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Abstract

Offline policy optimization could have a large im-

pact on many real-world decision-making prob-

lems, as online learning may be infeasible in many

applications. Importance sampling and its variants

are a commonly used type of estimator in offline

policy evaluation, and such estimators typically

do not require assumptions on the properties and

representational capabilities of value function or

decision process model function classes. In this

paper, we identify an important overfitting phe-

nomenon in optimizing the importance weighted

return, in which it may be possible for the learned

policy to essentially avoid making aligned deci-

sions for part of the initial state space. We pro-

pose an algorithm to avoid this overfitting through

a new per-state-neighborhood normalization con-

straint, and provide a theoretical justification of

the proposed algorithm. We also show the limita-

tions of previous attempts to this approach. We test

our algorithm in a healthcare-inspired simulator,

a logged dataset collected from real hospitals and

continuous control tasks. These experiments show

the proposed method yields less overfitting and bet-

ter test performance compared to state-of-the-art

batch reinforcement learning algorithms.

1 INTRODUCTION

There has been a recent surge in interest, from both the

theoretical and algorithmic perspective, in offline/batch Re-

inforcement Learning (RL). This area could potentially

bring insights from RL to the growing number of appli-

cation settings which produce such datasets (like health-

care [Gottesman et al., 2019, Nie et al., 2021], customer

marketing [Bottou et al., 2013, Thomas et al., 2017] or home

*This work is mostly done when the author was at Stanford.

automation [Emmons et al., 2022]), provide ways to lever-

age vast amounts of observational training data encoded in

videos [Chang et al., 2020, Schmeckpeper et al., 2021], or

advance our core understanding of the data characteristics

needed to learn near optimal policies.

Many of the settings that might benefit most from offline RL,

like healthcare, education or autonomous driving, may not

be Markov in the available observed features, and also may

not include explicit known representations of the behavior

decision policy. This has inspired work on offline policy

evaluation estimation methods that make minimal assump-

tions on the data generation process, such as importance

sampling (IS) and doubly robust estimation methods [Pre-

cup et al., 2000, Jiang and Li, 2016a, Thomas and Brunskill,

2016] and offline policy learning methods that leverage

such estimators [Huang and Jiang, 2020, Cheng et al., 2020,

Thomas et al., 2019].

Unfortunately, we show that offline policy selection or learn-

ing algorithms that rely on such offline estimation methods

that leverage IS can suffer from a key flaw. In brief, the

structure of the policy estimator is such that high estimated

performance can be achieved both by policies that have high

average performance, and by policies that systematically

avoid taking actions taken in the dataset for initial states

that lead to low rewards. This can substantially inflate the

estimated performance of a potential decision policy. As

an intuition, consider a setting where some patients arrive

much sicker than some healthier patients. In this setting, any

policy for the sicker patients will likely yield slightly worse

outcomes than the average outcomes for healthier patients,

but a policy’s value must be taken in expectation over all pa-

tients, not just the healthy patients. We detail how a number

of methods, including those that have been proposed before

for other reasons, do not solve this issue, including: using a

validation set, shifting the reward baseline, and leveraging

thresholds on an estimated behavior policy.

Fortunately, we show that a relatively simple method for

constraining the policy class considered with off policy
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learning can greatly ameliorate the problem of propensity

overfitting. Our approach can be viewed as related to pes-

simistic offline RL in Markov decision processes, which has

relations to the robust MDP literature [Nilim and El Ghaoui,

2005] and has been receiving growing attention (e.g., Liu

et al. [2020], Yu et al. [2020], Kidambi et al. [2020]). One

of the key tenants of pessimistic offline RL is to maintain

precise quantification over the uncertainty over the model

parameters and/or value functions of the Markov decision

process, given the available data. A key challenge is how

to quantify statistical uncertainty when the state space is

extremely large or continuous. This issue is perhaps even

more paramount in offline RL settings when we wish to

leverage IS-based estimators in order to make minimal as-

sumptions over the data generation process. We show here

that constraining the policy class per state only to actions

taken in the data for nearby states, which may be viewed as

a loose analogy to count-based uncertainty, is sufficient to

lower bound the amount of propensity overfitting that can

occur. Our approach still ensures asymptotic consistency of

the estimation of any policy covered by the behavior policy1

while providing significant benefits in the finite regime, by

essentially constraining policies to observed actions. In this

way, our method is related to other methods that revert back

to the behavior policy given minimal data for MDP model or

value function learning [Satija et al., 2021] or in the bandit

setting [Sachdeva et al., 2020, Brandfonbrener et al., 2020].

To our knowledge, our work is the first to explore this for

large, non-Markovian stochastic decision processes using

policy search methods. We show in simulations and in a

real dataset on patient sepsis outcomes that our approach

learns policies with significantly higher expected rewards

than prior methods, and that those estimates are expected to

be reliable, with solid effective samples sizes, a measure of

how much of the behavior data would match the proposed

policy. Our results highlight and remedy a potential relia-

bility barrier for offline RL with minimal data process and

realizability assumptions.

2 OFFLINE POLICY OPTIMIZATION

We study the problem of offline policy optimization in se-

quential decision-making under uncertainty. Let the envi-

ronment be a finite-horizon Contextual Decision Process

(CDP) [Jiang et al., 2017]. A CDP can capture more gen-

eral, non-Markovian settings (also sometimes referred to

as a Non-Markov DP [Kallus and Uehara, 2019b]). A CDP

is defined as a tuple 〈X ,A, H, P,R〉, where X is the con-

text space, A is the action space, and H is the horizon.

P = {Ph}
H
h=1 is the unknown transition model, where

Ph : (X × A)h−1 → ∆(X ) is the distribution over next

context given the history. P1 : ∆(X ) is the initial context

1Coverage is a minimal requirement for all IS methods to be

consistent estimators of a new proposed policy.

distribution. Similarly, R = {Rh}
H
h=1 is the reward model

and Rh : (X ×A)h → ∆([−Rmax, Rmax]).

In this paper, we focus on learning policies that map from

the most recent context to an action distribution, π : X →
∆(A). This is optimal when the domain is Markov and can

often be more interpretable and more feasible to optimize

given finite data in the offline setting. In offline policy op-

timization settings, we have a dataset with n trajectories

collected by a fixed behavior policy µ : X → ∆(A), and

we aim to find a policy π in a policy class Π with the highest

value.

Policy gradient and optimization approaches do not rely

on a Markov assumption on the underlying domain, and

have had some encouraging success in offline RL [Chen

et al., 2019]. Often these methods leverage an importance

sampling (IS) estimator in policy evaluation: v̂IS(π) =

1
n

∑n
i=1

(∑H
h=1 r

(i)
h

)∏H
h=1

(
π(a

(i)
h

|x
(i)
h

)

µ(a
(i)
h

|x
(i)
h

)

)
. The IS estima-

tor is an unbiased and consistent estimate of the value under

the following two assumptions:

Assumption 1 (Overlap). For any π ∈ Π, and any x ∈ X ,

a ∈ A,
π(a|s)
µ(a|s) <∞.

Assumption 2 (No Confounding / Sequential ignorability).

For any policy π ∈ Π and µ, conditioning on the current

context xh, the sampled action ah is independent of the

outcome rh:H and xh+1:H .

IS often suffers from high variance, which has prompted

work into extensions such as doubly robust methods [Jiang

and Li, 2016b, Thomas and Brunskill, 2016] and/or methods

that balance variance and bias. Truncating the weights and

using self-normalization has been shown to be empirically

beneficial both in bandit and RL settings [Swaminathan and

Joachims, 2015b, Futoma et al., 2020]: we refer to this as

Self-Normalized Truncated IS (SNTIS):

v̂SNTIS(π) :=

∑n
i=1

(

∑H
h=1 r

(i)
h

)

min

{∏H
h=1 W

(i)
h ,M

}

∑

n
i=1 min

{∏H
h=1 W

(i)
h ,M

} ,

(1)

where

W
(i)
h :=

π(a
(i)
h |x

(i)
h )

µ(a
(i)
h |x

(i)
h )

(2)

and M is a constant that truncates the weights. For ease of

notation in the rest of this paper, we define:

W
(i)
1:h :=

∏h
h=1 W

(i)
h , W (i) := W

(i)
1:H , W =

∑n
i=1 W

(i),

and r(i) =
∑H

h=1 r
(i)
h .

While this estimate can be used as a direct objective for off

policy learning, it may still have a significant variance which

is important when comparing across policies. Prior work in

contextual bandits [Swaminathan and Joachims, 2015a,b]



included a variance penalization in the objective based on

the empirical Bernstein’s inequality.

Here we provide a simple extension to the multi-step setting

to yield a target objective for offline policy learning:

argmaxπ∈Π v̂SNTIS(π)− λ

√
V̂ar (v̂SNTIS(π)). (3)

3 RELATED WORK

There is increasing interest in multi-armed bandits and of-

fline RL to avoid overly optimistic estimates of policies

computed from finite datasets that can cause suboptimal

policy learning. In this paper, we will show a particular un-

addressed issue with IS methods avoiding initial states that

lead to poor outcomes. In contrast, prior work has shown

how to use self-normalized IS (also known as weighted

IS) to address over maximizing bandit rewards [Swami-

nathan and Joachims, 2015b]. Counterfactual risk minimiza-

tion [Swaminathan and Joachims, 2015a, Joachims et al.,

2018] uses variance regularization based on the empirical

Bernstein’s inequality for bandit problems. However, this

penalization is at the policy level. Both self-normalized IS

(SNIS) and variance penalization do not directly solve the

problem with avoiding contexts with low reward. In Fig-

ure 2c in Appendix A, we show the counterfactual risk min-

imization regularization with or without self-normalization

requires a large dataset to perform well. Recent work [Brand-

fonbrener et al., 2020] discussed a similar overfitting issue

as we describe and compared the performance of offline

policy optimization and model/value-based method on such

issue in the bandit setting. Those authors primarily focus on

the negative result of the policy optimization approach and

the advantage of the model/value-based method, whereas

our approach suggests a method for addressing this issue in

policy optimization and focuses on the RL setting. Dou-

bly robust estimators [Dudík et al., 2011, Jiang and Li,

2016b, Thomas and Brunskill, 2016, Kallus and Uehara,

2019a,b] have multiple benefits but, as long as the learned

Q-function is imperfect, the issue of avoiding low perform-

ing contexts can still remain as the methods may overfit to

the high/positive residual r − Q. Pessimism under uncer-

tainty approaches are promising [Kidambi et al., 2020, Yu

et al., 2020] but have so far only been developed for Markov

settings and are not robust to model class misspecification,

unlike IS-based policy optimization.

Another line of offline batch policy optimization constrains

the policy search space to be close to the behavior policy, or

requires the action taken to have some minimum probability

under the behavior policy [Kumar et al., 2019, Buckman

et al., 2020, Sachdeva et al., 2020, Fujimoto et al., 2019,

Futoma et al., 2020, Liu et al., 2019, 2020]. This work

has focused on algorithms and analysis for the Markov

setting with additional model realizability and/or closure

assumptions that are hard to verify. As we will discuss and

empirically validate later, such constraints on the expected

or observed empirical behavior policy are not yet sufficient,

at least in large state spaces.

Our work can be viewed as following in the recent line of

work on pessimism under uncertaintyLiu et al. [2020], Yu

et al. [2020], Kidambi et al. [2020], Buckman et al. [2020],

but adapted to provide policy search based offline learning

method that does not require the Markov assumption or

model realizability, and achieves strong performance given

a finite dataset.

4 STATE PROPENSITY OVERFITTING

We identify an important potential issue with using IS esti-

mators during offline policy optimization, as we illustrate in

contextual bandits when using the SNIS estimator.

Let vπ(x) = E[r|x, a ∼ π], p̂(x) be the empirical proba-

bility mass/density over the contexts x in the dataset, and

W (x) =
∑

i:x(i)=x
W (i)

W
where W is the importance weight

(Eq. 2). We now decompose the importance weighted off-

policy estimator into three parts.

v̂ = Ep̂[v
π(x)]︸ ︷︷ ︸

empirical v

+
∑

x∈X

(p̂(x)−W (x))vπ(x)

︸ ︷︷ ︸
difference in context weights

(4)

+
∑

x∈X

W (x)

( ∑

x(i)=x

W (i)

W (x)W
r(i) − vπ(x)

)

︸ ︷︷ ︸
weighted IS error in each context

(5)

The first term is a supervised empirical value estimate whose

only error is due to the error in the empirical context distri-

bution sampled in the dataset versus the true context distri-

bution. The second term captures the error caused by the dif-

ference between context distribution introduced by weights

and empirical context distribution in the dataset. The third

term computes the difference between the weighted IS esti-

mate of the value of the policy in a specific context x versus

its true value vπ(x), and then sums this over all contexts.

The second term is of particular interest, because it high-

lights how the IS estimator of a policy may effectively shift

the relative weight on the context space. In the bandit set-

ting (and in the initial starting state distribution for RL),

such shifting should not be allowed: the policy may control

what actions are taken, but cannot change the initial context

distribution. We now show how an algorithm maximizing

the importance weighted off-policy estimate can exploit this

structure and yield overly inflated estimates (Eq. 5).

Example 1. Consider a contextual bandit problem with

|X | contexts and |A| actions in each context. For half the

contexts Sp, the reward is 1 for one action and zero for

others. For the other half of the contexts, Sn, the reward is

-1 for half the actions, and -5 for the rest. The true distri-

bution over contexts is uniform. The optimal policy would



have an expected reward of 0 over the state space. The be-

havior dataset is drawn from a uniform distribution over

contexts and actions. When the sample size |D| < |A|, we

assume there is only one observed positive reward in the

dataset. A policy πo that maximizes Eq. 4-5 will select ac-

tions that are not present in the dataset for all contexts

whose observed actions lead to only zero or negative re-

wards: let Asi = {ai : r(si, ai) ≤ 0} then π(si) = aj
where aj /∈ Asi . This will yield W (x) = 0 on all contexts

except for the contexts with observed positive rewards. The

resulting IS/SNIS estimator of the value of πo is 1, which is

much higher than the optimal value 0. In addition, such a πo

is likely to be worse than the optimal policy for any context

where r(si, ai) = −1, since that is the optimal reward pos-

sible for such states si, and by π selecting an unobserved

action aj in that state (π(si) = aj), the policy π may select

an action with worse true reward, r(si, aj) = −5.

While this issue can arise in contextual bandits [Swami-

nathan and Joachims, 2015b], it is even easier for this

to occur in sequential RL (Examples 2 and 3 in Ap-

pendix A). Intuitively, the issue arises because when es-

timating the value of a new decision policy, it is accept-

able to choose a policy that re-distributes the weights of

actions within an initial context but not that re-distributes

the weights across initial contexts, since it is not a function

of the actions selected. It is well known that in importance

sampling, the expected ratio of the weights should be 1:

Ey∼µ[π(y)/µ(y)] = 1. In contextual policies, we expect

that for each initial context x0, the expected weights should

also be 1: Ea∼µ(a|x0) [π(a|x0)/µ(a|x0)|x0] = 1. However,

optimizing for a standard importance sampling objective

(such as Eq. 5) does not involve constraints that the empirical

expectation of weights given an initial context Ê[W
(i)
h |x

(i)
h ]

(or the weights of n-step given initial context Ê[W (i)|x
(i)
1 ] )

is still close to one.

Such propensity overfitting may seem surprising given that

under mild assumptions, which are satisfied here by As-

sumptions 1 and 2, IS provides an unbiased estimate of a

policy’s value. Our observations do not contradict this fact:

while IS will still provide an unbiased estimate given a pol-

icy, policy optimization can exploit the finite sample error

and lack of data coverage.

One might hope that existing methods are sufficient to ad-

dress this challenge. Here we expand on the discussion in the

related work to suggest why this is not the case. First, split-

ting the data into training and selection sets (e.g., Thomas

et al. [2015b], Komorowski et al. [2018]) is generally in-

sufficient. If some of the performance gains come from

systematically avoiding actions taken in initial states with

low performance, then it is likely that a similar performance

benefit can also arise in the validation set if IS-based estima-

tors are used both in policy selection and later estimation.

We will observe experimentally this is true even when the es-

timator or objective involves a variance penalization (Eq. 3).

For example, this may occur when only a small set of initial

states are avoided, in a way that only mildly impacts the vari-

ance and effective sample size, yet results in substantially

overly optimistic estimates.

It is also insufficient to shift all rewards to be non-negative.

While this voids the benefit of avoiding states if standard

IS is used, popular lower-variance IS off-policy estimators

like weighted IS are equivariant to any constant shift in

rewards. Similarly, doubly robust estimators [Jiang and Li,

2016b, Thomas and Brunskill, 2016] frequently center re-

wards around estimates of the reward/value outcomes.

Is constraining to the behavior policy sufficient? Perhaps

the most compelling idea is whether constraining the policy

class to actions with some minimal probability under the

behavior policy2. First note that constraining to the true be-

havior policy (e.g., Fujimoto et al. [2019], Sachdeva et al.

[2020]) can still cause the propensity overfitting problems

we described when the dataset is insufficient to cover all

non-zero behavior probability actions in all states. In ad-

dition, sometimes the behavior policy is itself unknown.

Estimating the behavior policy from data and using this in

both the IS-based objective and overlap constraints may be

more practical given datasets of limited size and when the

state space is large. Indeed, semi-parametric theory and past

related work in bandits [Narita et al., 2019] and RL [Hanna

et al., 2021] have suggested that even if the behavior pol-

icy is known, leveraging the estimated behavior policy can

yield more accurate offline policy estimates. It is natural to

assume such benefits might also translate to improvements

for constrained policy learning.

While promising in principle, this approach may be challeng-

ing in large state space environments. First, in such settings

the maximum number of observed actions in any particular

state is almost always one. Assuming there is good reasons

to believe that the behavior policy is not actually determin-

istic, it is necessary to use some function approximation

method to estimate the behavior policy [Hanna et al., 2021],

which may be a deep neural network or non-parametric

methods like k-nearest neighbors [Raghu et al., 2018]. Un-

fortunately, as we will demonstrate in our experiments, we

find that such approximators may sometimes be sufficient

to accurately predict the behavior policy for a given state,

but do not seem to be as beneficial when used to constrain

the targeted policy class. Such estimates may overestimate

(or underestimate) the probability of taking alternate actions

in some states, and therefore enable both context avoidance

or be too conservative in their policies. Figure 1 illustrates

that our method can provide quite different constraints on

the policy class than using constraints on the estimated em-

pirical behavior policy, shown for a patient in the MIMIC

2A minimal requirement for consistent estimation of a target

policy using IS is that there is overlap between the behavior policy

and target, which we also assume.





Algorithm 1 Policy Optimization with ELigible Actions

(POELA).

1: Input: D, Πθ, sphere radius δ, IS truncation M , CRM

coefficient λ, learning rate α
2: Output: π̂θ

3: Initialize θ0
4: for t = 0, 1 until convergence do

5:

π̂θt(a|x) :=
1{a ∈ Ah(x;D, δ)}∑

a 1{a ∈ Ah(x;D, δ)}πθt(a|x)
πθt(a|x)

6:

θt+1 ← θt + α∇θ

(
v̂SNTIS(π̂θt)− λ

√
V̂ar (v̂SNTIS(π̂θt))

)

7: end for

the eligible action constraints by re-normalizing the output

probability on Ah(x;D, δ) for x ∈ D. The eligible action

set for each training sample is static and can be stored to

reduce computational cost. In the experiments, we use the

Euclidean distance over nearby states at any time index.

6 ANALYSIS

In this section we formalize the benefit of the eligible action

constraints, and also prove consistency guarantees on the

resulting value estimates used in the objective, Equation 6.

Eligible action constraints were introduced to help alleviate

propensity overfitting, which can be characterized by the ex-

pected empirical sum of propensity weights for a particular

context x being much lower than 1, or even Ê[W|x] = 0.

We now show that any policy that only selects actions in

eligible action sets will ensure that the empirical sum of

weights in any hypersphere of any context can be lower

bounded, as desired. As mentioned before, for very large

state spaces, where only a single action is observed for each

observed state in the dataset, the only way to ensure that

Ê[W|x] = 1 is to reduce the policy to the observed actions.

Intuitively, the guarantee we provide here is reasonable

when local smoothness is present and a soft form of state

aggregation is tenable, ensuring that the empirical expected

sum of weights over nearby states is lower bounded.

To do so, we first introduce an assumption about the target

policy’s smoothness in the context space.

Assumption 3 (L-Lipschitz policy). ∀π ∈ Π, ‖π(a|x) −
π(a|x′)‖ ≤ Ldist(x, x′).

That is, nearby contexts have similar actions [Berkenkamp

et al., 2017, Wang et al., 2019] which ensures that we have

some minimal weight support in a small neighborhood. If

different policies have different smoothness, the Lipschitz

constant can be taken to be the max over the policy set.

Under this assumption and the former assumptions, we can

show the following. Proofs are provided in Appendix B:

Theorem 1. ∀x
(i)
h , B(x

(i)
h , δ) := {x : dist(x, x

(i)
h ) ≤ δ},∑

x
(j)
h

∈B(x
(i)
h

,δ)
W

(j)
h ≥ 1− δL|A|.

Given the likelihood ratio is lower bounded, we can further

show that the self-normalized truncated weights are also

lower bounded in the one-step settings.

Corollary 1. For H = 1,∑
x
(j)
1 ∈B(x

(i)
1 ,δ)

max{W (i),M}
∑

n
i=1 max{W (i),M}

≥ 1−δL|A|
nM

for M > 1.

In the n-step sequential setting, it is necessary to have the

1-step weights be greater than zero in order to have n-step

weights greater than zero.

Proposition 1. For any x, δ, E[W
(i)
1:h|x

(i)
h ∈ B(x, δ)] =

E[W
(i)
1:h−1|x

(i)
h ∈ B(x, δ)]E[W

(i)
h |x

(i)
h ∈ B(x, δ)].

Ê[W
(i)
1:h|x

(i)
h ∈ B(x, δ)] = Ê[W

(i)
1:h−1|x

(i)
h ∈

B(x, δ)]Ê[W
(i)
h |x

(i)
h ∈ B(x, δ)].

The action eligibility local constraints provide a conserva-

tive pessimism-like constraint on the policy class, ensuring

that the policy does not take actions which have not been

tried in nearby states (and therefore for which the potential

outcomes are unknown). As we will see shortly, this will

yield more stable and beneficial performance in our simula-

tions. An additional desirable property is that asymptotically,

POELA relaxes to unconstrained policy learning.

Theorem 2. (Contains all overlapping policies). For a fixed

δ, for any x, Ah(x;D, δ) → {a : µ(a|x) > 0} as n → ∞
with probability 1. Therefore asymptotically the policy class

will contain all π satisfying the overlap assumption.

Theorem 3. Let J(π,D) be the objective 4 in Equation 3,

the truncation threshold M as a function satisfies M →∞
and M/n → 0 as n → ∞, and |Π| < ∞, then vπ̂D,J →
maxπ∈Π vπ in probability.

7 EXPERIMENTS

We now compare POELA with several prior methods

for offline RL. Perhaps the most relevant work in avoid-

ing overfitting when using importance sampling is norm-

POEM [Swaminathan and Joachims, 2015b]. For it to be

suitable for sequential decision settings, we use a neural net-

work policy class and refer to the resulting algorithm as PO-

CRM. A second baseline PO-µ constrains the policy class

to only include policies which take actions with a sufficient

probability under the behavior policy µ(a|s) [Futoma et al.,

4Other consistent estimators J can also be shown to satisfy

this property, such as IS and self-normalized IS.



Algorithms POELA PO-µ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 95.92± 1.68 76.99± 13.80 77.32± 14.55 13.60± 0.15 19.64± 5.71 68.12

v̂SNTIS − vπ −1.28± 1.93 16.07± 13.55 15.71± 14.30 80.54± 1.42 74.48± 6.23 −

MDP Test vπ 89.53± 1.32 69.18± 10.17 63.27± 13.27 82.68± 15.19 99.98± 0.38 68.12

v̂SNTIS − vπ 5.12± 2.01 24.92± 9.71 30.82± 12.59 14.76± 14.89 −2.65± 1.76 −

Table 1: LGG Tumor Growth Inhibition simulator. Test vπ (1000 rollouts in the simulator) and v̂SNTIS − vπ (amount of

overfitting of the learned policy) with v̂SNTIS on the validation set. Average across 5 runs with standard error reported.

2020]. We also compare with recent deep value-based MDP

methods in batch RL: BCQ [Fujimoto et al., 2019] and PQL

[Liu et al., 2020]. For all algorithms, we use a feed-forward

neural network for the relevant policy and/or value function

approximators. We report the test performance of the se-

lected policy either through online Monte-Carlo estimation

if a simulator is available, or using SNTIS estimates on a

held out test set. Full details are provided in Appendix C.

7.1 TUMOR INHIBITION SIMULATOR

The Tumor Growth Inhibition (TGI) simulator [Ribba et al.,

2012] describes low-grade gliomas (LGG) growth kinet-

ics in response to chemotherapy in a horizon of 30 steps

(months), with a non-Markov context and a binary action of

drug dosage [Yauney and Shah, 2018]. The reward is an im-

mediate penalty proportional to the drug concentration, and

a delayed reward of the decrease in mean tumor diameter.

The behavior policy selects from a fixed dosing schedule

of 9 months (the median duration from Peyre et al. [2010])

with 70% probability and else selects actions at random.

In this experiment, the behavior policy can only take val-

ues in {0.15, 0.85}. This means that constraining the policy

class to have a minimal probability under µ(a|s), as in base-

line PO-µ, is only a non-trivial constraint for thresholds

greater than 0.15: this generates a single potential target

policy, which is the deterministic fixed-dosage part of be-

havior policy. We include this as 9-mon (short for 9 month

dosing) in Table 1. The training and validation sets both

have 1000 episodes. We repeat the experiment 5 times with

5 different train and validation sets. Policy values are nor-

malized between 0 (uniform random) and 100 (best policy

from online RL). As shown in Table 1 (Non-MDP rows),

POELA achieves the highest test value as well as smaller

variability compared with the baselines.

Does POELA reduce overfitting? Examining the differ-

ence between v̂SNTIS on the validation set and the online test

value, we observe that most algorithms result in a policy

whose value is a significant overestimate of its true perfor-

mance (cf. Table1, v̂SNTIS− vπ). In contrast, POELA yields

a policy whose value is much more accurately estimated and

performs better. Experiments with final policies selected dur-

ing training based on SNTIS estimates on the validation set

suggest the same conclusion (cf. Table 12 in Appendix D.2).

Performance comparison in a MDP environment. We

also repeat the experiment with an MDP modification of

the simulator, including an immediate Markovian reward

and additional features for a Markovian state space. Note

that we expect BCQ and PQL to do very well: both are

designed to avoid overfitting in offline MDP learning and in

particular PQL uses a pessimism under uncertainty approach

to penalize policies that put weight on state-action pairs

with little support. Although POELA makes no Markov

assumptions, it ponly erforms on average slightly worse than

the two conservative MDP methods but still outperforms

BCQ. POELA also substantially outperforms other policy

classes.

7.2 MIMIC III SEPSIS ICU DATA

Next, we apply our method in a real-world example of learn-

ing policies for sepsis treatment in medical intensive care

units (ICU). We used an extracted cohort [Komorowski

et al., 2018] of patients fulfilling the sepsis-3 criteria from

the MIMIC III data set [Johnson et al., 2016] and obtained

a dataset of 14971 patients, 44 context features, 25 actions

and a 20 step maximum horizon. Full details are in the Ap-

pendix C.2. We hold out 20% of data for validation and 20%
of data for the final test. Treatment logs do not include the

probabilities of clinicians’ actions. Instead, as suggested by

prior work [Raghu et al., 2018], we estimate the probabilities

of the behavior clinicians’ policy by k-NN with k = 100.

To ensure overlap, for all policy optimization algorithms

we allow π(a|s) > 0 only if µ̂(a|s) > 0. Using SNTIS to

evaluate the performance on a test set is appealing because

it makes little assumptions on the underlying domain. But

if only a few test behavior policy trajectories match a test

policy, the resulting value estimate is likely unreliable. We

measure the amount of overlap between the test set and a

desired policy by the effective sample size (ESS) [Owen,

2013]. Only policies with an ESS of at least 200 on the val-

idation set are considered.5Similar to prior work [Thomas

et al., 2015a], in addition to the SNTIS estimator on the test

set, we also report a 95% upper and lower bound from bias-

corrected and accelerated (BCa) bootstrap. The clinician’s

5The variance penalty may not ensure that the ESS is large,

because it is only a soft penalty rather than a constraint that ensures

a minimum ESS.



Method POELA PO-µ̂ PO-CRM BCQ PQL Clinician

Test SNTIS 92.32 (90.87) 90.21 86.89 25.62 27.04 81.10

95% BCa UB 95.83 (92.94) 93.27 89.68 41.93 42.45 82.19

95% BCa LB 90.91 (87.22) 87.19 83.50 7.93 13.43 79.80

Test ESS 437.03 (396.71) 297.84 289.10 206.63 217.54 2995

Table 2: MIMIC III sepsis dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA

without a CRM variance penalty is in parentheses.

Method POELA PO-µ̂ PO-CRM BCQ PQL

Test SNTIS 86.42 (85.26) 84.39 79.71 32.83 34.69

95% BCa UB 91.68 (90.32) 87.74 89.33 53.50 52.15

95% BCa LB 79.71 (77.15) 80.01 65.01 11.87 17.60

Test ESS 310.23 (287.39) 244.97 224.92 207.12 223.03

Table 3: Idem except using behavior policy µ̂ = BC.

Method POELA PO-µ̂ PO-CRM BCQ PQL

Test SNTIS 88.83 (88.31) 87.97 85.33 33.21 41.66

95% BCa UB 93.23 (94.04) 91.17 89.44 63.17 57.99

95% BCa LB 83.43 (80.02) 82.00 78.43 12.23 14.76

Test ESS 379.18 (265.36) 220.74 236.78 203.89 224.33

Table 4: Idem except using behavior policy µ̂ = BCRNN.

column is the test dataset rewards and sample size.

Table 2 shows POELA is the best on all metrics, achiev-

ing the highest evaluation on the test set, the highest upper

and lower bounds, and the highest ESS. We also show that

POELA’s test performance without its variance penalty is

worse than using it but is still higher than the baseline algo-

rithms. In Appendix E.3, we further detail the differences

in the methods under the prism of ESS and performance.

We also demonstrate in Appendix E.4 that POELA takes

actions which more closely match the clinicians’ actions for

patients with initially high logged SOFA scores (measur-

ing organ failure) in the test dataset in comparison to other

baselines, suggesting that propensity overfitting may be oc-

curring more in other methods. Finally, Figure 1 illustrates

different actions constraints considered in this paper, using

a sample trajectory in the test set as an example, where the

25 actions are depicted in 5x5 grids.

7.3 BEHAVIOR POLICY ESTIMATION

We now explore further if constraining policies to be close

to the empirical behavior policy may produce similar bene-

fits, and whether this depends on the function approximator

used. We consider two additional function approximators:

(1) learning a deep neural network representation of the

behavior policy using Behavior Cloning (BC), an imita-

tion learning approach [Pomerleau, 1991] and (2) training

a recurrent neural network behavior representation using

BCRNN, a variant of BC with a RNN as the policy network.

BCRNN can learn temporal dependencies, which can be

helpful. More details are included in Appendix C.3.

Results in the MIMIC III sepsis dataset are shown in Ta-

bles 3 and 4. Results in the Tumor simulator are included in

Tables 10 and 11. Overall, this behavior policy modelling

modification impacts all methods, but POELA still outper-

forms other baselines. We note that BCQ and PQL benefit

from these alternate behavior policy approximators, while

policy-based methods suffer from it in the Non-MDP set-

ting. Comparing the benefits of using BC versus BCRNN,

BCRNN behavior policy approximators in the non-Markov

settings generally helps, as expected. We report additional

results where best policies are selected from checkpoints dur-

ing training based on SNTIS estimates in Tables 13 and 14

(tumor) and in Tables 16 and 17 (sepsis). In this application-

driven selection procedure, POELA still yields higher test

values.

7.4 EXPERIMENT WITH CONTINUOUS STATE

SPACE

In the next experiment, we use the OpenAI Gym environ-

ment [Brockman et al., 2016] CartPole. We also apply our

method to a non-Markov modification of the environment.

More details about this experiment in Appendix F. In these

experiments, only policies with an ESS of at least 30 on

the validation set are considered. Because of space con-

straints, the full results are provided in Appendix F. Ta-

bles 20 to 23 show the results. We observe that in both MDP

and Non-MDP settings, POELA provides improved perfor-

mance over other methods. We also provide some results on

D4RL [Fu et al., 2020] datasets in Appendix G. These re-

sults show that relying on observed data to decide on action

eligibility can be beneficial for learning from the relatively

few number of trajectories collected by the behavior policy

in a continuous state space.

8 DISCUSSION & CONCLUSION

A natural question is whether POELA, in addition to

its overall improved performance, reduces context avoid-

ance/propensity overfitting in practice. In Appendix C.4,

we find that POELA generally puts more weight on ini-



tial states with low observed outcomes than other IS policy

optimization methods, suggesting that it addresses the moti-

vating problem. POELA also does not seem highly sensitive

to the threshold used in the eligible action constraint (cf.

Appendix C.5) although middle ranges are more effective.

An alternative to constrained optimization is a soft penalty

based on the proportion of contexts that are avoided through

selecting alternative actions. This idea was previously pro-

posed for contextual bandits [Sachdeva et al., 2020]. This

is challenging to approximate in the RL setting, where defi-

ciency can occur at any steps in a trajectory: exploring this

is an interesting area for future work. Another interesting

direction is to adapt the solution found in Joachims et al.

[2018] when using a minibatch biases the SNTIS estimate.

To conclude, we identify a new overfitting problem arising

when using IS as part of an offline policy learning objec-

tive. To address this, we constrain the policy class to only

consider logged actions taken by nearby states. This can be

viewed as a pessimism constraint similar to the one used

in MDP offline policy learning, but developed for a non-

Markov, direct policy search setting. Our approach yields

strong performance relative to state-of-the-art approaches in

a tumor growth simulator, a real-world dataset on ICU sepsis

treatment and in classic continuous control with few demon-

strations. POELA may be particularly useful for many ap-

plied settings such as healthcare, education and customer

interactions, which have a short/medium length decision

horizon, but are unlikely to be Markov in the observed

per-step variables. Leveraging constraints on an empirical

behavior policy was not as helpful, but an interesting direc-

tion for future work is whether other ways of learning such

behavior policy might yield additional benefits to our locally

constrained approach.

Acknowledgements

Research reported in this paper was sponsored in part by

NSF grant #2112926 and the DEVCOM Army Research

Laboratory under Cooperative Agreement W911NF-17-2-

0196 (ARL IoBT CRA). The views and conclusions con-

tained in this document are those of the authors and should

not be interpreted as representing the official policies, either

expressed or implied, of the Army Research Laboratory or

the U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation herein.

The first and last authors acknowledge the Simons Institute

for the Theory of Computing as this research is initiated

when the two authors were a visiting student and long-term

participant, respectively, at the Theory of Reinforcement

Learning program of the Simons Institute.

References

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig,

and Andreas Krause. Safe model-based reinforcement

learning with stability guarantees. Advances in neural

information processing systems, 30, 2017.

L. Bottou, J. Peters, et al. Counterfactual reasoning and

learning systems: The example of computational adver-

tising. Journal of Machine Learning Research, 14(11),

2013.

D. Brandfonbrener, W. Whitney, et al. Offline contextual

bandits with overparameterized models. arXiv preprint

arXiv:2006.15368, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas

Schneider, John Schulman, Jie Tang, and Wojciech

Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,

2016.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The

importance of pessimism in fixed-dataset policy optimiza-

tion. arXiv preprint arXiv:2009.06799, 2020.

M. Chang, A. Gupta, and S. Gupta. Semantic visual navi-

gation by watching youtube videos. Advances in Neural

Information Processing Systems, 33:4283–4294, 2020.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain,

Francois Belletti, and Ed H Chi. Top-k off-policy correc-

tion for a reinforce recommender system. In Proceedings

of the Twelfth ACM International Conference on Web

Search and Data Mining, pages 456–464, 2019.

C.-A. Cheng, X. Yan, and B. Boots. Trajectory-wise control

variates for variance reduction in policy gradient methods.

In CoRL, pages 1379–1394. PMLR, 2020.

Thomas Cover and Peter Hart. Nearest neighbor pattern

classification. IEEE transactions on information theory,

13(1):21–27, 1967.

Miroslav Dudík, John Langford, and Lihong Li. Doubly ro-

bust policy evaluation and learning. In Proceedings of the

28th International Conference on International Confer-

ence on Machine Learning, pages 1097–1104. Omnipress,

2011.

S. Emmons, B. Eysenbach, I. Kostrikov, and S. Levine. The

essential elements of offline RL via supervised learning.

In ICLR, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and

Sergey Levine. D4rl: Datasets for deep data-driven rein-

forcement learning, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-

policy deep reinforcement learning without exploration.

In ICML, pages 2052–2062, 2019.



J. Futoma, M. Hughes, and F. Doshi-Velez. Popcorn:

Partially observed prediction constrained reinforcement

learning. arXiv preprint arXiv:2001.04032, 2020.

Omer Gottesman, Fredrik Johansson, Matthieu Ko-

morowski, Aldo Faisal, David Sontag, Finale Doshi-

Velez, and Leo Anthony Celi. Guidelines for reinforce-

ment learning in healthcare. Nat Med, 25(1):16–18, 2019.

J. Hanna, S. Niekum, and P. Stone. Importance sampling in

reinforcement learning with an estimated behavior policy.

Machine Learning, pages 1–51, 2021.

J. Huang and N. Jiang. From importance sampling to dou-

bly robust policy gradient. In ICML, pages 4434–4443.

PMLR, 2020.

E. Ionides. Truncated importance sampling. Journal of

Computational and Graphical Statistics, 17(2):295–311,

2008.

Nan Jiang and Lihong Li. Doubly robust off-policy value

evaluation for reinforcement learning. In Proceedings

of the 33rd International Conference on International

Conference on Machine Learning-Volume 48, pages 652–

661, 2016a.

Nan Jiang and Lihong Li. Doubly robust off-policy value

evaluation for reinforcement learning. In Proceedings

of the 33rd International Conference on International

Conference on Machine Learning-Volume 48, pages 652–

661, 2016b.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John

Langford, and Robert E Schapire. Contextual decision

processes with low bellman rank are pac-learnable. In

International Conference on Machine Learning, pages

1704–1713. PMLR, 2017.

T. Joachims, A. Swaminathan, and M. de Rijke. Deep

learning with logged bandit feedback. In ICLR, 2018.

A. Johnson, T. Pollard, et al. Mimic-iii, a freely accessible

critical care database. Scientific data, 3(1):1–9, 2016.

Nathan Kallus and Masatoshi Uehara. Double reinforcement

learning for efficient off-policy evaluation in markov deci-

sion processes. arXiv preprint arXiv:1908.08526, 2019a.

Nathan Kallus and Masatoshi Uehara. Efficiently break-

ing the curse of horizon: Double reinforcement learn-

ing in infinite-horizon processes. arXiv preprint

arXiv:1909.05850, 2019b.

Kidambi, Rajeswaran, Netrapalli, and Joachims. Morel:

Model-based offline reinforcement learning. NeurIPS,

2020.

D. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

M. Komorowski, L. Celi, O. Badawi, A. Gordon, and

A. Faisal. The artificial intelligence clinician learns opti-

mal treatment strategies for sepsis in intensive care. Na-

ture medicine, 24(11):1716–1720, 2018.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker,

and Sergey Levine. Stabilizing off-policy q-learning via

bootstrapping error reduction. In NeurIPS, pages 11761–

11771, 2019.

Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill.

Off-policy policy gradient with stationary distribution

correction. In Amir Globerson and Ricardo Silva, editors,

UAI, volume 115 of Proceedings of Machine Learning

Research, pages 1180–1190. AUAI Press, 2019.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma

Brunskill. Provably good batch reinforcement learning

without great exploration. In Advances in Neural Infor-

mation Processing Systems, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing

atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

Y. Narita, S. Yasui, and K. Yata. Efficient counterfactual

learning from bandit feedback. In AAAI, volume 33,

pages 4634–4641, 2019.

X. Nie, E. Brunskill, and S. Wager. Learning when-to-treat

policies. Journal of the American Statistical Association,

116(533):392–409, 2021.

A. Nilim and L. El Ghaoui. Robust control of markov

decision processes with uncertain transition matrices. Op-

erations Research, 53(5):780–798, 2005.

Art B Owen. Monte Carlo theory, methods and

examples. https://statweb.stanford.edu/

~owen/mc/, 2013.

M. Peyre, S. Cartalat-Carel, et al. Prolonged response

without prolonged chemotherapy: a lesson from pcv

chemotherapy in low-grade gliomas. Neuro-oncology,

12(10):1078–1082, 2010.

D. Pomerleau. Efficient training of artificial neural networks

for autonomous navigation. Neural computation, 3(1):

88–97, 1991.

Doina Precup, Richard S. Sutton, and Satinder P. Singh.

Eligibility traces for off-policy policy evaluation. In Pro-

ceedings of the Seventeenth International Conference

on Machine Learning (ICML 2000), Stanford University,

Stanford, CA, USA, June 29 - July 2, 2000, pages 759–

766, 2000.

A. Raghu, O. Gottesman, et al. Behaviour policy estimation

in off-policy policy evaluation: Calibration matters. arXiv

preprint arXiv:1807.01066, 2018.



B. Ribba, G. Kaloshi, et al. A tumor growth inhibition

model for low-grade glioma treated with chemotherapy

or radiotherapy. Clinical Cancer Research, 18(18):5071–

5080, 2012.

N. Sachdeva, Y. Su, and T. Joachims. Off-policy bandits

with deficient support. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Dis-

covery & Data Mining, pages 965–975, 2020.

H. Satija, P. Thomas, et al. Multi-objective SPIBB: Seldo-

nian offline policy improvement with safety constraints

in finite MDPs. In A. Beygelzimer, Y. Dauphin, P. Liang,

and J. Wortman Vaughan, editors, Advances in Neural

Information Processing Systems, 2021.

K. Schmeckpeper, O. Rybkin, K. Daniilidis, S. Levine, and

C. Finn. Reinforcement learning with videos: Combin-

ing offline observations with interaction. In J. Kober,

F. Ramos, and C. Tomlin, editors, CoRL, volume 155

of Proceedings of Machine Learning Research, pages

339–354. PMLR, 16–18 Nov 2021.

Adith Swaminathan and Thorsten Joachims. Counterfactual

risk minimization: Learning from logged bandit feedback.

In International Conference on Machine Learning, pages

814–823. PMLR, 2015a.

Adith Swaminathan and Thorsten Joachims. The self-

normalized estimator for counterfactual learning. In ad-

vances in neural information processing systems, pages

3231–3239. Citeseer, 2015b.

P. Thomas, G. Theocharous, M. Ghavamzadeh, I. Durugkar,

and E. Brunskill. Predictive off-policy policy evaluation

for nonstationary decision problems, with applications to

digital marketing. In AAAI, 2017.

Philip Thomas and Emma Brunskill. Data-efficient off-

policy policy evaluation for reinforcement learning. In

International Conference on Machine Learning, pages

2139–2148, 2016.

Philip Thomas, Georgios Theocharous, and Mohammad

Ghavamzadeh. High confidence policy improvement. In

Proceedings of the 32nd International Conference on

International Conference on Machine Learning, pages

2380–2388, 2015a.

Philip S Thomas, Georgios Theocharous, and Mohammad

Ghavamzadeh. High-confidence off-policy evaluation. In

AAAI, 2015b.

Philip S Thomas, Bruno Castro da Silva, Andrew G Barto,

Stephen Giguere, Yuriy Brun, and Emma Brunskill. Pre-

venting undesirable behavior of intelligent machines. Sci-

ence, 366:999–1004, 2019.

Huan Wang, Stephan Zheng, Caiming Xiong, and Richard

Socher. On the generalization gap in reparameterizable

reinforcement learning. In International Conference on

Machine Learning, pages 6648–6658. PMLR, 2019.

G. Yauney and P. Shah. Reinforcement learning with action-

derived rewards for chemotherapy and clinical trial dosing

regimen selection. In MLHC, pages 161–226. PMLR,

2018.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon,

James Zou, Sergey Levine, Chelsea Finn, and Tengyu Ma.

Mopo: Model-based offline policy optimization. arXiv

preprint arXiv:2005.13239, 2020.

A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine.

Learning invariant representations for reinforcement

learning without reconstruction. In ICLR, 2021.





B PROOFS OF SECTION 6

Proof of Theorem 1.
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Proof of Corollary 1.

Proof.
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Proof of Proposition 1.

Proof. This is due to π(a|x
(i)
h ) and µ(a|x

(i)
h ) are independent from history given x

(i)
h . So W

(i)
1:h and W
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Proof of Theorem 2.

Proof. Let Ph(x;µ) to be the distribution of context at h-th step with roll-in policy µ. For any fixed a, we can define the

distribution Ph(x|a;µ) = µ(a|x)Ph(x;µ)/
∑

a µ(a|x)Ph(x;µ). For a such that µ(a|x) > 0, Ph(x|a;µ) is also greater

than zero. All x
(i)
h with a

(i)
h = a are i.i.d. samples draw from the distribution Ph(x;µ). By the property of nearest neighbor

[Cover and Hart, 1967], with probability 1:

min
x
(i)
h

s.t.a
(i)
h

=a

dist(x, x
(i)
h )→ 0 < δ.

That means with probability 1 a ∈ Ah(x;D, δ) for all a such that µ(a|x) > 0. Thus we proved the theorem statement and

that the policy class will contain all π such that π(a|x) > 0 if µ(a|x) > 0.

Proof of Theorem 3.

Proof. Given the overlap assumption and Theorem 2, for all π we have a ∈ Ah(x;D, δ) for all a such that π(a|x) > 0 with

probability 1. Thus the solution to Equation 6 is the same as argmaxπ J(π,D) := π̂J,D.





C.1 EXPERIMENT DETAILS IN TGI SIMULATOR

The TGI simulator describes low-grade gliomas (LGG) growth kinetics in response to chemotherapy in a horizon of 30

months using an ordinary differential equation model. The parameter in ODEs are estimated using data from adult diffuse

LGG during and after chemotherapy was used, in a horizon of 30 months. The goal in this environment is to achieve a

reduction in mean tumor diameters (MTD) while reducing the drug dosage [Yauney and Shah, 2018]. We includes the

MTD, the drug concentration, and the number of month (time-step) in the context space. Notice that this context space

is non-Markov as it does not include all parameters in the ODEs. Actions are binary representing taking the full dose or

no dose which is same as prior work [Yauney and Shah, 2018]. The reward at each step consist of an immediate penalty

proportional to the drug concentration, and a delayed reward at the end measures the decrease of MTD compared with the

beginning. Each episodes, the parameters including the initial MTD are sampled from a log-Normal distribution as [Ribba

et al., 2012] representing the difference in individuals. The behavior policy is a fixed dosing schedule of 9 months (the

median duration from Peyre et al. [2010]) plus 30% of a uniformly random choice of actions. We run all algorithms on a

training set with 1000 episodes with different hyperparameters (listed below), and 5 restarts, saving checkpoints along the

training.The validation set is comprised of 1000 episodes as well.

Hyperparameters. In the first part of Table 5 we show the searched hyperparameters of each algorithm, except that the

parameter b in PQL is set adaptively as the 2-percentile of the score on the training set as in the original paper Liu et al.

[2020]. As we know the behavior policy, we use the true behavior policy in BCQ and PQL algorithm. So BCQ threshold

takes only two values as the behavior policy is ǫ-deterministic so there are only two distinct values. In the second part

of Table 5 we specify some fixed hyperparameters/settings for all algorithm. All policy/Q functions are approximated by

fully-connected neural networks with two hidden layers with 32 units.

Hyperparameters used in algorithms values

δ POELA 0.05, 0.1, 0.5
µ̂ threshold PO-µ 0.01, 0.05, 0.1, 0.2

CRM Var coefficient POELA, PO-CRM 0, 0.1, 1
BCQ threshold BCQ, PQL 0.0, 0.2

M in v̂SNTIS All 1000
Max training steps POELA, PO-CRM, PO-µ 500

BCQ, PQL 1000

Number of checkpoints All 50

Batch size BCQ, PQL 100

Table 5: Hyperparameters in the TGI simulator experiment

The difference in the max update steps and checkpoints frequency is caused by the fact that BCQ and PQL is updated by

stochastic gradient descent and all policy optimization based on SNTIS is using gradient descent.

C.2 EXPERIMENT DETAILS IN THE MIMIC III DATASET

The MIMIC III sepsis dataset is available upon application and training: https://mimic.mit.edu/iii/gettingstarted/. The code

to extract the cohort is available on: https://gitlab.doc.ic.ac.uk/AIClinician/AIClinician. This cohort consists of data for

14971 patients. The contexts for each patient consist of 44 features, summarized in 4-hour intervals, for at most 20 steps.

The actions we consider are the prescription of IV fluids and vasopressors. Each of the two treatments is binned into 5

discrete actions according to the dosage amounts, resulting in 25 possible actions. The rewards are defined from the 90-day

mortality in the logs, 100 if the patient survives and 0 otherwise.

We now provide details of the experiment on MIMIC III sepsis dataset here. We run all algorithms on a training set with

8982 trajectories with different hyperparameters (listed below), and 3 restarts, saving checkpoints along the training.The

validation set is comprised of 2994 trajectories. Finally we get the v̂SNTIS evaluation on the test set with 2995 trajectories. In

the first part of Table 6 we list the hyperparameters that we searched on the validation set for each algorithm, except that the

parameter b in PQL is set adaptively as the 2-percentile of the score on the training set as in the original paper [Liu et al.,



2020]. In the second part of Table 5 we specify some fixed hyperparameters/settings for all algorithm. All policy/Q-functions

are approximated by fully-connected neural networks with two hidden layers with 256 units.

Hyperparameters used in algorithms values

δ POELA 0.4, 0.6, 0.8, 1.0
µ̂ threshold PO-µ 0.01, 0.02, 0.05, 0.1

CRM Var coefficient POELA, PO-CRM 0, 0.1, 1, 10
BCQ threshold BCQ, PQL 0.0, 0.01, 0.05, 0.1, 0.3, 0.5

M in v̂SNTIS All 1000
Max training steps POELA, PO-CRM, PO-µ 1000

BCQ, PQL 10000

Number of checkpoints All 100

Batch size BCQ, PQL 100

Table 6: Hyperparameters in the MIMIC III sepsis experiment

As we explained, the difference in the max update steps and checkpoints frequency is caused by the fact that BCQ and PQL

is updated by stochastic gradient descent and all policy optimization based on SNTIS is using gradient descent.

C.3 EXPERIMENT DETAILS FOR THE BEHAVIOR POLICY ESTIMATION

In the implementation of BC, we use Multi-Layer Perceptrons (MLPs) neural networks with layer dimensions [32, 32, 32]

for the LGG Tumor Growth Inhibition simulator and [256, 256, 256] for the MIMIC III dataset. All use ReLU activations.

For BCRNN, we use 3-layer GRUs with a RNN hidden dimension of size 100. All networks are trained using Adam

optimizer [Kingma and Ba, 2014] with learning rate 3e− 4. For all experiments, BC and BCRNN are trained for 500 steps

and directly serve as estimated behavior policies.

C.4 IMPORTANCE WEIGHTS IN LOW-REWARD TRAJECTORIES

To examine if the proposed overfitting phenomenon exists in real experimental datasets, we compute the importance weights

of the learned policy on the low-reward trajectories in the training data for our MIMIC III dataset and our tumor simulator.

Our hypothesis is that overfitting of the importance weights in policy gradient methods may result in the algorithm avoiding

initial states with low rewards, which motivated our proposed algorithm.

In MIMIC III dataset the reward for a trajectory is either 0 or 100. We define the low-reward trajectories as those with 0
reward. Low-reward trajectories are over 60% of all trajectories in the dataset. In the Tumor simulation experiment we

define a low-reward trajectory when reward is less than −2. Over 95% of trajectories in the Tumor simulation dataset are

low-reward trajectories.

The table below shows, for each algorithm and setting, the sum of the SNTIS weights of the learned policy on the training

set, for low-reward trajectory states. Our primary interest is to illustrate that alternate policy gradient methods that are also

suitable for non-Markov domains, can exhibit the importance sampling overfitting of avoiding low reward trajectories. We

indeed see in Table 7 that POELA has a much larger weight on low-reward trajectories than alternate offline policy search

methods:

Method POELA PO-µ PO-CRM

MIMIC III 0.028 0.001 0.003

Tumor non-MDP 0.054 - (fixed policy) 0.005

Table 7: Importance weights overfitting: sum of SNTIS weights of learned policy on the training set.

The Q-learning baselines we consider (BCQ and PQL) do not directly use the importance weights, but they do try to avoid

actions and/or states and actions with little support. Our POELA method can be viewed as being similarly inspired, but for



non-Markovian settings where policy gradient is beneficial. We also compute the SNTIS weights of the BCQ/PQL policy

on the training set in the Markov domain that satisfies the Markov assumptions of BCQ/PQL. In Table 8 we can see that

POELA, BCQ and PQL all still give significantly more weight to low reward trajectories than the alternate policy gradient

methods:

Method POELA PO-µ PO-CRM BCQ PQL

Tumor MDP 0.097 - (fixed policy) 0.0004 0.083 0.124

Table 8: Importance weights overfitting: sum of SNTIS weights of learned policy on the training set.

These results help illustrate that the over avoidance of low-reward trajectories can be observed by past policy gradient

methods in our datasets. Of course, one challenge is that in real settings, an excellent policy may have low importance

weights in avoidable low-reward states and trajectories, but should have higher importance weights in non-avoidable low

reward starting states and trajectories. To get a fuller picture of performance, it is helpful to look both at the weights on

trajectories with low rewards and the test evaluation results. Compared with strong policy gradient baselines, our proposed

regularization method have larger importance weights on low-reward trajectories, and the gap between training/validation

evaluation and online test performance is also smaller, suggesting that we are less likely to learn policies that erroneously

believe they can avoid unavoidable low reward settings.

C.5 THE EFFECT OF ELIGIBLE ACTION CONSTRAINTS δ

In this section we explore how the choice of δ, which constrains the policy class through impacting the eligible actions,

impacts empirical performance. Larger δ corresponds to a less constrained policy class. Other hyperparameters are selected

by the same procedure as described in previous sections.

Table 9 shows the results. As δ increases, the policy search operates with less constraints. The results show that in this case,

our policy gradient method produces a policy with a higher value in the training set, but that policy may not perform as well

in the test evaluation, and may have a smaller effective sample size than when a smaller δ is used. The best hyperparameter

value δ lies in the middle of the explored range. δ can be selected based on performance and effective sample size.

δ 0.4 0.6 0.8 1.0

training v̂SNTIS 91.62 98.41 98.9 99.12

training ESS 3601.12 2242.07 1993.08 1769.46

test v̂SNTIS 86.62 90.07 91.46 90.23

test ESS 1278.08 819.64 624.92 542.53

Table 9: The effect of eligible action constraints δ on the results in MIMIC III sepsis dataset.



D ADDITIONAL EXPERIMENTS: LGG TUMOR GROWTH INHIBITION SIMULATOR

In this section, we provide additional experiments to the existing LGG Tumor Growth Inhibition simulator experiments.

D.1 EXPERIMENT WITH ESTIMATING THE BEHAVIOR POLICY WITH FUNCTION APPROXIMATION

Algorithms POELA PO-µ̂ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 92.34± 1.57 59.62± 12.71 46.66± 14.05 19.36± 5.66 30.44± 10.38 68.12

v̂SNTIS − vπ 0.94± 1.66 31.38± 10.97 42.98± 12.87 72.35± 5.66 62.24± 10.94 −

MDP Test vπ 91.04± 0.55 78.21± 4.94 78.70± 0.60 99.26± 0.59 99.66± 0.29 68.12

v̂SNTIS − vπ 3.40± 2.48 15.58± 3.92 15.10± 3.97 −3.88± 1.60 −4.09± 1.75 −

Table 10: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is

computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting. All

numbers are averaged across 5 runs with the standard error reported. Behavior policy µ̂ = BC.

Algorithms POELA PO-µ̂ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 95.81± 1.68 76.64± 14.65 76.43± 14.59 19.79± 5.76 31.57± 10.63 68.12

v̂SNTIS − vπ −1.52± 1.79 16.35± 14.40 16.56± 14.36 73.71± 6.34 62.92± 11.19 −

MDP Test vπ 89.25± 1.51 75.43± 8.25 73.61± 0.30 99.57± 0.29 99.96± 0.12 68.12

v̂SNTIS − vπ 5.17± 2.20 17.66± 7.90 19.44± 8.52 −4.18± 1.76 −4.38± 1.78 −

Table 11: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is

computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting. All

numbers are averaged across 5 runs with the standard error reported. Behavior policy µ̂ = BCRNN.

D.2 ALTERNATIVE SELECTION PROCEDURE: CHECKPOINT BEST INTERMITTENT POLICIES

In this section, we use the procedure of best policy checkpoint during the training described in Section C. We report the test

performance of the selected policy through online Monte-Carlo estimation.

Algorithms POELA PO-µ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 92.20± 1.63 76.99± 13.80 75.06± 13.22 57.77± 16.71 74.76± 9.75 68.12

v̂SNTIS − vπ −1.26± 1.92 16.07± 13.55 15.57± 13.07 37.55± 16.91 17.74± 9.49 −

MDP Test vπ 89.52± 1.55 69.18± 10.17 78.79± 6.42 94.7± 3.49 96.88± 3.76 68.12

v̂SNTIS − vπ 5.16± 1.78 24.92± 9.71 14.93± 5.71 2.75± 3.41 −0.26± 4.18 −

Table 12: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is

computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting. All

numbers are averaged across 5 runs with the standard error reported. Procedure: best intermittent policy checkpoints.

Algorithms POELA PO-µ̂ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 94.16± 1.82 74.76± 7.66 76.38± 7.26 92.92± 1.68 74.65± 14.5 68.12

v̂SNTIS − vπ 0.95± 1.92 18.02± 7.07 15.02± 6.68 0.58± 0.27 20.49± 14.46 −

MDP Test vπ 91.81± 1.05 84.86± 3.48 84.08± 3.46 86.22± 9.61 95.02± 4.95 68.12

v̂SNTIS − vπ 2.7± 2.82 9.23± 3.85 10.01± 3.88 11.03± 10.4 2.45± 5.27 −

Table 13: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is

computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting.

All numbers are averaged across 5 runs with the standard error reported. Behavior policy µ̂ = BC. Procedure: best

intermittent policy checkpoints.



Algorithms POELA PO-µ̂ PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 96.34± 1.58 77.51± 13.87 75.73± 14.3 92.73± 1.67 74.94± 14.47 68.12

v̂SNTIS − vπ −2.05± 1.9 15.48± 13.62 17.27± 14.02 0.77± 0.52 20.2± 14.43 −

MDP Test vπ 90.06± 1.65 79.62± 7.82 79.54± 7.65 86.38± 9.47 95.16± 4.9 68.12

v̂SNTIS − vπ 4.46± 2.31 13.81± 6.96 13.89± 6.81 10.87± 10.24 2.33± 5.19 −

Table 14: LGG Tumor Growth Inhibition simulator. Test vπ and amount of overfitting of the learned policy. Test vπ is

computed from 1000 rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting.

All numbers are averaged across 5 runs with the standard error reported. Behavior policy µ̂ = BCRNN. Procedure: best

intermittent policy checkpoints.

E ADDITIONAL EXPERIMENTS: MIMIC III SEPSIS

In this section we provide additional experiments to the existing MIMIC III sepsis experiments.

E.1 ALTERNATIVE SELECTION PROCEDURE: CHECKPOINT BEST INTERMITTENT POLICIES

In this section, we use the procedure of using checkpoints to select best policies during the training described in Section C.

We report the test performance of the selected policy using SNTIS estimates on a held out test set.

Method POELA PO-µ̂ PO-CRM BCQ PQL Clinician

Test SNTIS 91.46 (90.82) 87.95 87.71 82.67 84.40 81.10

95% BCa UB 93.24 (92.61) 90.58 90.04 86.83 88.29 82.19

95% BCa LB 89.59 (88.68) 84.77 84.90 78.25 80.13 79.80

Test ESS 624.92 (586.37) 372.00 399.59 228.82 231.93 2995

Table 15: MIMIC III sepsis dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and effective sample size. The value

of POELA without a CRM variance penalty is shown in parentheses. Procedure: best intermittent policy checkpoints.

Method POELA PO-µ̂ PO-CRM BCQ PQL Clinician

Test SNTIS 85.01 (89.62) 84.70 85.53 83.17 84.16 81.10

95% BCa UB 88.61 (92.75) 88.56 87.80 92.88 88.04 82.19

95% BCa LB 80.55 (85.57) 80.15 83.23 63.98 79.98 79.80

Test ESS 227.92 (214.12) 228.97 354.86 208.92 209.72 2995

Table 16: MIMIC III sepsis dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and effective sample size. The

value of POELA without a CRM variance penalty is shown in parentheses. Behavior policy µ̂ = BC. Procedure: best

intermittent policy checkpoints.

Method POELA PO-µ̂ PO-CRM BCQ PQL Clinician

Test SNTIS 88.34 (90.89) 87.98 85.12 83.20 85.06 81.10

95% BCa UB 91.65 (93.78) 91.06 92.75 91.56 89.12 82.19

95% BCa LB 83.94 (87.05) 84.41 72.96 66.27 79.76 79.80

Test ESS 201.49 (220.86) 285.82 211.20 206.11 212.36 2995

Table 17: MIMIC III sepsis dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and effective sample size. The

value of POELA without a CRM variance penalty is shown in parentheses. Behavior policy µ̂ = BCRNN. Procedure: best

intermittent policy checkpoints.

E.2 ABLATION STUDY: ESS CONSTRAINTS FOR HYPERPARAMETER SELECTION ON VALIDATION

SET

In the main text, we set an effective sample size threshold of 200 for a policy/hyperparameter to be selected on validation set.

This is to make sure we have large enough effective sample size on the test set to provide reliable off-policy test estimates.







F ADDITIONAL EXPERIMENTS: OPENAI GYM ENVIRONMENT CARTPOLE

In this experiment, we collect a dataset by training DQN [Mnih et al., 2013] on the task and saving trajectories of horizon 200

steps at regular checkpoints during the training. The dataset is composed of a mixture of sub-optimal and expert data totalling

20000 transitions. For the non-Markov modification, we keep the Cart Position, Cart Velocity and Pole Angle observations

but remove the Pole Angular Velocity element. In Table 19, we report the hyperparameter used in the experiments.

Hyperparameters used in algorithms values

δ POELA 0.0001, 0.0005, 0.001, 0.005, 0.01
µ̂ threshold PO-µ 0.05, 0.1, 0.15, 0.2

CRM Var coefficient POELA, PO-CRM 0, 0.1, 1, 10
BCQ threshold BCQ, PQL 0.0, 0.05, 0.1, 0.2, 0.5

M in v̂SNTIS All 1000
Max training steps POELA, PO-CRM, PO-µ 500

BCQ, PQL 1000

Number of checkpoints All 50

Batch size BCQ, PQL 64

Table 19: Hyperparameters in the CartPole experiment.

F.1 STANDARD EVALUATION PROCEDURE: USE POLICY AT THE END OF TRAINING

Method POELA PO-µ̂ PO-CRM BCQ PQL Behavior policy

Test SNTIS 88.29 (86.62) 78.79 72.63 21.28 23.61 41.41

95% BCa UB 89.70 (89.81) 83.87 76.77 24.63 27.14 45.04

95% BCa LB 85.93 (85.57) 69.64 68.15 16.22 20.36 38.16

Test ESS 43.32 (40.78) 30.51 30.13 30.11 30.08 248

Table 20: CartPole dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA without a

CRM variance penalty is shown in parentheses.

Method POELA PO-µ̂ PO-CRM BCQ PQL Behavior policy

Test SNTIS 76.18 (72.21) 68.39 67.14 12.13 5.46 41.41

95% BCa UB 89.27 (88.32) 80.22 83.72 12.89 6.63 45.04

95% BCa LB 68.97 (67.49) 57.13 57.78 9.17 5.02 38.16

Test ESS 36.41 (34.72) 34.56 31.87 31.22 30.07 248

Table 21: Non-MDP CartPole dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA

without a CRM variance penalty is shown in parentheses.

F.2 ALTERNATIVE SELECTION PROCEDURE: CHECKPOINT BEST INTERMITTENT POLICIES

G ADDITIONAL EXPERIMENTS: D4RL

Although our primary focus is on application areas where the Markov assumption may not be correct or unverifiable, we

also compare to an additional standard benchmark, namely D4RL.

An adaptation of the POELA algorithm is necessary to work with continuous action spaces. Practically, instead of using the

eligible action set Ah, for each data sample, we pre-compute a set of similar actions and use the distance to the closest state

xh associated with the most similar action distributions in the dataset as a smooth penalty in Line 5 of Algorithm 1.

For each dataset quality (random, medium, and expert) and task (Hopper and Walker2D), we report the performances scaled

from 0 to 100 (0 corresponds to the average returns of a random policy and 100 that of an expert policy) following the



Method POELA PO-µ̂ PO-CRM BCQ PQL Behavior policy

Test SNTIS 88.43 (87.56) 76.01 82.25 17.74 17.83 41.41

95% BCa UB 90.46 (90.72) 82.87 86.18 21.80 21.84 45.04

95% BCa LB 85.48 (84.63) 66.21 74.30 12.84 13.26 38.16

Test ESS 43.32 (39.66) 31.04 30.87 30.29 30.18 248

Table 22: CartPole dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA without a

CRM variance penalty is shown in parentheses. Procedure: best intermittent policy checkpoints.

Method POELA PO-µ̂ PO-CRM BCQ PQL Behavior policy

Test SNTIS 75.76 (75.70) 68.66 66.34 11.73 5.70 41.41

95% BCa UB 92.35 (89.16) 79.56 82.46 12.49 6.71 45.04

95% BCa LB 68.34 (66.08) 55.49 57.50 7.98 5.08 38.16

Test ESS 37.72 (35.27) 35.15 36.02 30.12 31.77 248

Table 23: Non-MDP CartPole dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and ESS. The value of POELA

without a CRM variance penalty is shown in parentheses. Procedure: best intermittent policy checkpoints.

experimental protocol for D4RL with 200 episodes in each dataset. We compare with state-of-the-art methods in this dataset.

The results are reported in Table 24.

Dataset POELA BCQ CQL Behavior policy

Hopper-random 10.5 10.5 10.8 9.8

Hopper-medium 43.7 42.9 41.4 29.0

Hopper-expert 58.9 59.7 52.6 43.6

Walker2D-random 6.1 4.6 5.4 1.6

Walker2D-medium 33.8 31.1 49.6 6.6

Walker2D-expert 32.2 32.8 54.7 50.2

Table 24: Additional experiments on 6 D4RL datasets.

The results in Table 24 suggest that POELA performs similarly to two other state-of-the-art methods in this setting, even

though POELA does not make Markov assumptions, which are made and leveraged in BCQ and CQL.
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