performs better with lower computation
cost and more flow behaviors captured. With the specified ranges of the bifurcation
parameters, we have identified two optimal bifurcation parameter sets for laminar and
turbulent behaviors. Beyond this work, we are exploring the regime maps for a deeper
understanding of the contributions of the bifurcation parameters to the capturing of laminar
and turbulent behaviors. Surrogate models (to replace the PMLBE) are being developed
using deep learning techniques to overcome the overwhelming computation cost for the
regime maps. Meanwhile, the DDS is being employed in the large eddy simulation of
turbulent pulsatile flows to provide dynamic sub-grid scale information.
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1 Introduction

Discrete dynamical systems (DDSs) have long been of interest since the seminal paper by
May[1]. Being very simple from a mathematical standpoint, a DDS can capture complicated
turbulent-like behaviors in different dynamic systems[2, 3]. With a deterministic mathematical
“rule” describing the time evolution of a state variable y in a discrete-time dynamical system,
a logistic map, e.g. y™'= By" (1-y"), determines the time evolution of a dynamic variable (y")
at discrete time (t") with the choices of the initial state (y°) and the bifurcation parameter (),
leading to the generation of a time series[4]. Such DDSs are easily computed algebraic
formulas not requiring supercomputers for their evaluation but capable of capturing the
dynamic properties in different natural systems including weather forecasting[5], the motion



of billiard balls[6], climate modeling[7-10], fluid dynamics[11-15], MHD turbulence[16, 17],
and many others[ 18-20].

The “poor man’s Navier-Stokes (PMNS) equation™[21], is an established DDS derived
from the incompressible Navier-Stokes (N-S) equations. With very inexpensive evaluation, the
PMNS equation provides deterministic maps that are chaotic and unpredictable in their detailed
properties, but whose statistical properties are reproducible, just as what a turbulent flow
behaves. The PMNS equation is capable of producing local time series at least in qualitative
agreement with laboratory measurements and/or direct numerical simulation (DNS)[22, 23].
Hence, it has contributed to high-fidelity sub-grid scale (SGS) models for large-eddy
simulation (LES), leading to an ability to simulate interactions of turbulence with other
physical phenomena in the inertial subrange scales. The PMNS-based DDSs[14, 15] have often
been employed for turbulence modeling[24-28]. However, there are deficiencies in the DDS
derived from N-S equations that are limited to small Knudsen numbers. Deficiencies in
turbulence simulation using N-S solvers have been associated with rather complicated
modeling and highly expensive computation.

Kinetic-based lattice Boltzmann method (LBM)[29, 30] has been an alternative to
computational fluid dynamic (CFD). It is derived from the Boltzmann equation[31, 32] and
microscopic fluid physics is simplified to retain only the key elements (the local conservation
laws and related symmetries) needed to guarantee accurate macroscopic behavior. Thus, the
LBM is sometimes termed mesoscale CFD. The most attractive advantages of the LBM for the
current research are (1) the simplicity of modeling and implementation for complex flows
including turbulence [33-36] and (2) the suitability of employing the newly emerged GPU
(Graphics Processing Unit) technology[37-39]—massively parallel architectures consisting of
thousands of small and efficient cores designed for handling multiple tasks simultaneously.
Recently, we have derived a first-ever 3-D kinetic-based DDS [40], i.e., “poor man’s lattice
Boltzmann equation (PMLBE)”, and performed numerical experiments to demonstrate its
capability to capture both laminar and turbulent flow behaviors. In this work, we further
investigated the PMLBE in terms of the effects of the power terms and the bifurcation
parameters on the capturing of the laminar and turbulent flows from the convergence of time
series and the pattern of power spectra.

2 Problem Statement

The detailed derivation of the 3-D kinetic-based DDS, i.e., the PMLBE, and its numerical
experiments are found in our previous work[40]. For the purpose of completion and
comprehension of this paper, here we briefly express the major equations. Then, we state the
problem of this work.

Formulation of LBM In the LBM, fluid particles are sitting at discrete grid nodes. During a
time evolution, fluid particles collide at the nodes and then stream to the prescribed finite
neighboring nodes along with their velocity directions. We use D3Q19 lattice model (i =
0, ...,18). The lattice Boltzmann equation (LBE) reads

fiE + 860 - (7 6) = —~[i(%,0) - £71(%,0)], (1)
where f;(X,t) and fieq (X,t) are the particle distribution function and equilibrium particle
distribution function, respectively, with molecular velocity €; along the i direction at the
location X and time #, §x and &t are the lattice width and time interval, respectively, and 7 is

the relaxation time due to particle collisions. The equilibrium particle distribution function is
expressed as
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where w; is the weighting factor with wy =1/3, w; = 1/18, and w; ;3 =1/36 for
D3Q19 lattice model, ¢ = dx/6t with 6x and 8t the lattice width and time interval,
respectively. The density p and density moment M (= pil) are obtained from the following
formulas:

ilgofi = ilgofieq ) (3)

M =318 & fi = Ti% &5 . 4
Equation (1), together with Eqs. (2)—(4), are the governing equations that we use to derive the
PMLE for the 3-D kinetic-based DDS.

Decomposition of large scale and SGS To decompose the motion scales, we first separate the
fi into large scale and SGS denoted by ~ and *, respectively,

fi& 0 = f;(Z 0+ f7(Z,0). ®)
When substituting the decomposed f; into the governing equation, the only term that has not
been decomposed is the equilibrium particle distribution function fl.eq (X,t). To accomplish the
decomposition of fieq (X,t) in Eq. (2), we first separate density and momentum in the same
way as for f;:
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Substituting Eq. (6) and (7) into Egs. (1) and (2) results in:
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Noticing |%| < 1, we have introduced +1 B 1-

Equation (8) contains three types of terms: pure large scale with ~, pure SGS scale with *,
and the mixture of both. For the mixed-scale terms, we introduce a splitting factor 8, and assign
a 8 portion of the mixed terms to the large scale, and the remaining (1—f) portion to SGS.
Equation (8) can then be split into the two scales as follows:
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Now we differentiate Eq. (10) with respect to time and obtain:
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where d/dt = 0/0dt + é; - V is the material time derivative along the characteristic line €;.
Construction of PMLBE we construct the Fourier expansion of the distribution function
separated into large scale and SGS scale as follows:
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where k is the wavevector, a; and ¢y are the Fourier coefficients and tensor product basis of
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E, respectively T is a unit vector in wave space, and N represents the wavevector that separates
large-scale and SGS distribution functions. When the functions ¢;; of our chosen subset is from

0 to N, the linear combination of the vectors is defined as the large-scale distribution function
fi. In other words, the SGS distribution function is simply the remainder of the complete
Fourier expansion, where the functions ¢ of our chosen subset is from N to co. We assume

that the tensor product basis set {(p,;} is complete in the function space L2, orthonormal, and
divergence-free, exhibiting properties analogous to the complex exponential with respect to
differentiation.

Substituting f;*(¥,t) = Zk PR i,k’(t)‘piﬁ(’?) into Eq. (11), recalling Egs. (6) and (7),
rearranging the terms, and constructing Galerkin inner products with given basis functions for
each term result in
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where ),(...) means 211-20(... ). Equation (13) is the so-called PMLBE for the 3-D kinetic-based
DDS. The PMLBE contains 5 bifurcation parameters, which are relaxation time (t) from the

LBE, splitting factor () for separating large and sub-grid motion scales, and wavevector
components (kq, k,, k3) from the Fourier space. It contains three power orders of a; 3z (t) after

36;%¢; }k(t)] N

we neglect the terms higher than the 3™ order.

Identification of laminar and turbulent behavior We search for laminar and turbulent flow
behavior through the time series and the pattern of power spectral density (PSD). With the
specified bifurcation parameters and initial conditions, the time series for the Fourier
coefficients a; i are generated by performing time evolution via Eq. (13). Then the PSD can be

calculated from the time series. The software package ‘pwelch’ in MATLAB is used to
estimate PSDs. In ‘pwelch’, we select the Hanning window; the number of input data points is
213 and the number of overlapped samples is 2!2. The DDS is classified as divergence if its
time series does not converge. When a time series is convergent, we calculate PSD from the
time series. In our previous work [40], we have demonstrated that the PMLBE can capture
laminar behaviors of periodic, subharmonic, n-period, and quasi-periodic, and turbulent



behaviors of noisy periodic with harmonic, noisy subharmonic, noisy quasi-periodic, and
broadband power spectra. The laminar and turbulent power spectra were determined by the
number and pattern of peaks in a PSD. We predefined the splitting factor f (= 0.7 ) from
experience. By varying the bifurcation parameters over the ranges of 0.5 <7 <1 and
0.01 < k, <1 with a = 1,2,3, we have studied more than 30 thousand combinations of
bifurcation parameters to get results for that work.

In this work, we further study how the PMLBE and the selection of the bifurcation
parameters affect the DDS to capture laminar and turbulent behavior. Understanding the
PMLBE and the selection of bifurcation parameters is important to successfully apply the DDS
into an LES of pulsatile turbulence. Based on the experience from the previous work [40], we
only use the number of peaks, N=1000, on the PSD to distinguish the two behaviors.

3 Results
In this section, we present our numerical experiments on how power orders in the PMLBE and
the five bifurcation parameters affect the capturing of the laminar and turbulent behavior. To
set up the computation of this 3-D kinetic DDS, we select the range of 7 as 0.6 < 7 < 1.2, the
range of k, (a = 1,2,3) as 0 < k, < 1, and the range of splitting factor as 0.5 < < 0.8. For
each bifurcation parameter, we uniformly divide the range into 10 points. Thus, we have a
total of 100,000 combination sets of the five bifurcation parameters. In the LBM, we often
select 6x = §t = 1, meaning the particles stream one lattice unit per time step, thus, c=1 in Eq.
(2). The initial value of the SGS information az and large-scale information f; are given as
follows. By assigning velocity components and density, the initial condition of f;
(i =0,...,18) can be calculated from the equilibrium Eq. (2), under the assumption that the
DDS is in equilibrium initially. For the SGS, the initial conditions used in the following
numerical experiments are #* = (0.1445,0.1014, 0.1758) and r*=0.1. For the large scale, the
initial conditions are 7 = (1.758,1.445,1.014) and #=1.0. Basically, the number of particles
and the velocity for large scale are set to be 10 times larger than the SGS variables.

The PMLBE contains three power orders of the dynamic variable: a. k(t) a; H(t) and

a; E(t)' As the LBM is no more than the 2™ order accuracy in space and 1% order accuracy in

time, we want to explore up to what order of power is needed in PMLBE. In terms of the
computation cost, the fewer terms, the faster computation. If we neglect only the 3 order terms
and both the 2™ and 3™ order terms, Eq. (13) becomes
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' Within the specified ranges of the Behavior | Laminar Turbulent
bifurcation parameters, Eq. (15) captures DDS
neither laminar nor turbulent behavior as Eq. (13) 4.37% 0.13%
no time series is convergent. This is Eq. (14) 7.47% 0.37%

because the DDS only contains the I Table 1 Comparisoq of the capability to capture laminar
d ¢ hich is t imple t and turbulent behavior between the 3 order DDS (Eq.
order a;(t) , which is too simple to 13) and 2" order DDS (Eq. 14)

capture flow dynamics. Whereas both Eqgs.

(13) and (14) can capture laminar and turbulent behaviors. Among the total 100,000 bifurcation
parameter points, Egs. (13) and (14) capture 4373 and 7472 laminar behaviors and 127 and 365
turbulent behaviors, respectively. The corresponding percentages are listed in Table 1.
Considering Eq. (14) is more computationally efficient than Eq. (13) as it has fewer terms, we
will focus on Eq. (14) for the remaining study. We now sort the laminar and turbulent
behaviors in terms of B, t, and k, (a = 1,2,3) and calculate the percentage out of the
corresponding number of laminar or turbulent behaviors one by one. The percentage
distributions are shown in Table 2. For each bifurcation parameter, there exists a maximum
percentage. For laminar behavior, $=0.73, t==1.0, k; = 0.33, k, = 0.22,and k3 = 0.22 forms
the optimal combination of bifurcation parameters. Whereas the optimal combination for
turbulent behavior is =0.6, ©=1.0, k; = 0.11, k, = 0.22,and k3 = 0.11. In general, the
wavevector components should correspond to the same value as they are isotropic. The
differences, 0.33 vs. 0.22 in laminar behavior and 0.11 vs. 0.22 in turbulent behavior might be
due to the sparse point distribution in the range.

B 0.50 0.53 0.57 0.60 0.63 0.67 0.70 0.73 0.77 0.80
% 0.28 1.32 3.80 7.57 11.18 14.01 15.85 16.51 15.71 13.76
T 0.6 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20
% 0.21 0.94 2.68 6.88 12.43 15.46 16.13 1591 14.82 | 14.55
0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0

% 6.71 13.72 18.48 19.61 18.00 13.61 7.68 2.15 0.04 0.00
k, 0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0

% | 11.75 | 16.07 20.21 20.16 16.37 10.80 4.35 0.29 0.00 0.00
ks 0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0

% | 17.12 | 21.77 23.61 19.49 12.55 4.87 0.59 0.00 0.00 0.00
B 0.50 0.53 0.57 0.60 0.63 0.67 0.70 0.73 0.77 0.80
% 0.82 9.32 17.53 20.00 19.45 12.33 9.32 4.11 5.75 1.37
T 0.6 0.67 0.73 0.80 0.87 0.93 1.00 1.07 1.13 1.20
% 0.27 2.19 3.84 5.21 8.49 15.34 16.16 13.42 20.55 14.52
kq 0 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0

% 8.77 22.19 21.37 21.10 13.15 9.59 3.56 0.27 0.00 0.00
k, 0.00 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0

% 11.51 | 22.47 23.56 16.16 13.70 9.04 2.74 0.82 0.00 0.00
ks 0.00 0.11 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.0

% | 19.45 | 27.67 24.38 15.34 9.59 3.56 0.00 0.00 0.00 0.00
Table 2 Effects of bifurcation parameters on the capturing of laminar and turbulent behavior from Eq. (14).

Laminar behavior
w‘
&

Turbulent Behavior

3 Conclusions and Future Work

We have investigated how the power order terms and the bifurcation parameters in the PMLBE
affect the capturing of laminar and turbulent behaviors. It is found that the 15t order PMLBE is
divergent and thus not capable to capture either laminar or turbulent behaviors as it is too
simple (linear). The 2" order and 3™ order PMLBEs are both able to capture flow behaviors
but the 2™ order DDS performs better with lower computation cost and more flow behaviors
captured. Form the sorting of flow behavior capturing for each bifurcation parameter, we have
identified two optimal bifurcation parameter sets: 3=0.73, 1=1.0, k; = 0.33, k, = 0.22,and



ks = 0.22 for laminar behavior and $=0.6, t=1.0, k; = 0.11, k, = 0.22,and k3 = 0.11 for
turbulent behavior, which will be useful for the specification of the bifurcation parameters
when we introduce the DDS into our LES modeling of pulsatile flows. The immediate future
work is to produce regime maps to further explore the effects of the PMLBE and the bifurcation
parameters on the capturing of the specific patterns of laminar behaviors including periodic,
subharmonic, n-period, and quasi-periodic, and turbulent behaviors of noisy periodic with
harmonic, noisy subharmonic, noisy quasi-periodic, and broadband power spectra. It requires
much finer points (close to continuous) in the range of each bifurcation thus the computation
will be extremely high. To overcome this bottleneck, we are developing surrogate models
using deep learning techniques. Trained by finite quality points from PMLBE, the surrogate
models will capture the same laminar and turbulent behaviors with significantly reduced
computation time. Meanwhile, the 3-D kinetic-based DDS will be applied in our LES
modeling of pulsatile flows in near future.
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