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Abstract: Computational fluid dynamics (CFD) and its uncertainty quantification 

are computationally expensive. We use Gaussian Process (GP) methods to 
demonstrate that machine learning can build efficient and accurate surrogate models 
to replace CFD simulations with significantly reduced computational cost without 

compromising the physical accuracy. We also demonstrate that both epistemic 

uncertainty (machine learning model uncertainty) and aleatory uncertainty 
(randomness in the inputs of CFD) can be accommodated when the machine learning 

model is used to reveal fluid dynamics. The demonstration is performed by applying 

simulation of Hagen-Poiseuille and Womersley flows that involve spatial and 
spatial-tempo responses, respectively. Training points are generated by using the 
analytical solutions with evenly discretized spatial or spatial-temporal variables. 

Then GP surrogate models are built using supervised machine learning regression. 

The error of the GP model is quantified by the estimated epistemic uncertainty. The 
results are compared with those from GPU-accelerated volumetric lattice Boltzmann 

simulations. The results indicate that surrogate models can produce accurate fluid 
dynamics (without CFD simulations) with quantified uncertainty when both 
epistemic and aleatory uncertainties exist. 

 
Keywords: Supervised Machine Learning, Computational Fluid Dynamics, Volumetric 

lattice Boltzmann method, Surrogate Model, Uncertainty Quantification. 

 

1 Introduction 
 

Computational Fluid Dynamics (CFD) plays an important role in solving various real-world flow 

systems. On the other hand, its heavy computational burden often needs a trade-off between accuracy 

and efficiency. To this end, surrogate models [1, 2] are commonly used to replace the expensive CFD 

models in engineering analysis and design. Recently, machine learning regression has been increasingly 

employed to build surrogate CFD models [3]. Surrogates built from machine learning regression have 

the potential to achieve both fast fluid simulations and high accuracy. With the high efficiency of the 

surrogate models, a CFD simulation can be performed in a matter of seconds or minutes, enabling fast 

what-if analysis, more design option evaluations, wider design space exploration, more reliable decision 

making, and rapid optimization. 

Although surrogate models are inexpensive, they still have some model errors. When they are used 

for applications, the model input may also have uncertainties [4-7], such as random geometry, loading, 

material properties, and manufacturing imprecision. There is therefore a need to quantify the effects of 

uncertainty on the model prediction. In this study, in addition to demonstrating that physics-supervised 

regression can produce efficient and accurate surrogate models, which can significantly reduce the 

computational time without compromising the accuracy of CFD, we also demonstrate that the 
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uncertainties in both surrogate model structure and model input can be quantified so that their effects 

on predictions (outputs) of a CFD simulation can be estimated.  

  

2 Problem Statement 
 

In this study, we develop two surrogate models for solving steady Hagen-Poiseuille flow and unsteady 
Womersley flow. Both are Newtonian incompressible pipe flows, shown in Fig. 1(a), with analytical 
solutions. The existence of analytical solutions allows us to demonstrate the effectiveness of surrogate 

models and the use of uncertainty quantification. The flow domain is a long perfect pipe with a radius �  and length �. The flow is driven by a pressure gradient, � = �� + �� cos (
�), where ��  and �� 

represent the steady pressure gradient and the amplitude of the oscillating pressure gradient, 

respectively, and � is the angular oscillating frequency, as shown in Fig. 1(b). 

 

     
                           (a)                                                                          (b) 

Fig. 1 (a) Isometric view of a pipe, (b) A waveform of spatiotemporal pressure gradient   

 

2.1 Hagen-Poiseuille Flow 

The Hagen-Poiseuille flow is a steady flow driven by a steady (constant) pressure gradient (��). The 

analytical solution of the Hagen-Poiseuille flow is given by �(�)  = ����4� �1 − �����   (1)  
where � is the dynamic viscosity, and � is the radial distance to the center of the cross-section. If we 

denote the maximum velocity by  ����  = ��� !" , the normalized solution is found as �′(�′)  = 1 − �$� (2)  
where the normalized velocity is &$ = &&'()   , and the normalized distance to the cross-section center is *$ = *+. 

2.2  Womersley Flow  

A Womersley flow is driven by an oscillating pressure gradient  � = �� + �� ,-./ . The analytical 

solution is given by  
�(�, �) = ����4� �1 − ����� + �,12 3����4�5� 61 − 7�(5�� 48�9

7�(548�9 : ,-./; 

 
 (3)  

It is noted that Eq. (3) recovers the solution of Hagen-Poiseuille flow. i.e. Eq. (2), when no 

oscillating pressure gradient exists, e.g.  �� = 0. 

The velocity �(�, �) can be normalized as 
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�$(�$, �$) = (1 − �$�) + 4>5� �,12 314 61 − 7� ?5�$48�9
7� ?548�9 : ,-/@; 

 (4) 

where the angular velocity is �$ = 
� , and > = �A�� �. 5 = �B.C"  and 7� are the Wormsley number and 

the Bessel function of the first kind of order zero, respectively.  

2.3    Methodology 

We generate surrogate models for both Hagen-Poiseuille flow and Womersley flow by regression. We 

compare the surrogate models with numerical solutions from CFD. CFD is performed using the 

volumetric lattice Boltzmann method [8] through an in-house GPU accelerated code [9]. We impose 
pressure gradient as a body force, rigid wall, and periodic conditions at the inlet and outlet. Both 

regression and CFD share the same parameters.  The physical quantities used in the study is given in 

Table 1.  

Table 1 Physical quantities for the Hagen-Poiseuille and Womersley flow 

  Variables Values 

Angular frequency 
 7.85 HIJ 

Kinematic viscosity � 3.415 × 10IL 

Density  M 1025 kg/m8 

Steady pressure gradient  �� 280.00 Pa/m 

Amplitude of oscillating pressure gradient  �� 488.3525 Pa/m 

The surrogate models are built via Gaussian Process (GP) regression. For the unsteady Womersley 
flow, time is also included as a dimension of the input training points. The prediction error can be 

estimated by the model uncertainty represented by the standard deviation of the prediction. It is also 

possible to estimate prediction error for a surrogate model built with neural network regression [10].  

 

3 Gaussian Process Regression 
 

There are many machine learning regression methods, such as Neural Network Regression [11] and GP 

regression [12]. In this study, we use GP since it can easily quantify epistemic (model) uncertainty for 

the model error.  
The aim of GP is to build a surrogate model using training points for a general nonlinear CFD 

model. The training points include both the model input and output, and GP is therefore a supervised 

machine learning method. GP has several benefits. In addition to the ability of quantifying epistemic 
uncertainty, GP works well on small and medium size datasets and can provide high accuracy for 

nonlinear functions.  

Denote the training dataset by T()- , U-);  4 = 1, 2, … , XY, ) ∈ ℝ\ and ] ∈ ℝ. The dataset is used to 
train a nonlinear model given by Û()) = ℎ())`a + b (5)  
where  ℎ())  is a vector of basic functions, a  is a vector of to-be-determined coefficients, and b())~d(0, e�) is a noise term, ) is a vector of input variables, and Û is the model output. The responses 

(outputs) from the model at different input points are assumed to follow a joint Gaussian distribution; 

or the response Û follows a Gaussian Process (GP). Û())~d(�()), f(), )$)) (6)  
where �()) and f(), )$)) are the mean and covariance of the GP, respectively. The GP model is 

therefore a probabilistic model. A linear transformation is performed so that the mean function becomes 

zero. The prior joint distribution of observed responses ] can be modeled as h(]|j()), ))~d(]|k())`a + j()), el�ml  ) (7)  
where m  is a X × X identity matrix. j())~d(0, f(n, n)) follows a multivariate normal distribution. 
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f(n, n) is a symmetric covariance matrix, where n = o)p̀ , )q̀ , … , )r̀s. Thus, the distribution of prior 

observed values of ] and the new responses at test points ]∗ becomes u ]]∗v ~d ?0, w + el�m w∗̀w∗ w∗∗ 9 
(8)  

where x-y = x()- , )y) is a symmetric covariance matrix of response at the training points; x∗∗ is the 

covariance matrix of predicted responses to the test points; w∗ = w∗̀  is the covariance matrix of the 
responses at test and training points. The covariance kernel function is critical to the accuracy of the 

model predictions. The most widely used kernel function is the squared exponential kernel. The 

distribution of the prediction is a conditional distribution and is given by ]∗|n, ], n∗~d({∗, |∗) (9)  
where {∗ is the mean of the predicted responses and |∗ is the variance of the prediction, which are 

given by {∗ = w∗~w + el�ml�IJ]|∗ = w∗∗ − w∗~w + el�m�IJw∗̀  
(10)  

|∗ provides not only the standard deviation of the response at a test point, but also the dependence 

of responses at all the test points. The former indicates the model or epistemic uncertainty. The higher 

is the standard deviation of the predicted response, the higher is the epistemic uncertainty. 

 

4 Uncertainty Quantification 
 

When we use the surrogate CDF model for predictions, we will encounter two types of uncertainty: 

epistemic uncertainty and aleatory uncertainty [13]. Epistemic uncertainty is the model uncertainty in 
the surrogate model as we discussed in Sec. 3. Aleatory uncertainty is due to the intrinsic randomness 

in the model input, such as random loading, material properties, and boundary conditions. When we 

use the surrogate model for real applications, we should consider the effects of both types of uncertainty. 

They can be modeled by random variables. We now discuss how to predict the probability distribution 
of CFD output from the surrogate model with the two types of uncertainty. 

The response from a GP surrogate model is U = ���()) , where ) = (�J, ��, … , �\)`  with 

independent random variables �- , 4 = 1,2, … , �, which follow certain distributions with probability 

density function j�� (⋅). The input variables have aleatory uncertainty. If the input variables are not 

independent, they can be converted into independent ones. The conversion may be performed before 

the regression or after.  

The conditional distribution of the predicted U given ) is a normal distribution.  U|) = ���())~d(�̂�()), ê��())) (11)  
The conditional distribution is caused by the epistemic uncertainty in the surrogate model. Let j(), U) be the joint PDF of ) and U. Given both types of uncertainty, the mean of U is calculated by �(U) = � �̂�())j())�) = � �̂�())j())�) = �)o�̂�())s (12)  

where �(⋅) stands for an expectation, and j()) is the joint PDF of ).  

The variance of the response is �(U) = �~U�� − (�~U�)� = �)oê��())s + �)o�̂�())s (13) 

The first and second terms on the right-hand side indicate the contributions to the overall uncertainty 

from the model uncertainty and data uncertainty, respectively. 
Next, we discuss how to estimate the cumulative distribution function (CDF) of the response. 
Without losing generality, we find the following probability: h� = P�(U < 0) (14)  
This probability is called the probability of failure if a failure occurs when U < 0  [14]. This 

probability is commonly used in reliability-based design [15]. It is also the CDF at U = 0.  h� = Pr(U < 0) = � j)�(), U)�)�U 
�())�� = � �Φ �− ��())e�())� j())� �) (15)  

where j)�(), U) is the joint PDF of ) and y, and Φ(⋅) is the CDF of a standard normal variable. Let  
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,()) = Φ �− ��())e�())� 
(16)  

Then h� = � ,())j())�) = �)~,())� (17)  
�)(⋅), �(⋅), and h�  are all expectations with respect to ). There are two methods to estimate the 

expectation. The first way is Monte Carlo simulation (MCS) [16-18], and the second is Taylor 

expansion at means {) = ���� , �� , … , �����
. The use of MCS is straightforward. We discuss the 

second method briefly. Denote a nonlinear function by �()), and �()) could be ��()), e�()), or ,()). �()) ≈ �({)) + ��({))() − {)) + 12 ()−{))`�({))() − {)) 
(18)  

where �ℎ(⋅) and �(⋅) are the gradient and the Hessian of �(⋅), respectively. Then �(U) ≈ ℎ({)) + 12 ��(�({))Σ) ) 
(19)  

where ��(⋅) is the trace of a matrix.  

Since the components of ) are independent,  

�(U) ≈ ���({)) +   ¡����¡�-� ({))e���\
-¢J  

(20)  
If we use the first-order Taylor expansion,  

�(U) ≈   �¡���¡�- ({))e�� ��\
-¢J  

(21)  
The probability of failure is approximated by 

h� = ,({)) +   ¡�,¡�- ({))e���\
-¢J  

(22)  
The derivatives are evaluated by the finite difference method. 

 

5 Numerical Results 

 
In this section, we compare the GP surrogate model prediction and CFD simulation for the velocity 

profile along a radius. In addition, we perform uncertainty quantification for Womersley flow. The 

analysis includes model uncertainty and data uncertainty. 
The detailed information of input variables in training the GP models is shown in Table 2, and the 

observed responses are obtained by the normalized analytical solution in Eqs. (2) and (4). 

Table 2 Distributions of input variables  

Variable Minimum Maximum Distribution Number of points 

Hagen-

Poiseuille 
flow 

�£¤¥  (¦/H) 0.1 5.0 Uniform 450 �(¦) 0.0025 0.5 Single 1 

 

Womersley 

flow 

> 1.0 2.0 Uniform 10 

� 2.0 5.0 Uniform 10 r’ 0.0 1.0 Uniform 30 t’ 4.7414 10.2364 Uniform 10 

The results are plotted in Fig. 2 for steady Hagen-Poiseuille flow and Fig. 3 for unsteady 
Womersley flow. For the steady flow, both GP predictions and CFD simulation achieve nearly identical 
profiles to the analytical solutions. For the unsteady Womersley flow, we use four representative time 

instants �′ = ~5.9625, 7.0964, 8.6664, 10.2364� in an oscillation, and all the velocity profiles from 
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GP at the time instants in oscillation are again identical to the analytical solutions, whereas CFD results 

have noticeable deviations from the analytical solutions.  

 
Fig. 2 The comparison of velocity profiles of Hagen-Poiseuille flow along a radial direction. 

 

 
Fig. 3 Comparisons of velocity profiles of Womersley flow along a radial direction at 4 representative 

time instants in an oscillating cycle. 

We use MCS to quantify the model uncertainty, and the sample size is 1,! . There are two 

independent input random variables ) = ~>,��, and they follow normal distributions. Their distribution 

parameters are given in Table 3.  
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Table 3 Distributions of random variables 

Variable Mean Std Distribution > 1.7441 0.0750 Normal 

� 3.7523 0.1250 Normal 

 

We compare the predictions from GP with analytical solutions at the time instant 5.9625 s. The 

mean and standard deviations are given in Tables 4 and 5, respectively. The 95% confidence intervals 
are also plotted in Fig. 4. The two tables and Fig. 4 indicate good accuracy of the GP model.    

 

Fig. 4 Predictions from GP and analytical model  

The contributions of the model and data uncertainty are provided in Table 6. The second column 

shows the standard deviations of the contributions from data uncertainty to the overall uncertainty in 

the last column. It corresponds to the second term on the right-hand side of Eq. (13). The third column 

shows the contributions from the model uncertainty, corresponding to the first term on the right-hand 

side of Eq. (13). The uncertainty of the prediction is mainly due to the uncertainty from the data, which 

is much larger than the model uncertainty. 

 

6     Conclusions and Future Work 
 
Using steady Hagen-Poiseuille and unsteady Womersley flows, we demonstrated that the surrogate 

predictions are much faster than CFD and equivalent (Hagen-Poiseuille flow) to and more accurate 
(unsteady Womersley flow) than CFD simulations. We also demonstrated that the model error of the 

surrogate model can be estimated by the quantification of model uncertainty. Given sufficient training 

points, the prediction from the surrogate model is accurate with small model uncertainty. Uncertainty 
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quantification can also accommodate uncertainty in the model input. It helps users understand the 
effects of uncertainty on the prediction and contributions from different sources of uncertainty. It will 

assist in more reliable decision-making. Our further work will be uncertainty quantification for more 

complex CFD simulations without analytical solutions, aiming to significantly reduce the 

computational time. We will train surrogate models for more realistic steady and unsteady flows and 
perform a full-scale uncertainty quantification analysis.  

 

Table 4 Mean predictions from GP and analytical solution 

� Mean (GP) Mean (analytical) Error Relative error (%) 

0 0.93743 0.94538 0.00794 0.8403 

0.0345 0.93681 0.94475 0.00793 0.8394 
0.0690 0.93496 0.94285 0.00789 0.8370 

0.1034 0.93185 0.93968 0.00782 0.8329 

0.1379 0.92747 0.93520 0.00773 0.8273 
0.1724 0.92177 0.92939 0.00762 0.8201 
0.2069 0.91472 0.92220 0.00748 0.8114 

0.2414 0.90625 0.91357 0.00732 0.8012 
0.2759 0.89629 0.90342 0.00713 0.7896 

0.3103 0.88476 0.89168 0.00692 0.7766 

0.3448 0.87156 0.87825 0.00669 0.7624 

0.3793 0.85656 0.86301 0.00644 0.7469 
0.4138 0.83964 0.84582 0.00617 0.7303 

0.4483 0.82063 0.82652 0.00589 0.7127 

0.4828 0.79936 0.80495 0.00558 0.6942 
0.5172 0.77562 0.78089 0.00527 0.6748 

0.5517 0.74918 0.75412 0.00493 0.6548 

0.5862 0.71978 0.72438 0.00459 0.6340 
0.6207 0.68714 0.69138 0.00423 0.6128 
0.6552 0.65095 0.65482 0.00387 0.5912 

0.6897 0.61084 0.61434 0.00349 0.5692 

0.7241 0.56644 0.56956 0.00311 0.5470 
0.7586 0.51734 0.52007 0.00272 0.5246 

0.7931 0.46308 0.46541 0.00233 0.5021 

0.8276 0.40317 0.40512 0.00194 0.4797 
0.8621 0.33712 0.33867 0.00154 0.4573 

0.8966 0.26436 0.26551 0.00115 0.4351 

0.9310 0.18432 0.18509 0.00076 0.4128 

0.9655 0.09641 0.09679 0.00037 0.3890 

 

Table 5 Standard deviations from GP and analytical model 

� Standard deviation (GP) 
Standard deviation 

(analytical) 
Error Relative error (%) 

0 0.03585 0.03792 0.00794 5.4482 

0.0345 0.03584 0.03792 0.00793 5.4805 

0.0690 0.03580 0.03791 0.00789 5.5765 
0.1034 0.03573 0.03791 0.00782 5.7326 

0.1379 0.03564 0.03789 0.00773 5.9425 

0.1724 0.03551 0.03786 0.00762 6.1980 
0.2069 0.035351 0.03781 0.00748 6.4894 

0.2414 0.03516 0.03772 0.00732 6.8060 
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0.2759 0.03491 0.03760 0.00713 7.1371 
0.3103 0.03462 0.03742 0.00692 7.4719 

0.3448 0.03427 0.03717 0.00669 7.8007 

0.3793 0.03385 0.03684 0.00644 8.1145 

0.4138 0.03335 0.03641 0.00617 8.4058 
0.4483 0.03275 0.03586 0.00589 8.6683 
0.4828 0.03206 0.03519 0.00558 8.8968 

0.5172 0.03124 0.03436 0.00527 9.0868 
0.5517 0.03029 0.03337 0.00493 9.2347 

0.5862 0.02920 0.03220 0.00459 9.3362 

0.6207 0.02795 0.03084 0.00423 9.3864 
0.6552 0.02653 0.02928 0.00387 9.3782 

0.6897 0.02494 0.02749 0.00349 9.3007 
0.7241 0.02316 0.02549 0.00311 9.1362 

0.7586 0.02119 0.02325 0.00272 8.8547 
0.7931 0.01902 0.02076 0.00233 8.4016 

0.8276 0.01664 0.01803 0.00194 7.6686 

0.8621 0.01406 0.01503 0.00154 6.4096 
0.8966 0.01128 0.01175 0.00115 3.9488 
0.9310 0.00835 0.00817 0.00076 2.2266 

0.9655 0.00549 0.00426 0.00037 28.735 

 

Table 6 Contributions to overall uncertainty from model and data uncertainty 

� Standard deviation from data 
uncertainty 

Standard deviation from 
model uncertainty 

Standard deviation of 
the prediction 

0 0.03564 0.00388 0.03585 
0.0345 0.03563 0.00388 0.03584 

0.0690 0.03559 0.00388 0.03580 

0.1034 0.03552 0.00388 0.03573 
0.1379 0.03543 0.00388 0.03564 

0.1724 0.03530 0.00388 0.03551 

0.2069 0.03514 0.00388 0.03535 
0.2414 0.03494 0.00388 0.03516 

0.2759 0.03470 0.00388 0.03491 

0.3103 0.03440 0.00388 0.03462 

0.3448 0.03405 0.00388 0.03427 
0.3793 0.03362 0.00388 0.03385 

0.4138 0.03312 0.00388 0.03335 
0.4483 0.03252 0.00388 0.03275 
0.4828 0.03182 0.00388 0.03206 

0.5172 0.03100 0.00388 0.03124 

0.5517 0.03004 0.00388 0.03029 
0.5862 0.02894 0.00388 0.02920 

0.6207 0.02768 0.00388 0.02795 
0.6552 0.02624 0.00388 0.02653 

0.6897 0.02463 0.00388 0.02494 
0.7241 0.02283 0.00388 0.02316 

0.7586 0.02083 0.00388 0.02119 

0.7931 0.01862 0.00388 0.01902 
0.8276 0.01618 0.00388 0.01664 
0.8621 0.01351 0.00388 0.01406 

0.8966 0.01059 0.00388 0.01128 
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0.9310 0.00739 0.00388 0.00835 
0.9655 0.00388 0.00388 0.00549 
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