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Abstract. We consider the inverse problem of determining the geometry of

penetrable objects from scattering data generated by one incident wave at a

fixed frequency. We first study an orthogonality sampling type method which is
fast, simple to implement, and robust against noise in the data. This sampling

method has a new imaging functional that is applicable to data measured in
near field or far field regions. The resolution analysis of the imaging functional

is analyzed where the explicit decay rate of the functional is established. A

connection with the orthogonality sampling method by Potthast is also studied.
The sampling method is then combined with a deep neural network to solve

the inverse scattering problem. This combined method can be understood as a

network using the image computed by the sampling method for the first layer
and followed by the U-net architecture for the rest of the layers. The fast

computation and the knowledge from the results of the sampling method help

speed up the training of the network. The combination leads to a significant
improvement in the reconstruction results initially obtained by the sampling

method. The combined method is also able to invert some limited aperture

experimental data without any additional transfer training.

1. Introduction

We consider an inhomogeneous medium that fills up a bounded Lipschitz do-
main D ⊂ Rn (n = 2 or 3). Suppose that the medium is characterized by bounded
function η(y) satisfying η = 0 in Rn \D. Consider the incident plane wave

uin(x) = eikx·d, x ∈ Rn, d ∈ Sn−1 := {x ∈ Rn : |x| = 1},
where k > 0 is the wave number and d is the direction vector of propagation. The
scattering of uin by the inhomogeneous medium is described by the following model
problem

∆u+ k2(1 + η(x))u = 0, x ∈ Rn,(1.1)

u = usc + uin,(1.2)

lim
r→∞

r
n−1
2

(
∂usc

∂r
− ikusc

)
= 0, r = |x|,(1.3)
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where u is the total field, usc is the scattered field, and the Sommerfeld radiation
condition (1.3) holds uniformly for all directions x/|x| ∈ Sn−1. If Rn\D is connected
and Re (η) ≥ 0, this scattering problem is known to have a unique weak solution
usc ∈ H1

loc(Rn), see [11].

Inverse problem. Let Ω be a bounded Lipschitz domain such that D ⊂ Ω
and denote by ν(x) the outward normal unit vector to ∂Ω at x. Given usc and
∂usc/∂ν on ∂Ω determine D.

In this paper we develop a sampling type method and combine this method
with deep learning to solve the inverse problem above. There has been a large
body of literature on both theoretical and numerical studies on this inverse problem
and its variants, see [10, 11] and references therein. To numerically solve the
inverse problem sampling methods are known to be fast, non-iterative and do not
require advanced a priori information about the unknown target. More details
about sampling methods can be found in [28, 23, 6] and references therein.

The sampling method studied in this paper is inspired by the orthogonality
sampling method (OSM) by Potthast [29]. The OSM is also studied in other works
under the name of direct sampling method. The OSM is attractive and promising
thanks to its computational efficiency. For instance, the OSM is a regularization
free method that is very robust against noise in the data, and its implementation
only involves an evaluation of vector products. However, the theoretical analysis of
the OSM is far less developed compared with that of the linear sampling method
and the factorization method. Also most of the published results deal with the case
of far-field measurements, see e.g., [29, 13, 17, 1, 18, 27, 15, 24]. There have been
only a few results on the OSM concerning the case of near-field measurements. The
near-field OSM studied in [3] is applicable to the 2D case with circular measurement
boundaries. The 3D case was studied in [20] under the small volume hypothesis
of well-separated inhomogeneities. The sampling method proposed in this paper
can be applied to near-field data (or far-field data) and it is not limited to those
conditions. However, it requires Cauchy data instead of only scattered field data.
Using the Lippmann-Schwinger equation and the Helmholtz integral representation
we show that the imaging functional is equal to a functional that involves Bessel
functions J0(k|y− z|) or j0(k|y− z|) where z is a sampling point and y is inside the
unknown scatterer. These Bessel functions are crucial for justifying the behavior
of the imaging functional.

It is known that in the case of scattering data generated by one incident
wave the OSM can only provide reasonable reconstructions for small scattering
objects [29]. It is also the case of other reconstruction methods. This motivates us
to combine our orthogonality sampling type method with deep learning to obtain
better reconstruction results. The orthogonality sampling type method is combined
with deep learning in the following way. This combined method can be understood
as a network that uses the image computed by the sampling method for the first
layer, followed by the U-net structure for the remaining layers. The combination
of deep learning to physics-based reconstruction methods to solve inverse problems
has been studied, see, e.g., [19, 14, 26, 4, 21, 32, 7]. In particular, we refer to the
review paper [7] and references therein for recent advances in using deep learning
for solving inverse scattering problems. To our knowledge (see also [7]) most of the
studies on deep learning for inverse scattering consider data generated by multiple
incident fields while the the data for inverse scattering problem considered in this
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paper is associated with only one incident field at a fixed wave number. Our inverse
problem has a minimal amount of data. In addition, the imaging functional for the
proposed sampling method is a new functional and it has an advantage over the
imaging functional of the OSM that it can be applied to near field data or far field
data. Furthermore, to our knowledge the combination of this sampling method (or
orthogonality sampling methods) and deep learning for solving inverse scattering
problems has not been studied before.

In this paper we exploit a deep neural network of U-Net-Xception style [8]. We
train this network using simulated data sets of scattering objects with elliptical ge-
ometry. The fast computation and the information from the results of the sampling
method help speed up the training of the network. Our numerical study shows that
the network is able to predict some scattering objects with geometries different
from those of the training and testing data sets. The combination leads to a signif-
icant improvement in the reconstruction results initially obtained by the sampling
method. We also demonstrate that the combined method is also able to invert some
experimental data from the Fresnel Institute ([5]) without any additional transfer
learning.

The paper is organized as follows. The orthogonality sampling type method
and its analysis are presented in Section 2. Section 3 is dedicated to a description of
the deep neural network used to combine with the sampling method. The numerical
study for simulated data and real data is presented in Sections 4 and 5, respectively.

2. An orthogonality sampling type method

In this section we develop the an orthogonality sampling type method for the
inverse scattering problem. For x, y ∈ R3 and x 6= y, we denote by Φ(x, y) the
free-space Green’s function of the scattering problem (1.1)–(1.3) which is given by

(2.1) Φ(x, y) =

{
i
4H

(1)
0 (k|x− y|), n = 2,

exp(ik|x−y|)
4π|x−y| , n = 3.

It is well known that problem (1.1)–(1.3) is equivalent to the Lippmann-Schwinger
equation (see, e.g. [11])

usc(x) = k2

∫
D

Φ(x, y)η(y)u(y)dy, x ∈ R3.

The following Helmholtz integral representation is important to the analysis of the
sampling method.

Lemma 2.1. Assume that W is bounded Lipschitz domain in Rn such that
Rn \ W is connected. Let ν be a unit outward normal vector on ∂W . For any
function w ∈ H2(W ) we have

w(x) =

∫
∂W

(
∂w(y)

∂ν
Φ(x, y)− w(y)

Φ(x, y)

∂ν(y)

)
ds(y)−

∫
W

(∆w + k2w)Φ(x, y)dy.

(2.2)

Proof. We refer to [11, Chapter 2] for a proof of the lemma. �

We also need to the Funk-Hecke formula for the analysis in this section.
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Lemma 2.2. Let Ym be the spherical harmonics of order m and jm be the
spherical Bessel functions of first kind and order m. We have∫

Sn−1

e−ikx·ẑYn(ẑ)ds(ẑ) =
4π

im
jm(k|x|)Ym

(
x

|x|

)
.(2.3)

Proof. A proof of this lemma can be found in [11, Chapter 2]. �

Now we define the imaging functional as

I(z) :=

∣∣∣∣∫
∂Ω

(
∂Im Φ(x, z)

∂ν(x)
usc(x)− Im Φ(x, z)

∂usc(x)

∂ν(x)

)
ds(x)

∣∣∣∣ρ ,(2.4)

where ρ = 1 or ρ = 2.
This functional I(z) aims to determine D in Ω and in the numerical implemen-

tation we evaluate I(z) for a finite set of sampling points z. We expect that I(z)
is relatively large as z ∈ D and that it is small as z is outside D. The behavior of
I(z) is analyzed in the following theorem.

Theorem 2.3. The imaging functional I satisfies

I(z) =

∣∣∣∣k2

∫
D

Im Φ(y, z)η(y)u(y)dy

∣∣∣∣ρ .
Proof. From the Lippmann-Schwinger equation we obtain that

∂usc(x)

∂ν(x)
= k2

∫
D

∂Φ(x, y)

∂ν(x)
η(y)u(y)dy.

Therefore, a substitution leads to∫
∂Ω

(
∂Im Φ(x, z)

∂ν(x)
usc(x)− Im Φ(x, z)

∂usc(x)

∂ν(x)

)
ds(x)

=

∫
∂Ω

(
∂Im Φ(x, z)

∂ν(x)
k2

∫
D

Φ(x, y)η(y)u(y)dy − Im Φ(x, z)k2

∫
Ω

∂Φ(x, y)

∂ν(x)
η(y)u(y)dy

)
ds(x)

= k2

∫
D

∫
∂Ω

(
∂Im Φ(x, z)

∂ν(x)
Φ(y, x)− Im Φ(x, z)

∂Φ(y, x)

∂ν(x)

)
ds(x) η(y)u(y)dy.

(2.5)

Since ∆Im Φ(z, y) + k2Im Φ(z, y) = 0 for all z, y ∈ Rn and Im Φ(z, y) is regular
function, the Helmholtz integral representation (2.2) implies that∫

∂Ω

(
∂Im Φ(x, z)

∂ν(x)
Φ(y, x)− Im Φ(x, z)

∂Φ(y, x)

∂ν(x)

)
ds(x) = Im Φ(y, z).

Therefore, substituting this identity in (2.5) implies∫
∂Ω

(
∂Im Φ(x, z)

∂ν(x)
usc(x)− Im Φ(x, z)

∂usc(x)

∂ν(x)

)
ds(x) = k2

∫
D

Im Φ(y, z)η(y)u(y)dy.

Now the proof can be completed by substituting this equation in (2.4). �

We know that

(2.6) Im Φ(y, z) =

{
J0(k|z − y|), n = 2,
k
4π j0(k|z − y|), n = 3.

Since J0(k|y−z|) and j0(k|y−z|) peak when k|y−z| = 0, we expect from Theorem 1
that I(z) takes larger values for z ∈ D and much smaller values outside D. Further,
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from the asymptotic behavior of J0(k|y − z|) and j0(k|y − z|) as |y − z| → ∞ we
can easily estimate, for z /∈ D, that

I(z) = O

(
1

dist(z,D)ρ(n−1)/2

)
as dist(z,D)→∞.

This incomplete analysis is common for imaging functionals of orthogonality sam-
pling methods (see, e.g., [29, 17, 18, 3, 27, 1]). To our knowledge a complete
analysis for orthogonality sampling methods is still an open problem.

We now show a relation between I(z) and the imaging functional suggested
by Potthast in [29]. To this end, we recall that the scattered field usc has the
asymptotic behavior

usc(x) =
eik|x|

|x|(n−1)/2
(u∞(x̂) +O(1/|x|)), |x| → ∞,

for all x̂ ∈ Sn−1. The function u∞(x̂) is called the scattering amplitude or the
far-field pattern of usc(x). The original imaging functional of the orthogonality
sampling method suggested in [29] is given by

IOSM(z) =

∣∣∣∣∫
Sn−1

eikz·x̂u∞(x̂)ds(x̂)

∣∣∣∣ .
Theorem 2.4. The two imaging functionals are related by

I(z) = γ |IOSM(z)|ρ

where

γ =

{(√
πeiπ/4√

2k

)ρ
, n = 2,(

4π
k

)ρ
, n = 3.

Proof. From the Lippmann-Schwinger equation for usc it is known that its
scattering amplitude is given by

u∞(x̂) = αk2

∫
D

e−iky·x̂η(y)u(y)dy

with the constant

α =

{
eiπ/4√

8πk
, n = 2,

1
4π , n = 3.

Substituting u∞(x̂) in IOSM(z) implies

(2.7) IOSM(z) =

∣∣∣∣αk2

∫
D

∫
Sn−1

eikx̂·(z−y)ds(x̂)η(y)u(y)dy

∣∣∣∣ .
Now using (2.6) and the Funk-Hecke formula (2.3) we obtain that

(2.8)

∫
Sn−1

eikx̂·(z−y)ds(x̂) =

{
2πIm Φ(z, y), n = 2,
(4π)2

k Im Φ(z, y), n = 3.

Substituting (2.8) in (2.7) and comparing with Theorem 1 we complete the proof.
�

Theorem 2 also implies that I(z) is stable against noise in the data following
the stability of IOSM(z) [29].
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Figure 1. Architecture of Depthwise Separable Convolution.

Remark 2.5. If ∂Ω is the boundary of some ball with large radius, we can
approximate ∂usc/∂ν ≈ ikusc using the radiation condition. Then I(z) can be
modified to handle the far-field data usc(x) as follows

I(z) =

∣∣∣∣∫
∂Ω

(
∂Im Φ(x, z)

∂ν(x)
usc(x)− ikIm Φ(x, z)usc(x)

)
ds(x)

∣∣∣∣ρ .(2.9)

3. The deep neural network

In this section, we use the sampling method along with a deep neural network
of U-Net-Xception style to form a combined method to solve the inverse problem.
Numerical simulation was done for both simulated and experimental scattering
data.

3.1. U-Net Xception style. Xception is an efficient architecture which re-
lies on two main points: Depthwise Separable Convolution and Shortcuts between
Convolution blocks. Xception architecture is an alternative to classical convolution
layers, which performs more efficiently in terms of computation time and accuracy.
See details of Xception architecture in [8].

Firstly, Depthwise Separable Convolution includes two subnetworks: Depthwise
Convolution and Pointwise Convolution. Compared to conventional convolution
layers, Depthwise Separable Convolution does not need to compute convolution
operations across all channels, which will eliminate the number of parameters in
the model and makes it simpler. The overall architecture of Depthwise Separable
Convolution is described in Figure 1.

Secondly, there are residual (shortcut/skip) connections in Xception networks.
Many state-of-the-art Deep neural networks (Resnet, YOLOv3, MobileNetV2, Cas-
cading Residual Network) have shown that accuracy is much higher when residual
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Figure 2. Residual connections within Xception networks.

connections are used, see [16, 30, 31, 2]. The pattern of residual connection in
U-Net Xception architecture is shown in Figure 2.

3.2. Training the network. Given some scattering object and an incident
wave we use the spectral method studied in [25] to solve the direct problem and
generate the associated scattering data. The image of the scattering object is called
a true image. Applying the sampling method to the scattering data we obtain a
computed image of the scattering object. We call this image a preliminary image.

The training data set includes 60, 000 pairs of images, each pair consists of
a true image and a preliminary image. The true images are those of either one
or two ellipses whose center and radii are randomly generated within the square
domain (−2, 2)2. More precisely, if the object consists of only one ellipse, the center
is randomly generated within the square [−0.8, 0.8]2 and the radii are randomly
generated within the interval [0.1, 1]; if the object consists of two ellipses, the first
one is generated in the same manner as before, while the second one has its center
randomly generated within the square [−1, 1]2 and radii randomly generated within
the interval [0.1, 0.5]. Note that the two ellipses are allowed to overlap each other.
The wave number associated with the data set is k = 6, which means the wavelength
is about 1. As for the incident wave, we use uin(x) = eik(x1 cos θ+x2 sin θ) where
θ = 90o for 30,000 images and θ = 45o for the other 30,000 images. The Cauchy
scattering data are computed on the circle of radius 100. We did not add any
artificial noise to the scattering data for the training and testing of the network.
See Figure 3 for some examples of training data pairs.

All images are uniformly partitioned into 160×160 pixels. Let I = {1, 2, . . . , 1602}.
The neural network is initialized with random parameters. Using a preliminary im-
age as input, the network produces the corresponding output ŷ = {ŷi}i∈I that will
then be used along with the true image y = {yi}i∈I to calculate the loss function

L = −
∑
i∈I

(yi log ŷi + (1− yi) log(1− ŷi)).

After that, the parameters within the convolution layers are tuned using Adam
method (see [22]) in order to minimize the loss function. This minimization process
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Figure 3. Examples of three training data pairs: true images
(top), preliminary images (bottom).

is done for one batch of size 32 at a time, with the loss function for each batch being
the sum of those of individual training pairs in the batch. The initial learning rate is
10−2, and will be divided by 10 if the validation loss does not decrease or validation
accuracy does not increase after 5 epochs until it reaches 10−6. The neural network’s
architecture can be briefly described by the diagram in Figure 4.

Out of 60,000 pairs of images, 50,000 were used to train the network, 5,000 were
used for validation and 5,000 are used for testing. In Figure 5, we show the result of
training loss versus validation loss and training accuracy versus validation accuracy.
The loss value at each epoch is the average value of L over all paired images, whereas
the accuracy value is the ratio of the number of pixels in the predicted image that
match their counterparts in the true image to the total number of pixels. Those
values for validation were computed over 5, 000 images in the validation set, and
those values for training were computed over 50, 000 images in the training set.

In order to enrich the training data set, we used data augmentation. More
specifically, we produced five copies of each training pair by applying five types of
transformations: horizontal flip, vertical flip, 90o rotation, −90o rotation and zoom.
Zoom transformations were done by first upscaling the image by 5%, then using a
random frame of the same size as the original image to crop it. See Figure 6 for an
example of such augmentations.

Our choice for some hyperparameters was based on direct comparison to other
choices in terms of validation loss and accuracy. For example, we trained the model
with 10, 000 pairs of images through 5 epochs with different input image sizes,
then we chose 160× 160× 3 because it gave the best values for loss and accuracy.
We did a similar experiment for two different optimization methods, which are
Adam method and stochastic gradient descent with momentum (SGD), and Adam
method performed better for this problem. Detailed results for the comparisons
are given in Table 1 and 2. As for the other hyperparameters such as the number
of hidden layers and units, we followed the same choice as in [9]. With this choice,
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Figure 4. Architecture of the neural network.

(a) Loss (b) Accuracy

Figure 5. Training and validation results through 50 epochs.

we were able to get very good loss and accuracy values, see Figure 5. Therefore,
no adjustment was needed.

We also compared the performance of the U-Net Xception style with a modified
U-Net in [12]. The result in Table 3 shows that U-Net Xception style works better
for our problem.
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(a) Original image (b) Horizontal flip (c) Vertical flip

(d) 90o rotation (e) −90o rotation (f) Zoom

Figure 6. An example of data augmentation

Input image size Validation accuracy Validation loss

32× 32× 3 0.9718 0.0677

64× 64× 3 0.9762 0.0579

128× 128× 3 0.9728 0.0713

160× 160× 3 0.9822 0.0452

192× 192× 3 0.9749 0.0708

Table 1. Input image size comparison

Optimization method Validation accuracy Validation loss

SGD 0.9751 0.0622

Adam 0.9822 0.0452

Table 2. Optimization method comparison

4. Numerical study for simulated data

In this section we use the combined method to reconstruct objects from simu-
lated scattering data. We consider the types of objects varying from those similar
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Model Validation accuracy Validation loss

Modified U-Net 0.9876 0.0299

U-Net Xception style 0.9932 0.0175

Table 3. Model comparison

to the training data set to those entirely different. We also tested different wave
numbers and incident wave directions.

4.1. Implementation of the sampling method. In our numerical study
the sampling domain is chosen as [−2, 2]2. The sampling domain contains the
unknown scatterer D and is uniformly discretized by 64 sampling points in each
direction. The imaging functional I(z) in (2.4) is evaluated at each sampling point z
of the sampling domain. As mentioned in the section of training the neural network
the data (usc, ∂usc/∂ν) are given at 32 uniformly distributed points on the circle
of radius 100. With the data given, the evaluation of I(z) is simple since after a
change of variables using polar coordinates we numerically evaluate a single integral
using the rectangular rule. In the numerical simulation the imaging functional is
normalized by dividing by its (numerical) maximal value. Note that we make sure
that the sampling point z and the data point x are away from each other so that the
integrands are all regular functions. Recall that the scattering data are measured
on ∂Ω meaning that we should look for the unknown scatterer D in a sampling
domain that is strictly contained in Ω.

4.2. Reconstruction of objects in the testing data set. In this part,
we present some reconstruction results of the combined method for objects in the
testing data set. These objects were generated in a way that is similar to that
of the training data sets, meaning the objects consist of one or two ellipses. The
wave number k and incident direction θ were those the neural network was trained
with. Moreover, the scattering data generated by solving the direct problem was
not perturbed by noise.

In Figures 7–8, four test objects are presented: one large disk, two ellipses of
similar sizes, two ellipses of different sizes and two overlapping ellipses. We can
see that the method was able to reconstruct very well the geometry of these test
objects. As it was done for the validation and training data sets in Figure 5, the
accuracy for 5000 pairs of images in the testing data set is also computed as 99.4%.
This once again confirms that the training process was effective as indicated by the
training and validation accuracy in Figure 5.

4.3. Reconstruction of objects with no elliptical shapes. In this part,
we test the method for other types of objects with noisy scattering data. We added
5%, 7%, 10% and 15% of artificial noise to the scattering data obtained from solving
the direct problem with wave number k = 6. Recall that the inverse problem with
one incident wave is extremely ill-posed, and there were no artificial noise added
to the scattering data in the training process. The tests with noisy data for non-
elliptical objects are to show that the network can generalize its training to more
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(a) True objects (b) Sampling method (c) Combined method

Figure 7. Reconstruction of objects in the testing data set with
k = 6 and θ = 90o: one disk (top) and two ellipses of similar sizes
(bottom).

(a) True objects (b) Sampling method (c) Combined method

Figure 8. Reconstruction of objects in the testing data set with
k = 6 and θ = 45o: two ellipses of different sizes (top) and two
overlapping ellipses (bottom).

realistic situations that are unseen from the training process. We first used the
same incident direction as in training, θ = 90o, to reconstruct an L-shaped object,



SAMPLING METHOD AND DEEP LEARNING FOR INVERSE SCATTERING 13

(a) True object (b) Sampling, 5% noise (c) Combined, 5% noise

(d) Combined, 7% noise (e) Combined, 10% noise (f) Combined, 15% noise

Figure 9. Reconstruction of an L-shaped object with k = 6, θ =
90o, and different noise levels added to the scattering data: 5%,
7%, 10% and 15%.

see Figure 9. The combined method was able to provide reasonable reconstructions
for the L-shaped object with different levels of noise.

Next, in Figures 10–12, we test the method with different non-elliptical shapes
and noisy scattering data associated with an incident direction different from which
was used in the training process. This is to further assert its flexibility. Recall that
we trained the neural network with θ = 90o and θ = 45o. We reconstructed a
peanut-shaped object, a T-shaped object and an object consisting of a disk and a
rectangle using incident direction θ = 220o, see Figure 10–12. Again, we were able
to get satisfactory results regardless of the circumstances.

For scattering data from a single incident direction and a fixed wave number, it
is almost impossible not only for sampling methods but also for many other inver-
sion methods to reconstruct the shape and location of extended objects. Therefore,
these results show that the deep neural network has significantly improved the re-
construction capability of the imaging functional under lack of data. Moreover,
they also show that the combined method is flexible, meaning it can work well in
some situations that are unseen from the training process.

5. Numerical study for experimental data

The results from simulated scattering data show that the proposed deep learn-
ing approach for OSM is capable of reconstructing different types of geometries in
different setups. Therefore in this section, we demonstrate the effectiveness of our
method when it comes to experimental data.

We used the data sets for two-dimensional homogeneous objects provided by
Fresnel Institute [5]. Unlike the simulated data that are computed on an entire
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(a) True object (b) Sampling, 5% noise (c) Combined, 5% noise

(d) Combined, 7% noise (e) Combined, 10% noise (f) Combined, 15% noise

Figure 10. Reconstruction of a peanut-shaped object with k = 6,
θ = 220o, and different noise levels added to the scattering data:
5%, 7%, 10% and 15%.

circle of radius 100 these experimental data are measured on the arc of a circular
sector of angle 240o (from 60o to 300o with step size 5o). The radius of the circle is
19 (about 760 mm). Two data sets are investigated: the first one named dielTM
dec4f.exp deals with a de-centered circular cross section of radius 15 mm, and
the second one is rectTM cent.exp concerning a centered rectangular cross section
of dimensions 25.4 × 12.7 mm2. We refer to [5] for detailed descriptions of the
experimental setup.

We rescale 40 millimeters to be 1 unit of length in our MATLAB simulations.
No other adaptation to the experimental system was necessary. The two scatterers
were both tested at wave frequency 8 GHz (wave number k is about 6.7) and with
incident direction θ = 90o. See reconstructions using our combined method in
Figure 13 and Figure 14.

We see that the proposed method can handle limited-aperture experimental
data very well without any additional transfer learning. For the first object, we
are able to achieve a reasonable reconstruction of both shape and location of the
target. The second object is outside the training process, but the inverted result
still can capture highly accurate information for its location and provide a pretty
good estimate for its shape.
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