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Abstract

Evaluating machine-generated summaries with-

out a human-written reference summary has

been a need for a long time. Inspired by pref-

erence labeling in existing work of summariza-

tion evaluation, we propose to judge summary

quality by learning the preference rank of sum-

maries using the Bradley-Terry power ranking

model from inferior summaries generated by

corrupting base summaries. Extensive experi-

ments on several datasets show that our weakly

supervised scheme can produce scores highly

correlated with human ratings.

1 Introduction

Summarization is a task in natural language pro-

cessing in which automatic systems generate sum-

maries from documents. To judge the quality of

system-generated summaries, human evaluation

is the best option, but it is non-trivial and labori-

ous. Hence, many automatic metrics have been

developed. They can be categorized as reference-

based ones and reference-free ones, depending on

whether reference summaries are needed in the

evaluation stage.

Reference-based metrics include ROUGE (Lin,

2004), BLEU (Papineni et al., 2002),

CIDEr (Vedantam et al., 2015), METEOR (Baner-

jee and Lavie, 2005), S3 (Peyrard et al., 2017),

MoverScore (Zhao et al., 2019), BertScore (Zhang

et al., 2020), etc. Calculating the lexical over-

lap or the embedding similarity between a

system-generated summary and its corresponding

human-written reference summary, they reportedly

have high correlations with human assessments.

Because creating human-written reference sum-

maries is laborious and expensive, recent works

are shifting to reference-free metrics. Sum-

maQA (Scialom et al., 2019) and BLANC (Vasi-

lyev et al., 2020) leverage pretrained language mod-

els to carry out text understanding tasks to evaluate

the helpfulness of a summary for understanding

its source document. SUPERT (Gao et al., 2020b)

measures the semantic similarity against a pseudo

reference summary in a multi-document summa-

rization setting. However, reference-free metrics

may show a lower correlation (Fabbri et al., 2021)

with human evaluation scores than some of the

reference-based metrics.

To trade off between the human effort needed

and the quality of the evaluation, some work pur-

sues a pairwise preference approach which collects

preference labels over sentences in documents or

over summaries from a human assessor as it re-

quires less cognitive effort than writing a reference

summary or manually scoring a machine-generated

summary. Zopf (2018) proposes a reference-free

evaluation approach by estimating sentence-level

preferences on source documents rather than di-

rectly on the generated summaries. Gao et al.

(2020a) train a linear model to estimate a summary

preference utility function via active preference

learning to guide a reinforcement learning based

summarization system. But they do not examine

the learned preference model as a metric for sum-

marization evaluation.

Inspired by human-involved pairwise preference

in summarization evaluation (Zopf, 2018; Gao

et al., 2020b) and simple NLP data augmentation

methods like EDA (Wei and Zou, 2019), in this

work, we explore reference-free summary quality

assessment via pairwise preference learning using

negative sampling. A pre-trained text embedding

model is used in a siamese network to learn the pref-

erence utility in an end-to-end, weakly supervised

fashion. The closest work to ours is LS_Score (Wu

et al., 2020). We achieve improved performance

by using a better-attended model, a loss function

based on preference learning, and introducing a

mixed transitive negative sampling strategy. In ad-

dition, we promote our work to cross-domain and

multi-document settings.

We show that the learned models are competitive
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Figure 1: Model architecture.

compared to the state-of-the-art reference-free met-

rics. Our code is at https://github.com/

NKWBTB/PrefScore.

2 Method

2.1 Model Architecture

The goal of a reference-free evaluation system is

to learn a regressor f which takes a document d

and its summary s as the input to produce a score

f(d, s) which represents the quality of the sum-

mary s. Learning such a regressor via supervised

learning is very difficult because existing human-

rated summary evaluation datasets (NIST, 2010;

Grusky et al., 2018; Bhandari et al., 2020) contain

too few samples, around 100 samples each, to train

a generalizable model.

Therefore, we use pairwise preference learning

as a weakly supervised workaround. By corrupting

a summary into an inferior one, existing summa-

rization datasets containing no human ratings as

training labels but only gold, reference summaries

can be transformed into massive training data for

preference learning.

The training label is designed based on the

Bradly-Terry (BT) model (Bradley and Terry,

1952). Given a reference summary s and a per-

turbed summary s′ of the document d, the BT

model estimates f(d, s) and f(d, s′) such that the

probability of s being superior than s′ is:

p(s ≻ s′|d) =
exp(f(d, s))

exp(f(d, s)) + exp(f(d, s′))
.

(1)

This leads to our model design (Figure 1) us-

ing a siamese network. Leveraging the recent

work of BERT-like (Devlin et al., 2019) contex-

tualized embedding, a document d and a sum-

mary s are viewed as two sequence of tokens

Td and Ts. The input sequence are constructed

as ([CLS], Td, [SEP], Ts, [SEP]), then the output of

the [CLS] token containing both information from

document and summary are sent to a linear layer

to produce the final score f(d, s). During the train-

ing, a pair of summaries will be sent to the siamese

network. It can be seen as training a classifier to

determine which summary is better. The loss is

therefore:

LBT = −
∑

d

∑

s′∈S′

[log(p(s ≻ s′|d))] (2)

where S′ is a set of inferior summaries deviated

from s in methods to be discussed below in § 2.2.

The learned ranking utility f is used as our sum-

mary evaluator and does not require a reference

summary in the test/evaluation stage.

2.2 Mixed Transitive Negative Sampling

Given a reference summary s, we can obtain the

set S′ = {s′1, s
′

2, . . . , s
′

n} of inferior summaries

by mutating the reference summary s iteratively:

s′1 is mutated from s, s′2 from s′1, and so on. We

can obtain a preference sequence of summaries

s ≻ s′1 ≻ · · · ≻ s′n. The process is illustrated in

Figure 2. In each iteration, unmodified tokens in

s′
i

is randomly selected and mutated to generate

summary s′
i+1. The process continues until all

tokens are mutated.

Figure 2: An example of the mixed transitive negative

sampling process. The original part is in white, while

the modified part is indicated as grey blocks.

Four mutation methods are employed: 1) delet-

ing a sentence from the summary, resulting in in-

formation loss in the summary. 2) replacing a sen-

tence in the summary with a sentence from other

summaries, introducing extra information and re-

dundancy in the summary. 3) deleting a word from

the summary, influencing the sentence structure

and readability. 4) reorder sentences or words,

aggravating the coherence in the summary.

In each iteration, one of the four mutation meth-

ods is randomly chosen. Unlike plain negative
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sampling that mutates samples in only one way or

in only one iteration, our mixed transitive negative

sampling accumulates the effects of different muta-

tions into samples, enabling a model trained upon

to learn different aspects of summaries.

3 Experiments

3.1 Test Sets

There are not many datasets with human evalua-

tions to machine-generated summaries. Unfortu-

nately, they are almost all in the news article do-

mains. We use three established ones:

TAC2010 (NIST, 2010) is a multi-document

summarization dataset which reports three scores:

content, fluency and overall. It consists of 46 topics,

each of which is associated with a set of 10 doc-

uments. We evaluate the metrics over summaries

generated by 43 systems. For a summary, we calcu-

late the mean score for all documents paired with

the summary as an extension for our metric in the

multi-document scenario. Only Set A for the regu-

lar summarization task is used here.

Newsroom (Grusky et al., 2018) is a single-

document summarization dataset reporting four

scores: INFormativeness, RELevance, COHer-

ence and FLUence. It contains human-rated sum-

maries generated by 7 systems for 60 documents.

Each document-summary pair is rated by three hu-

man annotators. We use their mean score as the

groundtruth score.

RealSumm (Bhandari et al., 2020), a recent

single-document dataset reporting the LitePyra-

mid (Shapira et al., 2019) score which is also

content-focused. It sampled 100 documents from

the CNN/DailyMail (See et al., 2017) test set, and

collected human ratings for summaries generated

by 11 extractive systems and 14 abstractive sys-

tems.

3.2 Training Sets (documents and reference

summaries only, no human evaluations)

Because the test sets are all in the news domain, we

select one training set from the news domain for in-

domain analysis: CNN/DailyMail (CNNDM) (See

et al., 2017). For cross-domain analysis, three train-

ing sets from different non-news domains are se-

lected: Billsum (Kornilova and Eidelman, 2019)

from legislative bills, Scientific papers-ArXiv (Co-

han et al., 2018) from papers on arXiv, and Big-

Patent (Sharma et al., 2019) from patent applica-

tions.

The train splits of the four datasets are used sep-

arately to train our model. For Billsum, we used all

18,949 samples in the train split. For the other three

datasets, the first 40,000 samples in the train split

are used for training. For every original reference

summary in the training sets, 3 negative samples

(inferior summaries) are generated.

3.3 Baselines and Upperbounds

We compare our work with both reference-free and

reference-based metrics. The recently developed

SummaQA (Scialom et al., 2019), BLANC (Vasi-

lyev et al., 2020), SUPERT (Gao et al., 2020b)

and LS_Score (Wu et al., 2020) are our baselines

because they are reference-free. 1

Reference-based metrics serve as soft upper

bounds because they are provided with extra

human guides which are reference summaries.

ROUGE (Lin, 2004), BLEU (Papineni et al., 2002),

METEOR (Banerjee and Lavie, 2005), S3 (Peyrard

et al., 2017), MoverScore (Zhao et al., 2019),

BertScore (recall) (Zhang et al., 2020) are included

in this study.

Results for LS_Score (Wu et al., 2020) are only

reported for Newsroom, which is copied from

their paper, as we have not succeeded in repro-

ducing their model using their code to test on other

datasets2. Despite the difficulty, we implemented

our own version of LS_Score.

3.4 Settings

For a fair comparison, we use the same pre-trained

language model BERT used by the baselines.

Specifically, we use the bert-base-uncased

variant of the BERT model in HuggingFace Trans-

former’s Pytorch implementation. An input se-

quence is padded to 512 tokens with [PAD] or trun-

cated to 512 tokens using longer input truncate first

strategy and then round robin trimmer. We fine

tune the model on NVIDIA RTX 3090 for fixed

16,000 steps using the Adam optimizer with the

learning rate of 1e-5 and the batch size of 7.

3.5 Results

We use the summary-level (Peyrard et al., 2017)

meta evaluation strategy to report an approach’s

1By “reference-free”, we mean that a reference summary
is not needed to judge a machine-generated summary.

2Several other researchers reported the same issue https:
//github.com/whl97/LS-Score/issues. We
never heard back from the authors in Email and GitHub.
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Table 1: Spearman’s Correlation on TAC2010.

Content Fluency Overall

Our approach

Trained w/CNNDM 0.5865 0.4311 0.5531

Trained w/Billsum 0.4586 0.4324 0.4518

Trained w/ArXiv 0.4727 0.4026 0.4437

Trained w/BigPatent 0.4184 0.3695 0.4007

Reference-free Baselines

BLANC-tune 0.4272 0.2943 0.3966

SummaQA-F1 0.3007 0.2431 0.2864

SummaQA-CFD 0.2905 0.1516 0.2620

SUPERT 0.4794 0.3241 0.4266

Reference-based upper bounds

R-1 0.5597 0.2570 0.5025

R-2 0.6448 0.3490 0.5894

R-L 0.5032 0.1772 0.4463

MoverScore 0.7213 0.3522 0.6453

BertScore 0.6769 0.3634 0.6162

BLEU 0.6018 0.3462 0.5636

METEOR 0.6682 0.3371 0.6184

S3_pyr 0.7257 0.3628 0.6562

S3_resp 0.7258 0.3578 0.6520

Table 2: Spearman’s Correlation on Newsroom.

COH INF FLU REL

Our approach

Trained w/ CNNDM 0.6507 0.7509 0.6079 0.6645

Trained w/ Billsum 0.6665 0.7169 0.6557 0.6469

Trained w/ ArXiv 0.6758 0.7345 0.6408 0.6657

Trained w/ BigPatent 0.6729 0.7309 0.6498 0.6356

Reference-free Baselines

BLANC-tune 0.5862 0.6881 0.5310 0.6078

SummaQA-F1 0.4895 0.5690 0.4664 0.5163

SummaQA-CFD 0.4195 0.5449 0.3719 0.4405

SUPERT 0.6171 0.6929 0.5391 0.6046

LS_Score 0.6271 0.7008 0.5852 0.6381

Reference-based Upper bounds

R-1 0.2310 0.3231 0.2150 0.2775

R-2 0.0861 0.1534 0.1015 0.1336

R-L 0.2055 0.3005 0.2006 0.2629

MoverScore 0.1743 0.2186 0.1431 0.2163

BertScore 0.2705 0.3156 0.2390 0.2815

BLEU -0.0556 -0.0782 -0.0422 -0.0071

METEOR 0.1740 0.2364 0.1690 0.2437

S3_pyr 0.1929 0.2680 0.1782 0.2450

S3_resp 0.1716 0.2519 0.1717 0.2226

average correlation with human ratings over sum-

maries. Since our method is based on preference

ranking, we report the Spearman’s correlation (Ta-

bles 1, 2 and 3). The best scores in the reference-

free class are bold while top 2 and 3 are underlined.

Due to the page limit, we put the extra results of

significance tests in the Appendix.

On TAC2010 (Table 1), our models beat all base-

lines on all aspects with only one exception. In

particular, our model trained with CNNDM beats

all baselines on all aspects. It even further outper-

forms ROUGE-1 and ROUGE-L.

On Newsroom (Table 2), our models beat all

baselines on all aspects with only one excep-

Table 3: Spearman’s Correlation on RealSumm†.

On abstractive systems On extractive systems

Our approach

Trained w/ CNNDM 0.3842 0.1143

Trained w/ Billsum 0.3083 0.0857

Trained w/ ArXiv 0.3204 0.0929

Trained w/ BigPatent 0.3163 0.1152

Reference-free Baselines

BLANC-tune 0.3067 0.1139

SummaQA-F1 0.2173 0.0837

SummaQA-CFD 0.2433 0.0494

SUPERT 0.2532 0.0748

Reference-based Upper bounds

R-1 0.6266 0.2182

R-2 0.5623 0.2206

R-L 0.6035 0.2140

MoverScore 0.4951 0.1899

BertScore 0.5682 0.1920

BLEU 0.3023 0.1639

METEOR 0.6270 0.2502

S3_pyr 0.6426 0.2369

S3_resp 0.6264 0.2369

† RealSumm has only one aspect which is content-focused.

tion. All reference-free approaches, including ours

and baselines, outperform reference-based upper

bounds. This counter-intuitive result is probably

due to that a reference summary mostly has only

one sentence in Newsroom.

On RealSumm (Table 3), results are reported

separately for abstractive and extractive systems.

Our models beat all baselines on abstractive sys-

tems. All approaches perform better for abstractive

summarizers than for extractive ones. Bhandari

et al. (2020) ascribe this to the low inter agreement

among human annotators for the extractive group.

3.6 Discussion: Domain Impact

Because our approach is training based, in-domain

models which are trained with CNNDM have ad-

vantages over cross-domain models. But the advan-

tages are only for fact-based aspects (Content for

TAC2010, INF and REL for Newsroom, the whole

RealSumm), not for linguistic aspects.

Among cross-domain models, which are trained

with Billsum, ArXiv, and BigPatent, no one is al-

ways the best on all test sets and on all aspects.

Despite the domain difference, these models still

beat the baselines in nearly all cases. Such cross-

domain performances suggest that our approach is

domain robust.

One potential use of our approach is to train a

summary quality evaluation model for a domain

with no or limited summarization data.
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Table 4: Experiments on Model Architectures. Spearman’s correlation.

Training Model TAC 2010 Newsroom RealSumm

Set Arch. Modified Linguistic Overall COH INF FLU REL Abstractive Extractive

CNNDM

PrefScore 0.5865 0.4311 0.5531 0.6507 0.7509 0.6079 0.6645 0.3842 0.1143

S_Score 0.4567 0.3034 0.4159 0.6204 0.7404 0.5809 0.6426 0.2785 0.1104

L+S_Score 0.4077 0.3436 0.3784 0.6338 0.7234 0.6058 0.6374 0.3085 0.1070

BigPatent

PrefScore 0.4184 0.3695 0.4007 0.6729 0.7309 0.6498 0.6356 0.3163 0.1152

S_Score 0.3499 0.2160 0.3155 0.5578 0.5992 0.5326 0.5374 0.2042 0.0958

L+S_Score 0.3663 0.2984 0.3305 0.6605 0.7020 0.6138 0.6081 0.2589 0.1074

Billsum

PrefScore 0.4586 0.4324 0.4518 0.6665 0.7169 0.6557 0.6469 0.3083 0.0857

S_Score 0.3689 0.3368 0.3483 0.4652 0.4280 0.4577 0.3996 0.2157 0.0568

L+S_Score 0.3518 0.3475 0.3256 0.6199 0.6956 0.5844 0.5979 0.2790 0.1052

Arxiv

PrefScore 0.4727 0.4026 0.4437 0.6758 0.7345 0.6408 0.6657 0.3204 0.0929

S_Score 0.3791 0.2511 0.3511 0.5972 0.5918 0.5804 0.5078 0.2331 0.0890

L+S_Score 0.3792 0.2591 0.3405 0.6613 0.7330 0.5963 0.6382 0.3050 0.1109

3.7 Bi-Encoder vs. Cross-Encoder

We further conduct experiments to analyze the im-

pact of the model architecture on performance.

LS_Score (Wu et al., 2020) uses cosine similar-

ity of the embeddings between a document and its

summary as the semantic score (S_Score) which

forms a Bi-Encoder architecture. And it computes

a perplexity-like score based on the summary’s

embedding as linguistic score (L_Score), resulting

in the final score as 0.01 ∗ L_Score + S_Score.

In contrast, we jointly attend a document and a

summary and produce the score after a linear layer

which forms a Cross-Encoder architecture.

We implement the S_Score and L+S_Score3 of

our own version. The reason for our reimplementa-

tion is not only the reproducibility issues mentioned

earlier but also that we want to do an apple-to-apple

comparison by using the same loss function and

the negative sampling strategy.

The results of the study are shown in Ta-

ble 4. PrefScore outperforms both S_Score and

L+S_Score on nearly all test sets and all aspects. It

is common to use the cosine similarity in the em-

bedding space as an indicator of semantic similarity.

However, it fails to fully utilize the self-attention

mechanism of the transformers. By jointly attend-

ing the document and the summary, our approach

(Fig. 1) can better match information in the sum-

mary to that in the document. This could be one

of the reasons that PrefScore outperforms S_Score

and L+S_Score under the same setting.

4 Conclusion and Future Work

In this paper, we propose to evaluate summariza-

tion quality via preference learning and transitive

3We denote our version as L+S_Score to discriminate from
the original LS_Score.

negative sampling. The learned models outper-

form other reference-free based methods in in-

domain experiments and are still competitive in

cross-domain experiments.

There are some possible future study directions.

The negative sampling methods used in this study

are rough and simple. More careful inspection can

be done to observe what kind of mistakes are likely

made by summarizer models and design mutation

methods accordingly. Moreover, our framework

uses mean scores as a workaround for the multi-

document scenario; it remains an open research

problem to promote our work to optimize directly

for multi-document summarization evaluation. Fi-

nally, we would like to extend our method for the

evaluation of other NLG tasks.

Acknowledgements

This work is partially supported by National Sci-

ence Foundation (NSF) grants No. MCB-1821828

and No. CNS-1817089. The authors would also

like to thank reviewers who have given precious

feedback on improving this work.

References

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Manik Bhandari, Pranav Narayan Gour, Atabak Ash-
faq, Pengfei Liu, and Graham Neubig. 2020. Re-
evaluating evaluation in text summarization. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Ralph Allan Bradley and Milton E. Terry. 1952. Rank
analysis of incomplete block designs: I. the method



5901

of paired comparisons. Biometrika, 39(3/4):324–
345.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents.
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexander R. Fabbri, Wojciech Kryściński, Bryan Mc-
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A Appendix

A.1 Evaluation Settings

We utilize the SummEval (Fabbri et al., 2021) eval-

uation toolkit to calculate scores for metrics whose

scores are not reported by a test dataset. For all

metrics, we use the batch evaluation API with de-

fault parameters provided by the package. The

results of the SummEval dataset are not included in

this study as SummEval and RealSumm are similar

datasets whose documents are both sampled from

CNN/DailyMail (See et al., 2017).

A.2 Significance Tests

We perform significance tests to see if the improve-

ment of our method over the reference-free base-

lines is significant. Because applying a direct test

on the summary-level evaluation results is difficult,

we use a bootstrap-based method to sample the doc-

uments in the test sets 1000 times to compute the

p-values.

Tables 5, 6 and 7 show the p-values of the hy-

pothesis test that "Is the PrefScore trained using the

training sets in the leftmost column significantly

better than the baselines at the bottom?" Numbers

smaller than the significant level of 0.05 are bold.

Our in-domain models trained using CNNDM

are significantly better than the baselines. Mean-

while, the three cross-domain models, trained with

Billsum, ArXiv, and BigPatent, are significantly

better than SummaQA. They are also nearly sig-

nificantly better than SUPERT. No significant re-

sults are observed on extractive systems from Re-

alSumm. We believe this is due to the low inter

agreement in the extractive group as described ear-

lier (Bhandari et al., 2020).
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Table 5: p-value of Significance Test on TAC2010 Dataset.

Training Set Content Fluency Overall

CNNDM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BillSum 0.17 - 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.20 0.00 0.00

BigPatent - - 0.00 0.00 0.00 0.07 0.00 0.00 0.44 - 0.00 0.00

ArXiv 0.09 - 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.30 0.00 0.00
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Table 6: p-value of Significance Test on Newsroom Dataset.

Training Set COH INF FLU REL

CNNDM 0.02 0.10 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00

BillSum 0.01 0.08 0.00 0.00 0.19 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00

BigPatent 0.01 0.06 0.00 0.00 0.07 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.19 0.00 0.00

ArXiv 0.00 0.07 0.00 0.00 0.09 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.00
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Table 7: p-value of Significance Test on RealSumm Dataset.

Training Set Abstractive Extractive

CNNDM 0.00 0.00 0.00 0.00 0.49 0.08 0.21 0.07

BigPatent 0.38 0.01 0.01 0.05 0.51 0.08 0.22 0.08

BillSum 0.47 0.02 0.01 0.06 - 0.37 0.49 0.20

ArXiv 0.31 0.01 0.01 0.03 - 0.29 0.41 0.17
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