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Abstract

Practical online learning tasks are often naturally defined on unconstrained do-
mains, where optimal algorithms for general convex losses are characterized by the
notion of comparator adaptivity. In this paper, we design such algorithms in the
presence of switching cost — the latter penalizes the typical optimism in adaptive
algorithms, leading to a delicate design trade-off. Based on a novel dual space
scaling strategy discovered by a continuous-time analysis, we propose a simple
algorithm that improves the existing comparator adaptive regret bound [ZCP22a]
to the optimal rate. The obtained benefits are further extended to the expert setting,
and the practicality of the proposed algorithm is demonstrated through a sequential
investment task.!

1 Introduction

Online learning [CBL06, Haz16, Oral9] is a powerful framework for modeling sequential decision
making tasks, such as neural network training, financial investment and robotic control. In each round,
an agent picks a prediction x; in a convex domain X, receives a convex and Lipschitz loss function [,
that depends on x1, . . ., x4, and suffers the loss I;(x;). The goal is to ensure that in any environment,
the cumulative loss of the agent is never much worse than that of any fixed decision v € X. That is,
one aims to upper-bound the regret Zle [l¢(x+) — It (u)], for all time horizon T € N, comparator
u € X and loss sequence [y, ..., I7.

If there exists a best fixed decision u* = max, Zle l¢(x) in hindsight, then the regret with respect
to any v € X is dominated by the regret with respect to u*. In the context of training machine
learning models, u* corresponds to the model parameter that minimizes the training error. Hence,
intuitively, the regret bound characterizes how fast the algorithm finds u* through training.

Most classical online learning algorithms are minimax in nature, only tuned to optimize the worst-case
regret. For example, if the domain X is bounded, then the maximum distance between the best fixed
decision u* and the initialization x; of the algorithm is the diameter D of X'. Only considering this
worst case, it suffices to use Online Gradient Descent (OGD) [Zin03] with learning rate 7; o< D/ V.
The result is a O(D+/T) regret bound that holds uniformly for all comparators « € X. Such a
minimax reasoning is prevalent, but limited in two substantial ways.

1. It requires a bounded domain. Many practical problems are naturally unconstrained, making such
arguments inapplicable.
2. Practical applications are usually not the worst case, which means that the minimax bound

O(D+/T) is typically loose. Think about the situation where we have a prior guess of u*, from
either domain knowledge or pre-training. Using this prior as the initial prediction x;, we should
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expect a provable gain over arbitrarily initializing the algorithm — specifically, had we known
the correct distance ||u* — x1||, we could have picked 7; o ||u* — x1]|| /v/t in OGD, resulting in

O(|lu* — z1]| V'T) regret. Achieving this goal without the prior knowledge of ||u* — 1| is of
both theoretical and practical importance.

Recent studies of comparator adaptive online learning2 [LS15, OP16, CO18] aim to address these
issues. The domain does not need to be bounded, and the regret bound is O(d(u, z1)v/T), where
d(-,-) is some suitable distance measure. Intuitively, these algorithms are both optimistic and robust:
given prior information on u*, we can pick 1 such that d(u*, 1), and consequently the regret bound,
are both low. Meanwhile, even when our initialization x; is wrong (i.e., d(u*, x1) is large), the
regret bound is still almost as good (up to logarithmic factors) as that of the minimax algorithm
with the best tuning in hindsight. Such properties have shown benefits in diverse applications, e.g.,
[OT17,]019, vdH19].

In this paper, we extend the design of these algorithms to a classical setting with switching costs. Here
the agent is penalized not only by its loss, but also by how fast it changes its predictions. Practically,
switching costs are useful whenever the smooth operation of a system is favored, such as in network
routing, control of electrical grid, portfolio management with transaction costs, etc. Recently they
also naturally show up in online decision problems with long term effects, such as nonstochastic
control [ABH"19]. With a given weight A > 0 and a norm ||-||, our goal is to guarantee a comparator
adaptive bound for the augmented regret
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While gradient descent can incorporate switching costs by simply scaling its learning rate, extending
comparator adaptive algorithms is a lot harder. Just like other adaptive algorithms [DHS11, DGSS15],
the key idea of comparator adaptivity is to quickly respond to the incoming information and hedge
aggressively. Switching costs, on the other hand, encourage the agent to stay still. Therefore,
achieving our goal requires a delicate balance between these two opposite considerations.

Similar trade-offs between adaptivity and switching costs have led to intriguing results in the past. For
example, Gofer [Gof14] showed that the gradient variance adaptivity well-studied in the switching-
free setting is impossible with normed switching costs, thus establishing a clear separation caused by
the latter. Daniely and Mansour [DM19] showed that a common analytical technique for switching
costs is incompatible to the so-called “strong adaptivity” (i.e., a form of adaptivity w.r.t. nonsta-
tionary comparators). Regarding comparator adaptivity, our prior work [ZCP22a] proposed the first
comparator adaptive algorithm with switching costs, but the obtained regret bound does not achieve
the optimality criterion of the switching-free setting. The present paper closes this gap.

1.1 Contribution

We develop comparator adaptive algorithms for two classical settings: (¢) Online Linear Optimization
(OLO) with switching cost; (i) Learning with Expert Advice (LEA) with switching cost.

1. For one-dimensional unconstrained OLO with switching costs, assuming loss gradients |g:| < 1
and initial prediction® z; = 0, we propose an algorithm that guarantees
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where C > 0 is any hyperparameter chosen by the user (Section 2). Our bound achieves several
forms of optimality with respect to A, |u| and T, improving the prior work [ZCP22a]. Extensions
to bounded domains and general dimensional domains are presented, which include some new
technical components (Appendix B).

2. Converting the above result from OLO to LEA, we demonstrate how classical conversion tech-
niques [LS15, OP16] are designed to have large switching costs, and then propose a fix with a
clear geometric interpretation. This leads to the first comparator adaptive algorithm for LEA with
switching costs (Section 3).

2Also called parameter-free online learning due to historical reasons.
3For general 1, we can replace |u| in the regret bound by |u — x1].



Technically, our improvement over [ZCP22a] relies on a novel dual space scaling strategy. This
is actually not guessed, but systematically discovered by a continuous-time analysis (Section 2.4),
whose procedure follows another prior work of ours [ZCP22b]. In the continuous-time limit, it
becomes evident what kinds of algorithmic structures from the switching-free setting are transferable
to the setting with switching costs. Indeed, revealing generalizable knowledge is a key benefit of the
continuous-time analysis, which was not demonstrated in [ZCP22b]. As an added bonus, both our
OLO algorithm and its analysis are considerably simpler than those from [ZCP22a].

Concluding these theoretical results, our OLO algorithm is applied to a portfolio management task
with transaction costs (Appendix D). Numerical results support its superiority over the existing
approach [ZCP22a].

1.2 Related work

Online learning basics Throughout this paper we will only consider linear losses. The generality
of our setting is preserved, since convex losses can be reduced to linear losses through the relation
Z;T:l[lt (x¢) = le(uw)] < ZL (Vii(zt), 2+ — u) [Haz16, Oral9]. Online learning with linear losses
is called Online Linear Optimization (OLO). As its important special case, Learning with Expert
Advice (LEA) considers OLO on a probability simplex, but aims at a different form of regret bound
due to its different geometry.

Classical minimax approaches in online learning include Online Mirror Descent (OMD) and Follow
the Regularized Leader (FTRL), with Online Gradient Descent (OGD) being their most well-known
special case. We write “gradient descent” as the minimax baseline for the ease of exposition.
Moreover, both OMD and FTRL have elegant duality interpretations [Oral9, Section 6.4.1 and 7.3],
involving simultaneous updates on the primal space (the domain &") and the dual space (the space of
gradients). We will exploit this duality in our analysis.

Comparator adaptive online learning Also known as parameter-freeness, comparator adaptive
online learning aims at matching the performance of the optimally-tuned gradient descent in hindsight,
without knowing the correct tuning parameter. The associated regret bound can appear in different
forms, depending on the specific learning setting.

1. For LEA, a comparator adaptive bound has the form O (\/T - KL(u |7r)), where u and 7 are

distributions on the expert space representing the comparator and a user-chosen prior. Such
an idea was initiated in [CFHO09], and the analysis was improved and extended by a series of
works [CV10, LS15, KVE15, CLW21, NBC*21, PLH22]. Notably, a comparator adaptive LEA
algorithm naturally induces a bound on the e-quantile regret — the regret with respect to the
e-quantile best expert. The latter is particularly meaningful when the number of experts is large.
Lower bounds were considered in [NBC*21].

We will present a nonasymptotic improvement of the v/KL divergence in this paper. Frameworks
that generalize root KL to f-divergences have been studied in [Alq21, NBC*21], but to our
knowledge, no existing algorithm guarantees a better divergence term than root KL, even without
switching costs.

2. For OLO, typical comparator adaptive bounds are C' + [|u]| O (/T log(C~T [Ju][, T)) or CVT +

ull O (y/Tlog(C—Tlu]],)). where a prior z; can be incorporated by letting u <— u — z7. These
two bounds are both Pareto-optimal (see [ZCP22b] for a detailed explanation), as they represent
different trade-offs on the loss (the regret at u = x1) and the asymptotic regret (when ||u — z1]|
is large). Existing works [MO14, CO18, FRS18, MK20, JC22] were mostly independent of the
LEA setting, but unified views were presented in [FRS15, OP16]. Lower bounds were studied in
[SM12, Oral3, ZCP22b].

Switching cost Motivated by numerous applications, switching costs in online decision making have
been studied from many different angles. For example, beside online learning, the online algorithm
community has investigated settings like smoothed online optimization [CGW 18, GLSW19, LQL20]
and convex body chasing [BLLS19, Sel20], where the loss function /; is observed before the agent
picks the prediction x;. There, the switching cost is the key consideration that prevents the trivial
strategy x; € arg min, l;(x). As for online learning, an additional complication is that z; (e.g., the
investment portfolio) should be selected without knowing I; (e.g., tomorrow’s stock price).



Even within online learning, there are several ways to model switching costs. In cases like network
routing, every switch means changing the packet route, which can be costly. Therefore, one needs a
lazy agent whose amount of switches (or its expectation) [KV05, GVW10, AT18, CYLK20, SK21]
is as low as possible — a good modeling candidate is 1[z; # x;11]. Alternatively, one could take
a smooth view [ABLT13, BCKP21, WWYZ21, ZJLY21] where the agent can perform as many
switches as it wishes, as long as the cumulative distance of switching is low — in this view, switching
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cost can be a norm |3 — 2¢41]| or its smoothed variant ||z; — x41]|”. The present work primarily
considers the L1 norm switching cost motivated by the transaction cost in some financial applications.
Notably, for LEA, the L; norm unifies the lazy view and the smooth view [DM19, Section 5.2].

Although switching costs have been extensively studied, existing works on the combination of
adaptivity and switching cost are quite sparse. As one should carefully trade off these two opposite
requirements, there have been interesting impossibility results [Gof14, DM19], highlighted in our
introduction. In this regard, one should not believe that every classical adaptivity can be naturally
achieved with switching costs. The present paper shows that the optimal comparator adaptivity can
indeed be achieved, thus improving the suboptimal result from [ZCP22a].

Relation to downstream problems More generally, incorporating switching costs amounts to
considering a history-dependent adversary: it can pick loss functions that depend not only on the
instantaneous prediction x, but also on the previous prediction x;_;. One could further generalize
this setting to online learning with memory [CBDS13, AHM15], where the loss depends on a fixed-
length prediction history, and finally to dynamical systems [ABHT 19, SSH20, Sim20], where the
entire history matters. In fact, a common procedure in nonstochastic control [ABH"19] is to bound
the risk in the future by a properly scaled switching cost. Achieving comparator adaptivity with
switching costs may benefit these important downstream problems as well, by making algorithms
easy to combine [Cutl9, Cut20, ZCP22a].

Continuous-time approach to online learning Finally, on the technical side, our methodology
builds on an emerging continuous-time perspective of online learning. From a theoretical angle,
Kohn and Serfaty [KS10] demonstrated a rigorous connection between Partial Differential Equations
(PDE) and discrete-time repeated games. More recently, such a connection has led to algorithmic
benefits in minimax LEA [Zhul4, Rok17, DK20, KKW20, HLPR20, BEZ20a, BEZ20b, GHP22],
e-quantile bounds [PLH22] and comparator adaptive OLO [ZCP22b]. The key idea is that online
learning algorithms in the continuous-time limit can be more easily parameterized and analyzed. In
this paper we will show an additional bonus: generalizing algorithmic insights is also easier in the
continuous-time limit.

1.3 Notation

Let f* be the Fenchel conjugate of a function f. A(d) represents the d-dimensional probability
simplex; KL and TV denote the KL divergence and the total variation distance, respectively. For
two integers a < b, [a : b] is the set of all integers ¢ such that a < ¢ < b. log represents the natural
logarithm when the base is omitted. Throughout this paper, “increasing” and “positive” are not strict
(i.e., include equality as well).

For a twice differentiable function V' (¢,.5) where ¢ represents time and S represents a spatial variable,
let ViV, V.V, VsV and VggV be the first and second order partial derivatives. In addition, we
define discrete derivatives as

ViV(t,8):=V(t,S)—-V(t—-1,59),
VsV(t,S) = % V(t,S+1)-V(t,S—-1)], (1)
VssV(t,8):=V(t,S+1)+V(t,S—1)—2V(t,S).

2 OLO with switching cost

This section presents our main result, a comparator adaptive OLO algorithm with switching costs.
We will focus on the 1D unconstrained setting. Due to limited space, extensions to general settings
are deferred to Appendix B.



2.1 The 1D unconstrained setting

We consider the domain X' = R, a Lipschitz constant G > 0 for the loss gradients, and a weight A > 0
for switching costs. In the ¢-th round, the agent predicts z; € R, receives a loss gradient g; € [—G, G|
that depends on past predictions x1.¢, and suffers an augmented loss g;x¢ + A |2y — x¢—1| (w.Lo.g.,
let o = z1 = 0). The performance metric is the augmented regret forallu € Rand 7" € N :

T T-1
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Ignoring the dependence on G for now, our goal is to show a comparator adaptive bound
O <|u\ vV /\T), more specifically the optimal rates C' + |u| O <\/)\T log(C—\ |ul T)) or CvV AT +
lu| O (\ /AT log(C—1 \u|)> for any hyperparameter C' > 0. These two cases are equivalent via the
standard doubling trick [SS11], as discussed in [ZCP22b].

For minimax algorithms like bounded domain gradient descent [Zin03], one can use scaled learning
rates 7; o< 1/+/ At to ensure that both sums in (2) are O (\/ AT), thus obtaining a combined

0] (\/ )\T) regret bound. However, such a divide-and-conquer approach does not apply to comparator
adaptive algorithms, as one cannot separately show the desirable bound on the two sums in (2). To see
this, suppose one could guarantee the second sum alone is at most 1 + |u| O ( T log(|ul T)) ; here

we only focus on the dependence on |u| and T'. Since this cumulative switching cost is an algorithmic
quantity independent of the comparator, we can take infimum with respect to v and obtain a “budget”
of 1 for this sum. Following this argument, |xr| < |x1| + 23:11 |zt — 2411 = O(1). That is, the
algorithm should only predict around the origin, which clearly leads to large regret with respect to
far-away comparators, under certain loss sequences.

The challenge can be motivated in another way. As shown in [Oral9, Figure 9.1], the one-step
switching cost |z — @11 | of comparator adaptive algorithms can grow exponentially with respect to
t, whereas such a quantity is uniformly bounded in gradient descent. In fact, the exponential growth
is the key mechanism for comparator adaptive algorithms to cover an unconstrained domain fast
enough (thus improving minimax algorithms). This is however problematic when switching is also
penalized, as one can no longer control the switching cost by uniformly scaling |x; — x;41].

2.2 Switching-adjusted potential

To address these issues, one should bound the switching cost and the standard OLO regret in a unified
framework, instead of treating them separately. Our prior work [ZCP22a] used the classical coin-
betting approach from [OP16, CO18], which is included in Appendix A.1 for completeness. In the
t-th round, the algorithm maintains a quantity Wealth,_1; by picking a betting fraction B; € [0, 1],
the prediction is set to z; = 5y Wealth;_;. To further ensure low switching costs, the betting fraction
f3; is capped by a decreasing upper bound O(1/+/). Although it is analytically nontrivial, such a
hard threshold is conservative, which could be the reason of our previous suboptimal result.

In contrast, the present paper follows the potential framework explored by a parallel line of works
[MO14, FRS18, MK20, ZCP22b]. Generally, these algorithms are defined by a potential function
V (¢, S), where t represents the time index, and S represents a “sufficient statistic” that summarizes
the history. In each round, the algorithm computes S;_; = — ZZ: 9i/G, and the prediction x; is
the derivative VgV evaluated at (¢, .5;_1). We will specifically consider Algorithm 1, which is a

variant based on the discrete derivative VgV, cf. (1).

One could think of the potential framework as the dual approach of FTRL — the potential function
and the regularizer are naturally Fenchel conjugates. While the FTRL analysis relies on a one-step
regret bound on the primal space (the domain X, cf. [Oral9, Lemma 7.1]), the potential framework
constructs a similar one-step relation on the dual space (the space of Sy, cf. [ZCP22b, Lemma 3.1]).
Along this interpretation, our key idea is to incorporate switching costs by scaling on the dual
space, rather than only on the primal space. That is, given a potential function that works without
switching costs, we scale the sufficient statistic sent to its second argument by a function of \.



Algorithm 1 One-dimensional unconstrained OLO with switching costs.

Require: A hyperparameter C' > 0, the Lipschitz constant G, and a potential function V' (¢, .S) that
implicitly depends on A and G. Initialize Sy = 0.
1: fort=1,2,...do
2:  Predict z; = VgV (¢, S;t—1), and receive the loss gradient g;. Let Sy = S;—1 — g+/G.
3: end for

To better demonstrate this idea, let us first consider a quadratic potential V (¢, S) = (1/2) - CGS?.
The potential method suggests the prediction z; = VgV (¢,5;-1) = C Zf;i gi = x¢-1 — Cgs_1,
which is simply gradient descent with learning rate C'. Scaling on the primal space means scaling V'
directly, while scaling on the dual space means scaling the sufficient statistic .S. It is clear that both
cases are equivalent to scaling the effective learning rate, which is the standard way to incorporate
switching costs in bounded domain gradient descent. In other words, for this gradient descent

potential, the two types of scaling are essentially the same.

Now, to achieve optimal comparator adaptivity, we need a better potential where scaling on the dual
space actually makes a difference. With a parameter « that will eventually depend on A, we consider

Algorithm 1 induced by the potential
S/V4aat u
2/ (/ exp(xQ)dx) du—11|. 3)
0 0

When the Lipschitz constant G' = 1, it has been shown [ZCP22b] that o = 1/2 leads to comparator
adaptivity without switching costs. Here we use a = 4\G~! + 2, which amounts to scaling both
the primal space and the dual space: on the primal space, we scale up the overall prediction by
©(vAG~! 4 1), and on the dual space we scale down the sufficient statistic S by ©(1/VAG~1 + 1).
The latter gives us the optimal comparator adaptive bound (i.e., Pareto-optimal rate in |u| and T'),
while the former helps us obtain the optimal rate in A. Due to incorporating A into the potential
function V,,, we call our approach the switching-adjusted potential method.

Va(t,S) = CVat

Although the dual space scaling strategy and the particular structure of V,, may seem mysterious
at first glance, they are actually derived from a continuous-time analysis. To proceed, we will first
present the performance guarantee in the next subsection, and then revisit the derivation of this
strategy in Section 2.4.

2.3 Optimal comparator adaptive bound

Despite its simplicity, our approach improves the result from our prior work [ZCP22a] by a consider-
able margin.

Theorem 1. If o« = 4\G~! + 2, then Algorithm 1 induced by the potential V,, guarantees
lul
C + |y 4log 1—|—C +2

Theorem 1 simultaneously achieves several forms of optimality.

Regrety(u) < v/(4\G + 2G2)T

forallu e RandT € N;.

1. Pareto-optimal loss-regret trade-off: considering the dependence on u and 7', Regretg\(u) =
0 <|u\ /T log [u] ) , while the cumulative loss satisfies Regret)(0) = O(v/T). An existing lower
bound [ZCP22b, Theorem 10] shows that even without switching costs, all algorithms satisfying a
O(V/T) loss bound must suffer a Q (|u| \/m) regret bound. In this sense, our algorithm
attains a Pareto-optimal loss-regret trade-off, in a strictly generalized setting with switching costs.

2. On T alone: Regret) (u) = O(V/T). Despite achieving comparator adaptivity, the asymptotic
rate on 7' is still the optimal one, matching the well-known minimax lower bound.

3. On X alone: Regret} (1) = O(v/X). Our bound has the optimal dependence on the switching cost
weight [GVW10, Theorem 5].



To compare Theorem 1 to [ZCP22a], we have to convert them to the same loss-regret trade-off,
i.e., both guaranteeing Regret?(0) = O(1) or Regret}(0) = O(v/T). Here we take the first
approach — details are presented in Appendix A.4. Let us only consider the dependence on u and

T.* By a doubling trick, our bound can be converted to C + |u| O ( Tlog(C—1 |ul T)), which

improves the rate C' + |u| O (\/Tlog(C_1 |l T)) from [ZCP22a, Theorem 1]. Specifically, our
converted upper bound also attains Pareto-optimality in this regime (i.e., matching the lower bound

Q (\u| /T log(|ul T)) in [Oral3]), whereas the existing approach does not.

The proof of Theorem 1 is sketched below, with the formal analysis deferred to Appendix A.3. It
mostly follows a standard potential argument, which is another benefit over the existing approach —
the idea of this proof is easier to interpret and generalize.

Proof sketch of Theorem 1 To begin with, the first step is to show a one-step bound on the growth
rate of the potential. If there is no switching cost, then the Discrete It6 formula can serve this purpose,
which applies to any convex potential V. It is an established result in the probability literature
[Kud82, Fuj08, Kle13], and Harvey et al. [HLPR20] first applied it to minimax LEA. The version
below is from our prior work, which is a small variant that removes the LEA context.

Lemma 2.1 (Lemma 3.1 of [ZCP22b]). If the potential function V (t, S) is convex in S, then against
any adversary, Algorithm I guarantees for all t € N,

V(t, St) — V(t -1, Stfl) < —Gilgtmt + ?tV(t, Stfl) + (1/2) . vss‘/(t, Stfl).

Our key observation is the following lemma, which incorporates switching costs into V,,. Note that
the structure of V,, is important here.

Lemma 2.2. For all o > 0, consider Algorithm 1 induced by the potential V. For all t € N,
‘.’Et — wt+1‘ S vSVa(t, Stfl + ].) — vSVa(t, St,1 - ].)

Combining the above, if we define

_ 1= _ _
At = VtVa(t,St,l) + §V53Va(t, Stfl) + G_l)\ [VSVa(tastfl + ]-) - VSVa(t,St71 - 1)] )

4)
then a telescopic sum yields a cumulative loss bound
T T
Regret).(0) < Z (grze + Mz — 2e41]) < =G - Vo (T, St) + GZAt.
t=1 t=1

To proceed, we need to control the residual term A;, which may seem problematic due to its
complicated form. Fortunately, a careful analysis shows that A, vanishes with a proper choice of «.

Lemma 2.3. If o > 4\G ™' + 2, then for all t and against any adversary, /A, < 0.

Finally, with the updated loss bound Regret?:(0) < —G - V,,(T, St), our regret bound follows from
the classical loss-regret duality [MO14, Oral9].

2.4 Continuous-time derivation

Now let us derive our dual space scaling strategy from a continuous-time perspective. Technically,
the procedure is analogous to another prior work of ours [ZCP22b], which studies optimal potential
functions for the standard OLO setting without switching costs. Before starting, we need a generalized
definition of the discrete derivative, with a tunable gap increment §.

LV (1, 5) = % V(1,5 +6) - V(1,5 —5)].

Note that the choice of § = 1 recovers VgV (¢, S) in Algorithm 1. The Lipschitz constant G’ will be
set to 1 for the ease of exposition.

*Comparing the dependence on ) is more subtle, as discussed in Appendix A.1.



Step 1: discrete-time recursive inequality First, let us consider the following inequality that
characterizes “admissible” potentials for Algorithm 1. For all ¢ and S,

V=152 max {V(tS5-g) +gVEV(LS) + A|VEV(L,S) = VEV(E+ 1,5 —g)|}.
gel—1,
)

Finding solutions of this inequality is sufficient for constructing regret bounds. To see this, suppose
the above holds for some V. We can then plug in S = S;_; and guarantee that for all g, € [—1, 1],
gey + Ay — x| <KV (E—1,8_1) — V(¢,5).

A telescopic sum further leads to a cumulative loss bound Regrety:(0) < V(0,0) — V(T St), and a

regret bound on Regret}(u) then follows from the standard loss-regret duality [MO14].

Step 2: e-scaled recursion Since we ideally need optimal potential functions that satisfy the
inequality (5) without any slack, let us turn (5) into an equality and try to approximately solve it.
Intuitively this is a challenging task, as there is no natural way to parameterize the dependence of
V' on the discrete time t. However, if we decrease the discrete time interval, solutions V' will be
“smoother” and easier to describe. Concretely, let ¢ > 0 be a parameter that will later approach 0. On
(5), we scale

1. the unit time by g2;
2. the loss gradient g, the switching cost weight A and the gap increment by €.
Both scaling factors are justified in the switching-free setting [ZCP22b, Appendix A.2]. Notably,

since g and A have the same “unit”, it is natural that they are scaled by the same rate. With that, we
obtain a scaled recursion

V(t—¢e%5)
= Jax, {V(t, S —eg) +egVsV(t,S) +eX|VEV (L, S) — VsV (t+€°, S —eg)|}. (6)
gel—1,

Step 3: continuous-time PDE To proceed, we take the second-order Taylor approximation on
all components of (6). Calculations are simple, and we defer the details to Appendix A.5. Both the
zeroth and the first order terms of € naturally vanish. Only keeping the second order terms, we have

1
V.Vt S)+ H[lalxu <2g2V55V(t, S)+ AgVssV(t, S)|) =0.
gel—1,

As typical potential functions are convex in the sufficient statistic .9, it is reasonable to impose an
additional condition VggV (¢, .S) > 0. Then, the above becomes the 1D backward heat equation

ViV +aVgsV =0,
where & = A 4+ 1/2. Compared to the switching-free setting [ZCP22b, Eq. 5], we obtain the same

PDE, but change the negative thermal diffusivity o from 1/2 to 1/2 + A. This concisely characterizes
the effect of switching costs on the structure of the online learning problem.

Step 4: solving the PDE The final step is to solve the backward heat equation. With a hyperparam-
eter ¢, consider solutions of the form

va(t.) =g (2= ).

Plug it in, the backward heat equation reduces to the Hermite Ordinary Differential Equation (ODE)
9"(2) = 224 (2) + 4eg(2) = 0,

which is independent of o.. This is a crucial observation, as it reveals the correct way to generalize

the knowledge from the switching-free setting to the setting with switching costs. More specifically,

* In the switching-free setting, we can take a solution g(z) of the Hermite ODE, plug in the argument
z=15/ /2t and obtain a potential function V.

* When switching costs are considered, the above derivation suggests us to take the same function
g(2) as before, and plug in a scaled argument z = S/+/4at. This is precisely dual space scaling.

Finally, as shown in [ZCP22b], a particularly good choice of ¢ is 1/2. Using this choice yields the
switching-adjusted potential (3).



Remark To summarize, through this derivation we aim to demonstrate a key benefit of the
continuous-time analysis: it makes the generalization of algorithmic structures easier. This was not
presented in our prior work [ZCP22b], but could be useful in the broader online learning context.

Meanwhile, we do not intend to overclaim its strength — although the continuous-time analysis
provides useful intuition, we ultimately care about discrete-time regret bounds. Discretizing such
arguments relies on an obscure argument that has not been made concrete yet: “V,, derived in the
continuous time also serves as a good potential in the discrete time.” Indeed, verifying this property
is technically nontrivial (Section 2.3), and doing so requires a slightly more conservative choice of «
(i.e., 4\ + 2) than what is suggested above.

2.5 Extension beyond the 1D unconstrained setting

So far we have only considered the 1D unconstrained setting. Our results can be extended to higher
dimensional domains and bounded domains, which is deferred to Appendix B.

Most notably, we present an algorithm (Algorithm 5) for 1D bounded domain: if the domain has
diameter D, then the switching cost alone of this algorithm is bounded by O(D+/7) on any time
interval of length T. Such a property is crucial in [ZCP22a] for the construction of a strongly adaptive
OCO with memory algorithm. However, the proof in [ZCP22a] critically relies on hard-thresholding
a betting fraction, which, as we demonstrated in Section 2.2, is suboptimal. In contrast, our new
result simultaneously achieves this property and the optimal augmented regret bound.

3 LEA with switching cost

Our improved results can also be applied to LEA with switching cost, leading to the first comparator
adaptive algorithm there. Conversion techniques (from OLO to LEA) without switching costs were
studied in [LS15, OP16], and since then, they have become standard tools for the online learning
community. Here we present a different view on this conversion problem, based on its connection
to the well-known constrained domain reduction [CO18] (surveyed in Appendix B). In particular, it
leads to a mechanism for incorporating switching costs, with a clear geometric interpretation.

The setting of LEA with switching cost is a special case of the high-dimensional OLO problem
(Appendix B). Let d be the number of experts, and we define the domain A" as the d-dimensional
probability simplex A(d). Loss gradients g, satisfy ||g:||,, < G, and switching costs are measured
by the L; norm. The performance metric is still the augmented regret, now defined as
T T—1
Regrety (u) := Z (gtsme —u) + A Z [zt — egall; -
t=1

t=1

However, the main difference with OLO is the form of comparator adaptive bounds — here we aim at
Regrety (1) = O(y/T - KL(ul|7)), where 7 € A(d) is a prior chosen at the beginning. Achieving
such a root KL bound relies on techniques different from the OLO setting.

Existing approaches [LS15, OP16] have the following procedure. Given a 1D OLO algorithm
that predicts on R, independent copies are created for each coordinate and updated using certain
surrogate losses. A meta-algorithm queries the coordinate-wise predictions {w; ;¢ € [1 : d]},
collects them into a weight vector w, = [wy1,...,w; 4], and finally predicts the scaled weight
xy = wy/||we||; on A(d). Despite its general success, such an approach has a discontinuity problem
when switching costs are incorporated — if two consecutive weights w, and w; 1 are both close to the
origin, then simply scaling them to A(d) can lead to a large switching cost, even when ||w; — wy41]|4
is small. This problem is exacerbated by the typical setting® of w; = 0, due to the associated analysis.
A graphical demonstration is provided in Figure 1 (Left).

In contrast, our solution is based on a unified view of the LEA-OLO reduction and the constrained
domain reduction [CO18]. Starting without switching costs, we observe that the general Banach
version of the latter can also convert OLO to LEA, therefore specialized techniques are not required

*When w; = 0, z; can be arbitrary on A(d) by definition. However, as w; changes continuously w.r.t. the
observed information, it could hover around 0 at some point, thus experiencing the sketched problem.
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Figure 1: Switching costs in LEA-OLO reductions. Left: existing approaches. Right: ours, where the
projection of w; contains two cases. (i) ||w¢||1> 1, shown in green; (i7) ||ws||1< 1, shown in black.

for this task. Algorithmically, we set z; € argmin, gyl — w1 as opposed to z; = wy /||wy |1
The surrogate losses for the base algorithms are also different, which we elaborate in Appendix C.3.
A major benefit of this unified view is the non-uniqueness of the L; norm projection — if ||w,|| < 1,
then any z; € A(d) satisfying {x;; > w;;; Vi} minimizes ||z — w;||; on A(d). This brings more
flexibility to the algorithm design. Specifically, we adopt

1. the orthogonal projection x; = w; + d~ (1 — ||wy||1) when ||w; |1 < 1;

2. the scaling x; = w;/||wq]|1 when ||Jw;|]1> 1.

The orthogonal projection is better for controlling switching costs, as shown in Figure 1 (Right).
Concretely, this leads to the first comparator adaptive algorithm for LEA with switching costs.

Theorem 2. For LEA with switching cost, given any prior T in the relative interior of A(d), Algo-
rithm 7 from Appendix C.2 guarantees

T T-1
> g = w) + AN Mo = @l = [VIV(llm) - KL(ullm) +1] -0 (VNG + G)T)

SJorallu € A(d) and T € N4

We emphasize two strengths of this bound.

1. Since it is comparator adaptive, such a bound only implicitly depends on d through the divergence
term v/ TV - KL. In favorable cases we may have a good prior 7 such that TV (u||7) - KL(u||7) =
O(1); this will save us a /log d factor compared to minimax algorithms (with switching costs),
such as Follow the Lazy Leader [KVO05] and Shrinking Dartboard [GVW10].

2. Even without switching costs, we improve the v KL divergence term in existing comparator
adaptive bounds [CFH09, LS15, OP16] to v TV - KL. The latter is better since (i) TV is al-
ways less than 1, and (4¢) there exist p,¢ € A(d) such that TV (p||q) - KL(p|lg) < 1 but
KL(p||q) > vlogd—o(1) (cf. Appendix C.3). In other words, compared to v/'KL, the v TV - KL
bound is never worse (up to constants), and can save at least a (log d)'/* factor in certain cases.
Generalizations of root KL to f-divergences have been considered in [Alq21, NBC*21], but to
our knowledge, no existing algorithm guarantees a better divergence term than root KL.

Experiment We complement our theoretical results by experiments on a portfolio selection task.
Due to limited space, it is presented in Appendix D.

Conclusion We defer discussions on the conclusion, limitations and future works to Appendix E.
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Appendix

Organization Appendix A presents omitted details of our 1D OLO results. Section B extends such
results to more general OLO settings. Section C presents details on LEA. Section D numerically
tests our approach in a portfolio selection problem. Limitations and future works are discussed in
Section E.

A Details on 1D OLO

This section presents detailed discussions and omitted proofs for our 1D unconstrained OLO algo-
rithm.

A.1 The suboptimal algorithm from [ZCP22a]

Let us start by summarizing the existing result from our prior work [ZCP22a, Algorithm 1], which
is the first comparator adaptive algorithm for 1D unconstrained OLO with switching costs. The
original version in [ZCP22a] considers a bounded domain and an extra regularization term, which
are removed below for a clear comparison. II denotes the absolute value projection.

Algorithm 2 The suboptimal algorithm from [ZCP22a]

Require: A hyperparameter C' > 0, the Lipschitz constant G, and the switching cost weight A.
1: Define K = G + . Initialize internal variables as Wealthg = C' - K, and 1,27 = 0.
2: fort=1,2,...do
3:  Make a prediction z;, observe a loss gradient g;.

Define an unprojected betting fraction as 3,41 = — S g/ (2K?1).

Define a hard threshold for the betting fraction, B; 1 = [~1/(K+/2t),1/(K+/2t)].

Update the projected betting fraction as 8,11 = g, (Bi41)-
Assign Wealth, as the solution to the following equation (uniqueness can be proved),

Wealth; = (1 — ¢g;0;)Wealth;_1 — \|8;Wealth;_1 — 811 Wealthy|. @)

A A

8:  Calculate the next prediction, x;11 = ;1 Wealthy.
9: end for

Both the algorithm and its analysis are analogous to [CO18], which recasts the selection of betting
fractions as an “inner” online learning problem. Nonetheless, incorporating switching costs requires
extra components (Line 5-7), making the whole analysis nontrivial.

Theorem 3 (Theorem 1 of [ZCP22a], adapted). Algorithm 2 guarantees for all T € N and u € R,

3 2 |u| T°/?
C + [u] V2T (2 +log m)

Regret) (u) < (G + \) C

For now, let us only consider the dependence on u and 7". Compared to typical results on comparator
adaptivity, the above bound has two limitations. First, the bound does not achieve the optimal

loss-regret trade-off [ZCP22a] — the constraint Regret7(0) < O(1) on the cumulative loss of the
algorithm is too harsh, such that the leading regret term (Regret)-(u) with large |u|) suffers a
logarithmic penalty on 7T (relative to the usual O(y/T) minimax rate). Second, even if we only
consider this particular loss-regret trade-off, i.e., Regret?p(o) < O(1), the logarithmic terms are not
optimal (being outside the square root). In other words, the bound is not Pareto-optimal. The present
paper simultaneously improves these two suboptimalities.

On a separate note, let us consider its depenflence on G and ), which is more subtle.® In its vanilla
form, the above bound has the leading term O(max{G, A} |u| v/T), but we can run a meta-algorithm

SWe thank the NeurIPS reviewer KR3f for insightful comments.
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[ZCP22a, Algorithm 3] on the top to improve it to O (|u \/ max{G, A} 23:1 lgs |) . The pseudo-

code is presented as Algorithm 3. Its main idea is to adaptively slow down the update of the base
algorithm, depending on the observed gradients.

Algorithm 3 Meta-algorithm [ZCP22a, Algorithm 3], adapted

Require: The Lipschitz constant GG and the switching cost weight A.
1: Initialize a base algorithm A as a copy of Algorithm 2.
2: Initialize + = 1 and an accumulator Z; = 0. Query the first output of A and assign it to w;.
3: fort =1,2,...do

4:  Predict x; < w;, observe gy, let Z; < Z; + g;.

5 if || Z;]|> max{\, G} then

6: Send Z; to A as the i-th loss. Let ¢ < i + 1.

7: Set Z; = 0. Query the i-th output of .4 and assign it to w;.
8: endif

9: end for

Theorem 4 (Theorem 6 of [ZCP22a], adapted). Algorithm 3 guarantees for all T € N and u € R,

T
Regrety(u) < (G + A\)C + [u| O | max{G,\} + , | max{G,A} Y _|gi]

t=1

When ) is large, the O(+/\) rate on the leading term is optimal. Moreover, in the presence of
switching costs, the gradient adaptivity term 1/ Zle |g+| is a strong one, since second-order gradient

adaptivity 4/ Zthl lgs |2 is not achievable [Gof14]. Note that we can also run this meta-algorithm on

top of our improved base algorithm (Algorithm 1), such that the latter achieves gradient adaptivity as
well. Due to this reason, when comparing the results of the present work to [ZCP22a], we mostly
leave the dependence on A and the gradient adaptivity out of the comparison.

A.2 A few basic lemmas

Before proving our main result (Theorem 1), we present a few basic lemmas on Algorithm 1 and the
potential function V,, (3), which will be useful later on. The first lemma shows the monotonicity of
the discrete derivative strategy, which is quite intuitive.

Lemma A.1. If the potential V (t, S) is even and convex in S, then VsV (t, S) is odd and monotoni-
cally increasing in S.

Proof of Lemma A.1. VsV (t,9) is odd due to the simple relation
VoV (t,—S) = % V(t,~S+1) = V(t,—S —1)]
% V(LS —1) V(S +1)] = —VeV(t,S).
As for the monotonicity, it is equivalent to showing for all § > 0,
Vt,S+1+6)-V(S—-14+0)>V(E,S+1)-V(S-1).

This follows from the convexity of V' (¢, -), as

2 b}
< = R _
V(S +1) < 5o V([ES+140) + 5 V(LS - 1),
b} 2
— < — = —1).
V(tS—140) < == V({ES+1+0) + 5=V (S - 1) O

Now, for the potential function V,, we compute its continuous partial derivatives. The proof is
straightforward calculation, therefore omitted.

Lemma A.2. For any a > 0, V,, defined in (3) is even and convex. Moreover,
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§/vaal cs 52
VsVal(t,S) = C/ exp (2?) dz, VsssVal(t,S) = WGXP ( ) ;

0 4(at 4at
c 52 ova 52
VSSVa(t; 5) = 27\/@ exp (W) y VtVa(LS) = _T\/{‘; exp <ZM) .

Based on the above, the discrete derivative V gV, has the following properties.
Lemma A.3. Foralla > 0,t>0and S > 0,

1. VsV,(t,S) as a function of t is decreasing and convex;

2. VsVu(t,S) as a function of S is convex.
Proof of Lemma A.3. Considering the first part of the lemma,
Vi [VsVa(t, S)] = % [ViVa(t, S +1) — ViV, (t, S — 1)]
= —04:/[? exp (Sio_; 1) sinh <2it> ,

which, when S > 0, is negative and increasing in ¢. Therefore, @SVa(t, S) as a function of ¢ is
decreasing and convex. Similarly,

_ 1 C (S+1)/V4at
Vs [TsValt: $)] = & [VsValt, S +1) — VsVa(t, S — 1)] = 7/ exp (a2) dr,
2 2 Js—1)/vaat
which is increasing in S. Therefore, V5V, (t,S) as a function of S is convex. O

A.3 Proof of Theorem 1

In this subsection, we prove Theorem 1, the regret bound of our 1D OLO algorithm with switching
costs. As sketched in Section 2.3, our proof relies on two important lemmas, Lemma 2.2 and 2.3. We
prove them first.

Lemma 2.2. Forall o > 0, consider Algorithm 1 induced by the potential V,,. For all t € N,
|2e — pq1| < VValt, Sim1 +1) — VgVa(t, Se—1 — 1).

Proof of Lemma 2.2. First, since VgV, (t, S) is monotonic in S due to Lemma A.1, we have
|xy — x| = WsVa(t, Si—1) — ?sVa(t + 1, St)|
< IIlZl)i ‘?SVa(t, Si—1) — @SVa(t + 1,51+ C)’ .

For clarity, from the RHS we define
f(t,S) = max |VsVal(t,S) = VsVa(t+1,5+ )|
Itis evenin S, as
f(t,=9) = max |VsVal(t,—S) = VsValt +1,-5 + o)
= max |-VsVal(t,S) + VsValt+1,5 — ¢ (Lemma A.1)
= max |VsVal(t,S) = VsVa(t+1,5 —¢)| = f(t,9).

Therefore, we can restrict the rest of the proof to S > 0, and the remaining task is to upper bound
ft,S) forall0 < S <t¢—1.
From Lemma A.1 and A.3,

vS‘/a(tﬁ_ 1aS - 1) < vSVa(t_F 17S) < vS‘/Ot(tvs)a
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VsVa(t+1,5—1) < VgV, (t+ 1,5 +1).
Therefore, if VsV, (t + 1,5 — 1) < VgV, (t,S) < VsVa(t + 1,5 + 1), then
f(t,8) =max {|VsVa(t,8) = VsVa(t+ 1,5 - 1),
<VsVa(t+1,S+1) = VsVu(t+1,5—1).

VsVal(t,S) = VsValt + 1,5 + 1)[}

On the other hand, if VsV, (t + 1,5 + 1) < VgV4(t, S), then
f(t,S) = ?Svaaﬂs) - ?SVa(t + LS - 1)
Combining the above,

f(t,5)
<max {VgVu(t,S) = VsVa(t+ 1,5 —1),VsVo(t+1,5+1) = VsV (t+1,5 - 1)}.

Our goal next is to upper bound f (¢, S) by VsV, (t, S +1) — VsV, (t, S — 1), which can be divided
into two cases.

Case1l We aim to show that
VVa(t,S) = VsVa(t +1,8 —1) < VsV,u(t,S +1) = VgVo(t, S — 1),
which is equivalent to
VsValt,S —1) = VsVa(t+1,5 — 1) < VgVu(t, S+ 1) — VsVa(t,S). (8)

Note that this trivially holds when 0 < § < 1: due to Lemma A.3, the RHS is always positive;
however, the LHS is negative due to VgV, (¢, S — 1) being increasing in ¢ (Lemma A.1 and A.3 Part
1). Therefore, we only need to show (8) for all S > 1.

To this end, with S > 1, we apply the convexity of V5V, from Lemma A.3:
VsValt,S+1) = VsVa(t,S) > Vs [VsVal(t,5)],
VsVal(t,S—1) = VsVa(t+1,5—1) < =V, [VsVa(t,S —1)].
Consequently, it suffices to show that
~Vi [VsVa(t, S —1)] < Vs [VsVa(t, 9)] .

Now it is time to invoke the specific form of V,. We may reuse Vg [VsV,(t,S)] and
V¢ [?SVQ (t, S )} calculated from the proof of Lemma A.3.

B C (S+1)/Viat ) C SQ
Vs |VsVu(t, S :—/ exp (x deexp(),
STVt ) =G [ e a7 > e (G

andforall1 < S <t-—1,

Y, [VsValt, S — 1)] = i? exp <(S _42; + 1) sinh (i;;)
() n(20)
0
< 85@ exp (5;) | (exp(z) >+ 1)

Therefore, —V; [?SVQ (t, S — 1)} < Vg [VSVa (t, S)] which proves (8) and concludes Case 1.
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Case 2 We aim to show that

?SVa(t + 1,5+ 1) — ?gVa(t + 1,5 — 1) < sta(t, S+ 1) — ?SVa(t,S — 1).
This is straightforward, as

Vi [VsVa(t, S+ 1) = VgVo(t,S —1)]
:Hvt Vi(t, S +2) + VoVa(t, S — 2) — 2V, Vi (t, S)]

S () (5 ()

0. (convexity)

IN

Combining the two cases, we can upper bound f (¢, 9) by VsVa (¢, S + 1) — VgV4(¢, S — 1), which
completes the proof. O

Next, we present the proof of Lemma 2.3, which bounds the residual term A, defined in (4).
Lemma 2.3. If o > 4\G~! + 2, then for all t and against any adversary, /\; < 0.

Proof of Lemma 2.3. We restate the definition of A; for easier reference.
_ 1 _ _
Ay =ViVul(t,Si—1) + §V55Va(t, Si—1) + G\ [sta‘(if7 Si—1+ 1) — VsVu(t,Si—1 — 1)] .

Let us define a function g(¢, .S) as
1 1

A
+ 55 Valt,

then from the definition of discrete derivatives, A; = g(t, S:—1). Also note that g(¢, .S) is even in
S, so we can only focus on positive values of S. The rest of the proof will show g(¢,S) < 0 for all
teNjpand S > 0.

Let us start from the special case, ¢ = 1. S can only take the value 0, therefore g(1,.5) = g(1,0). We
now present a general result that upper bounds g(¢,0) forall ¢t € N :

g(t,0)
=Va(t,1) = Vo (t — 1,0) + G AV, (t,2) — G 1AV, (t,0)
I 1/@ u 2)\ l/m u t— 1
=CVat 2/ (/ exp(zz)dz> du + el (/ exp(zQ)d;z:> du+\/——1
0 0 0 0

\ﬁ' 1 1/Viat oA 1 1 [V ) [t—1
<CVat |2 - d d — -1
<CVa 5 \/H/ exp(z?)dz + = G 2 Vails exp(z)dz + ;

i (erfi(z) is increasing and convex on R )

[ 1 1 A 1 t—1
< — A \ — —1].
<CVat 10t P <4at) * Gat P ( t) + 13 1]

Since V142 < 1+ x/2 for all x > —1, we have /(t — 1)/t — 1 < —1/(2t). Therefore, if
a > 4AG~! + 2, then

9(t,0) < CVat [WGXP (1) _ 1}

£S5 +2) + Va(t, S — 2) — 2Via(t, S)]

at 2t
Cya [AG™!+(1/4) 1 1
<Sr e () g =0 0

As its special case, we have ¢g(1,0) < 0, which concludes the proof of the special case (¢t = 1).
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Next, we prove g(t,S) < 0 for general ¢, i.e., t > 2. Our overall strategy is to show that for all
0<85<t—1,9(tS) < g(t,0), and then using the argument above we have g(¢,0) < 0. Concretely,
let us calculate the first and second order derivatives of g(¢, S), using Lemma A.2.

ng(tv‘S’)
C (S+1)/V4at ) (S—1)/V4at ) S/+/4a(t—1) )
=— / exp(z )da:—l—/ exp(z®)dx — 2/ exp(z*)dx
2 Jo 0 0
\C (S+2)/v4at (S—2)/V4at S/V4at
+— / exp(xQ)dm—i—/ exp(z?)dz — 2/ exp(z?)dz | ,
2G | Jo 0 0
Vssg(t, S)
O A N (S +2)? ex (S+1)%\  2A N 5%
4t G P dat P dat G P\ dat
n (S —1)2 n A (S —2)? 3 C S?
P\ 4 G P\ dat o/att—1) T \dalt—1)
= Le S—z ie 1 cosh ﬁ +e 1 cosh i
- 2Vt P\4at) |6 P\ w at P\ Jat 2ait

A t S2
e V1™ <4at(t—1))]' (19)

Notice that Vgg(t,0) = 0. To proceed, we aim to prove Vggg(t,S) < 0 for all S > 0, which then
shows ¢(¢,.5) < ¢(¢,0). To this end, we will show the sum inside the bracket in (10) is negative.
Denote it as h(t, S), and more specifically,

h(t, S)

A e ! cosh 5 +e 1 cosh 5 A t e i
= —ex — — X —_— — | — = — 4/ ——ex — .
G P\t at P\ Jat 2at) G Nt—1"P\Gatt—1)
The rest of the proof is divided into two steps: we first prove (¢) h(¢,0) < 0; and then prove (i7)
Vsh(t,S) <O0forall S > 0.

Step 1: prove h(t,0) < 0. From the definition of h(t, S),

A 1 1 A t
- fon(3) oo ()35

Letting = 1/t, then to prove h(t,0) < 0 for all ¢ > 2, it suffices to prove

w12 o (2) v (2) - 3 755 <o

Vai(a) = 2 exp (L) + o () - L - o)

oG a 4o 4o 2
- AANGT+1 1 1

AT T[22
=T da Plog) 2

which is negative when a > 4\G~! + 2. Therefore, h(t,0) < 0 forall t > 2.
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Step 2: prove Vgh(t,S) < 0. Taking the derivative of h(¢, .S),
Vsh(t,S) = % exp <cit> sinh (i) + %«t exp (4;) sinh <2it>
[t S S?
Vi1 2att—1) P <4at(t—1)>
< ()\ + 1) exp (1) sinh <S> — i\/i.
atG - 2ot ot ot 202V t — 1

Note that for all z, exp(—x) > 1 — z, therefore for all 0 < x < 1, exp(z/2) < /1/(1 — x).
Assigning x to 1/t which is less than 1, we have for all o > 2,

1 < 1 < [t
FP\a ) =P g ) =VizT

Moreover, for all 0 < z < 1, sinh(x) < 2z. Therefore,

t MG+ (1/2) . S S S t 1 «
v <4/ 5 =) - < \/ +1——|.
sh(t,S) 1 [ : smh( t) 5 tz} 2\ 121 [QAG 1 2}

When o > 4\G~! + 2, Vgh(t,S) < 0forallt >2and S > 0.

Concluding the above two steps, we have shown h(t, S) < 0. Plugging it back into (10), we have
Vssg(t,S) < 0, which shows that forall t > 2and S > 0, g(¢,.5) < g(¢,0). Finally, g(¢,0) <0
following (9). O]

Now, given the two important lemmas above (Lemma 2.2 and 2.3), our Theorem 1 follows from a
standard loss-regret duality. Details are presented below.

Theorem 1. If o« = 4\G ! + 2, then Algorithm 1 induced by the potential V,, guarantees

Regret):(u) < /(4AG + 2G2)T | C + |u| ( 4log (1 + |g> +2>

forallu €e Rand T € N,.

b

Proof of Theorem 1. Combining Lemma 2.1, 2.2 and 2.3, we have

T
Z (grxe + Az — 2e41]) < =G - Vo (T, St).

t=1

Consider V,,(T', St) as a function of St; let us write V7 (-) as its Fenchel conjugate. Then, the
augmented regret can be bounded as

T T-1
Regret) (u) = th(xt —u)+ A Z |z — xpqq]
t=1 t=1
T
S G- ’ZLST + Z (gtxt + A |Zt — SL'H_1|)
t=1

S G [UST — Va(T, ST)} S G- V(;:T(u).
The last step is to bound V;; 1-(u), which also follows from a standard proof strategy.
V;T(u) = sup uS — Vo (T, S).
Ser

It is clear that the supremum is uniquely achieved; let S* be the maximizing argument. Then,

uw=VgV,(T,58)=C

S*/v/4aT
/ exp (x2) dx.

0
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If we define erfi(z fo exp(x?)dx (note that it a scaled version of the conventional imaginary
error function), then S* = v4aT - erfi”! (uC’l).

ar(u) =uS* = Vo (T,5) <uS* = Vo(T,0) = CVaTl + [u| v4aT - erfi”! (uC™?).

Finally, as shown in [ZCP22b, Theorem 4], erﬁfl(m) <1+ 4/log(1 + z). Combining the above
completes the proof. O

A.4 Conversion of loss-regret trade-offs

In this subsection we discuss the conversion of loss-regret trade-offs in unconstrained OLO. Our
Theorem 1 guarantees a loss bound Regret{\p( ) = O(\f ) and an accompanying regret bound

Regret) (u) = (\u| /T log |u| ) By a doubling trick (effectively, a meta-algorithm), we can turn

such guarantees into Regret7(0) = O(1) and Regret?)(u (|u| VTlog(|u|T) ) These can be
directly compared to [ZCP22a]. Concretely, we present the classical doubling trick as Algorithm 4.

Algorithm 4 Conversion of loss-regret trade-offs.

Require: A hyperparameter C' > 0, and a base unconstrained OLO algorithm .A. Here we define A
as the algorithm considered in Theorem 1, with o = SAG~! + 2.

1: form=20,1,2,...do

2:  Initialize a copy of A as A,,,, whose hyperparameter is set to C' - 27,
3:  Run A,, for 2™ rounds: ¢t = 2™, 2™ +1,...,2mT1 — 1.

4: end for

Theorem 5. Let o = 8A\G~! + 2. With any hyperparameter C > 0, Algorithm 4 guarantees for all

u€RandT € N,
C+|ux/f<\/8log <1+|C> +2f>]

Proof of Theorem 5. Algorithm 4 divides the time axis into intervals of doubling lengths. On the
m-th interval, following Theorem 1, Algorithm 4 guarantees

Regret) (u) <

V2aG
V2-1

om+l_q
Z [9¢(ze — u) + Ay — 24a]]
t=am
om+l_q gm+tl_g
< Z gr(xe —u) + 2X Z |2t — Ty (xgm+1 = wom = 0; Triangle inequality)
t=2m t=2m

< VaG [\/gfm + Jul V2 <\/410g <1+ |u|'02m> +2>

Now consider any time horizon 7'.
[logy, T] 2™+ -1

Regrety (u) < Z Z [ge(xs — u) + Nze — 241

m=0 t=9m

[logy T
|u| - 2m
—_ 2m 4] 1 2
VaG E [ + Ju| vV <\/ og + c +

IN

m=0

[log, T] T [log, T

m=0

C+lu f<\/81og< '“CT>+2\/>] 0
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Let us compare it to Theorem 3, i.e., [ZCP22a, Theorem 1], which guarantees
3 2 |u| T5/2
C + |u|v2T <2 Jrlog\ﬂlg,)

If we only care about the dependence on |u| and T', then with the same loss bound Regret?:(0) =
O(1), our algorithm improves the regret bound Regret).(u) from O(|u|v/Tlog(|u|T)) to

O(|u| /T log(|u|T)). The latter matches a lower bound [Oral3], therefore achieves Pareto-
optimality in this regime.

Regret)(u) < (G + \)

A.5 Details on the continuous-time derivation

In Step 3 of Section 2.4, we need to perform second-order Taylor approximations on the scaled
recursion (6). Details are included here for completeness.

V(t—e%8)=V(t58S)—e*V,V(t,S) + o(e?),

V(S —eq) = V(t,S) — gVsV (L, S) + %s%fvssvu, ) + o(c2),
1

VLV (L, S) = % [V(t,S+¢e)—V(t,S—e)=VsV(t5S) +ole),

_ 1
VSV(t+e2 S —eg) = > [V(t+e® S—eg+e)—V(t+e®,S—eg—e)],
where

V(t+e?,S—eg+e)=V(t,S)+e*V,V(t,S)+ (1 —g)eVsV(t,S)

1
+ 5(1 —9)?e*VssV(t, S) + o(e?),

V(t+e% S —eg—e)=V(t,9)+e*V,V(t,S)+ (=1 —g)eVsV(t,S)
1
+ 5(1 +9)2e2VssV (t, S) 4 o(e?).

B Extension to general OLO settings

This section presents extensions of our 1D unconstrained OLO algorithm to more general settings.

B.1 Constrained domain

First, consider a constrained domain X C R. We can use a well-known black-box reduction
[CO18, Cut20] on top of our 1D unconstrained algorithm (Algorithm 1), such that the exact bound in
Theorem 1 carries over (w.r.t. any constrained comparator v € X’). Concretely, the pseudo-code is
shown as Algorithm 5, where II denotes the absolute value projection in 1D.

Similar strategies apply to higher-dimensional problems, but here we emphasize the 1D special case
due to an additional feature: if the domain & has a finite diameter D, then the switching cost alone of
the combined algorithm has a O(Dﬁ) bound on any time interval of length 7. This could be useful
when switching costs have high priority [SK21, WWYZ21] and should be independently bounded.
Moreover, it allows the combination of comparator adaptive algorithms [ZCP22a] in settings with
long term prediction effects (e.g., switching cost or memory).

Theorem 6. Let x* be an arbitrary point in X. For all C > 0, Algorithm 5 guarantees

C+|u—az"| <\/410g <1+ |u—0x*|> +2>

forallu € X and T € N,. Moreover, if X has a finite diameter D, then on any time interval
[T : T>] C Ny, the same algorithm guarantees

T>—1

S fee - 2] < 220/T5 — T [2D +C+2DVlog(l + DC*l)} .

t=T\

Regret) (u) < \/(4\G + 2G2)T

)
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Algorithm 5 1D constrained OLO with switching costs.

Require: A hyperparameter C' > 0, a closed and convex domain X C R, and an unconstrained
algorithm A (Algorithm 1 induced by Vj,g-11o and the hyperparameter C). Let * be an
arbitrary point in X.

1: fort=1,2,...do

2:  Query A for its prediction Z;.

3:  Predict z; = Iy (&, + =*) and receive a loss gradient g;.

4:  Define a surrogate loss gradient g; as
= g, i g(Z £ 27) = gy,
gt 0, otherwise,

and send g; to A.
5. end for

Before presenting the proof, let us discuss its technical significance. Typically, the constrained-
to-unconstrained reduction is used as a black box. However, the second part of Theorem 6 relies
on a non-black-box use of this approach — we characterize how this reduction implicitly controls
the unconstrained base algorithm, resulting in the “concentration” of its sufficient statistic S; (i.e.,
S; = O(\/1)), as if losses are stochastic. Such an observation could be of independent interest.

Proof of Theorem 6. The first part of the theorem directly follows from [Cut20, Theorem 2] and the
contraction property of 1D projections. As for the second part, we divide the proof into five steps.

Step 1: the “concentration” of S, Without loss of generality, assume S;_; > 0. Considering the
prediction Z; = VgV, (t, S;—1) of the unconstrained base algorithm, there are two cases.

e Casel: z; < D. Due to convexity,

B (St—1+1)/Vaat u Si—1/V4at
F = VgVu(t,Si—1) = CVat (/ exp(a:Q)d:C> du > C/ exp(xQ)dx.
(Se—1—1)/+/4at 0 0
Similar to the proof of Theorem 1, if we define erfi(z) = foz exp(z?)dx, then S;_; < V/4at -
erfi"'(DC—1). As for the next round, |S;| < S;_1 + |g:| /G < VAat - erfi” (DO + 1.
e Case2: z; > D. Inthis case, since z* € X, we have x; + x* larger than the maximum element

of X, leading to Z; + x* > x;. Due to the definition of the surrogate loss, g, > 0. Therefore,
1St < max{[S;—1],|g:/G|} < max{|S;_1[,1}.

Combining the two cases and their analogous arguments for S;_; < 0, we can see that for all ¢,
|S¢| < max {V4at - erfi"'(DC™') + 1,[S;_1|, 1}. By induction, we obtain for all ,

S| < Viat -erfi'(DC™Y) + 1.

Step 2: bounding the switching cost using S;  Still, assume S;_; > 0 without loss of generality.
From Lemma 2.2,

|$t - 35t+1|
vsVa(t, Si_1+ 1) — vsVa(t, Si_1— 1)

(St—1+2)/V4at u Si—1/V4at w
CvVat / (/ exp(xQ)da:> du —/ (/ exp(xQ)d:c) du
St_l/\/4o¢t 0 (St_172)/\/4at 0

IN

2 (St—1+2)/V4iat ) 2 (St—1—2)/V4at )
< Cvat 7/ exp(x®)dx — / exp(z?)dx
< OV it ), p(z”) it Jo p(z”)
(St—14+2)/Vaat el g 92
(St—1—2)/V4at vat 4at
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Step 3: plug in the concentration of S; Next, we use the upper bound on S;_; to show that
|2t — 41| = O(Ct=/2 exp[(erfi™' (DC~1))?]). To this end, we discuss two cases regarding how
the “concentration” bound (i.e., O(\/f)) compares to the trivial bound (i.e., S; < t).

e Case 1: V4ot - erﬁ_l(DC*I) > t. Inthis case, note that S;_; + 1 < tand o > 2,

o — a2 ep (Bt 2T) 20 (S o (482 4
= Vot P 4ot = Vot P Jat p ol

2,/eC S2
< .
- Vot oXp ( 4ot

Since V4at - erfi" ' (DC~1) > t, we have t < 4a(erfi”*(DC~'))?2. Therefore,

2
exp <i;t1> < exp <4ta) < exp [(erﬁ_l(DC’*l))Q} ,

2\/60 1 -1 2

Ty — < ex [ erfi” " (DC } .

|z t41] ot p ( ( ))

e Case 2: V4ot - erﬁfl(DC_l) < t. Plugging the O(+/t) bound for S;_; into |z; — 2411/,

2C 4a(t — 1) -eri" Y (DC1) + 3)?
|£L’t — $t+1| S \/(Eexp <( ( ) ol ( ) ) )
2C 1 12 6t +9
< Jat exp [(erﬁ (DC™1) } exp < Tt )
2¢2C 1 102
S ﬁe){p [(erﬁ (DC )) :| .

Combining the above, we have

2¢2C

Vat

Step 4: upper-bound exp|(erfi"*(z))?]. Let us consider a related function J erfi(u)du. Using
integration by parts,

|2y — x4 41] <

exp [(erﬁfl(DC_l))ﬂ .

/Oz erfi(u)du = u - erfi(u)

T T
- / uexp(u?)du
u=0 0

1 1
=z -erfi(z) — 3 exp(z?) + 3
Plugging in 2 = erfi” ' (DC~1), we have
9 erfiT’(DC™1)
exp [(erﬁ—l(Dcfl)) } —92DC erfiT (DO +1 — 2/ erfi(u)du
0

<2DC~ ! erfit{(DCTY) + 1.
Then, as we did in Theorem 1, we plug in erfi'(z) < 1 + /log(1 + ) and obtain

0 — 2| < %{w 14+ Vit + D0 1] + 0}

Step 5: final bits. Note that

T2—1 1 Ty—1 1 \/ \/
7§/ 7d.’£§2 T2—1—2 T1—1§2 T2_T1
t;l Vit~ Ve
Combining it with our bound on |x; — +41| completes the proof. O
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B.2 Higher dimensional domain

Now we present generalizations of our 1D algorithm to higher dimensional domains. We will
primarily consider switching costs measured by the L; norm. This serves as a nice bridge towards
our LEA approach and financial applications. Extensions to other norms, e.g., Lo norm, is sketched
at the end.

Concretely, let the domain X = R4, Jtl|lco< G, and the switching costs are measured by the L,
norm. We run Algorithm 1 on each coordinate separately [SM12], and scale the hyperparameter C'
by 1/d. The pseudo-code is presented as Algorithm 6.

Algorithm 6 d-dimensional OLO with L; norm switching costs.

Require: A hyperparameter C' > 0 and Algorithm 1.
1: For each dimension ¢ € [1 : d], initialize a copy of Algorithm 1 as A;. It uses the hyperparameter
C/d and our potential V,,, with = 4\G~! + 2.

2: fort=1,2,...do

3:  For all 4, query .A; and assign its prediction to z; ;. Define a vector as x; = [ 1,...,%1.4] €
RA.

4:  Predict z; and receive a loss gradient g; = [g¢.1, . . ., Gt.4]-

5:  Forall 4, send g; ; to A; as a new surrogate loss gradient.

6: end for

Theorem 7. For all C > 0, Algorithm 6 guarantees (o« = 4\G ™! + 2)

T T—-1

d
> gz —u) + Az — x|y < GVaT |C+ ul, <\/410g <1+ Hu%o >+2> ’
t=1 t=1

forallu € R*and T € N,.

Proof of Theorem 7. We simply combine the regret on each coordinate:

T T-1
> lgnm—u) A o =zl
t=1

t=1

d T T-—1
= Z [Z Gti(Tei — wi) + A Z |Tt,i — Tt
i=1 Lt=1 t=1
e u;| d
< 4 2G%)T — ; 41 1 ! 2
< VDG d+|uz|<¢ og( v 1 )+>
3 l[ullo @
< VEXNGH2G)T |C + lull; | 4/4log {1+ e +2]1. O

As for Lo norm switching costs, we can follow the polar decomposition technique from [ZCP22a,
Section 2.2], which uses our 1D unconstrained OLO algorithm as the base algorithm. The only
required modification is that the base algorithm should account for an extra regularization term.
Concretely, instead of bounding the augmented regret (2), we should bound

T T-1 - T
th(l”t —u)+A Z |zt — 2| + —2 Z |4,
t=1 t=1 U=

for any given weight .

To this end, we can consider the Online Convex Optimization problem with switching costs, where
the loss functions are defined by I;(x) = g;x+~t~'/? |x|. Such a loss function is Lipschitz, therefore
we can use the OCO-OLO reduction, and run our Algorithm 1 on its linearized surrogate. Details are
omitted.
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C Details on LEA

In this section we present techniques that extend our 1D OLO algorithm to LEA with switching costs.
We show that with a streamlined analysis, the general Banach version of the constrained domain
reduction [CO18] can already convert 1D OLO algorithms to LEA, thus appears to be more general
than the specialized techniques [LS15, OP16]. Our approach is presented as Algorithm 7.

Algorithm 7 Converting OLO to LEA via the constrained domain reduction.

Require: A prior 7 = [my, ..., 74 in the relative interior of A(d), and Algorithm 5.
1: For each dimension i € [1 : d], initialize a copy of Algorithm 5 as A;. We set A = 4\ and

G = 2@ as the switching cost weight and the Lipschitz constant considered by A;. Moreover,
A; uses the domain X = R, the offset * = 7;, the hyperparameter 7;, and our potential V,,
where o = ANG~ 1 + 2.
2: fort=1,2,...do
3:  For all 4, query A; and assign its prediction to w; ;. Define the weight vector as w; =
[wt’h ey wt’d] € Ri
4:  Compute the LEA prediction z; = [z 1, . .., 24 4] from

wyi + g max{0,1 — [lwy, }

€T+ ; =
" max{|we[|, , 1}

bl

Predict z; and receive a loss vector g; € [-G, G]%.
6:  For all 4, compute

Gti — ||gtHooa if ||wt||1 <1
Zti = § Gtis if ||wt||1 =1,
Gt + ||gtHooa if [lwell; > 1,

and return z; ; to A; as a new surrogate loss.
7: end for

C.1 An auxiliary lemma

Before presenting the performance guarantee of Algorithm 7, we first prove an auxiliary lemma.
Lemma C.1. Forall z > 0,

|z —1|log(l + |z —1]|) <2(1 — z + zlogx).

Proof of Lemma C.1. Define LHS — RHS as h(z). Clearly, h(1) = 0. When 2 > 1,

B'(z)=1—logax — "

It equals 0 when x = 1, and h”(z) = (1 — x)/2? which is negative for all z > 1. Therefore,
h(z) <0forall x > 1.

As for the case of x < 1,

1
W (x) =—1log(2 —x) — 2733 —2log z,

_:1:2 —xr+2
(x —2)%x
therefore h(z) < Oforall 0 < z < 1. O

h'(z) = <0,

C.2 Analysis of Algorithm 7

Next, we present our result on LEA with switching cost.
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Theorem 2. For LEA with switching cost, given any prior T in the relative interior of A(d), Algo-
rithm 7 from Appendix C.2 guarantees

T-1

D gesze =) + A Y e = weally = VIV (ullr) - KL(ullm) +1] -0 (VG +G)T) ,

t=1

forallu € A(d) and T € Ny.

Proof of Theorem 2. We divide the proof into three steps.

Step 1 The first step is to show that (¢) for all u € A(d), (g1, 2t —u) < (z,w; — u); and

@) ||lze — ze11ll; < O(JJwy — wiya|l;). In this way, we can translate the LEA problem to a d-
dimensional OLO problem with the loss vector z;, despite not achieving the root KL bound yet.

< land |Jw|; > 1 (the case of |jwy||; =1
trivially holds). If [|w, ||, < 1, we have 2, = w; +d~ (1 — |[w,||,) and z = g — [|gel

(9t o0 — u) = (ge, wp —u) + (1 — [Jwl]y) <th 1/d)

(26, we = u) = (g, wi — w) + (1= [lwelly) (|92l

therefore (g;, x; — u) < (z¢, wy — u). As for the case of ||w||; > 1, similarly, z; = w;/||we|;, 2¢ =

g§+llgtllw (g6, 2 — u) = (g, wi/||welly — w), and (z¢, wr — u) = (g, we — w) +[|gell o (well; —
1).
(gt 20 —w) = (ze,wr = w) = = (g6, 20) + [|92]loo) (Jwelly = 1) <0.

Now consider the goal (i4). To avoid cluttered notations, define a; = w; + d~! max{0,1 — |Jw||, }
and A; = max{|w|, ,1}. Note that A; = ||a¢||;.

loe = @il = || 5 - 3
t t+11l1 At At+1
_ ‘ (ar — apg1)Avrr + a1 (A1 — Ay)
AAia :
1 1
= A, lar — aeqall, + E(At+1 —Ay) < 2|lar — agqalf; -
llas — at+1H1 = ||wt +d7! max{0, 1 — ||wt||1} — W41 — dt max{0, 1 — ||wt+1||1}||1

< lwg = weia |y + [max{0,1 — [lw ]|, } — max{0, 1 — [[wii1]]; }]
< we —wega ||y + lwelly = lwegall | < 2[|we — wiga ] -

— 21y < 4fJwe — wipalf;-

Step 2 The second step is to add up the regret bound for each coordinates. Consider the ¢-th
coordinate. Note that |2z, ;| < 2G. Using Theorem 6, for all u;4 € Ry,

T T-1
E zti(We i — urg) + A E |we i — Wit
=1 =1

IN

(4NG +2G2)T

T + |U1d —7Ti| <\/410g (1 + |u1d_ﬂ_l|> +2>
ue

+ \uld —71',‘| (\/410g <1+ |U1d_ﬂ-z> +2>
s
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Then, by summing up all the coordinates, for all u € A(d),

T T-1
Z (ge, w0 —u) + A Z e = zegally
t=1 t=1

T-1

B

(2w —w) + 4N [lwy — wisa [ly
t=1

t

l
—

Il
,M&

T !
lz zei(Wei —ug) + A Z |we,; — wt+1,i]
t=1 t=1

i=1

d
< VB2AG +8CAT |1+ 2fu— 7|, +2 Jui — m| | log <1+ |“;7T>]
i=1 i
- s — i)
< V(32XG +8GAT |1+ 2||u—7||; +24/]|u— 7|, Z |u; — ;| log (1 + H)
ue
=1

(Cauchy-Schwarz)
Observe that since u and 7 both belong to A(d), ||u — 7||; < 2. If we define a function f as
fi= o — 1]log(1 + |z — 1)),

then using the standard definition of f-divergence

d
Dytullm) =3 msf ().
i=1 ¢

we have
T—1

i (gt,xe —u) + A Z |z — zeqa|l; = [\/TV(UHT{') - Dy (ul|m) + 1} -0 ( (AG + GQ)T) .

t=1 t=1

Step 3 The last step is to upper bound D¢ (u||m) by KL(u||7). To this end, notice that KL (u||7) =
Dgy(u||m), where
g(x) =1—2x+ zlogz.

By Lemma C.1, f(z) < 2g(z) for all z > 0, therefore Dy (u||7) < 2Dy (u||7) = 2KL(u||7). O

C.3 Discussion on Algorithm 7

Here are some discussions to conclude our LEA analysis. First, the surrogate loss z; defined in Line 6
follows exactly the definition in [CO18, Algorithm 3]. We adopt this choice just to show the power
of this general reduction technique. However, one could use other choices of z; and obtain the same
guarantee, although the empirical performance could be different. For example, one can use

gt,i — max; Gt,is if ||wt||1 < 17

Zti = § Gt,i» if flwell, =1,
gt,i — min’i Gt,is if ||wt||1 > 17

and clearly, the exact same proof still holds. Another possible choice is
Gti — D Gris i [lwe]ly <1,

Zti =  Gt,is if ||wt||1 =1,

Gti —gesxe), i [Jwgl[y > 1.

This is more analogous to the surrogate losses in existing specialized approaches [LS15, OP16].

Also, to justify the improvement of v/ TV - KL over v/ KL, here is an example. For all d > 3, define

p,q € A(d) from
1 1

= ed T dlogd’
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and

1—p 1—q )
= ;= , 2 :d.
O
Then,
1-p1 1—q d—1

1
TV@M)Q{mlmI%Wlwd_1 d—1

}|p1Q1|d\/m,

1—p o 1-—p
d—1 ®1_¢

1 d—1
= +/logd 1——1 1—- —
©8 +’< \/bgd> Og( (Lﬂogd—1>
> y/logd + log (1 ) = +/logd — o(1).

KMMM%=mk%%4%d—U~

d
"~ dylogd — 1

Since we also have 1
—2L < Vi,

I—aq

we can combine the above and obtain TV (p||q) - KL(p||¢) < 1 and KL(p||q) > v/logd — o(1). If

our comparator u and prior 7 take the value of p and q respectively, then even without switching

costs, Theorem 2 saves a (log d)l/ 4 factor from the existing comparator adaptive bounds.

KL(pllg) = v/logd + (1 — p1) log

D Application to portfolio selection

To complement our theoretical results, we present applications to a portfolio selection problem with
transaction costs.” Online portfolio selection has been studied by multiple communities, resulting
in a large amount of literature (see [LH14, Doc16] for general expositions). Here we focus on an
unconstrained setting, allowing both short selling (i.e., holding negative amount of assets) and margin
trading (i.e., borrowing money to buy assets). This is related, but different from classical settings in
the literature, as discussed in Appendix D.2.

D.1 Problem setting

We consider a market with d assets and discrete trading period ¢t € N . In the ¢-th round, an algorithm
chooses a portfolio vector x; = [z11,..., 24| € RY, where 24, 1s the number of shares of the
i-th asset that the algorithm suggests to hold. Compared to the previous round, we need to buy
Tii— Ti—1,4 shares® (or sell, if negative), which requires paying a A |; ; — x4_1 ;| transaction cost.
Then, the market reveals a number g, ; € [—G, G], which represents the price change per share (of
the i-th asset) in this round. This effectively increases the value of our portfolio by (g;, x¢).

The considered performance metric is the increased amount of wealth on any time horizon [1 : T| C
N, and such wealth includes the total value of our portfolio plus cash. Our goal is to show that the
performance of our algorithm is never much worse than that of any unconstrained Buy-and-Hold
(BAH) strategy, which picks a portfolio vector v € R? at the beginning and holds that amount
throughout the considered time horizon. That is, we aim to upper bound Ethl (—gt, ot —u) +

A ZtT;ll |24 — 441, forallu € RYand T' € N This is exactly the setting of our high dimensional
OLO problem (Appendix B.2) with flipped gradients, therefore if we use our high dimensional OLO
algorithm (Algorithm 6), then the same theoretical result (Theorem 7) carries over.

D.2 Comparison to the rebalancing setting

The online portfolio selection problem has been studied both empirically and theoretically. Most theo-
retical works with adversarial guarantees consider the rebalancing setting, pioneered by Cover
[CovI1] and followed by a series of works [CO96, HSSW98, KV02, OLL17, LWZ18, MR22,
ZAK?22]. Differences to our setting are discussed as follows.

"Code is available at https://github. com/zhiyuzz/NeurIPS2022- Adaptive-Switching.
8W.l.o.g., assume rg = x1.
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1. First, the rebalancing setting forbids short selling (i.e., z; ; < 0) and margin trading (i.e., borrowing
cash to buy an asset), therefore the decision is modeled as a distribution p; € A(d) — the algorithm
redistributes its wealth according to this distribution in each round. In contrast, our setting allows
both?, so we call it “unconstrained”. Similar to the loss-regret trade-off in OLO, allowing margin
trading introduces a risk-return trade-off in some sense: based on its own risk tolerance, one can
trade off the best-case return with the worst-case loss on a Pareto-optimal frontier.

2. Related to the above, existing works consider Constant Rebalanced Portfolios (CRP, i.e., p =
p* € A(d)) as the benchmark class, and the goal is to lower bound the ratio of the growth rate of
the considered algorithm to the growth rate of the benchmark. Here we consider unconstrained
Buy-and-Hold (BAH) strategies as benchmarks, and we aim at an additive bound on the wealth.
There have been discussions on the correct choice of benchmarks, but as suggested by a series of
works [Cov91l, HSSW98, BK99], a major weakness of CRPs is the incorporation of transaction
costs: such benchmark strategies lose money due to constant rebalancing in every round, which
makes the performance guarantee vacuous in certain cases. In contrast, BAH benchmarks do not
suffer from this issue.

3. Finally, transaction costs can take many forms. Here we consider the special case that charges a
fixed price per share. This is different from the proportional transaction cost in some prior works
[BK99, Gof14], which is proportional to the rotal value of the transaction.

We also note that our Algorithm 7 for LEA with switching cost is essentially a comparator adaptive
improvement of the Exponentiated Gradient (EG) algorithm adopted in [HSSWOS]. Therefore, it can
be applied to the rebalancing setting, following the same argument there.

D.3 Synthetic market

In this subsection, we present numerical results on synthetic markets.

Two algorithms are tested, our high dimensional OLO algorithm (Algorithm 6, i.e., “ours”), and
the baseline from [ZCP22a] (its 1D version is surveyed as Algorithm 2 in Appendix A.1, and we
extend it to high dimensions using the same coordinate-wise construction). Both algorithms require
a confidence parameter C' — they are both set to 1 following the practice of comparator adaptive
algorithms [OP16, CLO22, ZCP22a]. A detailed justification is provided later.

As for the synthetic market, we let G = 1, A = 0.1, and the market contains five assets with different
return characteristics. Each g, ; is the summation of a i.i.d. noise, a periodic fluctuation and a constant
trend. Specifically, we consider three different market return models. The first is

gt1 = 0.4 - Uniform[—1, 1] 4+ 0.4sin[(¢/500) - 7] + 0.2,
gt,2 = 0.5 - Uniform[—1, 1] 4+ 0.3 sin[(¢/500 + 1/2) - 7| + 0.2,
gt,3 = 0.6 - Uniform[—1, 1] 4 0.2sin[(¢/500 + 1) - 7] 4 0.2,
gt.4 = 0.7 - Uniform[—1, 1] 4+ 0.1sin[(¢/500 + 3/2) - 7| + 0.2,
gt5 = 0.8 - Uniform[—1,1] + 0.2.
The second model is
gt1 = 0.2 Uniform[—1, 1] 4+ 0.4 sin[(¢/500) - 7] + 0.4,
gt.2 = 0.3 - Uniform[—1, 1] + 0.3sin[(¢/500 + 1/2) - 7] 4+ 0.4,
gt,;3 = 0.4 - Uniform[—1, 1] + 0.2 sin[(£/500 + 1) - 7] 4- 0.4,
gt,a = 0.5 - Uniform[—1, 1] + 0.1sin[(¢/500 + 3/2) - 7] + 0.4,
gt5 = 0.55 - Uniform[—1, 1] 4 0.45.
The third model is the same as the second one, except we replace g, 5 by
gt5 = 0.5 - Uniform[—1,1] + 0.5.

For each market return model, we test both algorithms in 50 random trials, and the increased wealth
S {grmr) = AL |2 — 2-41]|, (mean + std) is plotted in Figure 2, higher is better. In

T=1
all three setting, our algorithm beats the baseline by a considerable margin, due to being a lot less

conservative.

° Although we only consider the ideal case with zero interest rate on loans.
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Figure 2: Synthetic market experiment with different market models. From left to right: the first, the
second and the third market model.

Discussion on C' We remark that setting C' = 1 for both algorithms may create confusion. Let us
give it a detailed justification.

As surveyed in the Introduction, comparator adaptive algorithms are called “parameter-free” due to
historical reasons. As the name suggests, one may question the existence of any hyperparameter
in such “parameter-free” algorithms. The classical rationale is the following: comparator adaptive
regret bounds depend on the hyperparameter C' logarithmically, whereas minimax regret bounds
depend on the learning rate (and its inverse) linearly. In this regard, comparator adaptive algorithms
are provably less sensitive to the correct setup, therefore as a rule of thumb, most practices [OP16,
CLO22, ZCP22a] simply use C' = 1 without requiring any domain knowledge. Such a default
setup removes hyperparameter tuning, which is the most attractive feature of these algorithms in
practice. Figure 2 shows the advantage of our algorithm when both algorithms are in this default,
parameter-free implementation.

Nonetheless, for specific tasks like portfolio selection, tuning C' can affect the actual performance
one cares about (although violating the main purpose of comparator adaptivity). Intuitively, fixing
the market, an aggressive trader with a worse strategy could make more profit than a conservative
trader with a better strategy. Reflected in our experiment, since the market model does not depend on
the invested amount, the baseline with a 5 times larger C' simply obtains a 5 times larger increased
wealth and beats our algorithm (at certain t), cf. Figure 3 (Left). Of course, one can also tune our
algorithm with a correspondingly scaled C' and beat the baseline again, cf. Figure 3 (Right), just like
when both algorithms are in their parameter-free implementation.

—— Ours,C=1,A=0.1 —— Ours,C=5,A=0.1
Baseline, C=5,A=0.1 600 Baseline, C=5,A=0.1
200
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Figure 3: Synthetic market experiment with tuned C'; not a parameter-free implementation. Left:
only tuning the baseline. Right: tuning both our algorithm and the baseline.

Therefore, if tuning C is allowed, then comparing our algorithm to the baseline amounts to comparing
two algorithm classes both parameterized by C. A skeptical reader may wonder if the superior
performance of our algorithm in the parameter-free setting is due to the confidence encoding rather
than a better algorithm design. That is, is it possible that a baseline with a larger C' can consistently
outperform our algorithm with C' = 1? We provide evidence against this hypothesis, by increasing A
while keeping C' = 1 for our algorithm and C' = 5 for the baseline; results are plotted in Figure 4.
It shows that even when the baseline is given an advantage (C' = 5), our algorithm is still better at
handling transaction costs due to an improved design. This is aligned with the superiority of our
theoretical results.
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Figure 4: Synthetic market experiment with increasing A. Left: A = 0.1. Middle: A = 0.5. Right:
A = 1. The baseline is given an advantage (C' = 5), while our algorithm is in its default parameter-
free implementation (C = 1). It shows our algorithm indeed handles transaction costs better.

D.4 Historical stock data

Finally, we present some preliminary numerical results on historical US stock data'®. Eight stocks
(Table 1) are considered on a time period of 5 years (1/1/2013 to 1/1/2018). Our algorithm trades
once per day after the market closes, based on the closing price. We take the difference between the
closing price on the (¢ 4 1)-th day and the closing price on the ¢-th day, and define it as the market
vector ¢g;. The largest single day price change for any stock is less than $15, therefore G is set in
a posterior manner to 15. We consider a hypothetical broker that charges $0.1 per share, therefore
define A = 0.1.

Table 1: List of considered stocks

Company Symbol
Apple Inc. AAPL
Berkshire Hathaway Inc. Class B BRK.B
Meta Platforms Inc. FB
Johnson & Johnson INJ
JPMorgan Chase & Co. JPM
Microsoft Corporation MSFT
Pfizer Inc. PFE
Exxon Mobil Corporation XOM

Same as the synthetic market experiment, we test our algorithm against the baseline from [ZCP22a].
Our algorithm is in its default parameter-free implementation (C' = 1). However, setting C' = 1 also
for the baseline is too conservative, which means the baseline hardly makes any investment, making
the comparison less interesting. Therefore we set C' = 10 for the baseline, thus giving it an advantage
at the beginning. In this way, the increased wealth of the two algorithms is roughly comparable.

We plot the results in Figure 5. Specifically, Figure 5 (Left) shows the increased wealth (in USD)
over the considered time period. Figure 5 (Right) shows the cumulative amount of investment (in
USD), which is the total net amount of cash the investor uses to buy stocks (i.e., increases when
buying, and decreases when selling), plus the transaction costs paid to the broker. Before analyzing
this result, we note that such a “cumulative investment” only makes sense in our setting, due to a
fundamentally different mechanism compared to the rebalancing approach [Cov91]: in the latter, the
investor is self-financed, i.e., it is given a certain budget at the beginning and never adds more money
from external sources after that. In contrast, the investor in our setting can add more money at any
time it wishes.

From the plot we can see that the baseline is more aggressive at the beginning, due to a much larger C'.
Therefore, it slightly makes more profit during 2013-2014. When the market oscillates and declines
in 2015 and 2016, the two algorithms perform roughly the same, while the baseline has a lower risk
due to holding a smaller portfolio at the time. However, the major difference starts after mid-2016,
when the market grows rapidly. Our algorithm is able to identify this trend and quickly increase

10US stock price data is publicly available. We retrieved the data from Yahoo Finance website. https:
//finance.yahoo.com/
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Figure 5: Experiment on historical US stock data. Left: the increased wealth of the two algorithms.
Right: total amount of investment since the start of the experiment (1/1/2013), including the transac-
tion costs paid to the broker.

the amount of investment. This brings a lot more profit than the baseline, which hardly recovers its
confidence from the declining market in the previous year. Such an advantage of our algorithm is
partly due to the better control of switching costs, and partly due to a better risk-return trade-off
discussed in Appendix A.4.

Our experiment also shows a limitation of our unconstrained investment setting. Throughout this
five year period, our algorithm invests a total amount of ~$6.5 (including the transaction costs),
and makes a total profit of ~$3. However, in practice, one typically invests a lot more than this
(let’s say, $10,000), and expect a similar rate of return. Our setting does not model such a budget
explicitly; instead, it relies on the comparator adaptivity of the trading algorithms to increase the
invested amount. Such a process can be slow, especially since we only consider trading once per day.
Therefore, to use our algorithm in real trading situations, one has to tune the confidence parameter C
to implicitly take his budget and tolerable risk into account. For example, using our algorithm with
C = 1000 would result in investing $6,500 throughout the five year period, and make a total profit of
$3,000. The connection of this approach to rebalancing could be an interesting direction for future
works.

E Conclusion, limitation and future work

The present work investigates the design of comparator adaptive algorithms in the presence of
switching costs. By carefully trading off these two opposite considerations, we propose a simple
algorithm for OLO with switching costs, improving the suboptimal bound from our prior work
[ZCP22a] to the optimal rate. Notably, the key idea of this algorithm is not guessed, but derived from
a continuous-time analysis. Extensions lead to new results for comparator adaptive LEA.

Limitation and future work Our result requires a time-invariant A, which could be generalized
in future works. Different from [ZCP22a], we did not discuss applications to control theory, which
is interesting on its own. Also, one may combine our portfolio selection approach with adversarial
rebalancing and stochastic modeling, in order to further improve its practical performance.

More generally, through this paper we aim to demonstrate a key strength of the continuous-time PDE
analysis — it makes the generalization of algorithmic structures much easier. Such an observation
could open up exciting possibilities:

* Does this approach apply to other variants of the online learning problem?

» Can we use it to generalize other forms of adaptivity?

» Continuous-time potentials have been extensively studied under the framework of potential theory
[Doo84]. Can we borrow techniques from there to further improve the workflow of algorithm
design?
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